z/0S Version 1 Release 9
Implementation

“ JES2, JES3, GRS, SMF, WLM, 2/0S
UNIX, zFS

Health Checker, SDSF, System
REXX, Binder, DFSMS

Message flood, XML, CIM,
z/0S base

Paul Rogers - Paul-Robert Hering
Lutz Kuehner - Jean-Louis Lafitte
Marcos Minatto - Jaqueline Mourao

Meganen Naidoo - Gil Peleg
Evanir Philipi - Giancarlo Rodolfi

Redbooks

ibm.com/redbooks

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

z/OS Version 1 Release 9 Implementation

December 2007

SG24-7427-00

Note: Before using this information and the product it supports, read the information in “Notices” on
page xiii.

First Edition (December 2007)

This edition applies to Version 1 Release 9 of z/OS (5694-A01) and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 2007. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Contents

NOtICES ... Xiii
Trademarkso e Xiv
Preface XV
The team that wrote thisbook XVi
Become a published author XVii
Comments WEICOME.t XVii
Chapter 1. zZ/OS Version 1 Release 9. i, 1
1.1 ZZOS VIR9 enhancementst e 2
1.2 BCP miscellaneous enhancements i 4
1.3 z/OS support for IBM System z servers e 4
1.4 Z/OS UNIX System ServiCes. oo e e e e e 4
1.5 z/OS Workload Manager.t e e 6
1.6 Console message flood. e 7
1.7 System LOQgQer . . . oo 7
1.8 SMF use of System Logger.t 7
1.9 Coupling Facility enhancements 7
1.10 GRS 64-bit exploitation 8
1.11 Sysplex failure management. 9
1.12 Program management binder e 9
1.13 XCF Couple Data Set e e 10
1.14 Language Environment. 10
1.15 DFSMS enhancementst e e e 11
1.16 z/OS Communications Server. e 13
1.17 Z/OS SECUNTY . . . oottt e e e 17
1.18 Spool Display e e 18
1.19 System REXX . ..o o 18
1.20 IBM Health Checker forz/OS e e 18
1.21 Alternate Library for REXX 19
1,22 RRS. .. e e e e 19
1,28 ISP . e e 19
1.24 Common Information Model e 20
1.25 Metal Cruntime library e 20
1.26 XML System ServiCes.t e e 21
1.27 z/OS dbx enhancements. i e 21
1.28 UNICOOE e e 21
Chapter 2. Installation considerations 23
2.1 Ordering zZ/IOS VIR 24

2.1.1 Hardware requirements. i e 24

2.1.2 Exportcontrol features i e 24
2.2 New base elements. e 24

2.2.1 Alternate Library for REXXt e 25

222 Metal CRuntime Library 25

2.2.3 ElementschangedinzZlOS V1RO 25
2.3 Functions withdrawn fromz/OS V1RO i e 25
2.4 Functions withdrawn ina futurerelease i i 26

2.4.1 Changes to driving system requirements 26

© Copyright IBM Corp. 2007. All rights reserved. iii

iv

2.5 Changed base elements and optional features. 27

2.6 Coexistence, fallback, and migration i 28
2.7 54-way support withthe ZQ EC 29
2.8 New address SPaCES. v v ittt it e 29
2.9 System z New Application License Charges (zNALC) 30
2.9.1 ZNALC SUPPOIt . . o e 30
2.9.2 NALC USEIS. . .\ttt e e e e e e e e e 33
2.9.3 zNALC and SCRT and APAR OA20314. e 34
Chapter 3. Coupling Facilityenhancements. 35
3.1 CF duplexing performance enhancements.ttt i 36
3.1.1 CFLEVEL 15. . o 37
3.2 CF measurement enhancements i 39
3.2.1 RMF enhancements e 40
3.3 RMF Monitor Ill Data Portal forz/OS i 42
3.4 CFmaintenance modet 46
3.4.1 Migration and COexiStence 47
3.4.2 Usingthe CF maintenancemode i 47
Chapter 4. ICSF support for PKCS #11 53
4.1 PKCS #11 OVEIVIEW . . o ot e e 54
4.2 Z/OS ICSF OVEIVIEWo e 54
4.3 ICSF: PKCS #11 SUPPOIt . .o oottt e e e e e e e e e 55
4.3.1 PKCS #11 integration into z/OS 55
4.3.2 Updating your ICSF definition to support PKCS #11 56
4.3.3 RACF and z/OS PKCS #11 token services., 57
4.3.4 Migration considerations.t 59
4.4 Using PKCS11 token browser utility panels 60
4.4.1 Running ICSF in a sysplex environment.t iiiiienenn... 61
Chapter 5. Allocation dynamic storage improvements. 63
BT OVBIVIEW . . o e 64
5.2 Allocation improvements inzZZOSVIR9 i 65
Chapter 6. System Loggerenhancements 67
6.1 System Logger OVervVIEW.o 68
6.1.1 Log stream exploiters i e 70
6.1.2 z/OS V1R8 improvements of log stream data setsrecall 71
6.2 z/0OS V1R9 improvements of log stream datasetrecalls 72
6.3 Cleanup of CF list entries for unconnected log streams 74
6.4 System Logger publicationupdates 74
Chapter 7. SMF recordingtologstreams. 75
7.1 SMF OVEIVIBW . . . oot e e e e e 76
7.1.1 SMF and log streams withzZZOS V1RO i, 77
7.2 Installation of SMF log streams. i 79
7.2.1 Defining SMF log streams. e 79
7.2.2 Updating the CFRM policy for SMF CF structure logstream. 82
7.2.3 Updating the SMFPRMxx parmlib member. 83
7.2.4 SMFPRMxx parmlib member considerations 85
7.2.5 Switchingtologstreammode. i 86
7.3 Dumping the SMF log streamdataset 88
7.3.1 Using the SWITCH command withlogstreams 91

z/OS Version 1 Release 9 Implementation

7.4 Migration considerations e 91

Chapter 8. GRS enhancements 93
8.1 Global resource serialization overview i 94
8.1.1 Setting address space ENQ/limits. i 94
8.1.2 Contention notification systemmovement 97
8.2 GRS storage constraint relief withzZ OSV1IR9 99
8.2.1 Ensure that GRSCNFxx is used properly for GRS=NONE................. 101
8.2.2 GRS exit routines in cross-memorymode 101
8.2.3 ISGADMIN enhancement i e 102
8.3 GRS performance enhancements withzZ OSV1R9 103
8.4 GRS debugging improvements. 103
Chapter 9. Message Flood Automation. 105
9.1 Message Flood Automation overviewt 106
9.2 Message Flood Automation implementation. 106
9.2.1 Message flood problems. 107
9.2.2 MPF Processingottt e 107
9.2.3 MPF processing exit e 108
9.3 Installing Message Flood Automation. i, 109
9.3.1 Message Flood Automationexits 109
9.3.2 Loadingand activating e 113
9.4 Customizationandtuning i 115
9.4.1 Providing a MSGFLDxx parmlibmember 115
9.4.2 Types of message classes processedo, 116
9.4.3 Message class Controls. i 117
9.4.4 Message Flood Automation guidelines. 120
9.4.5 Turning Message Flood Automation ONorOFF 122
9.4.6 Displaying your poliCyt e 123
9.5 Command SUMMANYo vttt e e e e e e e e e 124
Chapter 10. WLM enhancements.t 127
10.1 Promote jobs which have beencancelled. 128
10.1.1 ZZOS VIR9 enhancement. i e 128
10.1.2 Migration and coexistence considerations 128
10.2 Start a minimum number of servers e 129
10.2.1 ZZOS VIR9 enhancement e 129
10.2.2 Exploiters of the new servicerequest. 131
10.3 WLM enhancements for blocked workloads 131
10.3.1 Promote higher dispatch priority 132
10.4 RMF enhancements for blocked workloads 133
10.4.1 RMF CPU Activity report.o e 133
10.4.2 RMF Workload Activity report 134
10.4.3 New SMF record typesot 135
10.4.4 RMF Distributed Data Server i 136
10.5 Improved assist processor routing Services 136
10.5.1 Sysplex routing services IWMSRSRS improvements. 137
10.5.2 Sysplex routing services IWM4SRSC improvements 141
10.5.3 IWMWSYSQ SEIVICE. . . o oo e e e e 143
10.5.4 Migration and coexistence considerations 144
10.6 Group capacity limit. e 144
10.6.1 Defined capacity review i e 144
10.6.2 Group capacity definitionrules e 146
10.6.3 Group capacity exampleo e 147

Contents v

10.6.4 Hardware and software for group capacityo ... 147

10.6.5 Group capacity limitexample e 149
10.6.6 RMF and SMF updates to support group capacity limit 150
10.6.7 Examples related to usage of group capacity limit 150
Chapter 11. C/C ++enhancements i, 155
11.1 SUSv3 implementationin zZZOS VIR9. e 156
11.1.1 ZZIOSVIR9 and SUSV3. 156
11.1.2 Compiling an SUSv3 application. i 157
11.1.3 Invoking Threads support e 158
11.1.4 Setting environment variables affects run-time behavior 159
11.1.5 New APIs 160
11.1.6 New Threadinginterfaces. i 161
11.1.7 Modified APIs 162
11.1.8 Migration and coexistence considerations 162
Chapter 12. ISPFenhancements 163
12.1 Edit and browse z/OS UNIXfiles 164
12.1.1 ISPF enhancementin zZZOS V1RO 164
12.2 ISPF personal datasetlists 168
12.3 EDIT primary commands SUPPOItt e 169
12.4 EDIT macro command SUPPOr e e 173
12.5 ISPF SErviCes SUPPOItottt sttt ettt e 174
12.6 PDF installation-wide data set allocationexit 176
12.7 Support for editing ASClldata e 176
12.8 Mixed case in ISPF commandtables 178
Chapter 13. Security enhancements............... 181
13.1 RACF enhancements e 182
13.1.1 Password phrase minimum lengthchange. 182
13.1.2 Writable key ring functions e 183
13.1.3 UTF8 characters support in digital certificates 185
13.1.4 REFRESH warning message after RACDCERT commands 185
13.2 Java security APl e 186
13.3 System SSL enhancements e 189
13.3.1 Introduction to the SSL protocol i 189
13.3.2 Certificate revocation lists (CRLs) granularity. 191
13.3.3 Rehandshake notification 193
13.3.4 Hostname validation 194
13.3.5 Hardware-to-software switch notification 195
13.4 PKI Services enhancements.t 196
13.4.1 Automatic certificate renewal processing 196
13.4.2 RACF-style distinguishedname 198
13.4.3 E-mail notification for administrators. oL 198
13.4.4 Longer validity period for certificates. oL 199
13.4.5 Query on expiring certificates 199
Chapter 14. 2/0S CommunicationServer............. 201
14.1 zlIP-assisted IPSeC.o e 202
14.1.1 Implementation of zlIP-assisted IPSEC oo, 202
14.1.2 Example of zlIP-assisted IPSec implementation. 203
14.2 Policy-based routingt 212
14.2.1 Policy-based routing implementation 214
14.2.2 Policy-based routing implementationexample 217

vi z/OS Version 1 Release 9 Implementation

Chapter 15. System REXXforz/OS i 237

15.1 Introduction to System REXX (SYSREXX)ot 238
15.2 SYSREXX address space (AXR) e 238
15.2.1 SYSREXXfromconsolest 239
15.2.2 AXREXX MACIO SEIVICEttt e e e 239
15.3 Customizing System REXX. i 241
15.4 Using System REXX e 242
15.5 Usage and migration considerations. i 245
15.5.1 Writing REXX @XECSot 245
15.5.2 Usinginput and outputfiles. 246
15.5.3 Other AXREXX parameters 247
15.5.4 Arguments and variables withina REXXexec 247
Chapter 16. z/0S XL C/C++ Metaloption. 251
16.1 Metal option introduction. e 252
16.1.1 XL C Metal compileroption. i 252
16.2 XL C Metal option e 253
16.2.1 Metal option overview i 254
16.2.2 Usingthe Metaloption i 254
16.2.3 Linkage conventions e 256
16.2.4 AR-mode and the Metaloption. i 256
16.2.5 Metal Cruntimelibrary 257
16.3 Decimal floating point e 258
16.3.1 The need for decimal arithmetic 258
16.3.2 Extended precision floating-pointnumbers. oL 258
16.3.3 New floating-point datatypes i 259
16.3.4 Decimal arithmeticcontext 259
16.3.5 XL C/C++ support for decimal floating pointdatatypes 260
16.3.6 XL C/C++run-timelibrary i 261
16.3.7 UNIX System Services dbx debugger. 261
16.4 dbx support of WebSphere remote debuggers. 262
16.5 Specialized hardware instructions support i 266
16.5.1 Available new built-in functions. 267
16.6 Migration considerations e 268
16.7 Prelnittracingo e 268
16.7.1 Migration considerations. e 269
16.7.2 Prelnit tracing characteristics 269
16.8 DLL didagnostiCs. oo e 272
16.8.1 Language Environment IPCS support 274
Chapter 17. z/OS UNIX System Services 275
17.1 AUtOMOVE CONSISIENCY . . . oottt e e e e e 276
17.1.1 Problems with sysplex-aware file systems without the new support. 277
17.1.2 New automove enhancements 278
17.1.3 Migration and coexistence considerations 282
17.2 zFSsmallenhancements i 283
17.2.1 IOEAGFMT and IOEAGSLYV authorization 283
17.2.2 Concurrent [0g reCOVEIY v ittt e 286
17.2.3 Improved dynamiC grow ottt e 286
17.2.4 Improved hang detection i, 287
17.2.5 Hang detection messages, 287
17.2.6 Analyzinghangconditions i 287
17.2.7 ZZOSV1IR9 enhancementst 289

Contents vii

viii

Chapter 18. SDSFenhancements i, 291

18.1 SDSF and the REXX programming language. it 292
18.1.1 SDSF REXX and System REXX.o i 292
18.1.2 Authorization for SDSFand REXX 292

18.2 Setting up the SDSF host command environment 293
18.2.1 Issuing SDSF commandsina REXX program 294
18.2.2 Special REXX variables e 295

18.3 Examples of using ISFEXEC 296
18.3.1 The WHO and QUERY commands. 297
18.3.2 Issuing operatorcommands 298
18.3.3 Issuing action characters 300
18.3.4 Browsing joboutput 301
18.3.5 Printingjoboutput. e 303

18.4 Executing REXX €XeCS ot 304
18.4.1 Diagnosing errorsinan SDSF REXX exec. 304

18.5 SDSF migration considerations. 305

Chapter 19. New faces of zZ/OS. i 307

19.1 Introductiontothe newfaceof z/OS. 308
19.1.1 z/OS easeof useenhancements i .. 308

19.2 zZ/OSV1IR9andnewfacesof zZ/OS. 309
19.2.1 System REXXo 310
19.2.2 SDSF REXX . oot 311
19.2.3 Using REXX to write health check routines. 311
19.2.4 XL C Metal compileroption. 311
19.2.5 Common event adapter e 312

19.3 Common Information Model 312
19.3.1 z/OS V1R9 enhancementsforCIM. 313
19.3.2 CIM cross-platform management i 314
19.3.3 CIM components and dependenciesu i, 315

19.4 CIM SEIVEI OVEIVIEW . . o .\ ottt et e e e e e e e e e e 318
19.4.1 CIM serversupportinzZZOSV1IR9. e 318

19.5 CIM client-10-CIM Server aCCesso vttt e e 321

19.6 CIM server runtime update and enhancements 323
19.6.1 Automatic Restart Manager support. i 323
19.6.2 SSL certificate-based authentication 324
19.6.3 Logging facility changed to syslogdaemon 326
19.6.4 New command-line utility: cimsub. 326

19.7 CIMclient APIfordava e e 327

19.8 Instrumentation in ZZOS VAR, 328
19.8.1 Required parmlibupdates. 330
19.8.2 Instrumentation for logical disk volumes 331
19.8.3 Instrumentation of batchjobs 331
19.8.4 Instrumentationforasysplex i 331
19.8.5 DFSMSrmm CIM provider.t i e 335
19.8.6 RMF CIM MONItOriNg. oottt e i 335

19.9 Migration and coexistence considerations 338
19.9.1 General migration considerations i 338
19.9.2 Cloning considerations e 339

Chapter 20. Program management enhancements 341

20.1 New Binder options. i 342
20.1.1 The MODMAP Binder option.ttt e e e 342
20.1.2 The INFO Binderoption e 343

z/OS Version 1 Release 9 Implementation

20.2 Enhanced Binder control statements 343

20.3 SYSLMOD record format verification 344
20.4 Binder C/C++ APl . . oo e 345
20.5 Support for side deck definition files in archivefiles 347
20.6 Binder fast data accessenhancements, 348
Chapter 21. JES2 and JES3 enhancements 351
21.1 JES2 enhancements. e 352
21.2 SSI requests authorization enhancements 352
21.2.1 SSI 11 - User destination validation/conversion service. 353
21.2.2 SSI 70 - Scheduler facilities function. 353
21.2.3 SSI71 - JES job information services. 353
21.2.4 SSI 75 - Notify user message servicecall. 355
21.2.5 SSI 79 - SYSOUT application programming interface (SAPI). 355
21.2.6 SSI 80 - Extended status functioncall 355
21.2.7 SVC 99 -Spool browset 356
21.3 $C Job command enhancementsot iiiee 356
21.4 $TRACE facility enhancements i 357
21.4.1 TRACE initialization statement and $T TRACE command 357
21.4.2 INTRDRracing.ot e 359
21.5 Changes to JES2 eXilSt 361
2151 $JCT eyecatcher 361
21.5.2 Exit 8 - Userenvironment$CBIO i, 361
21.5.3 Exit 31 - Allocation SSI 361
2154 Exit42and exit 45 361
21.6 JESB enhancements. i e 362
21.6.1 Relief of the OSE buffer numberlimit............ 362
21.6.2 Coexistence considerations i 362
21.6.3 More efficientuse of spoolspace........... 363
Chapter 22. IBM Health Checkerforz/OS 365
22.1 System REXX check support 366
22.2 Defininga REXX checK. 366
22.2.1 REXX checkstructure. 368
2222 DEBUG MOGEttt e e e e e 369
22.2.3 Schedulinga REXXcheck e 369
2224 DELETE FORCE=YES e e e 369
22.2.5 Procedure to implementa REXXcheck, 370
22.3 Extended SDSF CK SUPPOItot e 371
22.4 New checks available with zZZOSVIR9. 372
Chapter 23. DFSMS enhancements. 375
23.1 Basic Access Methods (BAM) performance, 376
23.1.1 Long-term page fixing for BSAM data buffers. 377
23.1.2 BSAM and QSAM support for MULTACC. 377
23.1.3 QSAM support for MULTSDN.t e 378
23.2 VSAM system managed buffering (SMB) enhancements. 379
23.2.1 SMB OVEIVIEW . . .o ottt e e 379
23.2.2 Installation considerations. 380
23.3 Multi-volume data set in the same storage facilityimage 381
23.3.1 Storage facility image (SFl) overview i 382
23.3.2 DFSMS volume selection enhancement. 382
23.3.3 Storage Facility Image (SFl) attributes L. 382
23.3.4 DFSMS volume selection with SFl attribute 383

Contents ix

X

23.3.5 Migration considerations.t e 384

23.4 Object access method (OAM) enhancementsccuiirenn... 384
23.4.1 Using OAM enhancementsttt e e 384
23.4.2 Miscellaneous enhancements. i 387
23.4.3 Migration considerations. e 388

23.5 DFSMShsm enhancements i 388
23.5.1 Abend 878 reduction. 389
23.5.2 Functional statistics record (FSR) improvements. 390
23.5.3 Return priority (RP) exit ARCRPEXTchanges......................... 392

23.6 DFSMSrmm enhancements i 393
23.6.1 Task management support. 393
23.6.2 Multitasking of utilities. 398
23.6.3 Control data set (CDS) serialization 406
23.6.4 Migration and coexistence considerations, 409
23.6.5 Common Information Model (CIM) provider 409
23.6.6 JCLdatasetnamesttt e 414
23.6.7 Data set names in RMM subcommands., 416
23.6.8 Shared parmlib support. 420
23.6.9 TSO subcommands i e 422
23.6.10 3592 Model EO05 software support i 430
23.6.11 Migration and coexistence considerations 431

23.7 Network File Systems (NFS) enhancements 432
23.7.1 24-bitaddressingrelief 432
23.7.2 Multi TCP/IP stack sUpport oo e e e 432
23.7.3 Usage andinvocationt e 433
23.7.4 AddDS operator command 433
23.7.5 RACF datalabeling. 434
23.7.6 NFS v4 client support o e 435
23.7.7 Client Attribute syntax. e 436
23.7.8 Server Ctrace upgradet 436
23.7.9 Terminal ID based restricted MVSLOGIN. 438

Chapter 24. Large formatdatasets............... 439

24.1 Large format data setoverview. e 440

24.2 TSO/E and large formatdatasets. i 441

24.3 TSOPRINTDS command o e e e e e 442

24.4 REXX and CLIST LISTDSI function i .. 442

24.5 Enhanced I/O capability in TSO/E for CLISTand REXX 443

24.6 Messages relatedto new support. 443

24.7 Migration and coexistence considerations 444

Chapter 25. RMF enhancements i, 445

25.1 RMF enhancements for FICON i, 446
25.1.1 SMFrecordchanges.ot e e 447

25.2 RMF Monitor lll Data Portal 447
25.2.1 Sort capability for full Monitor lllreports 449

25.3 SpreadSheet Reporterenhancements i 451
25.3.1 New RMF Spreadsheetoptions 451
25.3.2 ZzZAAP and zlIP support 452
25.3.3 Report Class periodst 454
25.3.4 RMF XCF Activity Report 455
25.3.5 Process user-defined overviewrecords 457

z/OS Version 1 Release 9 Implementation

Chapter 26. XML enhancements i 459

26.1 XML System ServiCes.t 460
26.2 Performance improvementsttt e 460
26.3 C/C+H+ APIS . . oo e 461

26.3.1 Sample projectt 462

26.3.2 Howtocompile e 464

26.3.3 ZAAP considerations. 465
Chapter 27. RRSenhancements i ... 467
27.1 ATRQSRV batch support 468

27.1.1 ATRQSRV Utilityo e 468
27.2 Resource manager unregister. 470
Chapter 28. Language Environment 475
28.1 iconv() enhancements. i e 476

28.1.1 Migration actions. e 477
28.2 CEEDUMP enhancementt e e e 478

28.2.1 Enhanced traceback section. 479
28.3 edemtext utility 481
28.4 HEAPPOOLS performance improvement. 482
28.5 z/OS UNIX support for ceebldtx utility. 483
28.6 CLER run-time option change support i 485
28.7 New and modified callable services i 485
28.8 CEE3DLY and CEEDLYM callable services. 486
28.9 AMODE 64 CELQPIPI service Vector. oot 487
28.10 AMODE 64 CEETBCK and CEEHGOTOt 488

28.10.1 __far_jump() function 489

28.10.2 __le_traceback() function 489
28.11 XPLINK enhancements. e 489
Appendix A. Metal optionof XLC compiler. 491
A1 JCL procedure METACALGot ti e eee eeeeeeeeee 492
Appendix B. System REXXforz/OS 495
B.1 REXX exeC WHOIAM e e e 496
Appendix C. z/0S Communications Server 499
C.1 IPSEC policy configuration for SC70 500
C.2 IPSEC policy configuration for SCB5 e 503
C.3 SC65 pbr configurationfiles 507
C.4 SC70 pbrconfigurationfiles 507
C.5 SCe5 netstat-Acommandt e 508
C.6 SC70netstat-Acommandttt e e e 510
C.7 pasearch-Rcommand i e e e e 512
Related publications e 515
IBM RedboOoKS e 515
Other publications i e 515
ONlNE rBSOUICES . . o\ttt it e e e e e e 516
Howto get Redbooks. e 517
Help from IBM ... e 517
INdeX . .. e 519

Contents Xxi

Xii z/OS Version 1 Release 9 Implementation

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. You can send license inquiries, in
writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.

