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GPGM-SLAM: Towards a Robust SLAM System for Unstructured

Planetary Environments with Gaussian Process Gradient Maps

Riccardo Giubilato1†, Cedric Le Gentil2†, Mallikarjuna Vayugundla1†, Teresa Vidal-Calleja2, Rudolph Triebel1,3

Abstract— Simultaneous Localization and Mapping (SLAM)
in unstructured planetary environments is a challenging task
for mobile robots due to the appearance and structure of the
environment. In urban and man-made scenarios, individual
objects (e.g. cars, trees or buildings) are easily discernible
and the visual appearance is likely to provide unique cues
for the purpose of localization. Contrarily, planetary scenarios
are often characterized by repetitive structures and ambiguous
terrain features. To provide robust place recognition abilities in
the context of submap-based stereo visual SLAM, we propose
to utilize the gradient of elevation maps generated by Gaussian
Processes (GPs). Visual features computed on GP Gradient
Maps (GPGMaps) provide means for efficient place recognition,
through encoding in Bag-of-Words vectors, and for SE(2)
alignment to establish loop closure constraints in a pose graph.
We evaluate the proposed SLAM system on relevant Moon-like
environments through real data captured on Mt. Etna, Sicily.

I. INTRODUCTION

A key task towards robotic autonomy is the ability to

localize in previously unknown environments. Visual Simul-

taneous Localization and Mapping (SLAM) exploits cameras

for ego-motion estimation, mapping and place recognition.

Although visual SLAM [1] techniques can be considered

mature enough in man-made environments for the purpose

of autonomous driving or augmented reality, unstructured

environments, such as on planetary surfaces, challenge the

task of place recognition due to visual aliasing and lack of

unique visual or structural cues. Thus, by traditional means

(i.e. through similarity detection in the visual or structural

domain), detection of loop closures and relocalization or

multi-session mapping are hindered. In [2] we propose to

establish loop closures by matching image-like Gaussian

Process Gradient Maps (GPGMaps) obtained from submap

point clouds with the use of Gaussian Processes (GPs), show-

ing significant performance improvements over traditional

methods based on local structure similarity. In this paper we

investigate further extensions of this work towards a full-

featured SLAM system that can be run onboard a planetary-

like rover. Specifically, we develop further our previous work

in the following aspects:

†
*The authors assert equal contribution and

joint first authorship.
1German Aerospace Center (DLR), Institute of Robotics and Mechatron-

ics, Weßling, Germany {firstname.lastname@dlr.de}
2Centre for Autonomous Systems at the Faculty of Engineering and

IT, University of Technology Sydney {cedric.legentil@student.uts.edu.au,
teresa.vidalcalleja@uts.edu.au}

3Technical University of Munich (TUM), Department of Computer
Science {rudolph.triebel@in.tum.de}

GPGMaps Database

v̂BoW

SIFT

features

Query GPGMaps

T
j
j+1

Σj

Loop Closure

SIFT matches

(a)

(b)

Fig. 1. Overview of the GPGM-SLAM pipeline: (a) GPGMaps are
generated using 3D submaps from aggregated stereo clouds. Visual features,
computed on the gradient images, are used to create BoW vectors and
detect loop closures from a database. (b) Validated GPGMap matches are
used to establish loop closure constraints in a pose graph, where submap
origins (blue ellipses) are joined by VIO (Visual-Inertial Odometry) pose
constraints.

• we implement SKI (Structured Kernel Interpolation)

GP regression [3] to help mitigate the computational

complexity of GPs.

• we implement a loop closure detector for GPGMaps

based on traditional visual features and Bag-of-Words.

• we integrate the new loop closure detector with the

match validation scheme from [2] in a submap-based

graph SLAM for mobile robots equipped with stereo

vision systems [4]. Fig. 1 shows an overview of the

proposed pipeline and Fig. 6 shows a visualization of a

SLAM session.

