
ETH Library

Comparing Machine Learning
based Methods to standard
Regression Methods for MPC on a
virtual Testbed

Conference Paper

Author(s):
Bünning, Felix; Pfister, Corentin; Aboudonia, Ahmed; Heer, Philipp; Lygeros, John 

Publication date:
2021

Permanent link:
https://doi.org/10.3929/ethz-b-000524933

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-6159-1962
https://doi.org/10.3929/ethz-b-000524933
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Comparing Machine Learning based Methods to standard

Regression Methods for MPC on a virtual Testbed

Felix Bünning1,2, Corentin Pfister1,2, Ahmed Aboudonia2, Philipp Heer1, John Lygeros2

1Empa, Urban Energy Systems Laboratory, Switzerland
2Automatic Control Laboratory, ETH Zürich, Switzerland

Abstract

Data Predictive Control has emerged as a promis-
ing way to control buildings optimally with the help
of data-driven models. Besides conventional system
identification methods, also Machine Learning based
methods can be the basis of such models. While these
methods have been validated in individual simula-
tions or experiments, there is a lack of comparability
due to changing experimental conditions or mismatch
between simulation cases. Here, we present a compar-
ison of three different data enabled building control
methods one of the test cases of the virtual building
controller testbed BOPTEST: a conventional ARX
model with a one-hot encoded solar model, a Ran-
dom Forest model with linear control inputs, and an
Input Convex Neural Network model. Our results
suggest that the ARX model outperforms the other
models in most of the relevant criteria in the one-zone
hydronic test case.

Key Innovations

A conventional system identification method is com-
pared to machine learning methods for building MPC
on a standardized test bed.

Practical Implications

Conventional ARX models with a one-hot encoded
solar model can constitute a competitive alternative
to novel machine learning methods for applications of
Data Predictive Control in buildings.

Introduction

Model predictive control (MPC) can significantly re-
duce the amount of energy consumed for heating and
cooling of buildings (Sturzenegger et al., 2016). How-
ever, generating and maintaining physics-based mod-
els for the thermal behaviour of buildings can be dif-
ficult, time consuming and thus expensive. This may
hinder the wide-spread application of MPC in build-
ings.

To address this issue, the use of data-driven mod-
els, which are generated purely from historical mea-
surement data has been proposed (Maddalena et al.,

2020). The use of such models in a receding horizon
optimal control similar to MPC is often referred to as
Data Predictive Control (DPC). In (Bünning et al.,
2020, 2021; Schalbetter, 2020) we have applied differ-
ent modelling techniques, based on Random Forests
(RF), Input Convex Neural Networks (ICNN), and
ARX models in experimental case studies on a real
apartment unit. All model types showed satisfactory
control performance in terms of comfort constraint
violations and reduction of the heating/cooling input
energy compared to standard thermostat-based con-
trol. However, the exact comparison of the perfor-
mance of different controllers in experiment is diffi-
cult due to changing ambient conditions or occupant
behaviour. Other authors (Smarra et al., 2018; Wang
et al., 2019) use individual simulation cases to inves-
tigate DPC behaviour. However, as the simulation
environments differ between studies, direct compari-
son is also difficult.

The Building Optimization Testing (BOPTEST)
framework (Blum et al., 2019) is a benchmarking
framework to address this problem. It intends to fea-
ture a variety of simulation cases from the building
domain with varying complexity and heating, cool-
ing and air conditioning technologies. Similar to the
OpenAI Gym (Brockman et al., 2016) in the Ma-
chine Learning community, it encourages researchers
to benchmark their controllers on the same test cases.
Besides MPC-based controllers, also imitation or re-
inforcement learning based controllers could poten-
tially be tested.

In this work, we apply the three DPC strategies
based on RF, ICNN and ARX to a test case of the
BOPTEST framework featuring a hydronic heating
system coupled to a single-zone building model. We
compare the controller performance with respect to
energy consumption and comfort constraint viola-
tion and investigate the training sample efficiency of
the different models on training data sets of varying
length. Here, we find that the ARX model outper-
forms the other methods in most relevant criteria.

In the remainder of the article we explain the con-
cept of Model Predictive control and introduce the



different modelling strategies. We then present the
BOPTEST test case and discuss the generation of
training data as well as the set up of the individual
controllers. Afterwards, we discuss the results of the
comparison study and conclude the article.