© Copyright IBM Corp. 2007. All rights reserved. xiii

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States,

other countries, or both:

AD/Cycle®
AIX®
BookManager®
C/370™
CICS®

CUA®
Domino®
DB2®
DFSMS™
DFSMSdfp™
DFSMSdss™
DFSMShsm™
DFSMSrmm™
DFSORT™
DRDA®
DS6000™
DS8000™
eServer™
ELX®

EPILOG®

FICON®

GDPS®
HiperSockets™
i5/0S®

IBM®

IMS™

Language Environment®
Lotus®

MQSeries®

MVS™

MVS/ESA™
NetView®
OMEGAMON®
0S/390®

Parallel Sysplex®
RACF®

Redbooks®
Redbooks (logo) (¢@ ®

(
S

The following terms are trademarks of other companies:

REXX™
RMF™

S/390®
System z™
System z9™
System Storage™
System/390®
SAA®
SYSREXX™
Tivoli®
VM/ESA®
VTAM®
WebSphere®
xSeries®
z/Architecture®
z/OS®

zZNM®
zSeries®

ZgTM

SAP, and SAP logos are trademarks or registered trademarks of SAP AG in Germany and in several other

countries.

Oracle, JD Edwards, PeopleSoft, Siebel, and TopLink are registered trademarks of Oracle Corporation and/or

its affiliates.

Java, Javadoc, Solaris, StorageTek, Sun, and all Java-based trademarks are trademarks of Sun

Microsystems, Inc. in the United States, other countries, or both.

Expression, Internet Explorer, Microsoft, Windows, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Xiv z/OS Version 1 Release 9 Implementation

Preface

This IBM® Redbooks® publication describes the functional enhancements to IBM z/OS® for

Version 1 Release 9 (z/OS V1R9). These enhancements are designed to help installations
install, tailor, migrate, and configure z/OS V1R9.

This book describes the new enhancements as follows:

>

>

»

z/OS Version 1 Release 9 overview
Installation and migration to z/OS V1R9
Coupling Facility enhancements

ICSF support for PKCS #11

Allocation dynamic storage improvements
System Logger enhancements

SMF recording to log streams

GRS enhancements

Message Flood Automation

Workload Manager (WLM) enhancements
C/C ++ enhancements

ISPF enhancements

Security enhancements

z/OS Communication Server

New faces of z/OS

System REXX™ for z/OS

z/OS XL C Metal option

z/OS UNIX® System Services

SDSF enhancements

Program management enhancements
JES2 and JES3 enhancements

IBM Health Checker for z/OS
DFSMS™ enhancements

Large format data sets

RMF™ enhancements

XML enhancements

RRS enhancements

Language Environment®

© Copyright IBM Corp. 2007. All rights reserved.

XV

The team that wrote this book

XVi

This IBM Redbooks publication was produced by a team of specialists from around the world
working at the International Technical Support Organization, Poughkeepsie Center.

Paul Rogers is a Consulting IT Specialist at the International Technical Support
Organization, Poughkeepsie Center. He writes extensively and teaches IBM classes
worldwide on various aspects of z/OS, z/OS UNIX , JES3, and Infoprint Server. Before joining
the ITSO 19 1/2 years ago, Paul worked in the IBM Installation Support Center (ISC) in
Greenford, England for seven years, providing OS/390® and JES support for IBM EMEA. He
also worked in the Washington Systems Center for three years, and has been with IBM for
more than 40 years.

Paul-Robert Hering is an IT Specialist at the ITS Technical Support Center, Mainz, Germany
who provides support to customers with z/OS and UNIX System Services-related questions
and problems. He has participated in several ITSO residencies since 1988, writing about
UNIX-related topics. Prior to supporting OS/390 and z/OS, Paul-Robert worked for many
years with VM and all its different flavors (VM/370, VM/HPO, VM/XA, and VM/ESA®).

Lutz Kuehner is a z/OS IT Specialist working in IBM Global Services, Germany. He has 21
years of experience in the mainframe field and has contributed to several IBM Redbooks
publications.

Jean-Louis Lafitte is a Senior System Architect at GATE Informatic SA, an IBM Premier
Business Partner in Switzerland. He has 36 years of experience on IBM Large Enterprise
Systems, has worked on different parallel machines (IBM RP3, CM2, KSR1, IBM SP1, SP2
and BG/L), and has been associated with Parallel Sysplex® since 1984. He holds a Ph.D.
degree in Theoretical Computer Science and several patents in System/390® architecture.
He is a member of ACM and IEEE.

Marcos Minatto is a System Programmer at Banco do Brasil in Brazil. He has four years of
experience in the z/OS field and holds a degree in Information Systems. His areas of
expertise include z/OS, installation, maintenance, capacity planning, and Workload Manager.

Jacqueline Mourao is a Systems Programmer at Banco do Brasil, an IBM customer. She
has five years of mainframe experience and holds a degree in Information Systems. Her
areas of expertise include z/OS, installation and maintenance, Parallel Sysplex and security.

Meganen Naidoo is a Technical Architect with Business Connexion, a large outsourcing IBM
business partner in South Africa. He has more than 23 years of mainframe experience,
working on VM, z/OS and Linux® system platforms, and has contributed to several IBM
Redbooks publications. Meganen’s areas of expertise include a variety of technical topics
about z/OS, CICS® and Storage Management.

Gil Peleg is a z/OS System Programmer working for Tangram-Soft LTD in Israel. He has nine
years of experience in mainframe systems and holds a degree in Computer Science. Gil is
responsible for supporting zSeries® customers in Israel and teaching zSeries-related
courses.

Evanir Philipi is a Certified z/OS IT Specialist working with IBM Global Services, Brazil. He
has worked with IBM mainframes for 35 years. Evanir is a z/OS instructor and a z/OS
Technical Leader (Banco do Brasil).

Giancarlo Rodolfi is a zSeries Certified Consultant TSS in Brazil. He has 21 years of
experience in the zSeries field. His areas of expertise include zSeries and Linux . He has
written extensively about z/OS Communication Server.

z/OS Version 1 Release 9 Implementation

Thanks to the following people for their contributions to this project:

Rich Conway, Roy Costa
International Technical Support Organization, Poughkeepsie Center

Ray Mansell
Scalable Systems, IBM Research Hawthorne

Become a published author

Join us for a two- to six-week residency program! Help write a book dealing with specific
products or solutions, while getting hands-on experience with leading-edge technologies. You
will have the opportunity to team with IBM technical professionals, Business Partners, and
Clients.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus, you
will develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!
We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks in one of the following ways:
» Use the online Contact us review Redbooks form found at:
ibm.com/redbooks
» Send your comments in an e-mail to:
redbooks@us.ibm.com
» Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099

2455 South Road

Poughkeepsie, NY 12601-5400

Preface xvii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xviii z/OS Version 1 Release 9 Implementation

z/OS Version 1 Release 9

With z/OS V1R9, IBM extends the value of the mainframe operating system with
improvements in all of its core competencies, including scalability, availability, and resource
optimization. There are advancements in ease of use for both new and existing IT
professionals coming to z/OS. There is an enhanced centralized policy-based tailoring for
application networking and security. For Web-based applications, centralized encryption key
management is introduced. There is also autonomic policy-based application performance
management.

z/0OS V1R9 helps to provide constraint relief and improve overall performance and/or
scalability of the following items:

» Coupling Facility (CF) Duplexing

» CF performance monitoring

» GRS management of ENQs

» XCF Couple Data Set

» Language Environment heap pools

With increased focus on simplifying z/OS for IT professionals, plans for zZOS V1R9 include
improvements to:

» IBM Health Checker for z/OS

» |IBM Configuration Assistant for z/OS

» Communications Server

» DFSMSrmm™

» |ISPF

» Hardware Configuration Manager (HCM)

» Coupling Facility services

» A new dbx GUI

© Copyright IBM Corp. 2007. All rights reserved.

1.1 z/OS V1R9 enhancements

2

As mentioned, with z/OS V1R9, IBM plans to extend the value of the flagship mainframe
operating system with improvements in all of its core competencies, including scalability,
availability, and resource optimization. With increased focus on simplifying z/OS for IT
professionals, plans for z/OS V1R9 include improvements to the IBM Health Checker for
z/0S, the IBM Configuration Assistant for zZOS Communications Server, DFSMSrmm, ISPF,
Hardware Configuration Manager (HCM), and Coupling Facility services, as well as a new
dbx GUI. Additional enhancements to z/OS are planned to make the operating system more
powerful in applying centralized policy-based rules for defining and controlling how your
applications behave.

Figure 1-1 describes the enhancements to z/OS V1R9 in terms of the type of change the new
functions apply. This is more or less the roadmap for the changes to be made in z/OS in this
and future releases.

Availability Optimization and

Consoles, CF
Scalability & Duplexing, zFS l\gana%gzlr_?_ent
Performance W?/\,?a ilities
performance

54-way support, SMF data
management, Language
Environment, Parallel Sysple

routing, priority settings,
and cancel functionality;
EWLM; CIM

Integrating Apps
and Supporting Enhancing
Industry and Security

RACF, FTP, System
SSI, PKI Services

Open Standards
PKCS#11, Language
Environment, UNIX System
Services

Usability Extending the Network
. Communication Server policy-based
and SkI"S networking, Policy Agent, Network
System REXX, Security Services, Configuration
Health Checker, Assistant
ISPF, HCM

Figure 1-1 Overview of the functional areas of change with z/OS V1R9

Scalability, performance and availability

In z/OS V1R9, enhancements are provided to extend system limits in support of system
availability and data and application workload growth. Support is provided that can improve
the availability of Consoles component, System Logger, z/OS UNIX System Services and
z/OS UNIX File System, and Sysplex Failure Management function.

» Support up to 54-way for capacity growth and vertical scalability within a single system
image. 54-way support is the sum of Central Processors (CPs), IBM System z9™
Integration Information Processors (zlIPs), and IBM System z™ Application Assist
Processors (zAAPs).

» Improve consoles message handling with policy-driven Message Flood Automation.

z/OS Version 1 Release 9 Implementation

» Allow SMF to be configured to use System Logger to write data to a log stream. This is
expected to improve the scalability, collection, and the overall management of SMF data.

» Relieve virtual storage constraints for the BCP allocation, the 1/0 Supervisor, and
DFSMShsm™.,

» Provide performance improvements for Parallel Sysplex couple data sets, CF Duplexing,
z/OS UNIX File System (zFS), and Language Environment.

» In addition to the current hex and binary floating-point formats, z/OS XL C/C++ supports in
z/0OS V1R9 (with a possible roll-back to z/OS V1R8) the decimal floating-point formats.

Despite the widespread use of binary arithmetic, decimal computation remains essential
for many applications. Not only is it required whenever numbers are presented for human
inspection, but it is also often a necessity when fractions are involved. The hardware
implementation of this arithmetic is expected to significantly accelerate a wide variety of
applications. This support is available on the IBM System z9 BC and IBM System z9 EC,
and is activated at the XL compiler in C/C++ via a new DFP option.

Application integration

To embrace open and industry standards to support requirements for application portability,
z/OS V1R9 has several important functions intended to extend existing applications, integrate
new applications, and support industry and de facto standards.

» Adopting the PKCS#11 standard allows mainframe encryption and centralized key
management to be used by Web-based applications and networking environments.

» There are improvements to LDAP enable application registries to be more easily
centralized, managed, and recovered.

» There are improvements to z/OS UNIX System Services help enable porting of UNIX
applications to z/OS.

» Language Environment has enhancements to language, currency, multicast source
filtering, and XPLINK support.

Security enhancements

z/OS V1R9 improves and extends the world-class security capabilities of the platform in the
following enhancements to PKI Services, RACF®, and SAF. These enhancements improve
the creation, authentication, renewal, and management of digital certificates.

» z/OS System SSL and Application Transparent-TLS are opened up to more application
exploiters.

» RACF has added infrastructure for password phrase support and AES cryptography.

» z/OS Communication Server has introduced many functions for centralized security and
policy-based management.

Optimization and management capabilities

z/OS V1R9 offers outstanding overall resource utilization capabilities and policy-based
workload management.

» The z/OS Workload Manager (WLM) is enhanced with improved performance routing,
priority settings, and cancel functionality.

» z/OS supports the latest Common Information Model (CIM) standard to help z/OS to
integrate with more industry tools.

» EWLM is enhanced to include Open Group's ARM 4.1 (Application Response Manager)
extensions for z/OS.

Chapter 1. z/OS Version 1 Release 9 3

Networking

Communications Server for z/OS V1R9 enters into a new era of z/OS middleware enablement
by enhancing the security and control of network communications. Security capabilities have
enhancements with expanded application-transparent security for TN3270 and FTP. Control
enhancements are planned in the areas of network traffic and sysplex operations. z/OS
Communications Server is enhanced to include a new function: policy-based routing.

Ease of use

With increased focus on simplifying z/OS for IT professionals, z/OS V1R9 provides
improvements to the IBM Health Checker for z/OS, the Configuration Assistant for the z/OS,
Communications Server, DFSMSrmm, ISPF, Hardware Configuration Manager (HCM),
Coupling Facility configuration, and CF performance monitoring, and also provides a new dbx
GUL. These improvements can help simplify systems management, improve system
programmer and operator productivity, and make the functions easier to understand and use.
System REXX (SYSREXX™) makes possible execution of REXX routines in an authorized
environment. SYSREXX execs can be used to automate complex operator commands and
other system functions.

1.2 BCP miscellaneous enhancements

1.3 Z/0S

1.4 z/OS

The maximum specifiable size of the MVS™ system trace is changed from the current value
of 999 K per CPU. The practical maximum will be in the order of many MBs per CPU. It will
vary depending on the size of the LPAR and the applications that contend for real storage.

support for IBM System z servers

Starting with z/OS V1R6, up to 32 processors are supported in a single logical partition on
IBM System z9 EC and z990 servers. With z/OS V1R9, support is provided for z/OS to run up
to 54 processors in a single logical partition on z9 EC servers.

Note: The total number of processors defined in a z/OS logical partition is the sum of
general purpose processors (CPs), System z9 Application Assist Processors (zAAPs), and
System z9 Integrated Information Processors (zIIPs).

UNIX System Services

In z/0OS V1R9, enhancements for z/OS UNIX System Services improve management of
automount file systems that are managing a directory located in an automove (unmount) file
system. The automount file system now inherits the automove (unmount) attribute rather than
mounting as automove (yes). Note that IBM Health Checker for z/OS flags this inconsistency
when automount is mounted as automove (yes).

SUSv3 standard

To enable and protect customer investment by addressing open and de facto standards,
UNIX03, also known as Single UNIX Specification Version 3 (SUSV3), is the latest UNIX
standard ratified by the Open Group and then by other standards organizations in 2001 and
2002. This newest standard defines C/C++ APIs needed by Enterprise Applications
workloads. Although z/OS UNIX has not pursued compliance with a new UNIX standard since

4 z/OS Version 1 Release 9 Implementation

0S/390 Release 2, new incremental functions are provided as required for applications such
as SAP® and PeopleSoft®. The functions mandated by the SUSV3 standard will allow z/OS
to host customer applications and allow ISVs greater portability and flexibility.

» These utility enhancements provide function available on other UNIX platforms.

» The UNIX system services kernel effort is in support of the Language Environment
initiative.
» Completion of the pthread functions will benefit applications porting to z/OS.

» Changes in the Language Environment run-time library allow applications to target SUSv3
and XSI environments, and support SUSv3 and XSI behaviors during run-time where
differences exist.

Z/OS UNIX file system

Enhancements are also provided for the z/OS UNIX file system to make the following
reliability, availability, and serviceability improvements.

» Record UNIX file and directory deletion with a new subtype of the SMF type 92 records.

» In ashared file system configuration, provide more consistent (and predictable) file system
shutdown/recovery behavior based on the file system AUTOMOVE setting. In prior
releases, the AUTOMOVE specification is not honored if the file system is mounted in a
mode in which the physical file system (PFS) provides “sysplex-aware” capability.

» The F BPXOINIT,FILESYS=FIX command adds support to allow the FIX option to detect
and correct CDS serialization state information when MEMBER GONE (failed system
recovery) processing is in progress. Do not attempt to perform file system-specific
recovery.

» The F BPXOINIT, RECOVER=LATCHES command now takes multi-address space
multi-system dumps for file system problems. Logic is added in file system mainline paths
to detect when PFS operations are outstanding, and provide multi-address space and the
multi-system dump utility that handles RECOVER=LATCHES to capture file system SVC
dumps. In doing this, it reduces use of the mount latch and enhances
RECOVER=LATCHES to terminate system tasks in some circumstances.

» The USS file system provides for /0O completion notifications via standard message
queues. This gives an unauthorized application complete control over what thread in a
process receives notification of Asyncio completions.

» Enhancements to some z/OS UNIX commands

Enhancements to some z/OS UNIX commands are intended to help enable the porting of
UNIX applications and shell scripts to the z/OS platform and the development of portable
applications. The enhancements include changes to the following commands:

awk, bc, ed, file, mailx, od, sed, tr, uuencode, and uudecode

SMF record 92

Within the UNIX System Services file system, SMF record 92 is enhanced for
record-to-record file deletes to simplify system administration tasks. This is in response to
multiple customer requests for this support. The SMF component of the BCP element that
collects data for accounting is enhanced to process SMF job and job-step accounting records
by identifying processes by specific identifiers. The SMF file system records currently
describe numerous file system events (such as file open, file memory map, file system mount,
change of ownership). Therefore, a subtype 14 record is being added to the SMF 92 records
for reporting file and directory deletion.

Chapter 1. z/OS Version 1 Release 9 5

USS kernel

USS Kernel provides support for pthread_cancel. It allows pthread_cancel() to terminate
non-USS lineage threads or suspended threads with FRRs.

zFS file systems

ZFS shared file system performance is improved by its becoming sysplex-aware for
read-write file systems. zFS and HFS are already sysplex-aware for file systems that are
mounted read-only. Because zFS is sysplex-aware, USS now sends file requests directly to
the zFS physical file system (PFS) without forwarding them to the USS file system owner.
zFS uses XCF communications to forward requests to the owning zFS PFS when necessary.
In addition, end- of-memory (EOM) recovery support for the zFS sysplex code enables zFS to
recover from end-of-memory conditions that occur while executing the new zFS code added
for zFS sysplex file.

zFS support has been implemented to handle NFS V4 share reservations for when zFS runs
in sysplex-aware mode using its token management mechanism. This removes restrictions
for the z/OS NFS V4 server when running zFS file systems in a shared file system
environment. It also improves performance for the z/OS NFS V4 server when using zFS file
systems in a shared file system environment.

1.5 z/OS Workload Manager

6

The z/OS Workload Manager (WLM) is enhanced with improved performance routing, priority
settings, and cancel functionality, further improving on the mainframe's leadership position in
workload management capabilities. With z/OS WLM, you can define business and
performance goals customized for your applications. The z/OS system decides how much
resource, such as CPU and storage, should be given to applications that serve the workload
to meet the goal.

WLM constantly monitors the system and adapts resource applications to meet application
goals. It takes into account not only server resources but also network traffic, router
bottlenecks, application health, and transaction prioritization as well, thus providing
autonomic, policy-based z/OS performance management that can be tuned to meet the
needs of your applications.

WLM is changed to increase the priority of canceled address spaces. This is expected to help
them be terminated more quickly. This can eliminate the need to reset the priority of a
canceled job, task, or user to speed address space termination when resolving resource
contention issues.

WLM adds a new parameter on the IWMSLIM service, which allows the server region to tell
WLM that a number of minimum server regions should be started in parallel. The new
parameter can allow applications to control whether WLM should start server regions in
parallel or sequentially.

WLM is enhanced for discretionary work. During periods of 100% CPU utilization, it is
possible that discretionary workloads (workloads defined by your installation to have lower
dispatch priority) will not be dispatched for execution. These discretionary workloads may
obtain and hold serially reusable resources required by other workloads, which may block the
progress of higher dispatch priority workloads.

