Automatic Steering Methods for Autonomous

Automobile Path Tracking

Jarrod M. Snider

CMU-RI-TR-09-08

February 2009

Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania

(© Carnegie Mellon University



Abstract

This research derives, implements, tunes and compares selectedhpkihg methods for controlling a car-like
robot along a predetermined path. The scope includes commonly usthdas found in practice as well as some
theoretical methods found in various literature from other areas adreseThis work reviews literature and identifies
important path tracking models and control algorithms from the vastgsaokd and resources. This paper augments
the literature with a comprehensive collection of important path trackingjdeguide to their implementations and,
most importantly, an independent and realistic comparison of the peafare of these various approaches. This
document does not catalog all of the work in vehicle modeling and comndy; a selection that is perceived to be
important ideas when considering practical system identification, edegté#mentation/tuning and computational
efficiency. There are several other methods that meet this criterieeMeo they are deemed similar to one or more of
the approaches presented and are notincluded. The perfornesndts ranalysis and comparison of tracking methods
ultimately reveal that none of the approaches work well in all applicatiodsttzat they have some complementary
characteristics. These complementary characteristics lead to an ideactimabination of methods may be useful for
more general applications. Additionally, applications for which the metlodtisis paper do not provide adequate

solutions are identified.
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1 Introduction

A significant portion of Robotics research involves develgmutonomous car-like robots. This research is often
at the forefront of innovation and technology in many arddswever, it is often common practice to use relatively
simple and sometimes naive control strategies and/ormystedels for vehicle control, even on some well known

and successful autonomous vehicle projects [18, 17, 16, 4].

Figure 3: Boss

Figure 1 is Sandstorm, the autonomous vehicle that placemhdean the DARPA Grand Challenge using a very
simple steering control law based on a geometric vehicleanoBigure 2 is Stanley, the autonomous vehicle that
won the DARPA Grand Challenge using an intuitive steeringticd law based on a simple kinematic vehicle model.
Figure 3 is Boss, the autonomous vehicle that won the DARR#abIChallenge. Boss uses a much more sophisticated
model predictive control strategy to perform vehicle cohtHowever, a very simple kinematic model of the vehicle,

a time delay and rate limits on steering is all that is inctidethe optimization of the steering controls. This does



not mean, however, there has not been extensive reseatdh ar¢a, and a great deal of literature on the topic exists.

These observations lead to the following questions:
e How good are these simple methods commonly found in prattice
e Can improvements in performance be achieved using exist&#thods found in other theoretical research?
e Can good matches between methods and applications befielépti
e What are the limitations and potential for future breaktlgiua?

It is these observations and questions that motivate ttearels found in this paper. This paper endeavors to collect
scattered sources and provide an independent and reatigtigarison of the performance of several classes of vehicle
controllers along with advice on how to implement them.

The family of vehicle controllers of interest are calledtpatickers. Path tracking refers to a vehicle executing
a globally defined geometric path by applying appropriagéerihg motions that guide the vehicle along the path.
The goal of a path tracking controller is to minimize the tatalistance between the vehicle and the defined path,
minimize the difference in the vehicle’s heading and thergefipath’s heading, and limit steering inputs to smooth
motions while maintaining stability.

For each class of path trackers presented in this paper, @erlying system model will be developed before
the algorithm is presented. The algorithms themselvesheilpresented in a way to minimize the complexity of
performance tuning, and the effects of the parameters willlbstrated using three representative courses. Chapter
2 will concentrate on methods that exploit geometric retahips between the vehicle and the path to design control
laws [2, 16] that are simple, robust and achieve accurate tpatking in a limited set of driving scenarios and can
provide moderate tracking in a much larger set of scenari©sapter 3 moves on to more control theory based
techniques and uses a simple kinematic model of a vehicte jow that accurate path tracking can be achieved with
this simple model in a limited set of driving scenarios. Gleag introduces a dynamic vehicle model and techniques
such as Optimal Control and Optimal Preview Control [11, 14, to demonstrate that accurate path tracking can
be achieved over a wider range of driving scenarios when ¥inardics of the vehicle are considered. Chapter 5
then turns to a head-to-head performance comparison of eigsrithms which illustrates why relatively primitive
control techniques are commonly used successfully as wdilighlighting the need for more advanced techniques as
Robotics moves forward in the development of precision fraitking for vehicles operating at higher speeds and with

new objectives.



1.1 Experimental Design

Figure 4: Screen shot from a CarSim animation

To provide a valid evaluation and comparison, the path trackontrollers implemented for this paper are tested
with a high fidelity vehicle simulator, CarSim. CarSim quicland accurately simulates the dynamic behavior of
vehicles and is used in the automotive industry as the stdrgawhich vehicle handling and dynamics are tested
[1]. Figure 4 is a screen shot from a CarSim animation. Thedstad CarSim simulator provides a complete model of
the vehicle system and the environment [7]. Additionalferlimits and delays associated with the steering actuator
are added to the standard model. The controllers are impiiemién C and communicate with CarSim through the
available API [8].

Three driving courses are chosen to perform the variousrempats found in this paper. The courses are designed

to test attributes of the controllers and provide insight their relative advantages and disadvantages.

1.1.1 Lane Change Course

The Lane Change Course is a straight section of two lane road in which the vehicleepuired to perform a single
lane change maneuver. The lane change maneuver is a comshéor techicle handling as it represents an essential
collision avoidance maneuver. Thane Change Courseis chosen to demonstrate the tracking capability on a straig
path as well as the response to a quick, yet (position andatitne) continuous, transient section. Experiments on this
course are performed at constant velocitiesraf/s, 10m/s, 15m/s and 20n/s. Figure 5 illustrates theane Change

Course.



Lane Change Course
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Figure 5: Lane Change Course

1.1.2 Figure Eight Course

The Figure Eight Course consists of two circular paths that intersect at a tangeimt pd his course is not com-
monly found in everyday driving. However, it can provideuable insight into the handling of a vehicle as well as
some important characteristics of a controller. This cewvas chosen to illustrate the steady state characteristics
the controllers while executing a constant nonzero curegiath. This course also includes a point with discontiisuou
curvature where vehicles transition from one circle to d&reotWhile it is possible to require that all paths be gendrate
with continuous curvature, a controller’s response to dissontinuity provides insight into it's robustness. Esipe
ments on this course are performed at constant velociti&sgk, 10m/s, 15m/s and 20n/s. Figure 6 illustrates

the Figure Eight Course.



Figure Eight Course
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Figure 6: Figure Eight Course

1.1.3 Road Course

TheRoad Course captures a variety of driving scenarios representativeafworld driving. The path is generated
to minimize lateral acceleration while staying on the roadace. The path is continuous and the speed varies as a

function of the path. Th&oad Course facilitates a general performance comparison of the varitacking methods.

Figure 7 illustrates thR®oad Course.
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Figure 7: Road Course



Experiments on this course are performed at three differelotity profiles. The velocity profiles are generated
to limit the longitudinal acceleration to within a range aigde could achieve while also limiting the theoretical
kinematic centripetal acceleration of the vehicle. Theglardinal acceleration is limited to be betweenmn4s? and
3 m/s? for all experiments. The three velocity profiles are gerearatith kinematic centripetal accelerations limits
of 0.1y, 0.2% and 0.3. Despite these kinematic limitations, the actual latecakteration of the vehicle can be much
greater in magnitude. The velocity profiles for this counseillustrated in Figure 8.

Road Course Velocity Profiles
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Figure 8: Velocity profiles used on tiiad Course



2 Geometric Path Tracking

One of the most popular classes of path tracking methodglfurobotics is that of geometric path trackers. These
methods exploit geometric relationships between the \ehied the path resulting in control law solutions to the path
tracking problem. These techniques often make use of a lee&ddistance to measure error ahead of the vehicle and
can extend from simple circular arc calculations to more giarated calculations involving screw theory [19]. This
section will describe the geometric vehicle model most comipnused by these methods and two of these methods:

Pure Pursuit and the Stanley Method.