Methodology

In the following section, we define the concept of
Model Predictive Control and introduce the different
data-driven modelling techniques used in this study.

Model Predictive Control

MPC is a scheme for optimal control, where an opti-
mization scheme is solved over a receding horizon. At
discrete time instants, the current state of the system
x0 is measured and the optimisation problem

min
u,x,ε

N−1∑
k=0

Jk(xk+1, εk+1, uk) (1a)

s.t. xk+1 = f(xk, uk, dk) (1b)

(xk+1, uk) ∈ (Xk+1 ⊕ εk+1,Uk) (1c)

∀k ∈ [0, ..., N − 1],

is solved. Here, the variables x, u and d denote the
states, inputs and disturbances respectively, J is the
cost function, k denotes the time step in the hori-
zon N and f is the function describing the system
dynamics, which depends on the state, input and dis-
turbance in the last time step. The sets Xk⊕εk+1 and
Uk describe constraints for states and inputs. The
variable ε describes a slack variable for the state con-
straints. After solving the problem, the controller ap-
plies the first element of the optimal input sequence,
u∗0, to the plant (here the building) and the process is
repeated. To solve problem (1) to optimum efficiently
and reliably, it is beneficial for the optimisation prob-
lem to be convex in the decision variables u, x and
ε. This is ensured for all the models presented in this
study.

Random forests and linear regression

The first model to describe the dynamics f is based
on Random Forests and linear regressions (Smarra
et al., 2018; Bünning et al., 2020). We briefly discuss
the model generation for completeness.

We assume given a data set of historical measure-
ments. This set consists of tuples of measured states
(which are room temperatures in this application),
control inputs (such as valve positions for example),
and disturbances which could have an influence on the
state (ambient temperature, solar irradiation, etc.).
The tuples also include autoregressive terms of these
variables. The goal is to build N single state pre-
dictors, one for each xk+j in problem (1), where xk+j
depends on these tuples, which are sequences of previ-
ous measured states, disturbances and control inputs
up to the time of optimization (i.e. up to time k = 0),

and future (i.e. between time k = 1 and k = N − 1)
disturbances and control inputs.

First, we build Random Forests on the basis of all
variables that are non-controllable: previous states,
previous and future disturbances and previous control
inputs. Random Forests are ensembles of regression
trees, which approximate a function with constant
values for certain partitions of the function input.
These constant values lie at the end of the tree and
are called leaves. After training a tree (or a forests)
a given input tuple (previous states, previous and fu-
ture disturbances and previous control inputs) will
lead to a leave (or a set of leaves). We note that the
resulting optimization will remain convex, although
the model has switching dynamics, because the trees
are not built on the basis of states between time k = 0
and k = N − 1.

For each of these leaves, there exists a corresponding
set of tuples of future control inputs that is not part
of the model yet. We therefore fit a linear model in
each leaf i to approximate xk+j with these inputs.
For the prediction of the future state xk+j , this gives
rise to

xk+j = βji,0 + βji,1

j∑
n=1

uk+n−1 + e, (2)

in which βji,0 and βji,1 denote the fitted coefficients
and e the model error. The state (i.e. room tem-
perature) is therefore an affine function of the sum
of all control inputs from the time instant k, when
the prediction is made, to the predicted time instant
k+j. Note, that the β coefficients are causal and im-
plicitly capture the influence of all non-controllable
model inputs and the prediction step j, because they
are different for each leaf and each tree. We use the
sum in (2) instead of individual coefficients, because
we found in previous studies (Bünning et al., 2020)
that it benefits sample-efficiency. This usually out-
weighed the disadvantage of a less physical model in
previous studies. As we use random forests and not
single regression trees, the average of all relevant βji
from the individual trees is taken, giving rise to βj .
For a more detailed and mathematical description of
the model, please refer to the original sources (Smarra
et al., 2018; Bünning et al., 2020).