In z/OS V1R9, it is possible to specify that any address spaces and enclaves that have work
that is ready to run but do not get CPU service within a certain time interval can be

z/OS Version 1 Release 9 Implementation

temporarily promoted to a higher dispatch priority. RMF supports this function by reporting
relevant measurements.

The EWLM application response measurement (ARM) V4.1 support implements extensions
to provide z/OS support for monitoring applications based on an asynchronous messaging
model. ARM V4.1 is currently a draft standard and is expected to be published by the Open
Group. Additional extensions for asynchronous messaging are provided for applications
running under CICS using the WLM delay monitoring services.

The WLM routing services are enhanced to recognize the zAAP and the zIIP capacity of a
System z server.

1.6 Console message flood

In z/OS V1R9, the consoles component is integrating the message flood automation function
that was made available via APAR OA17514 for z/OS V1R6 and higher. Message flood
automation provides a specialized, policy-driven automation for dealing with high volumes of
messages occurring at very high message rates. The policy can be set in a PARMLIB
member and examined and modified through operator commands.

1.7 System Logger

System Logger with z/OS V1R9 improves availability by providing support for log stream data
set asynchronous recalls that allows for multiple, concurrent, migrated data set recall
requests to be processed by System Logger.

1.8 SMF use of System Logger

z/OS V1R9 enhances SMF data management by allowing SMF to be configured to use
System Logger to write data to a log stream. This is expected to allow the system to support
far higher data write rates than can be supported when using SYS1.MAN data sets when the
Coupling Facility (CF) is used. The use of DASDONLY log streams is also supported.

Also, this design allows a specification that different SMF record types be written to separate
log streams, for which different retention periods can be specified. This can help improve both
scalability and SMF data management.

1.9 Coupling Facility enhancements

z/OS V1R9 includes support for a number of usability enhancements to the CF structure, as
described here.

REALLOCATE process

The SETXCF START, REALLOCATE system command was enhanced originally for z/OS V1R4
and higher via APAR OA08688. The REALLOCATE process itself provides a simple,
easy-to-use mechanism for dynamically optimizing the placement of CF structures among the
CFs in a Parallel Sysplex. It determines the “most preferred” CF locations for the CF structure

Chapter 1. z/OS Version 1 Release 9 7

instances based on the CFRM policy and current conditions, and serially moves the
structures to those most preferred CFs in a nondisruptive fashion.

With z/OS V1R9, REALLOCATE now includes the following enhancements:

» A structure-level CFRM policy control allows selected structures to be bypassed by
REALLOCATE processing, if necessary

» Support is included to automatically initiate duplexing for CF structures that should be
duplexed

» The capability is included to complete a pending policy change for structures without
rebuilding the structure, whenever possible

» Also included is improved processing of structures which make use of the exclusion list
(EXCLLIST) option in the CFRM policy

CF maintenance mode

z/0OS V1R9 includes support for placing Coupling Facilities into a new state known as
maintenance mode. When a CF is in maintenance mode, it is logically ineligible for CF
structure allocation purposes, as if it had been removed from the CFRM policy entirely
(although no CFRM policy updates are required to accomplish this). Subsequent rebuild or
REALLOCATE processing will also tend to remove any CF structure instances that were
already allocated in that CF at the time it was placed into maintenance mode.

In conjunction with the REALLOCATE command, the new maintenance mode support can
greatly simplify operational procedures related to taking a CF down for maintenance or
upgrade in a Parallel Sysplex. In particular, you no longer have to laboriously update or
maintain several alternate copies of the CFRM policy that omit a particular CF which is to be
removed for maintenance.

Note: RMF is planned to provide information about the CF processor resources consumed
by each Coupling Facility (CF) structure. This information is provided by both
Postprocessor and Monitor lil. These enhancements are intended to allow better CF
performance monitoring and problem determination by tracking utilization at a CF structure
level. A CF level 15 is required, which is supported on System z9 servers.

Synchronization protocols

The Coupling Facility-to-Coupling Facility (CF) synchronization protocols for CF Duplexing
have been streamlined, thus resulting in improved performance (service time) and throughput
for duplexed requests that can take advantage of this enhancement. This enhancement can
help reduce the overhead of CF Duplexing, and may help make duplexing a more viable
alternative for use in providing high availability for CF structure data. A new CF level is
required, which is planned to be supported on System z9 servers.

1.10 GRS 64-bit exploitation

8

GRS is enhanced to further exploit 64-bit addressing. This can dramatically increase the
number of concurrent enqueues that can be supported on a z/OS system. This new function
extends the GRS existing 64-bit support for Star-mode control blocks. With z/OS V1R9, the
majority of GRS enqueue-related control blocks reside in storage above the 2 GB bar. This
support is supported for all three GRS modes, None, Ring, and Star. This should significantly
reduce CMSEQDAQ lock hold time and provide much better performance for ISGENQ and
ENQ/DEQ/RESERVE LINKAGE=SYSTEM users.

z/OS Version 1 Release 9 Implementation

In addition, GRS is enhanced to insure that future demands for more concurrent ENQs are
successfully satisfied.

1.11 Sysplex failure management

Sysplex failure management (SFM) allows you to define a sysplex-wide policy that specifies
the actions that MVS is to take when certain failures occur in the sysplex. A number of
situations might occur during the operation of a sysplex when one or more systems need to
be removed so that the remaining sysplex members can continue to do work. The goal of
SFM is to allow these reconfiguration decisions to be made and carried out with little or no
operator involvement.

The sysplex failure management function in z/OS V1R9 is enhanced to support a new policy
specification for how long a system should be allowed to remain in the sysplex when it
appears unresponsive because it is not updating its system status on the sysplex couple data
set, yet is still sending XCF signals to other systems in the sysplex. A system that is in this
state is definitely not completely inoperable (since it is sending XCF signals), and yet it may
not be fully functional either, so it may be causing sysplex sympathy sickness problems for
other active systems in the sysplex.

The new SFM policy externally provides a way for installations to limit their exposure to
problems caused by such systems, by automatically removing them from the sysplex after a
specified period of time.

This new SFM function supports a new policy specification to indicate that, after a specified
period of time, the system may automatically terminate XCF members which have been
identified as stalled and who also appear to be causing sympathy sickness problems. If
allowed to persist, these stalled members can lead to sysplex-wide hangs or other problems,
not only within their own XCF group, but also for any other system or application functions
that depend on the impacted function. Automatically terminating these members is intended
to provide improved application availability within the sysplex.

1.12 Program management binder

The binder has been enhanced as follows:

» A C front-end to binder APlIs is designed to simplify using both the regular binder APIs and
fastdata APIs for C and C++ programmers.

» Definition Side-Files in z/OS UNIX archives are intended to allow programmers to
package their Dynamic Link Library (DLL) side-decks in UNIX archive files produced by
the ar utility.

» The fastdata API rewrite is designed to provide improved reliability for fastdata APIs.

» Improvements to AMBLIST XREF are intended to provide improved execution time and
capability when processing cross-reference information of large programs.

» RECFM=U verification is designed to provide the same protection against writing
programs into non-program PDS libraries as is provided for PDSE libraries.

» A new binder INFO option will list all installed PTFs in the binder SYSPRINT output.

» The binder is modified to recognize and process definition side-decks (which contain
IMPORT control statements), which are members of z/OS UNIX archive files.

Chapter 1. z/OS Version 1 Release 9 9

» The binder is modified to optionally provide a module map as part of a program object or
load module, for the use by dbx, potentially other debuggers, or module map type utilities.
Equivalent information can be obtained via multiple binder API calls, but keeping the
information in the loaded part of the module, and in one place, is faster and is usable when
the module itself is not available (as in IPCS dumps). It is an optional feature, because it
increases the virtual storage size of the loaded module (this is expected to be particularly
true of C++ programs).

» The binder is modified to enhance the CHANGE and REPLACE control statements with a
new IMMED option which will cause them to operate against any content previously
included in the module being bound. This allows more freedom in the positioning of those
control statements and enables them to be more easily used to alter the contents of a
multi-object input file. This was previously available only when using the API.

1.13 XCF Couple Data Set

z/0OS V1R9 includes support for improved parallelism in XCF Couple Data Set access
channel programs for all supported types of Couple Data Sets. By more granularly expressing
whether or not a particular channel program intends to update any data, channel programs
that could not have run in parallel previously will now be able to do so, resulting in improved
I/O performance and throughput. This enhancement was originally made available for z/OS
V1R4 and higher with APAR OA15409.

In z/OS V1R9, enhancements for the D XCF, COUPLE, TYPE=BPXMCDS command include the
current defined values for MAXSYSTEMS, MOUNTS and AMTRULES for the
TYPE(BPXMCDS) couple data set. Because these values can be updated dynamically, it will
be easier to keep track of changes that could impact the shared file system configuration.

1.14 Language Environment

10

Language Environment enhancements help improve the performance of applications using
heap pools in the following manner:

» Allow the heap pool control data and individual cells to be aligned, to better optimize use
of the processor cache

» Eliminate stack transitions in an XPLINK environment
» Design heap pools cells to always align cells on a 16-byte boundary under AMODE 64

Language Environment now also eliminates stack transitions during long division and long
multiplication in an XPLINK environment.

The Language Environment CEEBLDTX utility is now designed to run in a UNIX shell
command. This utility is made available as a shell command.

The CICS CLER function is enhanced for displaying and modifying Language Environment
run-time options.

Implementing the functionality of CEE5DLY on z/OS now enables LE-conforming programs to
suspend execution and then allow the code using ILBOWAT to be replaced without requiring
in-house assembler code.

Language Environment now provides AMODE 64 equivalents of the 31-bit callable service,
CEETBCK, which is a callable service that assists in tracing the call chain backwards, and of

z/OS Version 1 Release 9 Implementation

CEEGOTO, which is a callable service that provides the capability to perform a “goto” to a
known location within the program stack.

In addition, Language Environment also provides support for XPLINK applications running as
IMS™ transactions. Support is added for IMS regions running with or without Language
Environment Library Routine Retention (LRR) active.

In z/OS V1R9, CELQPIPI (the Language Environment pre-initialization facility for AMODEG4)
provides the service exit points currently available in 31-bit CEEPIPI (minimally, the program
LOAD/UNLOAD service), in AMODEG®G4.

New locales available from CLDR Repository are added to make z/OS more usable with as
many languages as possible. Additionally, ASCII versions for a set of existing euro and
pre-euro locales will be added. Locales for Turkey are updated to make use of the new
Turkish Lira currency.

1.15 DFSMS enhancements

DFSMS provided support for DSNTYPE=LARGE data sets which can contain more than
65,535 tracks beginning with z/OS V1R7. In z/OS V1R9, the following TSO/E functions are
are updated in order to utilize this support:

» LISTDSI, used in REXX execs and CLISTs
» PRINTDS command
» TRANSMIT and RECEIVE commands

The serialization used by DFSMSrmm for its CDS is changed to use a new resource name
that includes the CDS ID. This avoids conflicts when multiple RMMplexes run in the same
sysplex.

DFSMSdfp

DFSMSdfp™ OAM (Object Access Method) introduces two new sublevels into the tape level
of the OAM storage hierarchy. This effectively expands OAM's storage hierarchy into four
levels: disk, optical, tape sublevel 1 (TSL1), and tape sublevel 2 (TSL2). In addition to
enabling the ability to write and read object data directly to and from a given sublevel, this
support provides the ability to transition object data within the tape family (for example: from
VTS to native tape) during an OSMC storage group cycle. Prior to this support, data
movement within the tape family could only be accomplished manually via the MOVEVOL or
RECYCLE commands.

z/OS V1R9 has enhancements to Access Method Services which allow data set name
masking on delete requests.

DFSMShsm

The amount of storage that DFSMShsm uses below 16 MB is now reduced in an effort to
address storage-related abends (878, 80A, and so on). Additional fields are added to the
DFSMShsm function statistics records (FSRs) to improve the data available for statistical
analysis of the DFSMShsm environment.

DFSMSrmm

DFSMSrmm interaction with system managed volumes in an IBM system managed library is
improved through multiple changes which are expected, especially in larger VTS installations,
to result in shorter elapsed time and more flexibility during inventory management.

Chapter 1. z/OS Version 1 Release 9 11

12

DFSMSrmm is enhanced so that you can now control long-running local subsystem requests.
These requests can be ended, held, and released. This enhancement will enable better
management when required either by system automation or by the operator because of
operational priorities.

The DFSMSrmm CIM provider code is updated to support OpenPegasus CIM Server with
2.5.1 and the subclasses supported are planned to be extended to cover
allDFSMSrmm-managed resources.

System symbols are now supported for DFSMSrmm parmlib members. This enhancement is
designed to allow sharing of DFSMSrmm parmlib members more easily. Additionally,
indirection can be used to point to another parmlib member that might contain system-specific
options.

DFSMSrmm SEARCH subcommands with CLIST are enhanced so that it is possible to
optionally append to an existing CLIST data set. Almost any format of CLIST data set is
supported, and the subcommands support a way to break the results into chunks for easier
results management.

DFSMSrmm is enhanced to support almost any unqualified data set name up to 44
characters. The product version can be alphanumeric and volumes and data sets can be
declassified.

Network File System V4 client

z/OS V1R9 now supports the Network File System (NFS) V4 industry-standard protocol. This
maintains z/OS NFS client competitiveness with the clients provided by other platforms by
allowing the exploitation of the NFS v4 protocol.

The NFS V4 client support in previous versions accessed shared file systems by mounting
them from an NFS server machine. Mount was used to obtain the filehandle. Subsequent
locking was done by the network lock manager (NLM).

With this release, NFS Version 4 integrates these disparate elements into a single protocol
that uses a well-defined port that enables NFS to more easily transit firewalls to enable
support for the internet. The single, integrated protocol eliminates the need for the ancillary
mount and NLM protocols, and introduces the concept of mandatory locking in addition to
advisory locking and a host of new verbs (like OPEN and CLOSE) which can be nested within
the RPC COMPOUND to reduce network round-trip latency.

NFS RAS and constraint relief improvements in V1R9 include the following enhancements:

» Establish zZOS NFS EAL4 compliance by creating low level design documents for all
security-related code paths to aid auditors in evaluating z/OS NFS compliance with the
EAL4 standard, and implement data labeling support in the z/OS NFS server (NFSS).

» Implement 24-bit addressing relief in the z/OS NFS server, eliminating 24-bit addressing
restrictions wherever possible. This implementation is available for zZOS NFS V1R7 and
V1R8.

» NFS serviceability improvements include updating the z/OS NFS server Ctrace. This
update of the Ctrace function is done to exploit the enhanced capabilities developed as
part of the z/OS NFS Client Ctrace deployment in z/OS V1R8 NFS.

The separate GFSCMAIN NFS client load module is eliminated by merging it with the
GFSCINIT load module.

An AddDS operator command implements a new set of F NFS, xxxxx operator commands to
support the dynamic replacement of the NFS server mounthandle database (MHDB) and
locking database (LDB) data sets without requiring an NFS server restart.

z/OS Version 1 Release 9 Implementation

» The z/OS NFS V4 RPCSEC_GSS security function is enhanced to support multi TCP/IP
stack system configurations, eliminating the single stack restriction.

1.16 z/0OS Communications Server

Additional enhancements to z/OS make the operating system more powerful in applying
centralized policy-based rules for defining and controlling how your applications behave.
They also include the planned ability to provide centralized policy services and policy-based
routing (along with the ability to apply security, intrusion detection/defense, qualities of
service, as well as other features). z/OS can help customize the network to suit the needs of
applications, and it does so in a simplified, centralized, manageable, and auditable manner
that is anticipated to be transparent to the application.

With z/OS V1R9, CSA/ECSA usage has been reduced for VTAM® by taking the following
actions:

» Reducing the size of the ACDEB used by Telnet
» Moving the ISTRIVL that is provided to the ACB Monitor exit to VTAM private
» Eliminating the usage of the FMCB/FMCB extension for most SSCP-LU sessions

Communications Server for z/OS V1R is providing new capabilities for z/OS middleware
enablement by enhancing the security and control of network communications. Security is
changed by providing expanded application-transparent security for TN3270 and FTP.
Control enhancements are made in the areas of network traffic and sysplex operations.

Policy-based routing

z/OS Communications Server is enhanced to include a new function: policy-based routing.
Policy-based routing enables the TCP/IP stack to make routing decisions that take into
account criteria other than simply the destination IP address/subnet (as is done with both
static and dynamic routing). The additional criteria can include the job name, source port,
destination port, protocol type (TCP or UDP), source IP address, NetAccess security zone,
and security label.

With policy-based routing, you can define policy to select the network that will be used for
outbound traffic based on the application originating the traffic. The IBM Configuration
Assistant for zZOS Communications Server is enhanced to support policy-based routing.

With policy-based routing, you can define policy to select the network that will be used for
outbound traffic based on the application originating the traffic. To provide dynamic routing
characteristics (for example, best route calculation, route availability awareness, and so on)
to policy-based routing, the policy-based routing is built on top of a dynamic routing
foundation. The policy-based routing function interfaces with OMPROUTE to obtain dynamic
routes to populate the policy-based route tables.

Note: Policy-based routing applies only to IPv4 TCP and UDP traffic that originates at the
TCP/IP stack. Traffic using protocols other than TCP and UDP, all traffic being forwarded by
the TCP/IP stack, and all IPv6 traffic, will always be routed using the main route table, even
when policy-based routing is in use.

Policy Agent
Policy Agent is enhanced to take on additional roles that support the goal of centralized policy
management. Policy Agent can be configured to act as a policy server. In this role, it not only

Chapter 1. z/OS Version 1 Release 9 13

14

reads and installs local policies for a set of TCP/IP stacks, but also loads policies on demand
for policy clients. This allows all policies for a set of systems to be administered on a single
system.

Policy Agent can be configured to act as a policy client. In this role it connects to the policy
server and retrieves remote policies that are then installed in the local TCP/IP stacks. The
choice of local or remote policies may be made for each policy type (AT-TLS, IDS, IPSec,
QoS) and for each TCP/IP stack.

Note: z/OS V1R9 Communications Server no longer supports the LDAP protocol
Version 2 for Policy Agent communication with an LDAP server.

For QoS and IDS LDAP policies in Policy Agent, use an LDAP protocol Version 3 server.
LDAP protocol Version 3 has improvements in internationalization, authentication, referral,
and deployment.

IBM Configuration Assistant for z70S Communications Server

The IBM Configuration Assistant for zZOS Communications Server is extended to include
support for policy-based routing (PBR) and Network Security Services (NSS) configuration.
This support allows an administrator to configure IPSec, Application Transparent TLS, QoS,
IDS, and PBR policy using a consistent user interface.

Other new function in the IBM Configuration Assistant for zZ0S Communications Server
allows the configuration information for all of these technologies to be managed collectively,
providing health check operations designed to insure consistent configuration across the
supported technologies. The configuration information can be saved and accessed on a z/OS
system or on a Windows®-based file system. The Configuration Assistant for z/OS
Communications Server is a separate download.

Multicast support

z/OS Communications Server has enhanced its multicast support to allow an application to
filter the datagrams it receives based on the source address. z/ OS Communications Server
also supports the following:

» Support new APlIs to allow applications to specify source filter lists. This allows the local
system to filter on source addresses even if the system is not attached to a multicast
router, which supports source address filtering.

» Host support for IGMPv3 and MLDv2. The system responds to queries from multicast
routers and reports the source filter state of each interface.

Multicast datagrams destined for the specified multicast address coming over the specified
interface are given to the application. However, all multicast datagrams which meet that
criteria, regardless of the source address, are delivered to the application. This architecture is
now referred to as any-source multicast (ASM).

It is possible for multiple multicast servers to be sending out datagrams for the same multicast
address. An application can receive multicast datagrams from servers which it was not
intending to receive. To avoid such collisions, an extension to the original ASM model was
developed called source-filtered multicast (SFM). SFM specifies a set of API extensions
which allow an application to filter the datagrams it receives based on the source address.

To complement these new source filtering APls, new versions of the Internet Group
Management Protocol for IPv4 (IGMPv3) and the multicast listening discovery protocol for
IPv6 (MLDv2) are supported. With these new versions of the protocols, multicast routers are
informed of the source IP filtering of any applications on a system. This allows the multicast

z/OS Version 1 Release 9 Implementation

router to send only multicast datagrams that the system has applications interested in
receiving. Even if a system is not attached to a multicast router which supports IGMPv3 or
MLDv2, an application can still filter by source address. However, the local system will have
to discard any unwanted multicast datagrams.

Note: z/OS Communications Server does not support any multicast routing protocols and
therefore does not support any multicast routing functions of IGMPv3 or MLDv2.

FTP and Unicode pages

FTP now supports for more Unicode code pages for file storage and file transfer. For file
transfer, FTP is planned to add support for code pages UTF-16, UTF-16LE, and UTF-16BE.
For file storage, FTP supports code page UTF-16. FTP always stores Unicode files in big
endian format.

TN3270E Telnet server

Prior to z/OS V1R6, the TN3270E Telnet server runs as a subtask of the TCPIP address
space. In z/0OS V1R6 through z/OS V1R8, users can run the TN3270E Telnet server as a
separately started address space from TCPIP, or continue to run the TN3270E Telnet server
as a subtask of the TCPIP address space. In z/OS V1R9, the TN3270E Telnet server is
supported only when run in its own address space.

Enterprise Extender

Enterprise Extender (EE) autonomics provides two potential performance enhancements in
z/OS V1R9:

» It enables VTAM to learn of changing MTU sizes associated with an Enterprise Extender
connection. With this knowledge, VTAM can avoid packet fragmentation when the MTU
size is decreased. Also, in some instances, this function allows VTAM to pass larger
packets to TCP/IP to better utilize the current interface associated with an EE connection.

» It provides more optimal routes for existing Enterprise Extender connections when new
routes are learned by TCP/IP.