2.1 Geometric Vehicle Model

circulararc >\ 5

=

Figure 9: Geometric Bicycle Model

A common simplification of an Ackerman steered vehicle usedyeometric path tracking is the bicycle model.
Section 3.1 includes a detailed discussion of Ackermarriageand the kinematics of the bicycle model. For the
purpose of geometric path tracking, it is only necessaryateghat the bicycle model simplifies the four wheel car
by combining the two front wheels together and the two reageldtogether to form a two wheeled model, like a
bicycle. The second simplification is that the vehicle caly anove on a plane. These simplifications result in a
simple geometric relationship between the front wheelrstgeangle and the curvature that the rear axle will follow.

As shown in Figure 9, this simple geometric relationship lsanvritten as

tan(d) = —, Q)

=



whered is the steering angle of the front wheéljs the distance between the front axle and rear axle (whee)tzand
R is the radius of the circle that the rear axle will travel @at the given steering angle. This model approximates

the motion of a car reasonably well at low speeds and modstedeing angles.

2.2 Pure Pursuit

path
(g.-8,)

circulararc QS

Figure 10: Pure Pursuit geometry

The pure pursuit [2] method and variations of it are amongriiest common approaches to the path tracking
problem for mobile robots. The pure pursuit method consiteeometrically calculating the curvature of a circular
arc that connects the rear axle location to a goal point opdtie ahead of the vehicle. The goal point is determined
from a look-ahead distancg from the current rear axle position to the desired path. Toe goint (g, g,) is
illustrated in Figure 10. The vehicle’s steering andjlean be determined using only the goal point location and the
anglea between the vehicle’s heading vector and the look-aheadvepplying the law of sines to Figure 10 results
in

lq R

sin (2a)  sin (% — @)

lq R

2sin (o) cos (o) cos (a)

Ly

sin ()

=2R



or
~ 2sin ()

w= T @

wherek is the curvature of the circular arc. Using the simple geoimbtcycle model of an Ackerman steered vehicle

from Section 2.1, the steering angle can be written as
§ =tan"! (kL). 3

Using Eq. 2 and 3, the pure pursuit control law is given as

5(t) = tan (MWEEO‘(“)) .

A better understanding of this control law can be gained binitgy a new variableg,, to be the lateral distance

between the heading vector and the goal point resultingaretiuation

n (o) = &
sin () = 0
Eqg. 2 can then be rewritten as
2
K= pee 4)
d

Eg. 4 demonstrates that pure pursuit is a proportional obetrof the steering angle operating on a cross track error
some look-ahead distance in front of the vehicle and haviggimof2/¢2. In practice the gain (look-ahead distance)
is independently tuned to be stable at several constantispessulting ir/, being assigned as a function of vehicle

speed.

2.2.1 Tuning the Pure Pursuit Controller

To simplify tuning, the control law can be rewritten, scaliihe look-ahead distance with the longitudinal velocity
of the vehicle. Scaling the look-ahead distance in this reaisma common practice. Addionally, the look-ahead
distance is commonly saturated at a minimum and maximunevadhuthis paper these value are set to 3m and 25m

respectively. This results in

§(t) = tan™! (MH(O‘)> .

kv (t)

10



Experiments are conducted on thane Change Course. Figure 11 illustrates the effects of the tuning parameter

on tracking performance during these experiments. Th&itrgaesults are what one might expect. Aincreases

Pure Pursuit at 5m/s on Lane Change Course Pure Pursuit at 10m/s on Lane Change Course
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Figure 11: Pure Pursuit at multiple speeds and various geirike lane change course

the look-ahead distance is increased and the tracking lectans and less oscillatory. A short look-ahead distance
provides more accurate tracking while a longer distanceiges smoother tracking. It is clear thatavalue that

is too small will cause instability and favalue that is too large will cause poor tracking. Anotherralteristic of
Pure Pursuit is that a sufficient look-ahead distance wsllitein "cutting corners” while executing turns on the path.
The trade off between stability and tracking performancadifficult to balance with Pure Pursuit and will begin to
seem course dependent. This is in part due to the fact th&urePursuit method ignores the curvature of the path.
Intuition would leave one to believe that the curvature ef plath should somehow influence the look-ahead distance
as well as the velocity (and perhaps even the current looakdrack error). The effects of this will be seen in further
tests. Pure Pursuit demonstrates a high level of robustoghe quick transient section of this test, even at a fairly

high speed in the final test that would not be typical of mosfilyg scenarios. This robustness is an important quality

11



of Pure Pursuit.
Experiments are conducted on thigure Eight Course. Figure 12 illustrates the effects of the tuning parameter

on tracking performance during these experiments. Agénilas results are obtained. The good characteristic to

Pure Pursuit at 5m/s on Figure Eight Course Pure Pursuit at 10m/s on Figure Eight Course
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Figure 12: Pure Pursuit at multiple speeds and various gairike figure eight course

point out during this test is that the Pure Pursuit methoalisist to the discontinuity in the path. It is clear to see
that on a constant curvature path a valué cain always be chosen that will perform well on that curvatbue could

fail miserably when presented with a different curvaturelifierent speed. This is because Pure Pursuit is simply
calculating a circular arc based on the simple geometricatmfithe vehicle. In this case there is clearly a circular arc
the vehicle would have to travel to stay on the path, but ttécle travels a different circular arc than what the model
would predict. This discrepancy comes from the model igrpthe vehicle’s lateral dynamic characteristics that are
more and more influential as the speed and/or curvaturedsege It is easy to imagine that in constant curvature and
constant speed tests this dynamic effect can be comperfsatedincreasing: until the circular arc that is computed

is tighter than the circular arc of the path at a proporticat thould cancel out the dynamic side slip of the vehicle.

12



This is a bad characteristic for tuning the tracker. One rbastareful not to over tune on a course and test a variety
of courses and speeds to find #hat can perform well over the operating space of the vehidhés usually results in
giving up accuracy to insure stability. Again, the final tisstot typical of of most driving scenarios.

Experiments are conducted on Read Course. Figure 13 illustrates the effects of the tuning parameteracking

performance during these experiments. The "cutting cafrigsapparent again in this test. However, Pure Pursuit can

Pure Pursuit at 0.1g on Road Course Pure Pursuit at 0.25g on Road Course
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Figure 13: Pure Pursuit at multiple velocity profiles andaas gains on the road course

be tuned to perform reasonably well on this course. The @8gd simply an analysis tool and may not be a test that
a tracker should be able to complete. It is valuable to know &ed under what conditions a method will fail.

The characteristics of Pure Pursuit during tuning can bensaized as follows: Decreasing the look-ahead dis-
tance results in higher precision tracking and eventualbyjliation, and increasing the look-ahead distance regult

lower precision tracking and eventually stability.

13



2.3 Stanley Method

Figure 14: Stanley method geometry

The Stanley method [16] is the path tracking approach usestémyford University’s autonomous vehicle entry in
the DARPA Grand Challenge, Stanley. The Stanley method anéimear feedback function of the cross track error
efq, Measured from the center of the front axle to the nearebtpmint (c,, ¢, ), for which exponential convergence
can be shown [16]. Co-locating the point of control with theesed front wheels allows for an intuitive control law,
where the first term simply keeps the wheels aligned with tliengpath by setting the steering anglequal to the
heading error

6. =0—0,,

whered is the heading of the vehicle adg is the heading of the path &t,, c¢,). Wheney, is non-zero, the second
term adjust® such that the intended trajectory intersects the path tarfgem (c,, ¢,) at kv(t) units from the front
axle. Figure 14 illustrates the geometric relationshiphef tontrol parameters. The resulting steering control faw i

given as

5 (t) = 0(t) + tan " (k:‘é;)) : (5)

wherek is a gain parameter. It is clear that the desired effect igeset with this control law: Asy, increases, the

wheels are steered further towards the path.