II. THE SLAM ARCHITECTURE

In this section we introduce briefly the SLAM system run-

ning onboard the Lightweight Rover Unit (LRU), a planetary-

like rover developed at the DLR Institute of Robotics and

Mechatronics (see Fig. 4). A pose estimation front-end is

based on Visual-inertial odometry, which provides locally

accurate ego-motion to accumulate stereo point clouds in

submaps. Submaps are created by either enforcing a maxi-



TABLE I

COMPARISON OF THE COMPUTATION TIME TO GENERATE IMAGE-LIKE

GPGMAPS WITH THE EXACT GP INFERENCE USED IN [2] AND THE

PROPOSED METHOD BASED ON SKI [3] (AVERAGE OVER 17 SUBMAPS

OF THE ETNA DATASET WITH AN INFERENCE RESOLUTION OF 0.01m)

Downsampling Exact GP SKI

3000 points 592.3 s 19.1 s

None (avg. 38k points) N.A. 24.9 s

TABLE II

AREA UNDER CURVE (AUC) OF THE TESTED DESCRIPTORS FOR

VOCABULARES BUILT FROM 64 AND 128 CLUSTERS

n cl 3D-SHOT 3D-CSHOT SURF KAZE SIFT

64
(0.13) (0.15)

0.71 0.43 0.81
128 0.78 0.60 0.87

mum path length or a maximum covariance growth from the

submap origin. Local reference frames denote the origins of

each submap and are constrained sequentially by inter-pose

constraints, from VIO, as well as inter-robot detections and

loop closures [5]. The optimization back-end is based on

the incremental smoother iSAM2 [6]. For more details and

performance analyses we refer to [4].

III. GAUSSIAN PROCESS GRADIENT SUBMAPS

Our previous work [2] introduces the concept of GPGMap

to address the challenge of noisy and sparse geometric

data in the context of place recognition in unstructured

planetary environments. GPGMaps represent the gradient of

the terrain elevation and are probabilistically inferred from

3D point clouds of the system’s environment using GPs and

linear operators [7] for direct prediction of the elevation’s

derivatives. While GP models allow for data-driven accurate

interpolation, they suffer from a cubic O(n3) computational

complexity for the first inference and linear O(n) for each

additional prediction, with n the number of sample data.

To mitigate this constraint, [2] resorts to naive index-based

downsampling of the input point clouds. In this work, we

propose to use the SKI scheme [3] to directly infer the

elevation derivatives using linear operators [7] with elevation

measurements solely. The key concept of SKI consists in the

use of inducing points that form a grid across the input space,

and the efficient interpolation of the data samples’ covariance

between these points. Our implementation is built on the fast

matrix-vector-multiplication computations presented in [8],

resulting in the efficient estimation of the kernel’s derivatives.

The linear time O(n) inference (and O(1) for additional

predictions) provide a tremendous advantage compared to

[2] (cf. Table III).

IV. LOOP CLOSURE WITH GPGMAPS

A. Loop Closure Detection

In our previous work [2], SURF features were extracted on

GPGMaps in order to match them in a RANSAC scheme to

validate submap matches. Here we evaluate the performances

of a loop closure detector, based on visual features and

BoW, in selecting valid candidate matches across a database

Fig. 2. PR and ROC curves showing the performances of the Loop
Closure detector based on BoW vector similarity. The curves are generated
by varying a threshold on the BoW score to label a submap pair matching or
non matching. This test is performed on GPGMaps from a dataset captured
on Mt. Etna and for a selection of traditional visual features. Results are
compared with 3D feature matching + RANSAC on the original submap
point clouds.

of previously generated GPGMaps. As shown in Fig. 1,

features extracted in every generated GPGMap are extracted

and encoded, through a vocabulary trained before-hand, in

a BoW vector vi. Similar GPGMaps are queried from a

database based on their distance in the BoW vectors space.

An evaluation of commonly used visual feature, SIFT, SURF

and KAZE is also presented here. In this test, the vocabulary

is a plain kd-tree without word weighting (e.g. TF-IDF) using

both 64 or 128 clusters and it is computed using GPGMaps

built within a variety of datasets recorded on Mt. Etna.

The scoring of BoW vectors is based on cosine similarity:

s(vi,vj) = vi ·vj/|vi||vj |. Fig. 2 reports the performances

of this loop closure detector through a Precision-Recall curve

and a Receiver-Operating-Curve. The curves are built by

varying a threshold on the cosine similarity score to label

a GPGMap pair as matching or non-matching. True matches

are labeled from the ground truth given the Intersection-over-

Union (IoU) between submap bounding boxes, see [2] for

more details. Results show that the choice of SIFT descrip-

tors leads to better overall performances, as the Area Under

Curve (AUC) is higher than in the other configurations. Other

descriptors, such as KAZE, are instead not able to classify

correct matches and degenerate to random guesses.

B. Loop Closure Validation

The loop closure detection stage presents potential candi-

date matches based on the distance between BoW vectors.