The Enterprise Extender (EE) logical data link control (LDLC) inactivity timer function is
controlled by three LDLC timer operands coded on PORT definition statement. These LDLC
timer operands (LIVTIME, SRQTIME and SRQRETRY settings) apply to all EE connections.
In z/OS V1R9 Communications Server, the LDLC inactivity timer function has been enhanced
to support unique inactivity timer settings for each local IP address (static VIPA). As a result,
the LDLC timer operands may now be specified on either the PORT or on individual GROUP
definition statements.

Summary information about Enterprise Extender connections is reported on the network
management interface (NMI). The EE summary global record contains LDLC timer
information as specified or defaulted on the PORTdefinition statement. In z/OS V1R9
Communications Server, the EE summary IP address record has been enhanced to contain
LDLC timer information specified on the GROUP definition statement.

High performance routing
The high performance routing (HPR) function is enhanced in zZOS Communications Server
V1R9 in three ways, as follows:

1. Various inefficiencies within the HPR path switch logic are enhanced to reduce
unnecessary processing and optimize code paths.

2. Redundant HPR path switch messages are reduced. The HPR path switch message
reduction function provides performance and diagnostic improvements for large

Chapter 1. z/OS Version 1 Release 9 15

installations which have hundreds or thousands of RTP endpoints on z/OS
Communications Server. Performance gains are achieved by saving CPU cycles through
the reduction of the number of HPR operator console messages that occur for large scale
path switch events. Diagnostic procedures are improved by providing an organized,
easy-to-read summary of the path switch events which took place, allowing you to more
easily determine the scope and size of an outage.

This function is not associated with the message-flooding prevention table. For predictable
results, the IST14941 message should not be coded in the message-flooding prevention
table when the HPR path switch message reduction function is enabled.

3. Improvements to HPR activation and deactivation messages are provided. HPR activation
and deactivation messages have been enhanced, by providing you additional information
which should be useful when diagnosing RTP problems.

When an RTP pipe is activating, you will now receive a message group identifying the
RTP PU name, whether this is the active or passive end of the pipe, the partner CPNAME,
priority, associated APPNCOS and the APPN route the pipe is traversing. When an RTP
pipe is deactivating, you will now receive a message group identifying the RTP PU name,
whether this is the active or passive end of the pipe, and the partner CPNAME, along with
the priority and associated APPNCOS.

TSO VTAM support

Visibility to the CGCSGID for a TSO session is provided. Users may want to use this
information as criteria to permit or deny access to an application through use of a logon exit.
TSO/VTAM supports a GTTERM macro that the user can use to acquire information about a
terminal. A new keyword, CODEPG, has been added to the GTTERM processing to allow the
user to retrieve the CGCSGID in use for a TSO session. The SNA TSOUSER display has
been enhanced to report the CGCSGID in use for a TSO user.

Generic resource resolution preferences

Generic resource resolution preferences are used to control the distribution of sessions to
generic resources. These preferences previously could only be set globally in the generic
resource exit. This function allows you to use VTAM definitions to customize generic resource
resolution preferences for individual generic resources. In addition, a new generic resource
resolution preference is also being introduced that allows a generic resource resolution
during third-party initiated (CLSDST-PASS) sessions to favor a generic resource on the origin
host of a session.

MPC groups

In z/OS V1R9 CS, activations of MPC groups that fail to meet the one read/one write
requirement are put on hold, provided any needed read and/or write subchannel is an offline
CTC or one that has no valid path available to the connecting host. The hold continues until all
the needed subchannels come online or the group is deactivated.

New messages signal when the hold begins and when activation resumes. The display of an
MPC group indicates when its activation is on hold.

Other existing output in that display identifies the offline subchannels, so appropriate action
can be taken to bring enough of them online to cause activation of the MPC group to
complete. FICON® CTC recovery is enabled by default, with a new start option (MPCACT)
that can be used to disable the function whenever manual retry is desired.

16 z/OS Version 1 Release 9 Implementation

1.17 z/OS security

z/OS V1R9 has security improvements on the z/OS platform in the following areas:
» PKI Services
» RACF for added infrastructure for password phrase support and AES cryptography

» SAF to help improve the creation, authentication, renewal, and management of digital
certificates

» Zz/OS System SSL
» Application Transparent-TLS are opened up to more application exploiters
» z/OS Communications Server for centralized security and policy-based management.

ICSF and PKCS #11 standard

The z/OS Integrated Cryptographic Service Facility (ICSF) is enhanced to include the PKCS
#11 standard. ICSF is the fundamental base of z/OS mainframe encryption which enables
you to encrypt and decrypt data, generate and manage cryptographic keys, and perform
other cryptographic functions dealing with data integrity and digital signatures. With adoption
of the PKCS #11 standard, the strength of mainframe encryption and secure centralized key
management can be brought to and used by Web-based application and networking
environments more easily.

This ICSF support of PKCS #11 provides an alternative to the IBM Common Cryptographic
Architecture (CCA), and broadens the scope of cryptographic applications that can make use
of zSeries cryptography. RACF provides PKCS#11 support with the RACF RACDCERT
command to provide token management of certificate, public key, and private key objects.

Public Key Cryptography Standards (PKCS) is offered by RSA Laboratories of RSA Security
Inc. PKCS #11, also known as Cryptoki, is the cryptographic token interface standard. It
specifies an application programming interface (API) to devices, referred to as fokens. The
PKCS #11 APl is an industry-accepted standard commonly used by cryptographic
applications. PKCS #11 applications developed for other platforms can be recompiled and
run on z/OS.

RACF password phrase

In z/OS V1R9, an extension is added to the password phrase that was introduced in z/OS
V1R8. The minimum length of a password phrase has been lowered from 14 characters to 9.
Password phrases from 9 to 13 characters in length can be used in conjunction with a new
password phrase exit (ICHPWX11) which you can write to determine whether to accept them.
A sample exit is provided, which uses the new System REXX facility to call a REXX exec in
which you can code password phrase quality rules. A sample REXX exec is also provided.
Also, password change logging and enveloping functions are extended to include RACF
password phrases.

AES cryptographic algorithm

The z/OS Network Authentication Service is enhanced to support the AES cryptographic
algorithm. This support enhances interoperability with other Kerberos implementations by
extending the z/OS cipher suite. Because RACF can act as the registry for the z/OS Network
Authentication Service, RACF provides the management interfaces for cryptographic keys.
RACF commands are planned to be extended to allow the specification of AES as a
supported cipher.

Chapter 1. z/OS Version 1 Release 9 17

LDAP directory server

z/0OS V1R9 enhances the LDAP directory server, known as IBM Tivoli® Directory Server for
z/0OS. This new server enables an installation to collapse user registries typically used by
distributed applications on z/OS. This can help to simplify enterprise management and
disaster recovery.

The existing Integrated Security Services LDAP Server continues to be available in z/OS
V1R8 in addition to the new IBM Tivoli Directory Server for z/OS. You must apply the
enabling PTF for APAR OA19286, when available, and all of its prerequisite APARs to use
this function.

z/OS Communications Server

z/OS Communications Server provides a new Network Security Services function to
centralize certificate services, monitoring and management for IPSec security across z/OS
systems within and across sysplexes. Network Security Services allows IPSec certificates to
be kept in a single location, rather than having them reside on each z/OS node. The z/OS
Communications Server IKE daemon is planned to be enhanced so that it can be configured
to act as a Network Security client. Configuration is on a per-stack basis, such that each
NSS-enabled stack will appear to the Network Security Server as an independent client. For
TCP/IP stacks that are not configured to use Network Security Services, the IKE daemon will
continue to manage certificates out of a local key ring.

The FTP server, FTP client, and TN3270 server now use Application Transparent TLS
(AT-TLS) to manage TLS security. AT-TLS supports several security functions that the FTP
server, FTP client, and TN3270 servers do not. In addition, AT-TLS provides improvements
over TLS implemented by the FTP server and client which are intended to improve
performance. Security defined in the TN3270 server profile and FTP.DATA continues to be
available.

1.18 Spool Display

Spool Display (SDSF) is being enhanced to add the capability to provide access to SDSF
functions through REXX variables. The variables will be loaded with data from the SDSF
panels, enabling scripts to access the data programmatically. The data can also be changed;
this provides a capability similar to action characters and overtyping.

1.19 System REXX

System REXX (SYSREXX) is a component that makes possible the execution of REXX
routines in an authorized environment. SYSREXX execs can be used to automate complex
operator commands and other system functions. SYSREXX execs can be invoked by a
program interface, and by operator command. This new component is made available for
z/OS V1R8 via a Web deliverable.

1.20 IBM Health Checker for z/0OS

IBM Health Checker for z/OS now supports checks that are written in REXX using the
SYSREXX function. Also, health checks are planned for z/OS UNIX, TSO/E, the virtual
storage manager component of the z/OS BCP, and z/OS Communications Server.

z/OS Version 1 Release 9 Implementation

1.21 Alternate Library for REXX

New in z/OS V1R9 is the Alternate Library for REXX that enables users who do not have the
REXX on zSeries library installed to run compiled REXX programs. It contains a language
processor that transforms the compiled programs and runs them with the REXX interpreter
which is shipped as part of the z/OS operating system.

With this implementation, software developers are no longer required to distribute the
Alternate Library for REXX with their compiled REXX programs. Installations that have the
REXX on zSeries Library installed may see the performance benefits of running compiled
REXX. Installations that use the Alternate Library for REXX may still run the programs as
interpreted.

Benefits with Alternate Library for REXX
By including the Alternate Library for REXX with z/OS, software developers gain the benefits
of shipping compiled REXX programs without the source code, as follows:

» Maintenance of the program is simplified, because the code cannot be modified
inadvertently.

» Compiled programs can be shipped in load module format, thus simplifying packaging and
installation.

» The Alternate Library for REXX does not need to be shipped and installed with the
software program.

» Maintenance of the Alternate Library for REXX is handled by the z/OS system
administrator.

1.22 RRS

In z/OS V1R9, RRS now has a batich interface that has commands and parameters to gather
the same information that the online interface provides. This implementation allows RRS
information to be collected when needed, and then to use this information for problem
determination if any failure should occur later.

1.23 ISPF

In z/OS R9, ISPF provides the ability to edit ASCII data sets from the ISPF editor directly
without converting them to EBCDIC first. Within the ISPF editor, the user may issue the
SOURCE ASCII command to begin editing in ASCII mode. The RESET SOURCE command will
revert to EBCDIC (normal) editing mode. Additionally, a LF command can be used to
“massage” the data, splitting ASCII lines correctly in an FB dataset, or example.

The ISPF editor will also be enhanced to allow files in zFS to be edited, rather than having to
use oedit and obrowse. Lastly, a change was made to the ISPF command tables to allow
lower case characters to be stored.

Additional ISPF enhancements are listed here:

» ISPF is enhanced to share profile variables across multiple systems in a Parallel Sysplex.
This can eliminate the need for multiple profile data sets in a sysplex.

Chapter 1. z/OS Version 1 Release 9 19

v

It provides support to use system symbols within data set names when entered in ISPF
panels.

» It offers improved ISPT Edit Undo processing even after the ISPF Edit save command is
issued and the data being edited has been saved. Edit undo buffers will be retained by
ISPF. This is intended to allow you to remove changes from edited data even after a save
command.

» It provides support for editing and browsing z/OS UNIX and ASCI files.
» It offers enhanced DSLIST command table support, and REXX variables processing.

1.24 Common Information Model

The z/OS V1R9 Common Information Model (CIM) has updated the cross-platform support to
a new version of the CIM Schema and the OpenPegasus CIM Server. Along with these
updates, the CIM Server is enhanced to register with z/OS Automatic Restart Manager (ARM)
and to allow clients to be authenticated through SSL certificates. CIM provides an
industry-standard way to externalize information about computing systems so that it can be
processed by common tools.

The Common Information Model is a standard data model for describing and accessing
systems management data in heterogeneous environments. It allows system administrators
or vendors to write applications (CIM monitoring clients) that measure system resources in a
network with different operating systems and hardware. With z/OS CIM, it is possible to use
the DMTF CIM open standard for systems management which is also implemented on other
major server platforms (Linux on zSeries, Linux on xSeries®, i5/0S®, and AIX®).

z/0OS CIM implements the CIM server which is based on the OpenPegasus Open Source
project. A CIM monitoring client invokes the CIM server that in turn collects z/OS metrics from
the system and returns then to the calling client. To obtain the z/OS metrics, the CIM server
invokes the z/OS RMF monitoring provider which retrieves the metrics associated with z/OS
system resources. The z/OS RMF monitoring provider uses RMF Monitor Il performance
data.

The metrics obtained by this new APl are common across server platforms, so you can use it
to create end-to-end monitoring applications.

1.25 Metal C runtime library

20

The XL C Metal compiler option, introduced in z/OS V1R9, generates code that does not
have access to the Language Environment support at run time. Instead, the Metal option
provides C-language extensions that allow you to specify assembly statements that call
system services directly. Using these language extensions, you can provide almost any
assembly macro, and your own function prologs and epilogs, to be embedded in the
generated HLASM source file. When you understand how the Metal-generated code uses
MVS linkage conventions to interact with HLASM code, you can use this capability to write
freestanding programs.

Prior to z/OS V1R9, all z/OS XL C compiler-generated code required Language Environment.
In addition to depending on the C runtime library functions that are available only with
Language Environment, the generated code depended on the establishment of an overall
execution context, including the heap storage and dynamic storage areas. These

z/OS Version 1 Release 9 Implementation

dependencies prohibit you from using the XL C compiler to generate code that runs in an
environment where Language Environment did not exist.

1.26 XML System Services

With z/OS V1R9, the XML System Services parser is a follow-on release to the XML System
Services component that shipped in z/OS V1R8 and implements performance optimizations,
C/C++ interfaces, and functional enhancements allowing the caller to change parser features
with a control request. This release also implements support for zZAAPs that enhances the
cost and performance usage for XML parsing on z/OS.

XML System Services is now very useful for IBM and external exploiters such as ISV and
customers because assembler and PL/X skills are becoming increasingly rare. There is
widespread availability of C and C++ language development and performance tools that such
applications can take advantage of, and many programs are already written in C/C++ and will
no longer need to switch into PL/X or assembler to invoke XML system services or make
inter-language calls without the benefit of C/C++ header files.

1.27 z/OS dbx enhancements

z/OS V1R9 provides z/OS dbx support for IBM WebSphere® Developer Debugger for
System z V7.0 (5724-N06) and WebSphere Developer for System z V7.0 (5724-L44). The
z/OS dbx enhancements are planned to provide an Eclipse-based graphical user interface
(GUI) for interactive, source-level debugging capabilities for compiled System z applications.
Running under z/OS UNIX System Services, dbx is designed to enable developers to
examine, monitor, and control the running of z/OS UNIX System Services application
programs written in C, C++, and High Level Assembler on a z/OS system.

Note: The z/OS dbx support for WebSphere Developer Debugger for System z V7.0 and
WebSphere Developer for System z V7.0 is planned to be supported on z/OS V1R8 in the
second quarter of 2007.

IBM WebSphere Developer for System z V7.0 (5724-L44) includes new support for XL C/C++
mainframe development. The support is available for z/OS V1R8 XL C/C++, whose function
can be ordered in the z/OS V1R8 C/C++ Without Debug feature. Core features include the
following:

» XL C/C++ support for development, editing, content assist, enhanced code navigation,
and remote syntax checking

» XL C/C++ builds on MVS or z/OS UNIX System Services
» Integrated client debugging via Debug Tool

» Debugging via z/OS dbx

» Access to z/OS and z/OS UNIX file system resources

1.28 Unicode

Unicode is a universal encoding scheme allowing applications to store data regardless of
code pages and character sets such as ASCIl and EBCDIC. The Unicode services element of

Chapter 1. z/OS Version 1 Release 9 21

22

z/OS provides general purpose programming interfaces (APIs) which applications such as
DB2® can use to convert data to and from Unicode. The value of storing data in Unicode
derives from the ability to store data in any language using the same data server. It enables
database consolidation and better interoperability with other platforms (Microsoft® and
Java™ applications).

In z/OSV1 R9, Unicode adds function to change iconv() to call Unicode Services. Today, we
have two mechanisms for character code conversion: Language Environment's iconv() and
Unicode conversion services. iconv() does not use zArchitecture instructions for conversion.
Rather than enhance iconv() to use the new instructions, a change is made to use Unicode
conversion services. This will make use of the hardware instructions, which will eliminate the
need for Language Environment to ship conversion tables, and allow for future investments to
be made in a common code base.

TBCS or triple-byte character set is becoming very important to support languages such as
Chinese. z/OS currently does not support TBCS. TBCS support will help emerging markets to
be competitive. Unicode service upgrade allows customers to use these services at the latest
possible levels. New locale support enables customers to use the newest euro locales. The
z/OS V1R9 changes are as follows:

» Along with single, double, quadruple and mixed byte character set, zZOS now supports
triple byte character set. This support needs to be added for tables such as CCSID - 964
(EBCDIC Traditional Chinese EUC). “

» TBCS support will allow CCSID and others to be added in the “to/from CCSIDs” when
using Unicode Character Conversion Services.

z/OS Version 1 Release 9 Implementation

Installation considerations

z/OS consists of base elements and optional features. The base elements (or simply
elements) deliver essential operating system functions. When you order z/OS, you receive all
of the base elements. The optional features (or simply features) are orderable with z/OS and
provide additional operating system functions.

The program number for z/OS Version 1 Release 9 is 5694-A01. When ordering this program
number, remember to order all the optional features that you were licensed for in previous
releases of z/OS.

In many countries you may order z/OS electronically through ShopzSeries. ShopzSeries
provides customers a self-service capability for planning and ordering S/390® software (and
service) upgrades over the Web. It is the strategic worldwide self-service ordering system for
zSeries software. You can order products through ShopzSeries and have them delivered
electronically in some countries.

In most countries, ShopzSeries provides electronic ordering and electronic delivery support

for z/OS Service. You can access it directly off the ShopzSeries Web site at:
http://www.ibm.com/software/shopzseries

When you order the z/OS product on ServerPac from ShopzSeries, you can choose to have it

electronically delivered to you. This electronic ability was made generally available on
January 10, 2005.

© Copyright IBM Corp. 2007. All rights reserved. 23

http://www.ibm.com/software/shopzseries

2.1 Ordering z/0S V1R9

Ensure you order the optional priced and unpriced features that you were using in previous
releases of z/OS. It is possible to order z/OS V1R9 electronically via ShopzSeries at GA. You
can choose to have an electronic ServerPac.

2.1.1 Hardware requirements

z/OS V1R9 is planned to run on the following IBM System z servers:

z9 BC
z9 EC
2990
2890
2900
2800

vVvyvyvyYYyypy

2.1.2 Export control features

Remember your export-controlled features, if you desire. Here is the list:
» z/OS Security Level 3
» Communications Server Security Level 3

Note: There is no longer any ordering considerations for Tivoli NetView® and System
Automation since msys for Operations (a former base element) has been removed in z/OS
V1R8.

2.2 New base elements

z/OS consists of base elements and optional features. The base elements (or simply
elements) deliver essential operating system functions. The base elements that are new with
z/OS V1R9 are listed in Table 2-1. When you order z/OS, you receive all of the base
elements.

Table 2-1 New base elements with zZOS V1R9

New base elements Description

Alternate Library for REXX New nonexclusive base element
(FMID HWJ9143, JWJ9144 Japanese)

Metal C Runtime Library New base element
(FMID HSD7740)

BCP - new component for future Component of BCP base element
functionality (FMID HPV7740)

24 z/OS Version 1 Release 9 Implementation

2.2.1 Alternate Library for REXX

Alternate Library for REXX enables users to run compiled REXX programs. This base
element is new in z/OS V1R9. It is nonexclusive to z/OS because the following programs
provide equivalent function:

» The Alternate Library portion of the priced product IBM Library for REXX on zSeries V1R4
(5695-014). The Alternate Library consists of FMIDs HWJ9143 (ENU) and JWJ9144
(JPN). These are the same FMIDs that are now in the z/OS base element.

» The no-fee Web download Alternate Library for REXX on z/OS.

The fact that the Alternate Library function is now built into z/OS should make the function
easier to use.

2.2.2 Metal C Runtime Library

The Metal C Runtime Library is a set of LPA-resident C functions that can be called from a C
program created using the z/OS XL C compiler Metal option. This base element is new in
z/OS V1Ro.

As of z/OS V1R9, the BCP also includes Capacity Provisioning (FMID HPV7740) and System
REXX for z/OS Base.

2.2.3 Elements changed in z/OS V1R9

The function in FMID HBB77SR, System REXX for z/OS base, is integrated in the BCP in
z/OS V1R9. It was a Web deliverable on z/OS V1R8 (System REXX Support for z/OS V1R8
and z/OS.e V1R8).

Capacity Provisioning is new in base element BCP with FMID HPV7740.

Java CIM and SLP client is new in base element CIM with FMID JPG290B. Common
Information Model (CIM) is a standard data model for describing and accessing systems
management data in heterogeneous environments. It allows system administrators to write
applications that measure system resources in a network with different operating systems
and hardware. To enable z/OS for cross-platform management, a subset of resources and
metrics of a z/OS system are mapped into the CIM standard data model. CIM was new in
z/OS V1RY7.

In z/OS V1R9, the new FMID JPG290B was added to CIM. JPG290B contains a Java
programming interface for CIM client applications. Transport layer security (TLS) encryption
is performed for CIM by base element Communications Server. CIM does not implement any
of its own encryption algorithms.

Deleted FMIDs

The FMID for the DFSMSdfp English panels, JDZ118E, has been eliminated and the panels
have been merged into the base FMID, which is HDZ1190.

2.3 Functions withdrawn from z/OS V1R9

The following functions have been withdrawn from z/OS in z/OS V1R9.