14



2.3.1 Tuning the Stanley Controller

Experiments are conducted on ttene Change Course. Figure 15 illustrates the effects of the tuning parameter o

tracking performance during these experiments. The tngalésults are what one might expect. /As increased the
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Figure 15: Stanley controller at multiple speeds and varigains on the lane change course

tracking performance improves. An upper limit exists torguee stability. It also appears that this method is not as
robust to the lane change as Pure Pursuit and only values Iowrerk values tested should be considered. However,

keep in mind that the final test is an extreme maneuver.
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Experiments are conducted on tfigure Eight Course. Figure 16 illustrates the effects of the tuning parameter o

tracking performance during these experiments. In this,casimilar dynamic effect compensation from increasing
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Figure 16: Stanley controller at multiple speeds and varigains on the figure eight course

the gain as in the Pure Pursuit test is seen, so care mustdrernakto over tune to a course. Additionally, it is clear
that the Stanley method has some trouble with the discdttinfithe path. This may not be a problem in practice

since one can guarantee smooth planned paths.
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Experiments are conducted on tRead Course. Figure 17 illustrates the effects of the tuning parameter o

tracking performance during these experiments. It is dleat this method works quite well under varying normal
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Figure 17: Stanley controller at multiple velocity profilesd various gains on the road course

driving scenarios. The final test illustrates that this rodtls well suited for higher speed driving when compared to

Pure Pursuit.
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3 Path Tracking Using a Kinematic Model

Simplifying the vehicle system model to a kinematic bicyoiedel is a common approximation used for robot
motion planning, simple vehicle analysis and (as for thengetaic methods) deriving intuitive control laws. This
chapter presents the kinematic equations of motion for sutiodel. In addition, an important method from control
theory for chained systems is applied to reformulate th@ggms of motion and provide a solution to the path tracking
problem. The application of this theory results in the &pild use well known control theory tools for the design of

controllers and stability analysis.

3.1 Kinematic Bicycle Model

Figure 18: Kinematic bicycle model

The equations of motion for the kinematic bicycle model obais readily available in the literature [5, 11, 6, 4].
A derivation of the model is included here for completend$® kinematic bicycle model collapses the left and right
wheels into a pair of single wheels at the center of the frowk @ar axles as shown in Figure 18. The wheels are
assumed to have no lateral slip and only the front wheel erabde. Restricting the model to motion in a plane, the

nonholonomic constraint equations for the front and reazeidare:

Zpsin(@ +0) — yrcos(@ +6) =0 (6)

zsin(f) — g cos(f) =0 @)
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where(z, y) is the global coordinate of the rear whegt,, y,) is the global coordinate of the front wheéljs the
orientation of the vehicle in the global frame, afids the steering angle in the body frame. As the front wheel is

located at distancé from the rear wheel along the orientation of the vehi¢ls,, y ;) may be expressed as:
xy =+ Lcos(0)

yr =y + Lsin(0)
Eliminating (x, y) from Eq. 6:
d(x + Lcos(6)) d(y + Lsin(0))

dt dt
= (& — OLsin(0)) sin(0 + &) — (5 + 0L cos(6)) cos(6 + 0)

0= sin(6 + 6) — cos(6 + J)
= i@ sin( + 6) — g cos(f + )
— QL sin(6)(sin(f) cos(8) + cos(d) sin(6))
— 0L cos(6)(cos(6) cos(8) — sin(f) sin(5))
= @ sin(0 4 6) — g cos(f + )
— AL sin*(0) cos(8) — 0L cos?(6) cos(8)
— L sin(0) cos(6) sin(d) + L cos(8) sin(f) sin(d)
= isin(f 4 6) — g cos( + §) — OL(sin?() + cos?(8)) cos(d)

= isin(f 4 6) — g cos( + §) — OL cos(d)

The nonholonomic constraint on the rear wheel, Eq. 7, isfad by: = cos(f) andy = sin(f) and any scalar

multiple thereof. This scalar corresponds to the longitabiivelocityv, such that

& = vcos(h) (8)

g = vsin(6). 9)

Applying this to the constraint on the front wheel, Eq. 6]g¢ea solution fod

zsin(f + ) — ycos(f + 9)
L cos(0)
v cos(0)(sin(f)cos(d) + cos(0) sin(d))
L cos(9)

9:
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~ wsin(f)(cos() cos(d) — sin(#) sin(d))
L cos(0)
v(cos?(6) + sin?(6)) sin(4)
L cos(0)
_ wvtan(d)
=—7 (10)

The instantaneous radius of curvati@itef the vehicle determined fromandé leads to the previously introduced Eq.
1

R="

0
vtan(d) v
L R
L

tan(d) = =
an(9) 7

For the purpose of control it is useful to write the kinematiodel from Eqgs. 8, 9 and 10 in the two-input driftless

form L _ - _
z cos (0) 0
Y sin (6) 01 .
0 (tari(a)) 0
) 0 1

wherev and$ are the longitudinal velocity and the angular velocity of #teered wheel respectively.

3.1.1 Path Coordinates

For path tracking, it is useful to express the bicycle modéh wespect to the path as in [6]. Defining the path as

a function of its lengths, let 8,(s) denote the angle between the path tangestaatd the globak axis. Orientation

errorf. of the vehicle with respect to the path is defined as

O =0 — 0,(s).
The curvature along the path is defined as
erabp(s)
k(s) = 1
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Figure 19: Kinematic bicycle model in path coordinates

Multiplying both sides bys
0,(s) = K(s)s.

Givene,, as the orthogonal distance from the center of the rear astletpath s andé,., are

$ =wicos(6.) + épem

€rq = v18in (0.) .

Substituting(s, .4, 0.) for (x,y, ) in Eq. 11 defines the kinematic model in path coordinates as

éra sin (6,) 0| .
- v+ 8. (12)
o || (2 - ) 0
5 0 1

Figure 19 illustrates the kinematic model in path coordinat

3.2 Kinematic Controller

An interesting and useful method for controlling kinematiodels of nonholonomic systems can be found in [6].

The method is applied to car-like robots, however it can leeldis control many kinematic models describing a variety
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of wheeled mobile robots and is easily extended to contrimhilers attached to the system. This section repeats the
controller design found in [6] using nomenclature that issistent with this paper for completeness.
3.2.1 Chained Form

Canonical forms for kinematic models of nonhololonomictegss are commonly used in controller design. One

of these canonical structures is the chained form. The gétveo-input driftless control system

1’1 = U1 (13)
ig = Uz
T3 = Tauy

Tp = Tp—-1U1

is called(2,n) single-chained form. It turns out that this type of nonlinehained system has a strong underlying
linear structure. This linear structure allows a desigogake advantage of some well known tools in control theory.
The underlying linear structure clearly appears wheiis assigned as a function of time, and is not considered as a
control variable. Under these circumstances, system 18nhes a single-input, time-varying, linear system that has
been shown to be controllable.

The conditions for converting a two-input system like 1®iaohained form have been given in [9]. This conversion
consists of a change of coordinates= ¢(q), and an invertible input transformatien= §(¢q)u. It has been shown
that this conversion can always be done successfully foholonomic systems witthn = 2 inputs andn = 3 or 4
generalized coordinates. The kinematic model 12 can benmitdined canonical form by using the following change
of coordinates

xr1 =S8

1+sin?(0.) (1 —epqk(s))?tan (6)

2 = —H/(s)era tan (Bc) = £(s)(1 = €rari(s)) cos? (f.) L cos? (0.)

3 = (1 — erqr(s)) tan (6.)

Ty = €pq

with the input transformation



6 = OéQ(’LLQ — alul)
wherea; andas are defined as

- 8:62 8:52
e L

(1 — erqr(s)) tan (6.) +

Oz (tan(d)(1 — erqr(s))
00, ( L cos(6.) B /<;($)>

o L cos? (6,) cos?(d)
P (1 eran(s))?

3.2.2 Smooth Time-Varying Feedback Control

The following smooth feedback stabilization method wagioglly proposed in [13] and its application to vehicle
path tracking was further developed in [6]. This method sak@vantage of the internal structure of chained systems
S0 as to break the solution into two design phases. The fiestgpassumes that one control input (that satisfies some
technical requirements) is given, while the additionaltoalrinput is used to stabilize the remaining sub-vectotef t
system state. The second phase simply consists of spegifyinfirst control input so as to guarantee convergence
while maintaining stability.