Input Convex Neural Networks

The second model is based on ANN, which are gen-
erally non-convex. However, Amos et al. (2017) pre-
sented a set of constraints on the network weights and
a specific structure for feed-forward Artificial Neu-
ral Networks. These enforce convexity of the net-
work output with respect to a subset of the inputs
for single step predictions. In (Bünning et al., 2021),
we have extended this approach to multi-step predic-
tions, which makes the resulting model suitable for
approximating f in problem (1).
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Figure 1: Structure of a Partially Input Convex Neu-
ral Network.

Figure 1 shows the structure of a Partially Input Con-
vex Neural Network (PICNN), where the model out-
put Y is convex in the model input X, but not neces-
sarily in the input X̃. Here, the output of the layers
v and z follow

vi+1 = g̃i(W̃ivi + b̃i)

zi+1 = gi
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with z0,W
(z)
0 = 0 and v0 = X̃, where W̃i, W

(z)
i ,

W
(zv)
i , W

(y)
i , W

(yv)
i , W

(v)
i are input weights, b̃i, bi,

b
(z)
i , b

(y)
i denote constant biases, g̃i and gi are activa-

tion functions, and ◦ denotes the Hadamard product.
The composition of two PICNN f2(x̃2, x2, f1(x̃1, x1))

is convex with respect to x1, if all weights W
(z)
i and

W
(y)
i are non-negative, all functions g

(zv)
i and g

(yv)
i

map to a non-negative value and the function gi is
convex and non-decreasing (Bünning et al., 2021).

If the network inputs are chosen as X̃ = dk and
X = (xk, uk), PICNN can be used for approximating
f in problem (1), while maintaining a quasi-convex
problem structure (Bünning et al., 2021). Accord-
ingly to standard feed-forward ANN, PICNN can be
trained with stochastic gradient decent methods.

ARX with solar model

In an Autoregressive model with Exogenous Variables
(ARX), the output is is a linear function of autore-
gressive terms of the output and of inputs and dis-
turbances (Ljung, 1998). To act as a model for the
dynamics f in problem (1), the ARX model can be
written as a one step predictor

xk+1 = Θ [xk ... xk−δ uk ... uk−δ dk ... dk−δ]
T , (4)

where x, u, d are again states, control inputs and dis-
turbances respectively, and δ determines the number
of autoregressive terms. The regression coefficients Θ
can be found with least squares linear regression from
measurement data.

A building-modelling specific problem is to model the
disturbance through solar irradiation gains through
windows Iwin from data, especially with a linear
model. These gains follow

Iwin = Awin sin(α− α0)
cos(β)

sin(β)
Ihor, (5)

where Awin denotes the surface area of the window,
α and β denote the azimuth and elevation of the sun
respectively, α0 denotes the orientation of the window
surface and Ihor denotes the horizontal global irradi-
ation. The gains are a highly non-linear function of
the time t (which influences α and β) and more im-
portantly of the window orientation. To address this

problem, we assume that Ivert = cos(β)
sin(β) Ihor, which

describes the irradiation through a vertical surface
following the sun, is given as a forecast, as it is only
time and location dependent and we learn the coeffi-
cient Awin sin(α− α0) through regression, by adding
corresponding parameters to Θ in (4). To account
for the time-dependence of α, we perform a one-hot
encoding (Brownlee, 2018) of Ivert with respect to
discrete time-periods t1, ..., tT :

Ivert,ti =

{
Ivert(t), if ti ≥ t ≥ ti+1

0, otherwise.
(6)

This creates T input variables per autoregressive step
for (4), which are zero most of the time, but equal to
Ivert for fixed periods of the day. For example, if T
is chosen to be 6, Ivert,1 will attain Ivert for the first
four hours of the day, and zero otherwise, Ivert,2 will
attain Ivert for the from 4 am to 8 am, and zero oth-
erwise, etc. The variables Ivert,1, ..., Ivert,T are added
to the set d in equation (4). Although one-hot en-
coding introduces a piecewise function, the problem
remains convex, because the choice of the piece of the
function is only dependent on disturbances, but not
on decision variables.

Case study

The three models presented in the previous section
are tested and compared to each other in the setting
of predictive building control within the BOPTEST1

framework (Blum et al., 2019). It provides standard-
ized simulation test cases for advanced building con-
trollers and thus encourages the benchmarking of dif-
ferent control methods.