Chapter 2. Installation considerations 25

APPC Application Suite

z/0OS V1R9 Communications Server discontinues support of the APPC Application Suite. For
most of the functions provided by the APPC Application Suite, more full-featured alternative
applications exist in modern integrated SNA/IP networks.

z/OS.e V1R8

The following information is an important consideration when using z/OS.e.

z/0S.e V1R8 (56655-G52) is planned to be the last release of z/OS.e. Marketing, ordering,
support, and service for z/OS (5694-A01) remain unaffected.

z/0S.e V1R8 remains orderable until its planned withdrawal from marketing in October
2007. In accordance with the z/OS (5694-A01) and z/OS.e service policy (to provide
service support for each release for three years following its general availability date), IBM
intends to withdraw service for z/OS.e V1R8 in September 2009.

2.4 Functions withdrawn in a future release

IBM plans that z/OS V1R9 will be last release to support English and Japanese ISPF panels
in DFSORT™. There will be no replacement for this limited interactive facility. Support for
JCL to sort, copy, or merge will continue to be available.

z/OS V1R9 is planned to be the last release of zZOS Communications Server that will support
the configuration of Traffic Regulation (TR) policy as part of the Quality of Service discipline.
The TR configuration function remains supported, but IBM recommends that you implement it
as part of the Intrusion Detection Services (IDS) policy configuration made available in z/OS
V1R8.

Note that this change is only for the TR policy configuration. The TR policy functions
themselves remain unaffected. For more information, refer to the following publications:

» In z/OS Communications Server IP Configuration Guide, see Chapter 16 “Intrusion
Detection Services (IDS)”

» In z/OS Communication Server IP Configuration Reference, see Chapter 23 “Intrusion
Detection Services (IDS) policy”

2.4.1 Changes to driving system requirements

26

The minimum driving system level for installing z/OS V1R9 is z/OS V1R7 or z/0S.e V1R?7.
(For installing z/OS V1R8, it was z/0OS V1R5 or z/OS.e V1R5.)

If a Customized Offerings Driver (5655-M12) is being used to install z/OS V1R9, the level
required is V2.3.1. V2.2 could be used to install z/OS V1R8.

If you are migrating to z/OS V1R8 from z/OS V1R?7, or if you will have a different product set
than your previous release, you will see increased need for DASD. How much more depends
on what levels of products you are running. Keep in mind the DASD required for your z/OS
system includes (per the z/OS Policy). That is, it includes al/ elements, all features that
support dynamic enablement, regardless of your order, and a// unpriced features that you
ordered. This storage is in addition to the storage required by other products you might have
installed. All sizes include 15% freespace to accommodate the installation of maintenance.

z/OS Version 1 Release 9 Implementation

DASD space requirements
For z/OS V1R9, the total storage required for all the target data sets is 6400 cylinders on a

3390 device. The total storage required for all the distribution data sets listed in the space
table is 8900 cylinders on a 3390 device.

The total file system storage is as follows:

» 2,900 cylinders on a 3390 device for the ROQT file system

» 50 cylinders for the /etc file system

» 50 cylinders for the VARWBEM file system (new for CIM element)

The total storage required for the SMP/E SMPLTS is 0 3390 cylinders (there are no load

modules in z/OS V1R9 that are both cross-zone and use CALLLIBs, thus the SMPLTS is not
needed for permanent storage).

If you are migrating to z/OS V1R9 from a very old operating system release, or if you will have
a different product set than your previous release, you will see increased need for DASD
space, as shown in Table 2-2; note that sizes are in 3390 cylinders.

Table 2-2 DASD space requirements for installing z/OS V1R9

z/OS V1R4 | z/OS V1IR5 | z/OS V1IR6 | z/OS V1 R7 z/OS VIR8 | z/OS V1R9
Target 4840 5244 5277 5225 5625 6400
DLIB 6446 6930 7338 7286 7325 8900
HFS 2250 2200 2800 2800 2800 2900

2.5 Changed base elements and optional features

There are a number of base elements and optional features that have changed in z/OS V1R9.
In z/OS V1R9, the z/OS elements and features are re-structured as follows:

» Changed base elements:
- CIM
— Communications Server
— Cryptographic Services
— DFSMSdfp
— Distributed File Service
— HCD
— Integrated Security Services
— ISPF
- JES2
— Language Environment
— Library Server
— NFS
— Run-Time Library Extensions
- TSO/E
— z/0OS UNIX

» Changed optional features:
— C/C++ without Debug Tool
— Communications Server Security Level 3
— DFSMSdss™
— DFSMShsm
— DFSMSrmm

Chapter 2. Installation considerations 27

— DFSMStvs

— HCM

- JES3

- RMF

— SDSF

— Security Server

— 2/OS Security Level 3

2.6 Coexistence, fallback, and migration

28

Prior to z/OS V1R6, four consecutive releases were supported for coexistence, fallback, and
migration. Starting with z/OS V1R6, the coexistence, fallback, and migration policy was
aligned with the service policy. Because the service policy is a 3-year policy and because
z/OS V1R6 was the start of the annual release cycle, three releases will be supported for
coexistence, fallback, and migration over a period of three years.

The current policy represents an increase of one year over the two-year period provided by
the previous coexistence, fallback, and migration policy of four releases under a six-month
release cycle. The intention of the current policy is to simplify and provide greater
predictability to aid in release migrations. Therefore, with z/OS V1R9 the following conditions
exist; see Figure 2-1.

» Coexistence of a V1R9 system with a V1R9, V1R8, or V1R7 system is supported.
» Fallback from a V1R9 system to a V1R8 or V1R7 system is supported.
» Migration to a V1R9 system from a V1R8 or V1R7 system is supported.

Coexistence Releases
“ with z/OS V1R8
z/0S |z/OS z/0S z/0S z/0S z/0OS
V1R4 V1R5 V1R6 V1R7 V1R8 V1R9

Coexistence Releases |,
With z/OS V1R9

Figure 2-1 Coexistence releases with z/0S V1R9

z/OS releases and the hardware

Figure 2-2 on page 29 shows all models of the hardware over the current and previous years,
and the z/OS releases that used to be supported by the hardware. It also shows which z/OS
releases since z/OS Release 4 up to z/OS Release 11 support the System z hardware.

The hardware here also includes the IBM Total Storage products DS8000™, DS6000™, and
TS1120. The IBM System Storage™ TS1120 Tape Drive (TS1120 tape drive) offers a
solution to address applications that need high capacity, fast access to data or long-term data
retention. It is supported in IBM tape libraries, IBM frames that support standalone
installation, and in an IBM 3592 Tape Frame Model C20 (3592 C20 frame) attached to a
Sun™ StorageTek™ 9310 library.

z/OS Version 1 Release 9 Implementation

The tape drive uses IBM 3592 cartridges, which are available in limited capacity (100 GB) for
fast access to data, and standard capacity (500 GB) or extended capacity (700 GB), which
help to reduce resources to lower total cost. All three cartridges are available in rewritable or
Write Once Read Many (WORM) format.

LTI
[= R . SN

o - e

- X X X1 X X1 X1 X1 X X1 - 1.7

RS x x x x x x x x [s

m X X X X X X X X 9/07 1.8

- X X X X X X X X 9/08* 1.9

- b'e b'e b'e b'e X X X X 9/09* 1.10*

- X b'e X b'e b'e X x X 910* 141 9/o7
| R10* X X X be X X X X 9M1* 142" 9/08*
m X b'e X X b'e X X X 912* 143 9/09*

Figure 2-2 z/OS support summary

2.7 54-way support with the z9 EC

z/OS V1R9 has 54-way support on IBM System z9 EC servers. The 54-way support is the
sum of CPs, zIIPs, and zAAPs in one z/OS LPAR. The IBM System z9 54-way CPU will be
able to process 1 billion transactions per day, which is more than double the performance of
its predecessor, the z990. Moreover, reliability improvements in the IBM System z9 design
means less customer planned downtime.

z/OS V1R9 is designed to help provide constraint relief, improve overall scalability and
performance, and enhance measurement capabilities. It offers new designs to help provide
up to 54-way single image support, which includes:

» Improved SMF data collection and management

» Improved performance for Coupling Facility (CF) duplexing
» Global resource serialization (GRS)

» Couple data set (CDS) I/O

» Applications using Language Environment heap pools

2.8 New address spaces

There are three new address spaces with z/OS V1R9. There is nothing for you to do to start,
manage, or stop these new address spaces. However, if you have staff who want to be kept
aware of changes to the system, notify them that these address spaces exist:

» Common event adapter (CEA)

The common event adapter (CEA) provides the ability to deliver z/OS events to C
language clients, such as the z/OS CIM server. The CEA address space is started
automatically during z/OS initialization and does not terminate.

Chapter 2. Installation considerations 29

» ARCNXXXX

One of these DFSMSdss address spaces is started automatically by DFSMShsm
whenever a dump, restore, migration, backup, recover, or CDS backup function is
invoked. (A DFSMSdss address space is not started for recall tasks.) These DFSMSdss
address spaces can reduce the storage used in the DFSMShsm address space, thus
enabling more tasks to be started within the DFSMShsm address space.

When DFSMShsm invokes DFSMSdss through the DFSMSdss cross-memory application
interface, DFSMShsm requests that DFSMSdss use a unique address space identifier for
each unique DFSMShsm function and host ID. The address space identifier for each
function is in the form ARCnXXXX, where n is a unique DFSMShsm host ID and XXXX is
an abbreviation of a DFSMShsm function. The abbreviations and corresponding functions
are:

— DUMP for dump

— REST for restore

— MIGR for migration

— BACK for backup

— RCVR for recover

— CDSB for CDS backup

For instance, migration for DFSMShsm host ID 1 would result in a generated address
space identifier of ARC1MIGR. The address space terminates automatically when
DFSMShsm terminates.

» DSSFRDSR

The purpose of this DFSMSdss address space is to recover up to 64 data sets
concurrently from one or more copy pool backup versions. The address space is started
automatically by DFSMShsm whenever a data set is recovered from DASD using the
FRRECOV DSNAME command. The address space terminates automatically when
DFSMShsm terminates.

2.9 System z New Application License Charges (zNALC)

zZNALC replaces New Application License Charges (NALC) and z/OS.e, and is to be the IBM
strategic z/OS offering for new workloads. zNALC offers a reduced price for z/OS operating
system on LPARs where you are running a qualified “new workload” application.

zNALC became available in March 2007. z/OS.e runs only on the z800, z890, z9 BC servers
and it now not supported with z/OS V1R9.

ZNALC is available only on LPARs where a qualified application is present, among other
requirements.

2.9.1 zNALC support

30

ZNALC offers a reduced price for the z/OS operating system on LPARs where you are
running a qualified new workload application (Qualified Application).

The zNALC offering extends the IBM commitment to sub-capacity pricing, allowing
installations with a Qualified Application to obtain a reduced price for z/OS where charges are
based on the size of the LPAR(s) executing a Qualified Application, assuming all applicable
terms and conditions are met.

z/OS Version 1 Release 9 Implementation

Qualified Applications

The zNALC offering extends the IBM commitment to sub-capacity pricing, allowing customers
with a Qualified Application to obtain a reduced price for z/OS where charges are based on
the size of the LPAR(s) executing a Qualified Application, assuming all applicable terms and
conditions are met.

z/OS with zZNALC provides many benefits over previous new workload pricing offers. It
provides a strategic pricing model available on the full range of System z servers for
simplified application planning and deployment. zZNALC provides similar pricing benefits to
both z/OS.e pricing and z/OS with NALC pricing. zZNALC allows for aggregation across a
qualified Parallel Sysplex, which can provide a lower cost for incremental growth across new
workloads that span a Parallel Sysplex. zZNALC is the IBM strategy, replacing the z/OS.e
operating system and the NALC pricing metric.

ZNALC is available only on LPARs where a Qualified Application is present, among other
requirements. In general, Qualified Applications are those that IBM considers 'new workload,'
such as Java language business applications running under WebSphere Application Server,
Domino®, SAP, PeopleSoft, or Siebel®.

To implement zNALC, one of the following ways can be selected:

» Full-Capacity zNALC - charges are based on the full zSeries server capacity where each
zNALC product executes

» Sub-Capacity zNALC - charges are based on the utilization of the LPAR or LPARs where
a zNALC product executes

Hardware requirements

ZNALC is available only on IBM z/Architecture® servers (z900, z990, z9 EC, z800, z890, z9
BC, or later) running the z/OS (5694-A01) operating system. z/OS middleware running on the
IBM z/Architecture server which qualifies for Workload License Charges (WLC) or Entry
Workload License Charges (EWLC) must be priced WLC/EWLC in order for z/OS to be
eligible for zZNALC charges.

z/OS is eligible for zZNALC pricing when running in an LPAR where the Qualified Application is
executing. The only other products that may execute in this LPAR are those products that
support the Qualified Application. The LPAR must be used exclusively for the Qualified
Application and for programs that support the Qualified Application and for no other purpose.

Any logical partition (LPAR) that is designated as a zZNALC LPAR must identify itself in one of
two ways:

» By using the naming convention ZNALxxxx, where xxxx may be any letters or numbers.

» By using the LICENSE=ZNALC IPL parameter. This IPL parameter is available on z/OS
Version 1 Release 6 or later systems which have APAR OA20314 applied.

Note: zNALC is not available on any server where OS/390 or z/OS.e is licensed or
running, or on any server where the pricing metric for z/OS is NALC. Sub-Capacity zZNALC
is not available on any LPARs where z/OS is running as a guest of zZ/VM®.

Criteria to determine which applications are Qualified Applications

An application is a computer program that is used to accomplish specific business tasks
(such as Customer Relationship Management (CRM), Enterprise Resource Planning (ERP),
Supply Chain Management (SCM), business information warehouse, accounting, and
inventory control programs), including the database server used for that task. In this
definition, an application is not a standalone database management system or systems

Chapter 2. Installation considerations 31

management tool (that is, related to the management or operation of the computer itself or of
other computer programs).

Examples of software that is not considered applications are operating system software,
database products (except those qualifying as described in section b), transaction managers,
tools, utilities, and games.

An application may be considered a Qualified Application if:

a) It is currently generally commercially available, supported by its manufacturer, and
enabled to run under z/OS, and that same Application (with substantially the same
functionality) is simultaneously generally commercially available, supported by its
manufacturer on, and enabled to run under a UNIX operating system (for example, AlX,
HP-UX, Linux, or Solaris™), or Microsoft Windows (collectively, “Distributed Platforms”).

b) It is a database server running under z/OS and it is operating solely in support of a
software program that is currently generally commercially available, supported by its
manufacturer, and running in a client/server environment where the business logic (for
example, application server) is running on a Distributed Platform.

¢) ltis a Java language business application running under WebSphere Application
Server (or equivalent). These do not include systems management tools.

IBM will determine whether a particular program is a Qualified Application.

To determine whether other applications can qualify, refer to “How to qualify applications”.

Examples of Qualified Applications

You may already have an application that has been previously approved. Following are
examples of approved Qualified Applications:

DB2 for z/OS in support of SAP

DB2 for z/OS in support of PeopleSoft
DB2 for z/OS in support of Siebel
Lotus® Domino

v

vyvyy

This is not a complete list of Qualified Applications, and more will be added over time.

Note: If you already have one of these applications, then simply contact your IBM
representative to see what your System z New Application License Charge (zNALC)
charges for z/OS will be for that application LPAR.

How to qualify applications

If your application is not on the list shown in “Examples of Qualified Applications” (for
example, a Java language business application running under WebSphere Application
Server), then you will need to provide some information in order to get it qualified.

In an e-mail or on company letterhead, describe your application (including the name of the
application or workload and a brief explanation of its business purpose) and submit it to IBM
for review via your IBM sales representative or IBM Business Partner.

32 z/OS Version 1 Release 9 Implementation

Note: If the business application is commercially available from a vendor, you need to
supply the vendor name, application Web site, and a short description of the application,
including specifically whether it is a commercially available application that is supported on
z/0OS, UNIX, Microsoft Windows, and/or Linux, and is currently running on z/OS—or
whether it is a commercially available application running on z/OS, UNIX, Windows, and/or
Linux that accesses data on z/OS (for example, DB2 for z/OS over DRDA® via TCP/IP
connection).

zNALC and traditional workloads on the same processor

When z/OS is licensed for both zZNALC and non-zNALC (traditional) LPARs on the same
machine, IBM will not permit the total billable z/OS MSUs to exceed the reported z/OS peak
(the highest simultaneous rolling 4-hour average of all z/OS LPARSs). Here are the mechanics
for a typical situation:

» Traditional (WLC/EWLC) MSUs and zNALC MSUs are billed as reported on the SCRT
Report.

» Traditional MSUs + zNALC MSUs exceed the z/OS peak MSUs:

— Traditional MSUs are billed as reported on the SCRT Report and zNALC MSUs will be
reduced such that the sum of the Traditional MSUs plus the zZNALC MSUs equals the
z/OS peak MSUs.

— If zZNALC MSUs are reduced to the announced 3 MSU minimum, but the sum of the
Traditional MSUs plus the zZNALC MSUs still exceeds the z/OS peak MSUs, then the
Traditional MSUs will be reduced such that the sum of the Traditional MSUs plus the
3 MSUs for zZNALC equals the z/OS peak MSUs.

Ordering zNALC

IBM has established a certification process whereby customers must complete a form when
they establish zZNALC charges, and the form must be renewed each year to maintain zNALC
charges. This form requires customers to certify that they meet all the requirements to be
eligible for z/OS with zZNALC charges. IBM may cancel zZNALC charging if a customer fails to
submit an annual certification. IBM has the right to audit servers with z/OS with zZNALC
charges to ensure compliance with all zZNALC terms and conditions.

2.9.2 NALC users

Prior to the announcement of zZNALC, there was another price metric called New Application
License Charges (NALC). In the zZNALC announcement, IBM released a Statement of
General Direction stating that IBM intends to replace both the z/OS.e operating system and
the NALC pricing metric with the zZNALC pricing metric, which is available on both IBM
z/Architecture high-end and midrange systems.

NALC remains available until withdrawn to customers who dedicate an entire mainframe
server to a qualifying e-business workload, such as WebSphere or a qualifying enterprise
application workload such as SAP or PeopleSoft. For a product with the NALC pricing metric,
there is a single low price per MSU per product and software charges are based upon the
capacity of the machine where the product executes. NALC is available to PSLC and WLC
customers. NALC provides lower price points for certain features of z/0OS, OS/390 and
Domino Version 5.

NALC is available on a dedicated e-business mainframe that participates in a Parallel
Sysplex environment. Although NALC-priced products are not eligible for aggregation, other
non-NALC middleware on the NALC machine may aggregate with middleware across the

Chapter 2. Installation considerations 33

Parallel Sysplex environment, if all terms are met. In the case that a machine is dedicated to
e-business, and also Sub-Capacity Workload License Charges, then the billable z/OS MSUs
and/or Domino NALC MSUs will be based on the values that appear in the monthly
Sub-Capacity Reports. This is the only time when IBM terms permit NALC MSUs to be less
than full machine-capacity.

For a list of NALC qualifying applications, visit the NALC section of the System z9 and
zSeries Software Contracts Web site.

Note: With the introduction of zZNALC pricing, it is suggested that customers interested in
running new workloads on the System z platform no longer rely on NALC or z/OS.e but
rather upon zNALC to obtain reduced price points for environments with new workload
applications.

2.9.3 zNALC and SCRT and APAR OA20314

34

In July 2007, IBM made Sub-Capacity Reporting Tool (SCRT) Version 14 Release 1.0
available for download. In order to take advantage of the new SCRT V14.1.0 support for
System z New Application License Charges (zNALC) in an LPAR which does not use the
ZNALxxxx naming convention, customers must also have the BCP APAR OA20314 applied
to their z/OS system prior to collecting SMF data.

IEASYSxx parmlib member

The IEASYSxx parmlib member LICENSE parameter is now enhanced to allow
LICENSE=ZNALC to be specified as the licensed environment. With LICENSE=ZNALC
specified, there is no longer a requirement for LPARs to be named in the form ZNALxxxx in
order to qualify for zZNALC subcapacity pricing. The use of LICENSE=ZNALC is not a
requirement, however, and customers can still opt to use the LPAR name in the form
ZNALCxxx to also take advantage of zZNALC subcapacity pricing.

SMF record type 89

Along with the enhanced LICENSE parameter, the SMF type 89 record is updated by this
APAR, with a new bit indicator for recording when the system is IPLed with zZNALC
subcapacity pricing requested. This support also adds a new field to the SMF type 89 record,
to record the LPAR name when z/OS is run as a VM guest.

D IPLINFO command

The D IPLINFO command was also enhanced to show LICENSE=zNALC when a system was
IPLed with zZNALC pricing requested, whether via ZNALxxxx LPAR name or by the use of the
LICENSE=ZNALC system parameter.

This APAR allows customers to use a LICENSE=ZNALC IPL parameter in place of the
zNALC LPAR naming convention.

Note: SCRT V14.1.0 is the first version of the program to support zZNALC customers who
wish to exploit the new LICENSE=ZNALC parameter made possible through z/OS APAR
OA20314. The other changes coming with V14.1.0 are listed on the Web at:

http://ibm.com/zseries/swprice/scrt/scrt_new.html

z/OS Version 1 Release 9 Implementation

http://ibm.com/zseries/swprice/scrt/scrt_new.html

Coupling Facility enhancements

With z/OS v1R9, there is improved duplexing performance using the new CFLEVEL=15 to
CFLEVEL=15 duplexing. With this new support, you can improve duplexing performance
significantly by duplexing between two Coupling Facilities at CFLEVEL=15 or higher on an
IBM System z9 109 (z9-109) server. However, the system will only optimize performance
between two CFLEVEL=15 Coupling Facilities when there are no path busy or other delay
conditions affecting requests to the Coupling Facility.

New support is added to put a Coupling Facility into maintenance mode. In preparation for
removing a Coupling Facility from the sysplex, you can place it in maintenance mode. This
step prevents systems from allocating any structures in that Coupling Facility while you
prepare to take it down for upgrade procedures. Operator commands can move structures
from a Coupling Facility that is to be placed into maintenance mode to another Coupling
Facility.

In this chapter we describe the following enhancements to the Coupling Facility in z/OS
V1R9:

» CF duplexing performance, accounting and measurement enhancements

» CF maintenance mode

» CFCC level 15

© Copyright IBM Corp. 2007. All rights reserved.