For convenience, the variables of the chained form are ezedby letting

X = (X17X27X37X4) = (1'1,1'4,$3,$2)

so that the chained form system can be written as

X1 = u1 (14)
X2 = X3U1
X3 = X4lU1

X4 = U2

The reordering exchanges and x4 so the position of the rear axle (%1, x2). Now let x = (x1,x2), where

x2 = (x2, X3, x4)- The goal of the controller is to stabilizg to zero.
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3.2.3 Input Scaling

If uw, is assigned as a function of time, the chained system 14 camitben as

0 ul(t) 0
Xe=10 0 w() |[x+
0 0 0

with

t
)~<1 =X1— / ul(t)dt
0

(15)

The first equation in 15 is not controllable when is assigned a priori. However, the structure of the difféedn

equations fory, is interesting. This structure looks like the familiar carfable canonical form for linear systems.

Another interesting observation is that system 15 becomesinvariant wheny; is constant and nonzero. Under

this condition, the second part of system 15 becomes ctatttel More importantly, it will always be controllable

whenevern; (t) is a piecewise-continuous, bounded, and strictly pos(tivenegative) function. Under these assump-

tions, 2y varies monotonically with time and differentiation withspect to time can be replaced by differentiation

with respect toy;, meaning

d_d o d
dt — dxa i

and thus
sy dxi  |wl| dt’

This change of variable is equivalent to an input scalingedure [6]. This allows the second part to be rewritten as

o1 = sign(u)xs

x5! = sign(ui)xa

X = sign(uq)uh,

with the definitions

W & xi
T = stgnlu g
Xi g ( 1) del
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and

System 16 is linear and time-invariant. It has an equivalgnit-output representation of

X = sign(un)" s,

Such a system is controllable and admits an exponentiahjestinear feedback in the form

n—1
uh(xa) = —sign(un)" ™Y kixs Y, (17)

i=1

where the gaing; > 0 are chosen so as to satisfy the Hurwitz stability criteridance, the time-varying control

u(x2,t) = w1 (t)us(x2)

globally asymptotically stabilizes the origiy = 0.

This approach leads to a solution to the path tracking prolite Ackerman steered vehicles. By transforming
system 11 into path coordinates and reordering the vagaseshowny; represents the arc lengthalong the path,
X2 IS the distance,., between the center of the rear axle and the path, whilendy, are related to the steering angle
0 and to the relative orientatiagf, between the path and the vehicle. Path tracking consistsrofrg they-, x3 and
x4 States independently frosy . Then, for any piecewise-continuous, bounded, and stidsitive (or negativey,,

equation 17 can be written as
usy (X2, X3, X4) = —sign(ur)[k1xa2 + kasign(ui)xs + kaxal- (18)
Using equation 18, the final path tracking feedback conawlik obtained as
uz(x2, X3, X4, 1) = —k1 [ur (¢)| x2 — kaua (t)x3 — ks |[ua ()] xa-

3.2.4 Tuning the Kinematic Controller

It has been shown in [6] that stability can be obtained by sh@pthe gains based on the following relationships
ky =k
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ko = 3k2
ks = 3k.

This relationship gives a single gain parameter to adjestlting in a manageable means to appropriately tune the
controller.
Experiments are conducted on thane Change Course. Figure 20 illustrates the effects of the tuning parameter

on tracking performance during these experiments. It caselea that the tracking can be improved by increasing
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Figure 20: Kinematic controller at multiple speeds andaasigains on the lane change course

k. The same kind of trade off between stability and performeae@pparent as before. This method tracks the path
accurately at low speeds, but has problems at higher speeds dhe dynamics being neglected. It can be seen that

the robustness to the lane change is not as good as PuretRmcsis close to that of the Stanley method.
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Experiments are conducted on thigure Eight Course. Figure 21 illustrates the effects of the tuning parameter

on tracking performance during these experiments
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Figure 21: Kinematic controller at multiple speeds andaasigains on the figure eight course

increased. The kinematic method is considerably effecgatidodiscontinuity in a similar way as the Stanley method.
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Experiments are conducted on Read Course. Figure 22 illustrates the effects of the tuning parametdracking

performance during these experiments. This method worke geell under varying normal driving scenarios. The
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05

—— k=01 ——k=01
04r ——k=02[] — k=02
03l k=03 | r k=03]

= k=04 = k=04

% 0z —— k=05 % asl ——k=05|]

5 ——k=0§ s k=08

E o0 =

w A = £ i = K = [ = w =

© i B ! i 2]

& [ &

LR RN 1 =

@ & o5t

8 nzp 1 o

3] 3]

N3+ 4
.1,
04t 4
05 . . . . 15 . . . .
0 500 1000 1500 2000 2500 i 500 1000 1500 2000 2500
Station (m) Station (m)

Kinematic at 0.5g on Road Course

— k=01
—k=02
k=03(
k=04
— k=05
—k=08

Cross Track Error (m)

05 L n L
0 A00 1000 1800 2000 2500

Station (m)

Figure 22: Kinematic controller at multiple velocity pr&d and various gains on the road course

final test illustrates that this method is similar, althomgihas good, to the Stanley method in higher speed driving. An
interesting point in the final test is that it was not the aexies of the range df that was able to complete the course,

rather it was in the middle.

4 Path Tracking Control Using a Dynamic Model

Itis clear that neglecting vehicle dynamics in the previouglels has a negative impact on tracking performance as
speeds are increased and path curvature varies. The dynah@aar are very complicated and high fidelity models
are very non-linear, discontinuous and computationallye@sive. This chapter derives a simple lateral dynamics

model that approximates the dynamic effects and enablegetfign of linear path tracking controllers.
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4.1 Dynamic Vehicle Model

Figure 23: Dynamic Bicycle Model

The bicycle model introduced in the last section can be edéo include dynamics. Lateral forces on the vehicle
are of primary concern as path tracking is an exercise imdht®mntrol. For this section, longitudinal velocity is

assumed to be controlled separately. Summing the latexadallustrated in Figure 23, given vehicle massyields
F,cos(6) — Fypsin (§) + Fyr = m (0 + vg7) . (19)

Considering only motion in the plane, a center of gravity Galeng the center line of the vehicle, and yaw ineftia

balancing the yaw moments gives
Ly (Fyfcos(6)) — 4y (Fyr — Frppsin(0)) = L. (20)

wherer is the angular rate about the yaw axis. Without the condtrinateral slip from the last section, the slip

angles of the tires are given as

o = tan~! <W> s

Uz

Uy — b1
a, = tan"! <M> .
(%
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Modelling the force generated by the wheels as linearly priigmal to the slip angle, the lateral forces are defined as

Fyp= —cpay (21)

Fy = —cray.
Assuming a constant longitudinal velocity, = 0, allows the simplification
F,p=0. (22)
Substituting Egs. 21 and 22 into Egs. 19 and 20 and solvintpfar, ands

Uy = - — ‘ — VT (23)
. —lscy [‘can_1 (%ffr) — 5}1005 (8) + £c tan™? (%) 24

—cy [tan—l (%) — 6} cos (6) — ¢, tan™? (vy;ﬁ)

gives the dynamic bicycle model.

4.1.1 Linearized Dynamic Bicycle Model

To apply linear control methods to the dynamic bicycle motted model must be linearized. Applying small angle

assumptions to Egs. 23 and 24 gives

_ ey — cplyr n CL5 n —CrUy + et

Yy MU m MUy ot
. —lpepvy — E?cfr lecpd  lrcvy — Cepr
7= + + .
Iv, I, I v,
Collecting terms results in
- lrc, — 4
Oy = 7(610 + Cr)vy + {( rer — byey) — vx] r+ c—fzs (25)
MU MU m
2 2
Vi .y —(é Cf'i‘g Cr) Y
Pt L PRI AV P i ) (26)
Izva: IzUw m
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Finally, the linear dynamic bicycle model can be writtentiaite space form as

o —(cgter)  brer—fiep Vs v cr
Y mug muvg Y 4 m 5
. E,,rc,,-fffo —(E?Cf-‘ré?,cr,v) Zfo
r r
I vy I vy m

4.1.2 Path Coordinates

Figure 24: Dynamic Bicycle Model in path coordinates

As with the kinematic bicycle model, it is useful to exprelse dynamic bicycle model with respect to the path.