Test case

In this study, we use the test case bestest-hydronic,
which is an implementation of the BESTEST 900, a
validated high-fidelity model of a single zone building
according to the ASHRAE 140 standard. As depicted
in Fig. 2, the building has a rectangular floor plan of
6 by 8 m, a ceiling height of 2.7 m, and a south-facing

1commit bd22bf2edca2b31a51e64f67038adf236c1dafa9
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Figure 2: Schematic of the used BOPTEST test case.

window of 12 m2. The exact specification of the wall
materials can be found in the model documentation
(Blum et al., 2019). The zone is occupied by a single
occupant before 7 am and after 8 pm during weekdays
and all day during weekends. For the heating system,
the model comprises a boiler with a maximum power
of 5 kW and an efficiency calculated on the basis of
a polynomial curve, a circulation pump with a fixed
efficiency of 49 % and a radiator that transfers the
heat to the thermal zone (Blum et al., 2019).

We control the system by modulating the heating sys-
tem supply temperature Tsup to either 60 ◦C or 20 ◦C
(which effectively sets it equal to the return temper-
ature as the boiler can only heat but not cool), with
pulse-width-modulation (PWM). The controlled vari-
able is the zone temperature x. For the disturbances
d, we assume to have access to the ambient temper-
ature and the global horizontal irradiation forecasts,
which are exact in the current version of BOPTEST,
and to the current time. There is no measurement or
forecast of occupancy assumed2, although the mod-
els could implicitly learn occupancy patterns through
time-related inputs.

Training data generation

As all of the used models are data-driven, training
data for outputs, control inputs and disturbances
need to be generated first. For this, we use a dis-
crete P-controller

uk+1 = kp(xset − xk), (7)

where the set point xset is varied between 22.5 ◦C and
23.5 ◦C every hour. The sampling time is 15 minutes
and the control input is applied through PWM of the
heating supply temperature with a single switch per
sampling step, as described before. The proportional
controller gain kp is chosen such that the resulting tra-
jectory resembles one created with a hysteresis con-
troller, which is commonly used in many buildings
and also resembles the baseline controller we work
with in experiments on real buildings. For training
the model, we use three different time periods, as de-
scribed in Table 1.

We note that closed-loop identification (i.e. identi-
fication with training data generated by a feedback

2Although an exact occupancy forecast is available from
BOPTEST, we chose to not use it in this study, as such fore-
casts are often difficult to obtain in real life.

controller) is generally difficult, because closed-loop
trajectories are often not informative, i.e. persistently
exciting (Ljung, 1998). However, as open-loop exper-
iments are expensive and generally not desirable in
the context of building control, it is interesting to
investigate how the different models cope with the
closed-loop generated training data.

Model set up

The models in the Methodology Section perform dif-
ferently with different types of model inputs and out-
puts. In earlier studies involving experiments on
a real building, we have optimized these (Bünning
et al., 2020, 2021; Schalbetter, 2020). We inherit
these settings here.

In the case of the RF model, we use as the model
output the room temperature difference between two
time steps, thus the model predicts ∆x instead of x.
As model inputs, autoregressive terms of ∆x, of the
ambient temperature, of the horizontal solar irradia-
tion, of the time of the day encoded as a sine function,
and the control input are used. The choice of the in-
puts is a result of feature engineering for a specific ex-
perimental test case from a previous study (Bünning
et al., 2020). For the ICNN model, also ∆x is used as
the model output. As convex inputs, autoregressive
terms of ∆x, of the temperature difference between
room and ambient, and the control input are used.
Autoregressive terms of the horizontal solar irradia-
tion and the sine encoded time of the day are used as
non-convex inputs because they are not decision vari-
ables in the optimization. Also in this case, the input
choice is a result of a previous study (Bünning et al.,
2021). In the case of the ARX model, we directly
predict x as an output. The model inputs are au-
toregressive terms of x, of the ambient temperature,
of the control input, and of the one-hot encoded so-
lar irradiation through a vertical surface as described
in the Methodology section. We do not use the sine
encoded time feature in the ARX model because we
assume that the main time-dependent disturbance,
solar irradiation, is already modelled by (5) and (6),
which is not the case for RF and ICNN. It can also be
noted that we use absolute temperatures for the ARX
models, while temperature differences are used for RF
and ICNN. While temperature differences have shown
to produce more accurate predictions in the cases of
RF and ICNN in previous studies, for linear models,
the models are equivalent because the only difference
between both approaches is an offset in Φ, which can
be exactly obtained from the data. However, the im-
plementation is more efficient if x is used directly.