Potential matches are validated to obtain a transformation

between the corresponding submap point clouds, which is

finally used to establish loop closure constraints in the factor

graph. See Fig. 1 and Fig. 3 for a graphical overview of the

overall loop closure detection scheme an validation process

respectively. The first step is to match SIFT features across

GPGMap1 and GPGMap2, selected as candidate matching

pair. Given the ambiguous and repetitive appearance of

gradient images, we evaluate both a brute-force matching

approach as well as the ratio metric from [9]. The RANSAC

approach presented in [2] is employed to determine an SE(2)
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Fig. 3. Overview of the match validation process for candidate matches
after loop closure detection: SIFT features are extracted on the generated
GPGMap1 and GPGMap2 discarding keypoints on locations with high
covariance. SIFT features are matched and the RANSAC scheme from [2]
is applied to select a fitting affine alignment between the two images. The
affine transformation is finally expressed in the local reference system of
the submap point clouds and a loop closure constraint is added to the graph.

transformation between the two images without optimizing

for scale, which is fixed given the image resolution in meters

per pixels defined beforehand as a parameter for generating

the GPGMap. The RANSAC model also leverages the gra-

dient and covariance to compute an additional error metric

based on a weighted difference of gradients aligned using

the affine transformation determined during every iteration

with sufficient inliers. The affine transformation returned by

the RANSAC test is applied to the original submap point

clouds after correcting the translation part for the GPGMap

resolution and offset between the image and submap origins.

The transformation between point clouds is finally refined

using the ICP algorithm and establishes an inter-submap

constraint in the pose graph, followed by an iSAM2 update.

V. EXPERIMENTS ON A MOON-LIKE ENVIRONMENT

We test our pipeline on datasets captured on Mt. Etna,

a Moon-like environment, in the context of the ROBEX

Fig. 4. From top left and clockwise: D-GPS track of the test environment
(figure from [2]), the Lightweight Rover Unit (LRU) on Mt. Etna (Credits
to DLR, CC-BY 3.0), two example views from the left camera within the
test dataset.

Fig. 5. BoW scores between submaps from the an Etna sequence (left)
compared with the spatial overlap (right). BoW scores are expressed as
cosine similarity of BoW vectors, overlap is expressed as the Intersection
over Union (IoU) of submap bounding boxes. Note how the hotspots in the
BoW scores correspond to regions of high overlap, e.g. the diagonal from
(16, 3) to (13, 8) or the scores from (8, 0) to (10, 3).

(ROBotic Exploration in eXtreme environments) demonstra-

tion mission in 2017 [10]. The volcanic landscape offers

a very complex scenario for place recognition tasks. The

repetitiveness and ambiguity of the visual appearance chal-

lenges the capability of modern visual localization pipelines

to recollect similar images from previouly visited places.

The viewpoint of the LRU camera, looking predominantly

downward towards the ground for obstacle avoidance and

accurate mapping, also does not help in finding unique

structures and features at longer ranges. We refer to [2] for

an introduction to the four sequences used also in the context

of this work.

GPGM-SLAM builds upon our submap-based SLAM sys-

tem [4] replacing its loop closure detection module, which

is purely based on point cloud registration. In the former

loop closure detector 3D C-SHOT features are computed

on keypoints extracted from high curvature regions [11]

and valid rigid rototranslation models are selected through

Hough3D clustering. This approach is especially challenged

in the context of outdoor planetary-like environments such



Fig. 6. Visualization of a GPGM-SLAM session on the test Etna sequence. Blue ellipses are origins of submaps with covariance, blue lines connect
consequent submaps through VIO constraints and yellow lines are validated loop closures.

as the volcanic landscapes on Mt. Etna. As visible in Fig. 3,

in fact, matching submaps present minimal structure and

the noise from dense stereo makes it difficult to compute

repeatable keypoints and local refence systems.