With the constant longitudinal velocity assumption, thevyate derived from the path(s) is defined as

Path derived lateral acceleratiop(s) follows as

Letting e, be the orthogonal distance of the C.G. to the path,

€cg = (y + var) — Uy(5) (27)
= by +vg(r —7(s))

= Uy + V0.
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and

€eg = Uy + Vg sin(fe)

wheref, was previously defined a@s— 0, (s). Substituting(e.,, 6,,) into Egs. 25 and 26 yields

écg - Umée = %(écg - Umee)
x
lrc,. — 1L .
# [ ] o) + o
MUy m
éW:—@+%%W+W+@%
MUy m
gr r 14 A gr r 14 f g
Lo —liery {cm _ } r(s) + L
MUy MUy m
A . ‘ercr —Lsc .
0. + T’(S) = Tff(ecg - Uzee)
— (620 + e )
fFer T . ffo
NI T g orer
To (0 +7(s)) + - 5
o &-C,- — efo . éfo — f,.cr
96 = c 96

— (2cp + ey ) .
(f)(ee Fr(s)) + L5 — i(s).

1 v, m

The state space model in tracking error variables is thezgfiven by

Ceq 0 1 0 0 Eeq
. —(Cf—l-cr) cytcer ffo—éfo .
ng O Mmug m Mmug eCQ
0, 0 0 0 1 0,
) frcr—ff(,‘f @f(:f—&,cT —(é§0f+£fcr) .
L 96 h L 0 I vy z I, v, 1L 06 ]

0 0

cf Lrer—Lycy —w

m MU x

+ o+ ’ r(s)
0 0
Lrey —(CGes+Lier)
L 1= ] L I.v, ]
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4.1.3 Model Parameter ldentification

Unlike the previous models described in Chapters 2 and 3jythamic bicycle model has parameters that are not
as convenient to directly measure. However, a workablenasti can be obtained using commonly available tools.

The measurement of the vehicle’s split mass, utilizing fecales under each wheel, is necessary to estimate the
vehicle’s total mass, C.G. location and moment of inertidne Total mass of the vehicle is simply the sum of the

measurements at front and rear, left and right corners.

M =M fr + Mg+ Mpp + My

Given the modelling of the front and rear wheels as a singleelvht the center of each axle, an assumption is also
made that the vehicle’s mass is laterally evenly distridbut€hen a useful intermediate quantity is the sum of the
measurements at the front and rear,

my =myg +my

and

My = My + My

From this and a measurement of the wheel daghe location of the vehicle’s C.G., described by distarfgesnd/,.

from the front and rear axles along the center line can bemagtd as

and

fr:L(1—mT).

m

The vehicle’s moment of inertia is approximated by treattmgvehicle as two point masses joined by a mass-less rod.

The moment of inertia for the vehicle is then given as
I, =Lpl(myp +m;)

Finally, the cornering stiffness parametegsandc, must be identified. These parameters can be obtained from
data sheets produced for the specific tire, if available.ufeéd5 is an example of what this tire data looks like.

Notice that the slip angle of the tire changes nonlinearlyhaslateral force on the tire changes and as the normal

33



Lateral Force Tire Data
T

e
]
F,=6i00N
F,=mEN
Fy=amsn

Es

am

absolute lateral tie force (N)

5
slip angle (deg)

Figure 25: Example of lateral force tire data

Linear Approximation of Tire Data
T T T

absolute lateral tire force (N)

B
slip angle (deg)

Figure 26: Linear approximation of the lateral force tiréada

force on the tire varies. If a data sheet is used to obtaindhaecing stiffness values, a constant value describing the
slope in the most linear region of the data at a nominal nofarak must be chosen. Figure 26 illustrates this linear
approximation. Understanding this approximation is int@otrto understanding the limitations of the dynamic bieycl
model as a whole. Note that the cornering stiffness valu@a the dynamic bicycle model are double the value from
a data sheet since the two tires are being treated as one.

If this data is not readily available, a method to estimaig iequired. Starting with Eqs. 23 and 24, repeated here

for convenience

_ —cy [tan_l (%) — 6} cos (§) — ¢, tan™* (Uy;if”)
Oy = - — VT
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—Ltyes [tanﬂ (%) - 5} cos (0) + £r.c, tan™! (M)

© Vg

’f‘:

L
EqQ. 23 can be rewritten as
—Lr — 0 bor —
T.Jy + v = (fr Yy + ) Caf + ( 4 - vy) Car (30)
MUy m Mmuy
and similarly Eq. 24 as
. —(lpvy +Cr 046 lrvy — O
7’:( va f +IL Caer(;v r )Car (31)

Writing these equations as functions of the cornering gfffnlends itself to the formulation of a least squares
problem. Assuming that, ands are not directly measured, and thaendr are available, Eqs. 30 and 31 are

rewritten in a discrete form using the Euler method as

vy (k+1) — v, (k) 4+ v, (k) r (k) At = <£f7;7(;1(k;’y(k) + 5(k>> Atcos
(k) — vy (k) .
() st
Pk 1) = () = <_(£fvi(2<;)gfr(k) - gfi““) Ateas
Ly (k) — Cr(k)
() st

wherek is an index of the measurement set axis the time between measurement sets. The least squaradderm

tion then follows as

Caf
: (32)

COL'I"

where

vy(n) —vy(n—1)+v,(n—1)r(n—1)At

r(n)—r(n-—1)
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(7Ef74(1)7vy(1) 4 @) At (fr’"(l)_'uy(l)) At

mug (1) mug (1)
— (Lo, (D)+32r(1) | £;8(1) Lrvy (1)—2r(1)
( Ii'“w(l)f + fIz ) At ( Iz”w(l) ) At
B =

—Lyr(n—=1)—v,(n—1) §(n—1) Lrr(n—1)—v,(n—1)
( muvg(n—1) + m ) At ( mvw(njl) ) At
—(Lpvy(n—1)+5r(n—1) | £;6(n—1) Lovy(n—1)—£2r(n—1)

| (T ) A (Bt ) A |

This procedure has been used and works well in practice. wwepecial care needs to be taken in collecting the
vehicle data. The dynamics of the vehicle must be suffigresktited. The best results are obtained when the lateral
force on the tires are moderate (without exciting the susipertoo much) and continuously varying throughout the
data collection. In [12] the effects of various frequendisthe steering input are studied in making these estimates
Other methods for obtaining these values both offline andherdan be found in [12] and [20]. In addition to the
above procedure, an optimization algorithm can be usedtodufit the model to the available data. Using the above
estimates to initialize an optimization algorithm thabalt the inertia and cornering stiffness to change, minimgjzi

the model error, can improve the identification.

4.2 Optimal Control

As derived in section 4.1.2, the state space model for teedbdlynamics [11] can be written as
T = Ax + B16 + Bo¥ges

where

T
ZL’—( €cqg écg 99 Ge > ’

ecq IS the lateral distance from the C.G. to the pdthis the heading error of the vehicle with respect to the path,
the steering angle input, ang. s is the desired yaw rate determined from the current patratureg and vehicle speed.

The following values of vehicle parameters were identifisthg the procedure in section 4.1.3 and will be used
for the control design:

m = 1140.0kg
I, = 1436.24kgm?

;= 1.165m
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{, =1.1656m
¢y = 155494.663N/rad
¢, = 155494.663N/rad

The eigenvalues of the open-loop matdare(0, —231.878,0, —231.878)T. The two eigenvalues at the origin reveals
that the system is not stable and must be stabilized by fe&diFe controllability matriXB;, AB;, A2B;, A®B]

has full rank, therefore using the full state feedback law

0= —-Kx= 7](11669 — kgécg — k’gae — ]{1409

allows the eigenvalues of the closed-loop mafrix— B, K) to be placed at any desired location.