35

3.1 CF duplexing performance enhancements

36

System-managed duplexing rebuild allows the system to allocate another structure in a
different Coupling Facility for the purpose of duplexing the data in the structure. It was
introduced in z/OS V1R2 and provides a recovery mechanism in a Parallel Sysplex supplying
availability to the environment.

Information: System-managed duplexing rebuild is a process managed by the system that
allows a structure to be maintained as a duplexed pair. The process is controlled by CFRM
policy definition as well as by the subsystem or exploiter owning the structure. The process
can be initiated by operator command (SETXCF) or programming interface (IXLREBLD), or it
can be MVS-initiated.

The new control facility control code (CFCC) provides support to streamline the CF-to-CF
synchronization protocols currently involved in CF duplexing. This enhancement reduces the
overhead of CF duplexing, and may help make duplexing a more viable alternative for use in
providing high availability for CF Structure data.

Note: The support applies to system-managed duplexing.

The new CFCC also provides additional CF measurement information to provide CF
processor and CF structure execution time for enhanced accounting of CF and CF structure
utilization.

This CFCC support is associated with a new CFLEVEL 15. This enhancement reduced the
overhead of CF duplexing, improved performance (service time) and throughput for duplexed
requests, and high availability for CF structure data. With this new support, duplexing
performance is improved significantly by duplexing between two Coupling Facilities at
CFLEVEL=15 or higher on IBM System z9 processors.

The CFCC support includes enhancements in the following support:

» There are CF duplexing performance enhancements that provide an internal protocol
improvement for performance benefit. There are no new exploiter changes associated
with this support.

» There are XES Coupling Facility measurement enhancements that can be seen in RMF
reports. The additional CF measurement extensions are exposed through the IXLMG
interface on the IXLYAMDA accounting and measurement data area. New information is
added to the IXLYAMDA data area mapping for Coupling Facility, and for Coupling Facility
structure information, allowing RMF to display the following:

— Dynamic CF dispatch indication to show whether or not dynamic CF dispatching is
active for the CF

— Counts of shared and dedicated CF processors to indicate the number of shared or
dedicated processors in the Coupling Facility

— CF processor weights indicate the weight assigned to the processor

— CF structure execution time specifies the total number of microseconds that any
processor is in command execution or in execution of a background process for the
particular list/lock structure, and specifies the total number of microseconds that any
processor is in command execution or in execution of a background process for the
particular cache structure

z/OS Version 1 Release 9 Implementation

Coexistence: The CF duplexing performance enhancements will only apply if a z/OS
V1R9 system (or downlevel system with the support) allocates the structure. A structure
allocated to take advantage of the CF duplexing enhancements can be used by, and can
coexist with, z/OS systems without the support.

The support is included in z/OS V1R9 and is available via a PTF on lower level releases
(V1R6 through V1R8) via APAR OA17055.

3.1.1 CFLEVEL 15

The control facility control code (CFCC) level 15 contains CFCC multitasking enhancements
to provide an increase in the number of supported CF tasks, from 48 to 112. If you are
migrating to a new CFCC level, you have to make appropriate Coupling Facility structure size
updates in the z/OS Coupling Facility resource management (CFRM) policy. These new
multitasking enhancements provide improved CF performance and throughput in Parallel
Sysplex configurations, as follows:

» The enhancements allow many coupling links and subchannels, and therefore allow many
concurrent CF operations to execute in the CF.

» They use system-managed CF structure duplexing as a high availability mechanism for
CF structure data.

» They operate at extended distances between the z/OS systems and the Coupling Facility,
such as in GDPS® configurations.

Migration to CFLEVEL 15

When migrating to CFLEVEL 15 from earlier CFLEVELSs, the multitasking enhancements will
create significant growth in the size of many CF structures. If the structures are not
appropriately resized to allow for this growth, then problems or outages may result from an
unexpected reduction in the number of usable structure objects in a CF structure.

Before you install CFLEVEL 15, you must plan for this structure size growth. It is possible that
structures previously usable with a given structure size may not even be able to be allocated
in a CFLEVEL 15 with the same structure size.

When migrating to a new CFCC level, run the Coupling Facility Structure Sizer (CFSIZER)
tool. This tool sizes structures, taking into account the amount of space needed for the
current CFCC levels. The tool sizes for the most currently available level, and you may find
that the results are oversized if you use an earlier CFCC level. You can find the CFSIZER tool
at:

http://www.ibm.com/servers/eserver/zseries/cfsizer/

Then, you can make the corresponding structure size updates to the CFRM policies and
activate the updated CFRM policy to be used in the sysplex.

Note: To support migration from one Coupling Facility level to the next, you can run
different levels of the Coupling Facility concurrently as long as the Coupling Facility LPs
are running on different processors.

CF LPs running on the same processor share the same Coupling Facility control code EC
level. A single processor cannot support multiple Coupling Facility levels.

Chapter 3. Coupling Facility enhancements 37

http://www.ibm.com/servers/eserver/zseries/cfsizer/

38

Structure size growth

When you are migrating CF levels, then you may have to increase lock, list, and cache
structure sizes in order to support the new function. This adjustment can impact the system
when it allocates structures or copies structures from one Coupling Facility to another at
different CF levels. The Coupling Facility structure sizer tool is designed to size structures for
you, and takes into account the amount of space needed for the current CFCC levels.

The amount of per-structure size growth for a variety of CF structure types, when migrating
from CFLEVEL 14 to 15, is a real consideration. Growth may be somewhat larger if migrating
to CFLEVEL 15 from a CFLEVEL prior to 14. The expected amount of CF structure growth is
a fixed and absolute amount per structure, not a percentage increase based on the current
allocated structure size. Therefore, the current size of the structure is not a factor in
determining the amount of the increase. Instead, the size increase is a function of the
maximum data entry size supported by the particular CF structure exploiters.

Attention: The amount of storage in CF images may need to be increased to
accommodate this growth. Also evaluate the need to provide an adequate amount of
unused CF storage space for recovery in the event of the loss of a CF image.

Hardware requirements
The hardware required to support the CFCC level 15 are the z9 EC or z9 BC with support
element and HMC version 2.9.2 plus MCLs.

Potential problems with CFLEVEL 15 installed

The enhancements for CF duplexing available with CFLEVEL 15 are designed to improve
performance and this performance improvement can be affected and not realized when the
following conditions occur:

» Path busy conditions

When a sysplex experiences a significant level of path busy conditions, you will rarely be
able to exploit the performance enhancements possible in a CFLEVEL=15 to
CFLEVEL=15 duplexing configuration.

Note: In this case, you should consider upgrading your configuration to increase
Coupling Facility link capacity. For example, you might use dedicated Coupling Facility
links (rather than shared) or provide additional shared Coupling Facility links to resolve
the path busy conditions.

» Heavily used Coupling Facilities

When installed at CFLEVEL=15 and the Coupling Facilities are used heavily or overused,
to the extent that it causes some delay of requests to the Coupling Facility, the system will
not be able to exploit the performance improvement.

Note: In this case, you should consider upgrading your configuration to include
additional Coupling Facility capacity. For example, you might add more processors, use
dedicated processors, or turn off dynamic dispatching to add more Coupling Facility
capacity.

z/OS Version 1 Release 9 Implementation

3.2 CF measurement enhancements

The enhancement of streamlining the processing in the CF duplexing protocols is expected to
yield a measurable performance improvement to the duplexed CF service time—and this is
an elapsed time benefit. The benefit is based on the configuration and the specific structure,
depending on how many of the requests are duplexed. Savings may be quite significant at
extended distances.

Additional Coupling Facility measurement extensions have been added to provide CF
processor and CF structure execution time for enhanced accounting of CF and CF structure
utilization. These enhancements allow for:

» Better accounting of the processor utilization of the CFs and CF structures

» Better tuning and capacity planning for CF processor resources as a result of the more
granular information

» Improved CF tuning and capacity planning on a structure basis

D CF command
The D CF command output is enhanced to report on the following new information:
» The number of shared and dedicated processors in the Coupling Facility

» The dynamic CF dispatching setting for the Coupling Facility

This information can be displayed from any z/OS system with the software support installed,
for every Coupling Facility that is at CFLEVEL 15 that contains this support, and is connected
and managed. You can view this information in the DISPLAY CF command output, as shown in
Figure 3-1.

-D CF

IXL150I 11.43.35 DISPLAY CF 762

COUPLING FACILITY 002094.IBM.02.00000002991E
PARTITION: OF CPCID: 00
CONTROL UNIT ID: FFF5

NAMED CF1
COUPLING FACILITY SPACE UTILIZATION
ALLOCATED SPACE DUMP SPACE UTILIZATION
STRUCTURES: 184832 K STRUCTURE DUMP TABLES: 0K
DUMP SPACE: 2048 K TABLE COUNT: 0
FREE SPACE: 770560 K FREE DUMP SPACE: 2048 K
TOTAL SPACE: 957440 K TOTAL DUMP SPACE: 2048 K
MAX REQUESTED DUMP SPACE: 0 K
VOLATILE: YES STORAGE INCREMENT SIZE: 512 K
CFLEVEL: 15

CFCC RELEASE 15.00, SERVICE LEVEL 00.18

BUILT ON 03/26/2007 AT 12:25:00

COUPLING FACILITY HAS 1 SHARED AND 0 DEDICATED PROCESSORS
DYNAMIC CF DISPATCHING: ON

Figure 3-1 Display CF command output

Note: Dynamic CF dispatching does not apply to dedicated processors.

Chapter 3. Coupling Facility enhancements 39

The Coupling Facility processor information included is:
» Indication of whether the processor is shared or dedicated
» Indication of the weight assigned to the processor

The Coupling Facility structure information included is:

» The percentage of the total Coupling Facility CPU (execution time) that was consumed by
each structure in the CF during a given interval of time

Note: These values are only reset when the structure is initially allocated. This support is
associated with the Coupling Facility control code (CFCC) CFLEVEL 15, which is exclusive
for System z9.

3.2.1 RMF enhancements

40

By exploiting CF level 15 (CFLEVEL 15), RMF provides additional data in the Monitor 11|
Coupling Facility reports and the Postprocessor Coupling Facility Activity report.

For example, the reports display CF utilization per structure and whether dynamic CF
dispatching is turned on, as shown in Figure 3-1 on page 39.

With the extended D CF command architecture that is introduced by a CFLEVEL 15, new
support for granular CF processor utilization accounting is implemented in addition to other
minor accounting and measurement extensions.

The processor busy time is provided not only for the CF as a whole, but on a per-structure
basis. In addition to this the CF dynamic dispatching setting, the number of shared and
dedicated processors, and the subchannel busy value is integrated in the existing the RMF
CF reports to improve the CF diagnosis possibilities.

RMF will report the new CF metrics only if the extended CF command architecture is
available. On systems running pre-z/OS V1R9, XCF APAR OA17055 has to be installed.

In addition, RMF provides new overview conditions for the post processor based on SMF
record 74-4.

Note: The RMF support is included in z/OS V1R9 and is available via a PTF on lower level
releases (V1R6 through V1R8) via APAR OA17070.

RMF post processor Coupling Facility Activity report
The RMF post processor Coupling Facility Activity report is extended by including the
following information, which is shown in Figure 3-2 on page 41:

» CF processor utilization by structure

» Dynamic CF dispatching status

» Number of dedicated or shared processors

» Average weight of shared processors

The structure summary section of the Coupling Facility Activity Usage summary groups the
structure summary data by structure type. The values shown for each structure are extended

by % of CF utilization, which shows the structure-related processor busy time for an allocated
structure compared to the total CF processor busy time.

z/OS Version 1 Release 9 Implementation

The calculation is shown as follows:

Structure execution time

% OF CF UTIL = =mmmmmmmmmmmmmmm oo

CF busy time

Note: The new column % OF CF UTIL sums to less than 100%, which is expected, because

not all CF processor time is attributable to structures. N/A is shown in this field if the

required CF level is missing or the software prerequisite (XCF APAR OA17055 or z/OS

V1R9) is not installed.

Figure 3-2 and Figure 3-3 on page 42 show the new fields.

COUPLING FACILITY USAGE SUMMARY

% OF % OF % OF

STRUCTURE ALLOC CF # AL CF
TYPE NAME STATUS CHG SIZE STOR REQ REQ UTIL
LIST DB8FU_SCA ACTIVE M 0.9 0 0.0 6.2
ISTMNPS ACTIVE 13M 1.3 0 0.0 0.0
IXC_DEFAULT_1 ACTIVE 324 3.4 19953 11.5 12.0
IXC_DEFAULT_3 ACTIVE 17M 1.8 2283 1.3 3.6
RRS_DELAYEDUR_1 ACTIVE 13M 1.3 2156 1.2 0.9
RRS_MAINUR_1 ACTIVE 13M 1.3 2156 1.2 1.6
RRS_RESTART_1 ACTIVE 13M 1.3 1330 0.8 0.3
RRS_RMDATA_1 ACTIVE 13M 1.3 31190 18.0 6.2
SYSTEM_LOGREC ~ ACTIVE 17M 1.8 8 0.0 0.0
SYSTEM_OPERLOG AE?%vE 3M 3.5 817 0.5 0.8

SEC

LOCK DB8FU_LOCK1 ACTIVE 8M 0.9 0 0.0 2.4
1GHLOCKOO ACTIVE 14M 1.5 0 0.0 393
1SGLOCK ACTIVE 9 0.9 113494 5.5 9.3
CACHE SYSIGGCAS_ECS ACTIVE 5M 0.5 0 0.0 0.2
SYSZWLM_WORKUNIT ~ACTIVE 12M 1.3 0 0.0 0.2
STRUCTURE TOTALS Taw 232 173347 100 83.0

AVG
REQ/
SEC

0.

0.

00

00

77

.31

.30

.30

.18

.33

.00

11

.00

.00

.76

LST/DIR DATA
ENTRIES ELEMENTS ENTRIES DIR REC
TOT/CUR TOT/CUR

6464
112
4163
1

5767
1
2061
1
3525
6
2933
6
6729
5
19K
5
2027
68
29K
20K

11K
0

33K
0
0
0

980

1052
0

13K
425
8308
0
5747

970

2093
0

LOCK DIR REC
TOT/CUR XI'S

N/A N/A
N/A N/A
N/A N/A
N/A N/A
N/A N/A
N/A N/A
N/A N/A
N/A N/A
N/A N/A
N/A N/A
N/A N/A
N/A N/A
N/A N/A
N/A N/A
N/A N/A
N/A N/A
N/A N/A
N/A N/A
N/A N/A
N/A N/A
2097K N/A
0 N/A
2097K N/A
21 N/A
1049K N/A
2805 N/A
N/A 0
N/A 0
N/A 0
N/A 0

Figure 3-2 Coupling Facility Activity report - Structure Summary

Chapter 3. Coupling Facility enhancements 41

PROCESSOR SUMMARY
COUPLING FACILITY 2094 MODEL S18 CFLEVEL 15 DYNDISP ON

AVERAGE CF UTILIZATION (% BUSY) 0.0 LOGICAL PROCESSORS: DEFINED 1 EFFECTIVE 1.
SHARED 1 AVG WEIGHT 10.

o o

Figure 3-3 Coupling Facility Activity report - Processor Summary section

Note: N/A is shown in the % OF CF UTIL column if the required CF level is missing or the
software prerequisite (XCF APAR OA17055 or z/OS V1R9) is not installed.

3.3 RMF Monitor lll Data Portal for z/OS

The z/OS RMF Distributed Data Server (DDS) provides a Web front-end to sysplex-wide
RMF Monitor Ill online performance data. The performance data with z/OZ V1R9 is enhanced
to display CF duplexing information.

Using a Web browser that can display XML documents using XSL style sheets (like Mozilla
1.4 or above, Netscape 7.0 or above, or Microsoft Internet Explorer® 5.5 or above), it
provides an easy-to-use interface to RMF online performance monitoring data.

Starting the Distributed Data Server

If RMF Monitor Ill is up and running, simply use an MVS console to start the RMF Distributed
Data Server on exactly one system in the sysplex by entering the following command:

START GPMSERVE

Starting the Web browser interface
Open your favorite Web browser and type the following URL into the location bar:

http://<yourhost ip address>:8803/
The DDS is running on <yourhost> and uses default DDS TCP/IP port 8803. The port number
and other settings of the DDS can be configured in GPMSRVxx PARMLIB member. The first

display is the RMF Monitor Il Data Portal for zZOS home page, as shown in Figure 3-4 on
page 43.

42 z/OS Version 1 Release 9 Implementation

RMF Monitor Il Data Portal for z/OS

|BM Corporation, 1998-
2007

Important notes:

When using this application you will be prompted to login to the Sysplexwith a valid userid and password

This application requires Javascriptto he enabled

For some functions ¢such as "My View') you must allow your browser 1o store cookies.

This application has heen successfully tested with:

o Microsoft Intermet Explorer Version 6.0 or higher for Windows (Recommended: 7.0 or higher)

© The Mozilla Suite or Firefox Browser Version 1.0 or higher frorm waw.mozilla.org for various platforms. (Recormmended: 2.0 or higher)
© Metscape Browser Yersion 7.0 or higher for various platforms (Recommended: 8.0 or higher)

Figure 3-4 RMF Monitor Ill Data Portal for z/0OS home page

New RMF reports
Figure 3-5 on page 44 shows the new RMF reports with z/OS V1R9 that display the following:

XCFGROUP (XCF Group Statistics)
XCFOVW (XCF Systems Overview
XCFPATH (XCF Path Statistics)
XCFSYS (XCF System Statistics)

vyvyyy

RMF Monitor Ill Coupling Facility Overview report

The RMF Monitor Il Coupling Facility Overview report, CFOVER as shown in Figure 3-5 on
page 44, is enhanced to provide the following new information:

» Dynamic CF dispatching setting
Number of dedicated processors
Number of shared processors
Average weight of shared processors

vyvyy

Chapter 3. Coupling Facility enhancements 43

44

RMF Monitor Il Data Portal for z/OS

Explore ‘

overview [IRE New

(AT Full RMF Reports:

Home CACHDET CACHSUN CFOVER CFSYS SYS5UM

XCFGROUP KCFOWvW XCF8Ys

Available metrics for: , SANDBOX,SYSPLEX
Metric description Help Id
% delay Explanation 800180
% delay for enqueue Explanation 8D1420
% delay forilo Explanation BD1A80
% delay for operator Explanation 8D1AED
% delay for processor Explanation 8D1B40
% delay for storage Explanation 8D1BAD
% delay for swsub Explanation 8D1C00

FAQ % using Explanation 8D04A0
% using for ife Explanation 801040

RMF T .

using for processaor Explanation 8D10BO

% workflow Explanation 8D0ss0
% workflow for ifo Explanation 801EDO
% workflow for processor Explanation 8D1F30

Figure 3-5 Panel that displays the full RMF reports showing new reports

Your can see this new information in Figure 3-6.

RMF Monitor lll Data Portal for z/OS

w3 « = 3 EmEa @ O

RMF Report [, SANDEOX, SYSPLEX] : CFOVER (Coupling Facility Overview)

New

Policy Reformat Required: NG

Time Range: 05/17/2007 11:02:00 - 0517/2007 11:03:00
Policy Name; CFRM37 Policy Activation Date: 05M15/07

Poli

Average

CF Number of | Humber of | Weighting Storage
CF CF CF Dynamic | Status | Storage Proc |Processors| Dedicated | Shared of Shared | Processors Request Size {in
Name [Model Version|Level |Dispatching of CF |Volatile |Util% |defined Processors| Processors | Processors | effective Rate Bytes)

CF1 |2094 |S18 15 ON Okay |YES 0.0 1 0 1 10 1.0 30.3 980418560
CF2 2004 |S18 15 ON Okay |YES 0.0 1 0 1 10 1.0 55 980418560
CF3 |2094 |S18 15 ON Okay |YES 0.0 1 0 1 10 1.0 211 443547548

Figure 3-6 Part of Coupling Facility Overview report

Coupling Facility Activity (CFACT) report

You select the RMF Monitor Il Coupling Facility Activity report by clicking CFACT, as shown
in Figure 3-5. CFACT report is enhanced to show the following new fields in Figure 3-7 on
page 45:

» Structure status

» CF utilization percentage of an active structure

This is the processor utilization percentage for an allocated structure. The structure
execution time is related to the total CF-wide processor busy time. The sum of the values
in this column is less than 100%, because not all CF processor time is attributable to
structures.

z/OS Version 1 Release 9 Implementation

N/A is shown in this field if the CF level is lower than 15.

RMF Monitor Il Data Portal for z/OS

&
‘h] @ 4= wmp wp| 0070516741600 0‘
RMF Report [,SANDBOX,SYSPLEX] : CFACT (Coupling Facility Activity) NeW
Time Range: 05/16/2007 14:16:00 - 05/16/2007 14:17:00
Sync Async
CF Structure Avg Sync Avg Asyn|
Structure | Structure | Extended Structure | System Utilization Execution| Sync Service|Request Async | Service Reqy
Structure Hame Type Status Status Hame |% % Rate Time Count |Rate |Time Coul
DBSFU_LOCKA LOCK A ActivePersistent *ALL |26 0.0 0.0 a] 0.0 a]
LOCK SCB5 0.0]] 0.0]]
LOCK SC70 0.0] a 0.0] a
DB8FU_SCA LIST A ActivePersistent *ALL |68 0.0 0.0 0 a 0.0]]
LIsT SCB5 0.0 a] 0.0] 0
LIST SC70 0.0]] 0.0] 0
EJESGDS_WTSCPLX4 |LIST A ActivePersistent *ALL |01 0.0 0.0]] 0.0]]
LIST SCB5 0.0]] 0.0]]
LIsT SC70 0.0]] 0.0]]
IGWLOCKD0 LOCK A ActivePersistent *ALL (464 0.0 0.0 a a 0.0]]
LOCK SCB5 0.0 a a 0.0 a a

Figure 3-7 Part of Coupling Facility Activity report

The RMF Monitor Il Coupling Facility Systems View report, report CFSYS in Figure 3-5 on
page 44, is enhanced to display the following:

» Subchannel Delay %

This is the percentage of all Coupling Facility requests that z/OS had to delay because it
found all Coupling Facility subchannels busy.