The number of autoregressive input terms in the three
models will be set using cross validation in the next
section.

Controller set up

The ARX, RF and ICNN model are embedded as
f(xk, uk, dk) into an MPC control scheme that solves



the optimization problem

min
u,x,ε

N−1∑
k=0

(ukRuk + λεk+1) (8a)

s.t. xk+1 = f(xk, uk, dk) (8b)

Xmin − εk+1 ≤ xk+1 ≤ Xmax + εk+1 (8c)

εk+1 ≥ 0 (8d)

Umin ≤ uk ≤ Umax (8e)

∀k ∈ [0, ..., N − 1],

in a receding horizon, where a quadratic cost for the
control input R = 1, and a linear cost λ = 100 for the
comfort slack variable is used. The sampling time is
15 minutes and the control horizon N = 12, which
amounts to three hours. All of these values were cho-
sen after preliminary simulations. The comfort con-
straints Xmin and Xmax are time varying and will be
obvious in the result section. The limits for the con-
trol input uk are Umin = 0 and Umax = 1, which
follows from the applied PWM of the heating supply
temperature: uk denotes the fraction of time in which
the supply temperature is set to 60 ◦C. In the case
of the ARX and RF models, the resulting problem is
a Quadratic Program, which we solve with the QP
solver of CVXOPT (Andersen et al., 2004) in Python
3. In the case of the ICNN, the resulting problem is
a quasi-convex problem, which we solve it with the
COBYLA (Powell, 1994) solver of SciPy (Virtanen
et al., 2020) in Python 3.

Results and Discussion

Sample efficiency and open-loop accuracy

Table 1: Training data periods.
Training set Simulation period
Full training 11 January - 11 March 2009
Medium training 11 January - 01 February 2009
Short training 11 January - 21 January 2009

In a first study, we compare the open-loop accuracy
of the models trained with three training data sets of
varying length, as defined in Table 1, on a testing set
from 4 January - 11 January 2009. The testing set is
obtained with the same P-controller as used for the
training data generation and the P-controller outputs
are used as model inputs for the predictions by the
three models. We compare three different prediction
horizons of N=2 (30 minutes), N=6 (1.5 hours) and
N=12 (3 hours).

However, for this, the number of autoregressive terms
needs to be chosen for each model first. We choose
this parameter by training the models on the Full
training set and comparing the coefficient of determi-
nation3 R2 for the N=12 open-loop predictions in the
testing set.

3The coefficient of determination ranges from -inf to 1, with
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Figure 3: Analysis of model history for training.

The results of the analysis are shown in Fig. 3. For
the ARX and RF models, we chose the number of
auto-regressive terms based on where R2 first crosses
0.75, which is at δ = 9 for the ARX model, and at
6 for the RF model. It is already apparent that the
ICNN is less accurate compared to the other two mod-
els. For the ICNN, we chose δ = 7, which is the point
where R2 first crosses 0.1.

We note that, while the training of the ARX model
is a convex problem leading to the same model ev-
ery time the training is performed on the same train-
ing data, this is not the case for the RF and ICNN.
Here, every time a model is trained, a different model
may be obtained. This effect is less prominent for the
RF, as it is built by averaging many regression trees
trained with boot-strapped data, but very prominent
for the ICNN, where every model is trained with dif-
ferent initial values of the networks’ weights and bi-
ases. This can be noticed by the non-smooth curve
for ICNN in Fig. 3. For both RF and ICNN, we took
into account the first trained model with R2 > −0.1
on the testing set for each analyzed number of au-
toregressive terms

The results for the open-loop prediction with varying
training sets and prediction horizons are shown in
Table 2. It can be seen that the ARX model clearly
outperforms the other models in terms of sample effi-
ciency. It shows high accuracy for all prediction hori-
zons, even when trained with the smallest training
data set of ten days. For the full training data set,
the RF model shows comparable accuracy and for
the medium training data set it still performs well.
When the smallest training data set is used with the
RF model, the resulting prediction accuracy is bad
for the large horizon of N=12. The ICNN is clearly
outperformed by the other two models. While it is ac-
curate for N=2 in all cases, the prediction accuracy
for higher horizons is not satisfactory in any case.