Rather than placing the eigenvalues manually, a discrététérhorizon Linear Quadratic Regulator (LQR) from
optimal control theory is utilized. Letl; and B, refer to the discrete-time versions dfand B; respectively. The
discretization method used in the conversion is zero-dndét on the inputs with a sample time of 0.01s. Given that

the pair(A4, By) is controllable, the optimal steering command can be writi®
0" (k) = —Kxz(k)
where
K = (R+ By PB,)  BYPA,,

the objective cost function to be minimized by the control is
J=> 2 (k) Qu (k) + 6 (k) Ro(k),

k=0

whereP satisfies the matrix difference Riccati equation,
P=ATPA; — ATPB,(R+ B} PB,) ' BIPA4+ Q,

@ is a diagonal weighting matrix with an entry for each stateexponding to the performance aspects contributing
to the cost function an® is weighting value corresponding to the control effort ciimitting to the cost function.

The solution to the matrix difference Riccati equation istted here since it is not specific to path tracking. The
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details to solving optimal control problems can be foundaoks such as [15] and many others. There are also many

software packages available to perform the task.

4.2.1 Tuning the Optimal Controller

The tuning parameters for the LQR optimal control solution a

@ 0 0 0
0 ¢ 0 O
Q =
0 0 g3 O
0 0 0 g
andR is chosen as
R=1

The tuning is further reduced by setting

G2=q3=qs =0

leaving a single parameter to adjust for tuning purposetingehese values to zero simply means that we are only

weighting cross track error against control effort.
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Experiments are conducted on thane Change Course. Figure 27 illustrates the effects of the tuning parameter

on tracking performance during these experiments. Agaimijag characteristics to the previous trackers can be seen

LQR at 5m/s on Lane Change Course LQR at 10m/s on Lane Change Course
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Figure 27: LQR controller at multiple speeds and variousgan the lane change course

as the gain is adjusted. Even though dynamics of the vehielaluded, this method fails the maneuver entirely at
high speed. This is because information about the path ismgel included. The linear requirement for the vehicle

model doesn’t allow for the non-linear path dynamics.
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Experiments are conducted on tfigure Eight Course. Figure 28 illustrates the effects of the tuning parameter o

tracking performance during these experiments. Similablems with the discontinuity as the previous method are

LQR at 5m/s on Figure Eight Course LQR at 10m/s on Figure Eight Course
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Figure 28: LQR controller at multiple speeds and variousgan the figure eight course

present. An interesting point here is that the steady state that was previously contributed to neglecting dynamic

is still significant. Again, this is because the path dynanaie neglected.
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Experiments are conducted on tRead Course. Figure 29 illustrates the effects of the tuning parameter o

tracking performance during these experiments. Slightigroved performance is achieved in the first two tests, but

LQR at 0.1g on Road Course LQR at 0.25g on Road Course
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Figure 29: LQR at multiple velocity profiles and various gagm the road course

this method cannot complete the final test. The reason isasitnithe kinematic trackers tendency to compensate for
unmodeled dynamics with higher gains, only now it is the h#t is unmodeled rather than the vehicle dynamics. It

can be seen that in some scenarios, the path dynamics agn#ieant as the vehicle dynamics.

4.3 Optimal Control with Feed Forward Term

Continuing from the previous section, the state space nfodéhe closed-loop system under state feedback is

T = (A — BlK).I + BQ’f’des.
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Since theByr4.s term is present, the states will not all converge to zero avtiie vehicle is following a constant
curvature path, despite the fact thiat— B, K) is asymptotically stable. In this section, the use of a feedérd term
in addition to state feedback to ensure zero steady staieiempresented. This is the method used for zeroing steady

state error in [11]. Start by assuming the existence of a fisadtontrol law of the form
0=—Kx+ 0.
Then, the closed-loop system can be written as
&= (A—B1K)x+ Bids5 + Bolges.
Taking Laplace transforms, assuming zero initial condgiaesults in
X(s)=[s] — (A= BiK)] " YB1L(0ss) + BaL(T4es)},

whereL(ds¢) and L(r4.5) are Laplace transforms of;; andr 4., respectively. If the vehicle travels at a constant

speedv, on a road with constant radius of curvatutethen
. Vg
Tdes = constant = T

and its Laplace transform i&=. Similarly, if the feed forward term is constant, then itsplace transform |é5%

Using the Final Value Theorem, the steady state trackiray émgiven by

Vg

Tgs = tlim x(t) = lir% 5X(s) = —(A— B1K) Y{B1d,s + By R }. (33)
Evaluation of equation 33 yields the steady state errors
C s, 1| mv? 0 ¢ ¢ 1 i
T ~ iy (355 — s + k) — g (4 + b — Loky)
0 0
Tgg = + . (34)
0 723/0@7‘(1“4_&) (—QCMéfET — 2Carl? + mevfc)
0 0
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From equation 34, itis clear that the lateral position egggican be made zero by appropriate choicé,gf However,
dr¢ cannot influence the steady state yaw error, as seen froni@gG4. The yaw angle error has a steady state term

that cannot be corrected, no matter how the feed forwardisteangle is chosen. The steady state yaw angle error is

1

95 SS = = 7 o~
B QRCar(ﬁf + 57«)

—2¢cqrl il — QCMK,% +/ mvi
f f

e, Uy muv?
ee,ss =—= * .
R 2cor(ly+4) R

The steady state lateral position error can be made zere fetdforward steering angle is chosen as

mv2 Y4 éf ff L 4
Opp = - (I k- Lty
I~ RL (2caf e | 2w “‘) TRTR™

which upon closer inspection is seen to be

L £, ls mu?
= = Koy — ks (£ - £,
Orr = Ty k?’(R 2cmRL>

where
K, = lrm B Lrm
QCaf(gf +£r) 20&7‘(€f +£r)

2
is called the understeer gradient and= % Denotingm,. = m%f as the portion of the vehicle mass carried on the

rear axle andn; = m% as the portion of the vehicle mass carried on the front dle= 27:’ff — 52=. Hence
L
(5ff = E -+ Kvay + k362753.
The steady state steering angle for zero lateral positian & given by
555 = (Sff — szs
635 = 6ff - kSGe,ss

L
533 = ﬁ + Kvay.
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4.3.1 Tuning the Optimal Controller with Feed Forward Term

Experiments are conducted on ttene Change Course. Figure 30 illustrates the effects of the tuning parameter o

tracking performance during these experiments. This nakitimproves performance over the standard LQR method.

LQR with FF at 5m/s on Lane Change Course LQR with FF at 10m/s on Lane Change Course
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Figure 30: LQR controller with feed forward term at multigleeeds and various gains on the lane change course

Tuning in identical to that of the LQR method with the exceptthat the gain values are much lower. The higher gain

in the LQR method can be attributed to the gain compensat@mm hot having path dynamics.
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Experiments are conducted on thigure Eight Course. Figure 31 illustrates the effects of the tuning parameter

on tracking performance during these experiments. Thisagegreatly improves the steady state error. However, the
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Figure 31: LQR controller with feed forward term at multigleeeds and various gains on the figure eight course

response to the discontinuity is worse. The overshootirthef QR with a feed forward term can be attributed to the

fact that there is no look-ahead down the path in front of #ieicle. The feed forward term can only be reactive. As

a result, the final test is complete failure.
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LQR with FF at 0.1g on Road Course LQR with FF at 0.25g on Road Course
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Figure 32: LQR controller with feed forward term at multipielocity profiles and various gains on the road course

Under varying normal driving scenarios, this method carfiquer very well when compared to the other methods.