» Subchannel busy value

This is the percentage of the Coupling Facility subchannel utilization. This value is
calculated from the sum of synchronous and asynchronous Coupling Facility request
times related to the MINTIME.

Chapter 3. Coupling Facility enhancements 45

RMF Monitor Ill Data Portal for z/OS

! L
4= ﬁ @ 4= wmp wp] 00705711750 . c
RMF Report [,SANDBOX,SYSPLEX] : CFSYS (Coupling Facility Syst View) NeW
Time Range: 05/17/2007 11:15:00 - 05/17/2007 11:16:00
Sync Async Sync to
Paths Avg Avg Async Async Total Sync Async | Async
CF System | Subchannel| Subchannel | Paths Delay |Sync | Service Async |Service|Changed| Delay |Request Request|Request Conversion
HName Mame Delay % Busy % Available | % Rate Time |Rate | Time % % Count Count |Count |Count
CF1 |SC65 |00 0.1 3 0.0 13 350 9.8 1535 |0.0 0.0 1055 78 585]
SC70 |00 0.1 e 0.0 1= 232 6.9 1669 0.0 0.0 a0 89 411]
CF2 |SC65 |00 0.0 2 0.0 0.0 0 11 1705 |0.0 0.0 189 0 67]
SCY0 (0.0 0.0 2 0.0 0.0] 2.4 705 0.0 0.0 269 0 146 0
CF3 |SC65 |00 0.1 2 0.0 2.0 310 15.0 |932 0.0 0.0 1126 M7 897 a
SC70 |00 0.1 2 0.0 27 337 139 1247 |00 0.0 1163 164 832]

Figure 3-8 Part of Coupling Facility Systems View report

3.4 CF maintenance mode

46

z/OS V1R9 provides an easier way to prepare Coupling Facilities for maintenance. New
support includes placing Coupling Facilities into a new state, called maintenance mode. CF
maintenance mode provides a mechanism to prevent usage of the CF for structure allocation,
and provides an improvement to the process of moving CF structures out of Coupling
Facilities in preparation for maintenance.

Important: A CF may only be placed into and out of maintenance mode by a system
running z/OS V1R9.

The XCF allocation algorithm eliminates it from the list of Coupling Facilities that are eligible
for structure allocation (without any CFRM policy update).

The new maintenance mode support can greatly simplify operational procedures related to
taking down a CF for maintenance or upgrade in a Parallel Sysplex. In particular, the need to
laboriously update or maintain several alternate copies of the CFRM policy that omit a
particular CF which is to be removed for maintenance is avoided.

A subsequent rebuild or REALLOCATE command processing will also remove any CF structure
instances that were already allocated in that CF at the time it was placed into maintenance
mode. In conjunction with the REALLOCATE command, the new maintenance mode support can
greatly simplify operational procedures related to taking down a CF for maintenance or
upgrade in a Parallel Sysplex.

This enhancement can eliminate some of the complexity of managing Coupling Facilities in
preparation for a maintenance or upgrade action. For CFRM policy updates, removing the CF
or maintaining multiple CFRM policies can be avoided.

z/OS Version 1 Release 9 Implementation

3.4.1 Migration and coexistence

A Coupling Facility may only be placed into and out of maintenance mode by a system
running z/OS V1R9. z/OS systems running V1R8 down to V1R6 with APAR OA17685
installed can recognize that a CF is in maintenance mode and is not eligible for CF structure
allocation. But the down-level systems cannot place a CF into or out of maintenance mode,
even with the APAR installed.

z/OS systems running V1R8 down to V1R6 with this support installed can recognize that a CF
is not eligible for CF structure allocation, and messages IXC3611, IXC362I, IXC367I, IXL015I,
IXC574l, and IXC463I have been modified with a new message insert indicating ALLOCATION
NOT PERMITTED.

Important: A sysplex that is falling back to a configuration without any z/OS V1R9 systems
may leave a CF stuck in maintenance mode. Before any fallback actions are taken, ensure
that all the CFs are taken out of maintenance mode. A CF maintenance mode indication
will be cleared by a sysplex-wide IPL.

3.4.2 Using the CF maintenance mode

A new SETXCF command is provided that allows a Coupling Facility to be placed into and
taken out of maintenance mode. You place the CF that will be removed from the environment
into maintenance mode by using the following command:

SETXCF START,MAINTMODE,CFNAME=(cfnamel, [cfname2,]...)

Place a CF into maintenance mode

Following is a typical procedure to place a particular Coupling Facility into maintenance
mode.

1. Place CF1 into maintenance mode.

-SETXCF START,MAINTMODE,CFNAME=CF1
IXC369I THE SETXCF START MAINTMODE REQUEST FOR COUPLING FACILITY
CF1 WAS SUCCESSFUL.

Figure 3-9 Start maintenance mode command

When a Coupling Facility is placed in maintenance mode, it is ineligible for CF structure
allocation purposes. This step prevents systems from allocating any structures in this CF.

Use the D XCF,CF,CFNM=cfname command to confirm that the CF went in maintenance
mode, as shown in Figure 3-10 on page 48. This figure shows that CF1 is in maintenance
mode, but it still has allocated structures. Two other Coupling Facilities (CF2 and CF3) are
shown, and are not in maintenance mode.

Chapter 3. Coupling Facility enhancements 47

-D XCF,CF,CFNM=CF1
IXC362I 15.54.43 DISPLAY XCF 869
CFNAME: CF1
ALLOCATION NOT PERMITTED
MAINTENANCE MODE

STRUCTURES :

DB8FU_LOCK1 DB8FU_SCA TGWLOCK00
ISGLOCK ISTMNPS IXC_DEFAULT 1
IXC_DEFAULT 3 RRS_DELAYEDUR 1 RRS_MAINUR_1
RRS_RESTART 1 RRS_RMDATA_1 SYSIGGCAS_ECS

SYSTEM_LOGREC(OLD) SYSTEM_OPERLOG (NEW) SYSZWLM_WORKUNIT

-D XCF,CF,CFNM=CF2
IXC362I 15.47.48 DISPLAY XCF 862

CFNAME: CF2
STRUCTURES:
EJESGDS_WTSCPLX4 IXC_DEFAULT_2 IXC_DEFAULT_4
SYSARC_PLEXO_RCL SYSTEM_OPERLOG(OLD)

-D XCF,CF,CFNM=CF3
IXC3621 15.47.53 DISPLAY XCF 864
CFNAME: CF3

STRUCTURES:
ISTGENERIC SYSTEM_LOGREC (NEW) SYSZWLM_991E2094

Figure 3-10 Display of CF1, CF2, and CF3

2. Use the REALLOCATE command.

Next, use the SETXCF START, REALLOCATE command to evaluate and process the CF
structures. This will move the CF structures out of the CF that has been placed into
maintenance mode. This will not move any CF structures into the CF that has been placed
into maintenance mode.

Note: The existing REALLOCATE process uses the XCF allocation algorithm, which has
changed in support of maintenance mode. It will view a CF that is in maintenance mode
as being ineligible for structure allocation purposes. It will also view a CF in
maintenance mode as an undesirable location, so that it will serially relocate structures
out of CFs that are in maintenance mode as part of its normal processing.

The new maintenance mode support, in conjunction with the REALLOCATE process,
provides a simpler way to prepare their Coupling Facilities for maintenance.

The CF that has been placed into maintenance mode is now empty and ready for upgrade
action or maintenance. Any new CF structure allocation will also avoid placing structures
in a CF that is in maintenance mode because when a Coupling Facility is placed in
maintenance mode it is ineligible for CF structure allocation purposes.

Part of the REALLOCATE command output was extracted, as shown in Figure 3-11 on
page 49. Note that REALLOCATE processes each structure sequentially.

48 z/OS Version 1 Release 9 Implementation

-SETXCF START,REALLOCATE

IXC5431 THE REQUESTED START,REALLOCATE WAS ACCEPTED.
IXC5211 REBUILD FOR STRUCTURE IGWLOCKOO

HAS BEEN STARTED

IXC5261 STRUCTURE IGWLOCKOO IS REBUILDING FROM
COUPLING FACILITY CF1 TO COUPLING FACILITY CF2.
REBUILD START REASON: OPERATOR INITIATED
INFO108: 00000028 00000028.

IXC5211 REBUILD FOR STRUCTURE IGWLOCKOO

HAS BEEN COMPLETED

IXC5211 REBUILD FOR STRUCTURE ISGLOCK

HAS BEEN STARTED...

IXC5441 REALLOCATE PROCESSING FOR STRUCTURE IXC _DEFAULT_ 4
WAS NOT ATTEMPTED BECAUSE
STRUCTURE IS ALLOCATED IN PREFERRED CF
IXC5451 REALLOCATE PROCESSING RESULTED IN THE FOLLOWING:
13 STRUCTURE(S) REALLOCATED - SIMPLEX
2 STRUCTURE(S) REALLOCATED - DUPLEXED
0 STRUCTURE(S) POLICY CHANGE MADE - SIMPLEX
0 STRUCTURE(S) POLICY CHANGE MADE - DUPLEXED
6 STRUCTURE(S) ALREADY ALLOCATED IN PREFERRED CF - SIMPLEX
0 STRUCTURE(S) ALREADY ALLOCATED IN PREFERRED CF - DUPLEXED
0 STRUCTURE(S) NOT PROCESSED
9 STRUCTURE(S) NOT ALLOCATED
0 STRUCTURE(S) NOT DEFINED

100 TOTAL

0 ERROR(S) ENCOUNTERED DURING PROCESSING
IXC5431 THE REQUESTED START,REALLOCATE WAS COMPLETED.

Figure 3-11 Part of REALLOCATE command output

Note: Enhancements for the REALLOCATE process are provided by APAR OA08688.

The REALLOCATE process removes all structures from a CF and reallocates the structures
on the other CFs in the environment as defined in CFRM policy. When it finishes,
messages IXC545] and IXC543I are issued to the operator.

An empty CF in maintenance mode is ready to be removed from a sysplex. As shown in
Figure 3-12 on page 50, CF1 is empty and ready to be removed from the sysplex for
maintenance and all structures are allocated in CF2 and CF3.

Chapter 3. Coupling Facility enhancements 49

50

-D XCF,CF,CFNM=CF1
IXC362I 15.57.54 DISPLAY XCF 989
CFNAME: CF1
ALLOCATION NOT PERMITTED
MAINTENANCE MODE

NO STRUCTURES ARE IN USE BY THIS SYSPLEX IN THIS COUPLING FACILITY

-D XCF,CF,CFNM=CF2
IXC362I 15.57.59 DISPLAY XCF 993

CFNAME: CF2
STRUCTURES:
DB8FU_LOCK1 DB8FU_SCA
IGWLOCKOO ISGLOCK

IXC_DEFAULT 1
IXC_DEFAULT 4
RRS_RESTART 1
SYSIGGCAS_ECS
SYSZWLM_WORKUNIT

IXC_DEFAULT 2
RRS_DELAYEDUR 1
RRS_RMDATA_1
SYSTEM_LOGREC (NEW)

-D XCF,CF,CFNM=CF3

IXC362I 15.58.03 DISPLAY XCF 995
CFNAME: CF3

STRUCTURES:

ISTGENERIC SYSTEM_LOGREC(OLD)

SYSZWLM_991E2094

EJESGDS_WTSCPLX4
ISTMNPS
IXC_DEFAULT 3
RRS_MAINUR 1
SYSARC_PLEXO_RCL
SYSTEM_OPERLOG (OLD)

SYSTEM_OPERLOG (NEW)

Figure 3-12 The result of the REALLOCATE process

When the upgrade action or maintenance finishes and the CF is back in the sysplex, the
CF must be placed out of the maintenance mode in order to accept allocation of
structures. You might use the following command to take a CF out of maintenance mode:

SETXCF STOP,MAINTMODE,CFNAME=(cfnamel, [cfname2,]...)
Figure 3-13 displays the stop maintenance mode command output.

-SETXCF STOP,MAINTMODE, CFNAME=CF1

IXC369I THE SETXCF STOP MAINTMODE REQUEST FOR COUPLING FACILITY

CF1 WAS SUCCESSFUL.

Figure 3-13 Stop maintenance mode command output

The REALLOCATE command can be used to move structures back into the CF, as shown in
Figure 3-14 on page 51, with the distribution of the allocated structures on CF1, CF2, and

CF3 after the REALLOCATE process.

z/OS Version 1 Release 9 Implementation

-D XCF,CF,CFNM=CF1
IXC362I 16.12.01 DISPLAY XCF 334

CFNAME: CF1
STRUCTURES::
DB8FU_LOCK1 DB8FU_SCA TGWLOCK00
ISGLOCK ISTMNPS IXC_DEFAULT 1
IXC_DEFAULT 3 RRS_DELAYEDUR 1 RRS_MAINUR 1
RRS_RESTART 1 RRS_RMDATA_1 SYSIGGCAS_ECS

SYSTEM_LOGREC(OLD) SYSTEM_OPERLOG (NEW) SYSZWLM_WORKUNIT

-D XCF,CF,CFNM=CF2
IXC362I 16.12.06 DISPLAY XCF 336

STRUCTURES:
EJESGDS_WTSCPLX4 IXC_DEFAULT_2 IXC_DEFAULT_4
SYSARC_PLEXO_RCL SYSTEM_OPERLOG(OLD)

-D XCF,CF,CFNM=CF3
IXC362I 16.12.09 DISPLAY XCF 338
CFNAME: CF3
STRUCTURES:
ISTGENERIC SYSTEM_LOGREC (NEW) SYSZWLM_991E2094

Figure 3-14 CF1, CF2, and CF3 after the REALLOCATE process

Modifications to existing messages

Existing messages for structure allocation evaluation are updated to support a new reason for
not using a CF that is in maintenance mode. The following messages are updated:

IXC5741 - Message IXC5741 is issued for the specified structure during
structure allocation of the new instance during a CF Structure rebuild or
allocation process.

IXC4631 - Message IXC463I is issued when the system attempted to allocate the
structure, but no Coupling Facility was suitable.

IXLO151 - Message IXLO15I is issued when a program attempted to connect or
rebuild-connect to a Coupling Facility structure and the connect processing
returned structure allocation information.

IXC369I - Message IXC369I is issued with the result of the SETXCF command
processing for each CF

IXC5691 - Message IXC569I is issued as hard copy message only to the syslog
whenever a Coupling Gacility has been placed into or taken out of Maintenance
Mode.

IXC361I - Message IXC361I is issued when a DISPLAY XCF,CF command was entered
to display summary information about the Coupling Facilities defined in this
sysplex. A new status line will be issued when the CF is in Maintenance mode.

IXC3621 - Message IXC362I is issued when a DISPLAY XCF,CF command was entered

to display detailed information about the Coupling Facilities defined in this
sysplex. A new status line will be issued when the CF is in Maintenance mode.

Chapter 3. Coupling Facility enhancements 51

52 z/OS Version 1 Release 9 Implementation

ICSF support for PKCS #11

RSA Laboratories of RSA Security Inc. offers its Public Key Cryptography Standards (PKCS)
to developers of computers that use public key and related technology. PKCS #11, also
known as Cryptoki, is the cryptographic token interface standard. It specifies an application
programming interface (API) to devices, referred to as fokens, that hold cryptographic
information and perform cryptographic functions. The PKCS #11 API is an industry-accepted
standard commonly used by cryptographic applications.

With z/OS V1R9, ICSF supports PKCS #11, which provides an alternative to the IBM
Common Cryptographic Architecture (CCA) and broadens the scope of cryptographic
applications that can make use of zSeries cryptography. PKCS #11 applications developed
for other platforms can be recompiled and now run on z/OS.

In this chapter, the PKCS #11 support in z/OS is introduced as follows:

» PKCS #11 overview

» 2z/OS ICSF overview

» ICSF: PKCS #11 support

© Copyright IBM Corp. 2007. All rights reserved. 53

4.1 PKCS #11 overview

4.2 z/OS

PKCS #11 specifies an application programming interface (API) to devices (virtual or real),
referred to as tokens. Tokens hold cryptographic information and perform cryptographic
functions. PKCS #11 was designed by RSA as a standard for talking to smart cards. The
major advantage of PKCS #11 over other, competing standards such as OpenSSL is that the
persistent storage and retrieval of objects is part of the standard, where objects are
certificates, keys, and even application-specific data objects.

On most single-user systems, a token is a smart card or other plug-installed cryptographic
device, accessed through a card reader or slot. The PKCS #11 specification assigns numbers
to slots, known as slot IDs. An application identifies the token that it wants to access by
specifying the appropriate slot ID. On systems that have multiple slots, it is the application’s
responsibility to determine which slot to access. PKCS #11 is becoming very popular on other
platforms.

z/OS must support multiple users, each potentially needing a unique keystore. In this
multiuser environment, the system does not give users direct access to the cryptographic
cards installed as if they were personal smart cards. Instead, zZOS PKCS11 tokens are
virtual, conceptually similar to RACF (SAF) key rings. An application can have one or more
z/OS PKCS11 tokens, depending on its needs.

Typically, PKCS #11 tokens are created in a factory and initialized either before they are
installed, or upon their first use. In contrast, zZOS PKCS11 tokens can be created using
system software such as RACF, the gskkyman utility, or by applications using the C API. Each
token has a unique token name, or label, that is specified by the end user or application at the
time that the token is created.

PKCS #11 terminology
Following are some terms that are defined in PKCS #11.

TOKEN Logical view of a crypto device: for example, a smart card
SLOT Logical view of a card reader; numbered 0-n

OBJECT Item stored on a token; for example a certificate or, key
USER Owns the private data on the token knowing the PIN

Security Officer (SO) Person who initializes a token

Note: Additional information on PKCS #11 can be found at the following URL:
http://www.rsa.com/rsalabs/node.asp?id=2133

ICSF overview

ICSF is a software element of z/OS. ICSF works with the hardware cryptographic features
and the Security Server (RACF element) to provide secure, high-speed cryptographic
services in the z/OS environment. ICSF provides the application programming interfaces by
which applications request the cryptographic services. ICSF is also the means by which the
secure cryptographic features are loaded with master key values, allowing the hardware
features to be used by applications. The cryptographic feature is secure, high-speed
hardware that performs the actual cryptographic functions. Your processor hardware
determines the cryptographic feature available to your applications.

54 z/OS Version 1 Release 9 Implementation

Note: ICSF, the cryptographic element of z/OS, only provides support for Common
Cryptographic Architecture (CCA). This puts z/OS at a disadvantage when it come to
application enablement. PKCS #11 is not as low-level as CCA is, so this makes it easier to
use with C- based applications. With some minor exceptions, RACF, System SSL, and
Java (JSSE) all use different key stores with RACF key rings, System SSL key databases,
and Java key stores. Providing PKCS #11 native to ICSF provides an opportunity to have a
common key store usable by all three.

4.3 ICSF: PKCS #11 support

Prior to z/OS V1R9, z/OS ICSF provided the interface to the cryptographic hardware on
System z servers. The application programming interface (API) used is the IBM Common
Cryptographic Architecture (CCA). In order to broaden the scope of cryptographic
applications that are able to make use of zSeries cryptography, ICSF on z/OS V1R9 provides
support for an additional API called Public Key Cryptography Standards #11 (PKCS #11).

PKCS #11 is an APl commonly used in cryptographic applications by developers of computer
systems employing public key and related technology. PKCS #11 is the cryptographic token
interface standard. It specifies an API to devices which hold cryptographic information and
perform cryptographic functions. It supports a new VSAM data set similar to the existing ICSF
cryptographic keys data set (CKDS) and public keys data set (PKDS). This new data set, the
token data set (TKDS), is the repository for cryptographic keys, certificates, and data used by
PKCS #11 applications. With the TKDS and with token management callable services
provided by ICSF, IBM middleware products such as RACF, SSL, and Java can use a
common repository for keys and tokens and deprecate usage of their individual key stores.

4.3.1 PKCS #11 integration into z/0S

PKCS #11 is now a subcomponent of ICSF. To integrate PKCS #11 into ISCF, the following
changes needed to be made to the standard support.

» With standard PKCS #11, security is controlled by knowledge of a PIN. This does not work
well on a multi-user system because multiple applications and users must share same
PIN.

With PKCS #11 on z/OS, however, tokens are not cryptographic devices but rather virtual
smart cards. New tokens can be created at any time. These tokens can be
application-specific or system-wide, depending on the RACF access control you have
defined. PINs are not used. The token access in z/OS is controlled by a new CRYPTOZ
RACF resource class.

» With standard PKCS #11, applications store keys on smart cards. There is only so much
space on a single cryptographic card with z/OS. z/OS applications should not have to
know what cards are available, because ICSF does not provide direct access to cards.

With this new support, tokens are virtual smart cards. Each is a collection of certificates,
keys, and data objects as needed by a given application such as a RACF key ring.

Token names (labels) can be up to 32 characters (such as A-Z, 0-9, the period (.), @,#,
and $). Applications do not access crypto cards directly. In ICSF, tokens and their
contents are stored in a new VSAM data set, called the token key data set (TKDS). Now,
ICSF has three VSAM data sets, CKDS, PKDS, and the new TKDS. In addition to the
PKCS #11 C API, there are also some low level callable services.

Chapter 4. ICSF support for PKCS #11 55

The RACF RACDCERT command and System SSLs gskkyman utility can be used to create
and manage tokens.

The token browser provides a means of examining PKCS #11 tokens that may have been
created or modified outside of ICSF (for example, by an application program). The browser
is not intended for full token management; instead, you can use RACF or System SSL for
that. However, it does have some minor editing capability, such as allowing you to alter

object labels.

Note: This new support is useful for PKCS #11 applications that are ported to z/OS.

4.3.2 Updating your ICSF definition to support PKCS #11

56

A new RACF (SAF) class is created for defining the token protection profiles called
CRYPTOZ. There are two CRYPTOZ class resources for each token: one for the SO role,
and one for the user role, as shown in Table 4-1.