Control performance

The models were then deployed within an MPC
framework to the BOPTEST test case in the test-

1 being a perfect forecast, 0 denoting a forecast that is as good
as taking the average of the predicted value, and lower values
denoting worse prediction.



Table 2: Results of open-loop prediction with varying training size in R2.
Experiment ARX full ARX med ARX short RF full RF med RF short ICNN full ICNN med ICNN short
N=2 0.99 0.99 0.99 0.98 0.96 0.86 0.94 0.92 0.77
N=6 0.93 0.94 0.92 0.91 0.87 0.66 0.29 0.05 -0.27
N=12 0.79 0.79 0.71 0.75 0.67 0.20 0.13 0.12 0.03

Table 3: Energy consumption and comfort constraint violations in closed-loop experiments.
Experiment ARX full ARX med ARX short RF full RF med RF short ICNN full ICNN med ICNN short
Constr. viol. 193.12 201.59 241.52 1363.38 859.74 398.48 9366.86 6341.79 538.50
in ◦C min
Energy in kWh 363.84 363.83 363.82 360.87 363.11 365.05 338.80 348.10 366.38
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Figure 4: Room temperature trajectories in the MPC
experiment with the ARX model with Full training
set (blue), Medium training set (orange), and Short
raining set (green).
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Figure 5: Details of room temperature trajectories in
the MPC experiment with the ARX models.

ing period of 4 January - 11 January 2009. During
this period, the ambient temperature varies between
-0.5 ◦C and 7 ◦C and the maximum daily solar irradi-
ation varies between 70 W/m2 and 220 W/m2, which
constitutes interesting varying ambient conditions for
a heating period.

Figure 4 shows the room temperature trajectory of
MPC with ARX for the full experiment. The time-
varying comfort constraints are depicted in grey. The
controllers behave very similar to each other (which
is why only the green trajectory is really visible) and
lead to smooth temperature trajectories. Note, that
during the day of 5 January, the temperature is driven
up due to strong solar irradiation. The controller has
no authority here, as it can only heat, but not cool.
Figure 5 shows a detailed view of the trajectories for
the days 07 to 09 January. Here, it can be seen that
the controller starts to heat up the room early enough
on both days to meet the higher comfort constraint
at 06:00 in the morning. It can also be noticed that a
horizon of N=6 would be sufficient to anticipate the
1 ◦C step of the comfort constraint in time.

Figure 6 shows the trajectories of the RF model for
the whole experiment. The general trend of following
the lower comfort constraint in order to minimize en-
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Figure 6: Room temperature trajectories in the MPC
experiment with the RF models.
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Figure 7: Details of room temperature trajectories in
the MPC experiment with the RF models.

ergy is apparent. However, the controllers cause vis-
ible oscillations in the temperature trajectory. This
is especially apparent in the detailed Figure 7. Here,
it can also be seen that all controllers start heating
early enough to meet the constraint at 06:00. More-
over, it is surprising to see that the model with the
smallest amount of training data (green) leads to the
smoothest control performance.
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Figure 8: Room temperature trajectories in the MPC
experiment with the ICNN models.

This effect of the short training set performing best,
is even more prominent in the case of ICNN, as can
be seen in Figures 8 and 9. While the controllers
using the Full and Medium training set completely
fail to meet the comfort constraints, the controller
using the ICNN model based on the Short training
set creates a trajectory that can be expected for a
predictive controller.

The reason for this behaviour of the RF and ICNN
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Figure 9: Details of room temperature trajectories in
the MPC experiment with the ICNN models.

model is part of ongoing research. Possible expla-
nations could be related to the non-convex nature
of the training process, overfitting, or the training
data being generated by a feed-back regulated sys-
tem. It should also be noted that for both cases, RF
and ICNN, the open-loop predictions are more accu-
rate for longer training sets than for short ones, as
discussed in the previous subsection. Similarity be-
tween training and testing data sets does not seem to
play a role, as the same behaviour can be seen when
the controllers are tested on a period in March.4

It can be assumed that functioning models for
the longer training data periods could be obtained
through extensive hyper parameter tuning. How-
ever, the given result demonstrates that the RF and
ICNN hyper parameters cannot simply be transferred
from case to case (i.e. from the experimental studies
(Bünning et al., 2020, 2021) to the simulation study
presented here), which is a disadvantage in the do-
main of building control, where every building is in-
dividual. Moreover, the results indicate that good
controller behaviour cannot be deduced from open-
loop accuracy for RF and ICNN.