4.4 Optimal Preview Control

To address the overshooting problem from the previous@ect preview of the path ahead of the vehicle is
considered. This section presents the application of @gtiimear preview control theory to vehicle steering cohtro
found in [14]. Another interesting application can be found10] as well. As before, the linear dynamic bicycle

model is translated to the discrete time-form resultindimdtate space form

o (k+1) = Apzy(k) + Boo(k)

Yo (k) = Cyxy(k) + Dy (k)
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and the lateral profile of the path is considered in discratgde value form, with sample values from past observations
of the path ahead being stored as states of the full vehatlegystem. As the system moves forward in time, a new
path sample value is read in and the oldest stored valuedardisd, corresponding to the vehicle having passed the
point on the path to which the oldest value refers. All thesothath sample values are shifted through the time step,

nearer to the vehicle. The dynamics of this shift registecpss are represented mathematically by

yr (k+1) = Ay, (k) + Bryri(k)a

whereA,. is of the form

010 0
0 0 1 0
0 00 1
0 0 O 0
andB,. is of the form -

0

0

0

1

Combining vehicle and road equations together, the fulbdyic system can be written as

(k4 1) A, 0 2y (k) B, 0

yr(k+1) 0 A, yr (k) 0 B,

The complete problem is now in standard form,

z(k+1) = Az(k) + Bé(k) + Eyri(k)

y (k) = Cz (k) + Di(k).
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If y,.; is @ sample from a white noise random sequence, the timedam¢aptimal control minimizing a cost function

J, given that the paifA, B) is stabilizable and the pa(ri, C') is detectable, is
u* (k) = —Kz(k)

with
K = (R+B"PB) 'BTPA,

where the objective function to be minimized by the control,

J= i 21 (k) Qz (k) + 6 (k) RO (k)

=0

and P satisfies the matrix difference Riccati equation,
P=ATPA— A"PB(R+ B"PB)'BTPA+Q,

where@Q = C7qC, containing the diagonal matrixiiag [q1q - . . ¢,], with terms corresponding to the number of
performance aspects contributing to the cost function,Rncbrresponding to the control input, steering angle.
Once formulated in this way, the same LQR problem from sacti@ can be solved to obtain the control law and

the same tuning method can be used.

48



4.4.1 Tuning the Optimal Preview Controller

Experiments are conducted on ttene Change Course with a variety of preview distances. Figures 33-36 illura

the effects of the tuning parameter on tracking performalueang these experiments.
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Figure 33: Optimal preview controller with 0.5s preview atiltiple speeds and various gains on the lane change
course
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Preview 2.0s at Sm/s on Lane Change Course Preview 2.0s at 10m/s on Lane Change Course
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Figure 36: Optimal preview controller with 2.0s preview atiltiple speeds and various gains on the lane change
course
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Experiments are conducted on fiigure Eight Course with a variety of preview distances. Figures 37-40 illusra

the effects of the tuning parameter on tracking performalueang these experiments.
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Figure 37: Optimal preview controller with 0.5s preview atltiple speeds and various gains on the figure eight course
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Preview 1.0s at 5m/s on Figure Eight Course
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Figure 38: Optimal preview controller with 1.0s preview ailtiple speeds and various gains on the figure eight course
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Preview 1.5s at 5m/s on Figure Eight Course Preview 1.5s at 10m/s on Figure Eight Course
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Figure 39: Optimal preview controller with 1.5s preview ailtiple speeds and various gains on the figure eight course
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Preview 2.0s at 5m/s on Figure Eight Course Preview 2.0s at 10m/s on Figure Eight Course
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Figure 40: Optimal preview controller with 2.0s preview ailtiple speeds and various gains on the figure eight course
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Experiments are conducted on tRead Course with a variety of preview distances. Figures 41-44 illustrdne

effects of the tuning parameter on tracking performancenduhese experiments.
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Figure 41: Optimal preview controller with 0.5s preview atltiple speeds and various gains on the road course
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Preview 1.0s at 0.1g on Road Course Preview 1.0s at 0.25g on Road Course
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Figure 42: Optimal preview controller with 1.0s preview ailtiple speeds and various gains on the road course
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Preview 1.5s at 0.1g on Road Course Preview 1.5s at 0.25g on Road Course
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Figure 43: Optimal preview controller with 1.5s preview ailtiple speeds and various gains on the road course
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Preview 2.0s at 0.1g on Road Course Preview 2.0s at 0.25g on Road Course
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Figure 44: Optimal preview controller with 2.0s preview ailtiple speeds and various gains on the road course
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5 Performance Comparison

5.1 Tracking Results

Experiments are conducted on tbeme Change Course. Figure 45 illustrates the tracking performance of the tlne

controllers during these experiments.

Comparison at 5m/s on Lane Change Course Comparison at 10m/s on Lane Change Course
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Figure 45: Comparison of the tuned controllers on the laagh course
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Experiments are conducted on fRigure Eight Course. Figure 46 illustrates the tracking performance of the tlne

controllers during these experiments.

Comparison at 5m/s on Figure Eight Course Comparison at 10m/s on Figure Eight Course
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Figure 46: Comparison of the tuned controllers on the figigbteourse
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Experiments are conducted on tRead Course. Figure 47 illustrates the tracking performance of the tune

controllers during these experiments.

Comparison at 0.1g on Road Course Comparison at 0.25g on Road Course
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An empirical comparison of the path tracking methods carobed in Figure 48. It can be seen that no method is
perfect and all of the methods can work well in some appliceti Figure 48 lists applications that each method may

be well suited for. Chapter 6 discusses this comparison ire rdetail.

Comparison of Tracking Results

CutingComers  Overshooting SteadyState Evor  Good Applications.

Empirica

Figure 48: Performance comparison table
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6 Conclusions and Future Work

This research derives, implements, tunes and comparegexkigath tracking methods. All of the methods pre-
sented are imperfect solutions in some way, but even thelasthmethods can perform quite well in some common
scenarios. The importance of modeling vehicle and pathmicgis highlighted as vehicle speed is increased and
paths become more varying. This paper shows the varyingsle¥@recision, complexity, implementation ease, path
requirements and robustness associated with these pekingganethods. The characteristics of these trackers are
often complementary and no one tracker is right for evenjiegion. Some applications may even benefit from a
combination of approaches. Therefore, the understandirg tgained is the level of precision and boundaries of
performance to expect from the presented methods as welleasttengths and shortcomings of using the various
system models for a variety of applications. This undeditancan guide selection of tracking methods for a specific
application. The remainder of this chapter summarizes tizeacteristics of the presented system models and path
tracking algorithms. A discussion of future work is alsolirtzd.

Since a very detailed vehicle model can be difficult to obgaid use, the tracking methods described in this paper
make use of system models that approximate vehicle motibe.approximations, simplifications, and linearization of
these models vary and one needs to be aware of these shamdutse circumstances for which each model provides
a reasonable approximation of vehicle motion. A simple kiaic model can suffice when a vehicle closely exhibits
kinematic motion, such as driving slowly or performing pagkmaneuvers. The non-linearity of the steering angle
is captured in tight turning scenarios with the kinematicdeloand the dynamic effects on the vehicle are minimal
when driving slowly. A simple dynamic model can suffice in gy driving conditions or when the vehicle is
driving at moderate speeds on smoothly varying roads. Thamics are reasonably approximated for many driving
scenarios with this model, but the model starts to break datwery slow speeds and/or tight steering angles such as
parking maneuvers. These break downs in the model can dautdtt to the velocity being in the denominator in the
equations of motion and the linearization about the forwdirection with small angle theory applied to the steering
angle equation. Additionally, the model starts to break mdfwehicle speed is too high on a road that is not straight.
This comes from the approximation that the tire dynamicslmamepresented by a single value describing the ratio
between lateral force and slip angle as well as another sangle approximation applied to the side slip equation.
This value only represents the tire dynamics in a somewhaalfiregion of this non-linear function and for a small
region of normal force on the tire. Higher speed cornerirac@$ the tires in the non-linear dynamics region and
causes the suspension to dramatically change the norneal éorthe tires. The simple dynamic model also requires

some parameters of the vehicle to be identified, howeventsters identification is quite simple using the procedure
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described in Section 4.1.3.