We compare qualitatively the performance of GPGM-

SLAM with the original pipeline from [4], [11] observing

the number of established loop closures. This is not only

an indicator of pose estimation accuracy but also suggests a

higher likelihood of establishing loop closures in challenging

scenarios, where other approaches might fail. Fig. 4 shows

the D-GPS track of the LRU rover on the test scenario as

well as example camera views and pictures of the volcanic

environment. With reference to [2], the test scenario is Etna1,

while all datasets from Etna1 to Etna4 have been used to

build the vocabulary of SIFT features for the Bag-of-Words

framework. Within the test dataset, the LRU rover drives

autonomously through a set of waypoints and maps an area

of approximately 440 m2 in 25 minutes, revisiting previous

locations in two parts of the trajectory, see Fig. 5. Many over-

lapping submaps, however, do not contain enough structure

to be matched and half of them are built while travelling from

opposite directions. Nevertheless, GPGM-SLAM establishes

between 3 and 4 correct loop closure constraints while our

previous map matching strategy establishes between 1 and

2 loop closures. The variability is due to the RANSAC

components coping with high fractions of outliers. Note that

false loop closures are present in Fig. 6 as a result of brute-

force matching between SIFT descriptors without applying

fixed distance thresholds. However, thanks to the Cauchy loss

function applied to the factors in the non-linear graph [4],

their effect is nullified.

VI. CONCLUSIONS

In this short paper we presented an overview of GPGM-

SLAM, a submap-based SLAM system based on Gaussian

Process Gradient Maps targeted at stereo vision systems.

The main benefit of employing Gaussian Process inference

on elevation is to cope with noise and incompleteness in

the submap point clouds, allowing to robustly establish loop

closures where visual-only or structure-only SLAM might

fail due to changing viewpoints and visual aliasing. SKI

GP regression allowed us both to generate GPGMaps at a

higher resolution than in our previous work [2] and to run

the system online on recorded data. As future developments

of this pipeline we plan to further speed-up the generation of

GPGMap and optimize the BoW candidate selection scheme

to be able to cope with limited vocabulary size and unseen

visual words. Furthermore, we plan to thoroughly test and

compare the performances of GPGM-SLAM with respect to

the state of the art in visual SLAM on several datasets from

Moon-like and Mars-like environments.
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GPGM-SLAM

v

§ Submap-based SLAM system targeted at mobile rovers with stereo 

cameras [1]

§ Tackles the problem of establishing loop closures using Gaussian

Process Gradient Maps (GPGMaps) [3]

§ GPGM: gradient of submap elevation computed using Gaussian

Processes (GP) and SKI (Structured Kernel Interpolation) [2]

§ Similarity score between GPGMaps computed online in a Bag-of-

Words (BoW) framework using image features computed on gradients

§ Pose graph links origins of submaps with Visual-inertial Odometry

constraints and validated loop closures

§ Evaluation of SIFT, SURF and KAZE feature descriptors to compute BoW

representation of GPGMaps

§ Vocabulary built and tested on a variety of datasets recorded on Moon-

like Mt. Etna

§ Comparison between BoW vector cosine similarity and overlap (IoU) 

between submaps using ground truth poses

§ SIFT features perform generally better than SURF and KAZE, scoring the 

highest Area under the Curve (AUC)

§ BoW similarity proves to be an useful metric to discriminate candidate 

matching GPGMap pairs

Validation of GPGMap matches

Loop Closure detection using Bag-of-Words on GPGMaps

§ Candidate GPGMap matches are validated to reject false matches

and compute a 4D (x, y, z, yaw) transformation between the 

original gravity-aligned submap point clouds

§ SIFT features are matched between the candidate pair GPGMap1 

and GPGMap2

§ The RANSAC approach in our previous work [3] is employed to 

determine an SE(2) transformation between gradient images, 

without optimizing for scale, which is fixed given the set 

resolution. The RANSAC model employs also a second error term

based on a difference of aligned gradients weighted using the GP 

covariance

§ The affine transformation between gradient images is

transformed to the submap domain given the resolution of 

gradient images

§ Point clouds are first transformed using the estimated

rototranslation and then aligned in the z direction

§ A final ICP refinement constrained to 4D returns the final

transformation between the original submaps

§ The resulting inter-submap constraint is added to a non linear 

pose graph

v

§ We test GPGM-SLAM on a recorded sequence

on a volcanic environment [4] offering multiple 

GPGMap matching opportunities

§ Challenging environment due to repetitiveness

and ambiguity of appearance and structure

§ Compare with our previous pipeline based on 

matching point clouds, selected from geometric

priors using 3D features [1]

§ GPGM-SLAM detects and validates 3 to 4 

submap matches, without relying on geometric

priors, while our previous pipeline validates

only 1 to 2 submap matches

§ Robust Cauchy loss applied to the factors in the 

non-linear graph nullifies the effect of wrong

matches

Online GPGM-SLAM test on a Moon-like scenario

v
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