Table 3 shows the cumulative comfort constraint vi-
olation and the energy consumption for all experi-
ments. It can be seen that the consumed energy is
similar for all cases except the two ICNN experiments
that failed, which are written in italic. The comfort
constraint violation results confirm the impressions
from the room temperature trajectories. However,
here it is more apparent that the ARX model bene-
fits from a larger training set while the other models
do not.

Computational resources

Besides controller performance, computational re-
quirements are an important aspect of choosing a pre-
diction model, as the MPC scheme should be able to
run on micro controllers or cloud platforms outside
the laboratory environment. Table 4 summarises the
computational requirements for the three controllers.
While data processing times and memory usage are
in a similar order of magnitude for all models with a
slight advantage for the ARX model, ARX and RF
clearly outperform the ICNN in optimization prob-
lem solving time, which is due to the nature of the
problem type (QP vs. quasi-convex problem with-

4Data not shown here.

out access to analytical gradients). However, as sam-
pling times in building control related problems usu-
ally range from ten to thirty minutes, also the solving
time for the ICNN model is well within acceptable
range, which is also shown by the BOPTEST time
ratio KPI. The optimizations were conducted on a
Intel(R) Core(TM) i7-7500U CPU with 2.7 GHz.

Table 4: Computational resources for MPC con-
trollers with varying models.

Model
Data

processing
Solving
time

Time ratio
(BOPTEST)

Memory
usage

ARX <0.3 s <0.01 s 0.00079 119 MB
RF 2.8 s <0.02 s 0.00428 150 MB
ICNN 1.5 s 20-80 s 0.05348 135 MB

Conclusion

In this study, we have compared the performance of
ARX models with a one-hot encoded solar model to
models based on Random Forests and Input Convex
Neural Networks for Data Predictive Control in build-
ings within the virtual test bed BOPTEST. From the
results, it is apparent that the ARX model with the
one-hot encoded solar model outperforms both RF
and ICNN in terms of open-loop accuracy, sample ef-
ficiency, closed-loop performance and computational
resources. It should be noted that both ARX and RF
models require little hyper parameter tuning (num-
ber of autoregressive terms, discretization of Ivert for
the ARX model, and number of samples per leaves/
tree depth, number of trees per forest for the RF
model), while the ICNN model depends on many hy-
per parameters (number of layers, number of nodes
per layer, training rate, training epochs, batch size,
etc.). The hyper parameters of the ARX model can
be chosen with some knowledge about the physics of
the system, for example whether the building is a
light or heavy construction. The sensitivity of RF
and ANN regarding hyper parameters is discussed in
(Ahmad et al., 2017) and (Rodriguez-Galiano et al.,
2015), where RF are found to be more robust towards
parameter selection.

Also, while the ARX model can rely on a broad back-
ground of theory for linear systems and system iden-
tification, the other models cannot. As the RF and
ICNN generally allow to approximate more general
sets of functions than the ARX model does, the ques-
tion arises, why these models do not replicate the
behaviour of the ARX model. For the ICNN this can
be explained with the amount of parameters to be
fit. Many processes in buildings are indeed linear,
for example energy balances or heat conduction. The
many degrees of freedom of the ICNN thus do not add
to the model quality, but likely only to overfitting or
fitting of fast modes of the system, which are not rel-
evant for modelling the governing building dynamics
but potentially increase the forecasting error for large
horizons. In the case of the RF, the sequential (and
thus non-convex) training process likely leads to not



finding the linear solution that the ARX models find.
These observations match the ones we find in ongoing
experiments on real systems.

The chosen test case is relatively simple, but the re-
sults are relevant as the case is similar to many build-
ings, i.e. residential buildings with hydronic systems.
It is to be expected that the RF and ICNN models
would perform better for more complex systems with
more non-linearities. This will be tested as soon as
BOPTEST offers such cases.
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