Geometric path trackers are simple to understand and ingpierithe geometric methods presented here achieve
the majority of the path tracking performance demonstraétethe other trackers until speeds are significantly in-
creased. These methods include information about the patligh a look-ahead distance or considering the path
heading, therefore the shape of the path does not influemteparformance significantly when operating at low
speeds. Pure Pursuit works fairly well and is quite robusatge errors and discontinuous paths. However, it is not
clear how to pick the best look-ahead distance. Varying do&-Bhead distance with speed is a common approach
and is the approach taken in this paper, but it makes sensththbok-ahead distance could be a function of path
curvature and maybe even cross track error in addition tgitodinal velocity. Care should be taken to prevent over
tuning Pure Pursuit to a specific course since changing tiledbead distance simply changes the radius of curvature
that the vehicle will travel and therefore can compensatéhi® increased (compared to the kinematic bicycle model
prediction) radius that results from the understeer gradi€the vehicle. If tuned to insure stability, performarmas
be greatly reduced by cutting corners on the path due to &fdogk-ahead distance. Steady state error in curves also
becomes a problem as speed increases. The Stanley methedsisnplest method presented and performs surpris-
ingly well. In general, this method outperforms Pure Pursumost scenarios. However, the Stanley method is not
as robust to large errors and non-smooth paths. This meshodrie intuitive to tune when compared to Pure Pursuit,
but it suffers from similar pitfalls when tuning. The Stapteacker can be over-tuned to a specific course in a similar
manner because the only way it can overcome dynamic effeet#h a high gain that may lead to instability on other
paths. In contrast to Pure Pursuit, a well tuned Stanlekérawill not "cut corners” but rather overshoot turns. This
effect can be attributed to not having a look-ahead. Sindléine Pure Pursuit method, steady state errors in curves at
moderate speeds become significant.

The kinematic controller presented is a little more diffi¢calunderstand and implement than the geometric meth-
ods. There is a significant, yet manageable, increase imttie® computational work needed to compute the steering
angle velocity. The added complexity of this method incesafie chance of making implementation mistakes. An
advantage of the kinematic method is that it is easily ex¢dnidr applications that need to pull a path following
trailer. In fact, this method is capable of controlling nipik trailers being pulled by the vehicle. Additionallyjgh
method can be applied to a large class of mobile robots appeated by kinematic models written in chained form.
For the car-like robot application, the overall trackingfpemance and robustness at moderate speed is comparable
to the Stanley method. Tuning the three parameters of thdtires control law in the kinematic controller is not as
straight forward as the geometric methods, however a osistip between the gains reducing them to a single intu-

itive parameter was given. This kinematic method requinescurvature of the path and its first two derivatives in

66



the calculations. Including curvature and its derivatieéfectively gives this controller the benefit of a look-atiea
but also requires the path to be smooth. The exclusion ofrdimeffects results in the same high gain compensation
for unmodeled effects at higher speeds when tuning. Car¢ Ineusiken to relax the tracking performance to insure
stability. A well tuned kinematic tracker will have signiict steady state error in curves at moderate speeds.

The Linear Quadratic Regulator (LQR) method uses the dymbioycle model to design a path tracker. The model
and resulting control law are easy to understand and impierkowever, tuning the LQR tracker is more complicated
because the solution to the optimal control problem mustobeed to obtain the gains. A simplification of the five
tuning parameters resulting in a single intuitive parametes given and many software packages are available to solve
the optimal control problem. The additional computatidretaplace off-line and the on-line controller is very simple
Interestingly, the LQR tracker does not considerably aditps the Stanley or kinematic methods in many scenarios.
Since the errors of the previous methods have been largelyuaed to unmodeled dynamic effects, one would expect
that the LQR method would improve performance. The dynariaipcke model approximates the lateral dynamics of
the vehicle, but in order to enable the use of linear cona@hiiques the path coordinate model is linearized about the
forward direction. In other words, the model excludes the-tiear path dynamics and best approximates a vehicle
following a straight path. Following a straight path is sthieg all of the methods are pretty good at. However,
there are considerable improvements in performance timbeachieved using the LQR approach with the addition
of a feed forward term to handle the path disturbance. Thécehaf this feed forward term was given. The LQR
with a feed forward term approach is a great choice for highdriving and many urban driving scenarios. Steady
state error approaches zero in curves at moderate speeauagThis controller is identical to the LQR method with
the exception that the gain value will be much lower. The logan is a result of no longer compensating for the
path dynamics with a higher gain. This compensation of ureteatieffects in the standard LQR tracker is similar to
those found in tuning the previous trackers. It turns out themany driving scenarios the dynamics of the vehicle
or the path can contribute somewhat equivalent errorstieeis unaccounted for. The LQR with a feed forward term
method does not solve every problem. The limitations of greadhic bicycle model still apply to this method. It will
not perform as well at very low speeds, during tight manesreerduring higher speed cornering that forces the tire
to operate outside the dynamics region that the simple toeahis valid for. Another important characteristic of this
method is that significant overshoot occurs during rapidnesmooth, changes in path curvature. This effect is again
attributed to this method not having a look-ahead. This wrbth not robust like the geometric methods to large errors
or path discontinuity.

The Optimal Preview method builds on the LQR method. The LQR @& feed forward term method performs

well for many driving scenarios. The shortcomings of thehrodt for the most part, are during more extreme scenarios
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that are not common or scenarios in which another method edarm well. The one exception is the overshooting
problem during rapidly changing curvature. The Optimalvitne method provides the LQR method with a look-
ahead, or preview, of the upcoming path to address the problhe idea is that if a rapid change in curvature is
known ahead of time the tracker can react earlier to miniraizer. The proactive nature of the Preview method often
sacrifices some error entering a curve to minimize the omenadr through the curve. This approach results in similar
performance as Model Predictive Control (MPC) under certgicumstances, but with a computational resources. It
is a little more complicated than the LQR method, but it i sfisy to understand and implement. A similar method
for solving the optimal control solution is used for both #Preview tracker and the LQR tracker. The implementation
and tuning are simple extensions to the standard LQR mefiwatuning has one additional parameter that represents
the preview time used for the look-ahead. This method dotalways outperform all other methods. It has the same
limitations from using the linear dynamic model as the LQRhod. It provides more consistent results over a larger
set of scenarios when compared to the LQR with a feed forveard mmethod. The overshooting problem is reduced,
however it may not perform as well in the other driving scémain which the LQR with a feed forward term excels.
Another disadvantage of the Optimal Preview method is thestamt velocity assumption. This assumption has been
made for every method presented and always has some consequé&he Optimal Preview method is more effected
by this assumption because of the preview time. For exartipdeyehicle could change velocity drastically over the
1-2 second time period the control is being optimized fore Tihear time-invariant model results in a an efficient and
effective controller, but one needs to be aware of the upithgrlassumptions.

This paper presents solutions to the path tracking probtermfiny applications and provided some insight into
the choice and implementation of path tracking algorithifise idea of a hybrid controller that uses two or more of
these methods for more general driving has been mentionadever, as robotic vehicles require better performance
and tackle new objectives, the vehicle control methodsgmtes here may be inadequate. This paper has revealed an
opportunity for future work and the problems that should édédrassed in that work. Future work could include driving
scenarios like unexpected emergency maneuvers that papngrmal passenger car driving or a variety of race car
driving scenarios. It is clear that the simple models anedirtechniques found here are limiting the performance that
robotic cars can achieve. Itis also understood that a gesdiod work exists in the areas of system modeling and non-
linear control. The scope of this paper is to present vergiefit control strategies using easily identifiable models.
In extending the scope to include new applications, the robgious next step would be in the area of Nonlinear
Model Predictive Control (NMPC) [3]. The use of NMPC with thenlinear version of the dynamic bicycle model
presented here and a planned velocity profile instead of st@onvelocity would be a logical next step. Of course

this still does not address the simplification of the tire elamt the neglecting of suspension effects. This may result
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in some small improvements in performance along with a damable increase in computational resources. NMPC is
somewhat understood and methods exist. The physics oikeavdhicles is well understood and high fidelity vehicle
models, like the model used for simulation in this papersexXiIMPC combined with high fidelity modeling requires
tremendous amounts of computational resources and mad#tatgms need real time control. Therefore, future work
may include determining a vehicle model with a subset ofaldes that captures enough of the dynamic effects to
satisfy the requirements of more applications or using nmeclearning techniques on recorded vehicle data to move
the computational burden off-line and produce simplerina4nodels. Eliminating the model and the optimization by

using machine learning techniques to "learn” the contnelfleom a human driver is agenda for future research.
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