» The RACF token-specific resources are for a USER role and a SO role.
» The three PKCS #11 access types for SAF access levels are User R/W, SO R/W, and

User R/O.

» The three z/OS unique access types are Weak SO, Weak User, and Strong SO.

The two roles and three levels provide the six possible access levels. The User R/O, SO R/W,
and User R/W access levels are the standard PKCS #11 roles. For example, the security
officer (SO) R/W can initialize tokens. The Weak SO, Weak User, and Strong SO access
levels are unique to z/OS.

Table 4-1 Token access control using the CRYPTOZ resource class

read/create/delete/
modify/use public objects

create/delete tokens

CRYPTOZ READ UPDATE CONTROL
resource
SO token-label Weak SO - SO R/W - Weak SO plus | Strong SO - SO RW

plus read (but not use)
private objects, create/
delete/modify private
objects

User token-label

User R/O - read/use
public and private objects

Weak User - User R/O
plus create/delete/modify
private and public objects
(cannot
add/delete/modify
certificate authority
objects)

User R/W - Weak User
plus add
/delete/modify
certificate authority
objects

Using the resource class access

The resource names are formed from the label of the token being protected: SO for the
security officer role, and USER for the User role. Generic profiles can be used to protect
multiple tokens. The access levels unique to z/OS are as follows.

Weak SO With this resource you can define the trust policy for a token (the trusted CA
certificates), but cannot initialize tokens. This level of access might be

appropriate for a corporate trust policy officer or auditor.

z/OS Version 1 Release 9 Implementation

Strong SO With this resource you can initialize tokens and populate them, but not use
the keys. This level of access might be appropriate for an application
administrator.

Weak User With this resource you have access to everything in the token, but cannot
alter the trust policy of the token. This level of access might be appropriate for
a server daemon user ID.

Implementing PKCS #11 support
You need to provide the following two actions on an existing ICSF definition to support
PKCS #11:

» You have to define a TKDS VSAM data set. ICSF provides a sample TKDS allocation job
(member CSFTKDS) in SYS1.SAMPLIB. The TKDS must be a key-sequenced data set
with spanned variable length records and must be allocated on a permanently resident
volume.

» The TKDSN option is the name of an existing TKDS or an empty VSAM data set to be
used as the TKDS. If the TKDSN option is not specified in the ICSF installation options
data set, no PKCS #11 services will be provided.

PKCS #11 tokens and objects

PKCS #11 tokens and objects are stored in a VSAM data set called the token data set
(TKDS). The TKDS contains individual entries for each token and object that is added to it.
ICSF maintains two copies of the TKDS: a disk copy, and an in-storage copy. Only token
objects are stored in the TKDS; session objects are stored in a data space.

New tokens can be created at any time. These tokens can be application-specific or
system-wide, depending on the RACF access control you have defined.

4.3.3 RACF and z/OS PKCS #11 token services

Tokens are containers that hold digital certificates and keys. z/OS supports PKCS #11 tokens
with tokens provided and managed by ICSF.

Figure 4-1 on page 58 shows an architectural view of the entire support. Everything below the
dashed line is the ICSF address space. Above the dashed line is the users’ address space.
The human user interfaces are the token browser panels, for the RACDCERT command and the
gskkyman utility.

The others are programming interfaces shown in Figure 4-1 on page 58 at the callable
service level.

» The C application-level programming interfaces are distributed as follows.

31-bit, 31-bit XPLINK, 64-bit DLLs and sidedecks shipped in SYS1.SIEALNKE.
— UNIX versions also shipped in /usr/lib and /usr/Ipp/pkecs11/lib.

csnpdefs.h is shipped in SYS1.SIEAHDR.H and /usr/include.

Sample code and makefiles are shipped in /usr/Ipp/pkcs11/samples.

» The existing SSL applications (both System SSL and JSSE) can make use of tokens in
place of key stores. System SSUs gskkyman is another utility for managing certificates
and keys. The gskkyman UNIX command line utility is enhanced to manage tokens similar

Chapter 4. ICSF support for PKCS #11 57

to key database (.kdb) files. Like RACDCERT, it too has been modified to provide token
management support.

While gskkyman has token support, the System SSL runtime services have not been
modified to support reading tokens directly through SAF key ring services and can use
tokens the same as key rings. To get System SSL to read a token indirectly (through
R_Datalib), use the key ring naming convention as follows:
TOKEN/<+fn=Arial+fs=12+fx=0+fe=1>token-name>

The gskkyman command line options work just like their key database equivalents.

» You can authorize applications to use the R_datalib (IRRSDL0OO or IRRSDL64) callable
service to read and extract token information. This is the service SSL applications use to
read RACF key rings. Note that a caller of R_Datalib (System SSL and JSSE) does not

have to change to use tokens instead of key rings. You can tell it to read a token instead of
a key ring simply by prefixing the token name with *TOKEN*/.

For example, a keyfile directive in Webserver’s httpd.conf file is as follows:
keyfile *TOKEN*/VENDOR.TOK SAF

Note: For details, see z/OS Security Server RACF Callable Services, SA22-7691.
» You can use resources in the CRYPTOZ class to control access tokens.

Note: See z/OS Cryptographic Services Integrated Cryptographic Services Facility
Writing PKCS #11 Applications, SA23-2231, for additional programming
considerations.

New “C” Applications

Token Management

s C_function() ==
% RACF (RACDCERT) 1

Token Management Token Browser
RACF (R_Datalib) —— (ISPF Panels)
Key ring Services ‘ Callable Servces ‘

/ / PC Interface
SSL (runtime) Assembler &= .7

Programs . ICSF
’ (z/0S PKCS11)

SSL (gskkyman) s prCcs #11“C Interface
o mH

Existing SSL
Applications

Session Object
1 TKDS — VSAM KSDS Token key Dataspace

: data set
) Each record holds one object TKDS

Figure 4-1 Architectural view of the entire support with ICSF and PKCS #11

58 z/OS Version 1 Release 9 Implementation

RACF RACDCERT command

The RACF RACDCERT command now has support for tokens, similar to the key ring support.
There are six new subfunctions, all of which call the new ICSF token management callable
services. You can use RACF in the following ways to define and manage certain certificate
objects in a token (certificates, public keys, and private keys).

ADDTOKEN Defines a new empty token.
DELTOKEN Deletes an existing token and all its contents.
LISTTOKEN Displays information about the objects contained in the token.

BIND Connects a RACF certificate, its public key, and (in some cases) its private
key, to an existing token.

UNBIND Removes a certificate and its keys from an existing token.

IMPORT Adds a certificate to RACF from an existing token.

ICSF will check access to TKDS functions via RACF calls for CRYPTOZ resource class.
RACF will check access to certificate functions similar to other commands such as the
FACILITY class checks.

See z/OS Security Server RACF Command Language Reference, SA22-7687, for syntax and
usage information about these functions of the RACDCERT command.

Token management

Because tokens are managed by ICSF, and not RACF, other applications can use ICSF
functions to change tokens without updating the certificate information in the RACF database.
Similarly, RACF changes to digital certificates already bound to a token are not reflected in
the token information maintained by ICSF. Therefore, the following restrictions apply:

» Deleting, altering, or renewing a RACF certificate that is bound to a token has no affect on
the equivalent token objects managed by ICSF.

» Deleting or altering a certificate object in a token has no effect on the following objects:
— The equivalent RACF certificate
— The equivalent certificate objects in other tokens

Entering cryptographic objects into the TKDS

You can store public key objects, private key objects, secret key objects, certificate objects,
and data objects in the token data set (TKDS) through the use of ICSF callable services.
ICSF provides a set of callable services that allow applications to update the TKDS.
Applications can use these services to create, delete, list, set and get attribute values from
the TKDS.

The keys stored in the TKDS are not encrypted. Therefore, it is recommended that you
RACF-protect data set access to the TKDS. (This is in addition to the RACF protection of the
individual tokens via the CRYPTOZ class.) This will provide additional security for your
installation.

Also, you can use the ICSF panel on ISPF to create, delete, manage, and list your tokens.

4.3.4 Migration considerations
Restarting the ICSF started procedure is required to get ICSF to recognize the setup

changes. Additional changes to the RACF CRYPTOZ resource class after restarting do not
require another restart.

Chapter 4. ICSF support for PKCS #1159

IBM provides a sample PKCS #11 program called testpkcs11. The program is passed the
name of a PKCS #11 token, and performs the following tasks:

» Creates a token that has the name passed

» Generates an RSA key-pair

» Encrypts some test data using the public part of the key-pair
» Decrypts the data using the private part of the key-pair

» Deletes the key-pair and the token

This UNIX utility is accessed via /ust/lpp/pkcs11/bin/testpkcs11. The source code is shipped
in /usr/lpp/pkcs11/samples.

4.4 Using PKCS11 token browser utility panels

60

The PKCS11 token browser allows management of PKCS11 tokens and objects in the TKDS.
The PKCS11 token browser is Option 5.7, shown in Figure 4-2, which on the ICSF utilities
panel is Option 7:

PKCS11 TOKEN - Management of PKCS1l tokens

The user must have SAF authority to manage tokens and SAF authority to a token to manage
the objects of a token.

The ICSF Token Management panel shown in Figure 4-2 has four options. The options
Create a new token, Delete an existing token and Manage an existing token expect you
to supply the full token name below. The option Delete an existing token will ask you to
confirm the delete.

If you want to manage an existing token and are not sure of the token name, or you want to
manage multiple tokens, use the List existing tokens option. This option will list all the tokens
you have access to. Or, if you wish to narrow down the search, you can enter a partial token
name. Any token that begins with the value specified will be listed, if you have access.

OPTION ===> _
Enter the number of the desired option.

Create a new token
Delete an existing token
Manage an existing token
List existing tokens

BWN -

Full or partial token name:

Figure 4-2 ICSF Token Management panel for PKCS #11

Two of the ICSF existing panels have changed: the ADMINCTL panel, and the
OPTSTAT.OPTIONS. These panels now display the active TKDS name if it is set up.

The ADMINCTL panel, Option 4 from the primary panel, is shown in Figure 4-3 on page 61.

z/OS Version 1 Release 9 Implementation

Administrative Control Functions -- Row 1 to 4 of 4
SCROLL ===> PAGE

COMMAND ===> _

Active CKDS:
fctive PKDS:
Active TKDS:

5YS1.5C60. SCSFCKDS
S¥YS1.5C60. SCSFPKDS
SYS1.5C60.SCSFTKDS

control, enter the appropriate character
and press ENTER.

To change the status of a
(E - ENABLE, D - DISABLE)

FUNCTTON STATUS
Dynamic CKDS Access ENMABLED
PKA Callable Serwvices ENABLED
PKDS Read Access ENABLED
PKDS Write, Create, and Delete Access ENABLED

SR KK KK KO R KK KK R ORI R R R R KK BOT tom oOf data s sk s o s sk s sk s i R K KK 5K OK 5K K KK KK K KK 5K OK K KK

Figure 4-3 ICSF Administrative Control Functions panel updated for TKDS

The OPTSTAT.OPTIONS, Option 3.1 from the primary panel, is shown in Figure 4-4.

7777777777777777777777 ICSF - Installation Option Display —— Row 1 to 14 of 14
COMMAND ===> _ SCROLL ===3> PAGE
Active CKDS: SYS1.SC60.SCSFCKDS
Active PKDS: SYS1.SC60.SCSFPKDS
Active TKDS: SYS1.SC60.SCSFTKDS
OPTION CURRENT WALUE
CHECKAUTH RACF check authorized callers YES
COMPAT Allow CUSP/PCF compatibility NO
DOMAIN Current domain index or usage domain index 8
KEYAUTH Key Authentication in effect YES
CKTAUTH CKT Authentication in effect NO
SSM Allow Special Secure Mode YES
TRACEENTRY Number of trace entries active 1000
USERPARM User specified parameter data USERPARM
REASONCODES Source of callable services reason codes ICSF
PKDSCACHE PKDS Cache size in records 64
SYSPLEXCKDS Sysplex consistency for CKDS updates NO, FATL (NO)
SYSPLEXTKDS Sysplex consistency for TKDS updates NO, FATL(NO)
WAITLIST Source of CICS Wait List if CICS installed default
MK R KRR AR KRR KR KRR KRR KR BOTTom OF dala = s s r kg kK K K 5K K 5 K KK K K KK KK K KO KK

Figure 4-4 ICSF Installation Option Display panel updated for TKDS

4.4.1 Running ICSF in a sysplex environment

ICSF is supported in a sysplex environment. The CKDS, PKDS, and TKDS can be shared
across systems in a sysplex.

TKDS management in a sysplex
The systems sharing a TKDS may be different LPARs on the same system, or different
systems across multiple System z processors. It is not required to share the TKDS across a
sysplex, but it is recommended to allow your application to be dynamically routed to any

image safely. Each

system may have its own TKDS.

A sysplex may have a combination of systems that share a TKDS, and individual systems
with separate TKDSs. There is no requirement that the DOMAINs must be the same to share

a TKDS.

Chapter 4. ICSF support for PKCS #11

61

62

When sharing the TKDS, observe these precautions:
» Dynamic TKDS services update the DASD copy of the TKDS and the in-storage copy on

the system where it runs. The SYSPLEXTKDS option in the ICSF installation options data
set provides for sysplex-wide consistent updates of the DASD copy of the TKDS, and the
in-storage copies of the TKDS on all members of the sysplex sharing the same TKDS.

All members of the sysplex sharing the TKDS must be running ICSF HCR7740 or later in
order to participate in the sysplex-wide consistency of TKDS data.

If SYSPLEXTKDS(YES,FAIL(xxx)) is coded in the installation options data set, a sysplex
broadcast message will be issued informing sysplex members of the TKDS update, and
requesting them to update their in-storage TKDS copy.

If SYSPLEXTKDS(NO,FAIL(xxx)) is coded in the installation options data set, there is no
sysplex broadcast of the update.

If multiple sysplexes share a TKDS, or if a sysplex and other non-sysplex systems share a
TKDS, there is no provision for automatic update of the in-storage copies of the TKDS on
the systems which are not in the same sysplex as the system initiating the TKDS update.

Changing parameters in the installation options data set
The ICSF installation options, SYSPLEXTKDS(YES or NO,FAIL(fail-option)), can be defined
and changed as follows:

SYSPLEXTKDS(NO,FAIL(fail-option)) Indicates no XCF signalling will be performed

when an update to a TKDS record occurs.

SYSPLEXTKDS(YES,FAIL(fail-option)) Indicates the system will be notified of updates

made to the TKDS by other members of the
sysplex who have also specified
SYSPLEXTKDS(YES,FAIL(fail-option)).

SYSPLEXTKDS(YES,FAIL(YES)) Indicates ICSF will terminate abnormally if there is

a failure creating the TKDS latch set.

SYSPLEXTKDS(YES,FAIL(NO)) Indicates ICSF initialization processing will

continue even if the request to create a TKDS latch
set fails with an environment failure.

This system will not be notified of updates to the
TKDS by other members of the ICSF sysplex

group.

If you do not specify the SYSPLEXTKDS option, the default value is:

SYSPLEXTKDS (NO, FAIL(NO))

z/OS Version 1 Release 9 Implementation

Allocation dynamic storage
iIimprovements

The allocation dynamic storage enhancements are designed to improve scalability by moving
dynamic area storage above the 16 Mb line. This gives allocation more space for recursive
retry logic. It is done as part of allocation recovery, and reduces the chances of allocation
failures and possible ABEND 878 in the allocation code. This improvement frees storage
below the 16 Mb line for use by programs that do require storage with that attribute.

Also, by having more working space, improved performance of allocation can occur over
time.

This chapter describes the component changes that relieve dynamic storage in all ASIDs.
» Allocation overview

» Allocation improvements in z/OS V1R9

© Copyright IBM Corp. 2007. All rights reserved. 63

5.1 Overview

64

Allocation is the process by which the system assigns, or allocates, 1/0 resources to your job.
An I/O resource is a ddname-data set combination, with any associated volumes and devices.

Deallocation is the process by which the system releases, or deallocates, I/O resources that
were allocated to your job.

There are two basic types of allocation: job step allocation and dynamic allocation. The two
types allocate resources at different points in program processing. Job step allocation assigns
resources to your program before your program runs, and dynamic allocation assigns
resources to your program while it is running. The needs of your program determine which
type of allocation you should use.

Characteristics of job step allocation

When using job step allocation, you request I/O resources through JCL. The system allocates
those I/O resources before your program runs, as part of initiating the job step, and
deallocates resources after your program runs, as part of job step termination. This type of
allocation ensures that the resources you request are available before your program runs, and
throughout program execution.

Characteristics of dynamic allocation

When using dynamic allocation, you request I/O resources by coding the DYNALLOC macro
and filling in the fields of the SVC 99 parameter list. The system allocates and deallocates
those 1/O resources while your program is running. Dynamic allocation also allows you to
request information about your allocation environment, and to deallocate or modify
characteristics of your allocation environment that were acquired either dynamically or
through JCL.

Dynamic allocation allows you to tailor your device allocations based on input to your
program. You can design your program to dynamically allocate only those devices that are
necessary in a particular programming path, rather than allocating all possible device
requirements before your program runs.

Dynamic allocation also allows you to use common resources more efficiently. When there is
high contention for a resource, dynamic allocation allows you to acquire an I/O resource just
before you need it and to release it just after you need it, so that your program holds the
resource for a shorter length of time.

Allocation virtual storage constraints

In order to process any data set, the system must allocate it to your program before you can
open it. There are many control blocks that allocation creates in the user private area. To
handle more than 100 K devices as some DB2 users do, an excessive amount of virtual
storage is used by allocation.

A great deal of effort has been invested in moving these areas above the line in previous
releases, but until now some areas were still gotten in 24-bit addressing, thereby causing
constraints in this area and limiting the number of data sets that could be allocated.

In the following sections we describe the allocations improvements provided by z/OS V1R9.

z/OS Version 1 Release 9 Implementation

5.2 Allocation improvements in z/OS V1R9

In z/OS V1RY, all the requirements to get storage in 24-bit were eliminated, and then all these
dynamic areas were moved to 31-bit addressing. The following improvements are introduced:

» Reduce the chance of S878 in storage-constrained environments. In the past some
abend878 or abend80A ABENDs occurred because there was not enough available
storage in 24-bit of the user private area. With this improvement the abends caused by
allocation excessive virtual storage usage were eliminated, so installations will see fewer
of these types of ABENDs.

» Extends limits of our recursive allocation retry processing.

» Results in fewer failed allocations causing jobs to fail. Now, some jobs that had storage
constraints in 24-bit mode can allocate more data sets.

» Using storage above 16 MB frees storage for required users.
» Having more space allows the compiler to generate more efficient code.

» The storage manager was changed to obtain these areas in large buffer pools, so
allocation handles large buffers more efficiently and does not need to run this process so
often.

Allocation use of storage

In past releases of MVS, the allocation component used storage below the 16 MB line for its
dynamic area. The services invoked by allocation required storage with that attribute.
However, over time, these requirements have been eliminated, leaving allocation still using
those resources for no good reason. Even though most components allow above-the-line
storage, there are still reasons to use below-the-line storage. Because installations are
consolidating work on z/OS, there is less below-the-line storage free for everyone to use.
Also, storage use by allocation modules is generally growing over time. And finally, by using
that constrained resource, the recursive processing that helps ensure jobs get the resources
they need to run is limited, resulting in abends and failed jobs.

With z/OS V1R9, allocation moves its dynamic areas where there is more room to grow above
the 16 MB line. In the process of doing this, the storage manager is updated to obtain storage
in larger chunks, to improve the efficiency of the load modules. The benefit of these changes
is to free storage for others to use, allow more working room, and reduce the chances of 878
abends due to out-of-storage conditions.

This changes, for this line item, an intrinsic part of the allocation component. Therefore, the
support is invoked by all MVS allocation invokers, namely MVS batch processing and
dynamic allocation, used to allocate devices and data sets at run time.

Allocation improvement considerations

The two types of allocation are invoked by the MVS scheduler component: one responsible
for batch allocation, and the other by any other subsystem or application wanting to perform a
dynamic allocation. Therefore, all changes are internal to the component, so there are no new
or changed externals.

For any exploiters doing an allocation, such as the DB2 subsystem, TSO users, or batch jobs,
the use of allocation exits has always been required to be AMODE 31. Those exits may now
see changes in addressing due to the above-the-line storage for parameter lists.

Note that these changes only affect z/OS V1R9 systems; lower-level systems will see no
changes in allocation.

Chapter 5. Allocation dynamic storage improvements 65

66 z/OS Version 1 Release 9 Implementation

System Logger enhancements

System Logger is an MVS component that allows an application to log data from a sysplex.

You can log data from one system or from multiple systems across the sysplex. A system
logger application can write log data into a log stream, which is simply a collection of data.

This chapter describes a general overview and some improvements in the system logger
function (IXGLOGR) in z/OS V1R9. The following topics are discussed:

» System Logger overview

» Recall processing for log stream migrated data set

» Cleanup of CF list entries for unconnected log streams

» General documentation improvements

© Copyright IBM Corp. 2007. All rights reserved.

67

6.1 System Logger overview

68

System logger is a set of services that allows an application to write, browse, and delete log
data. You can use system logger services to merge data from multiple instances of an
application, including merging data from different systems across a sysplex.

Suppose you are concurrently running multiple instances of an application in a sysplex, and
each application instance can update a common database. It is important for your installation
to maintain a common log of all updates to the database from across the sysplex, so that if
the database should be damaged, it can be restored from the backup copy. You can merge
the log data from applications across the sysplex into a log stream, which is simply a
collection of data in log blocks residing in the Coupling Facility and on DASD.

Log stream

A log stream is an application-specific collection of data that is used as a log. The data is
written to and read from the log stream buffers by one or more instances of the application
associated with the log stream. A log stream can be used for such purposes as a transaction
log, a log for recreating databases, a recovery log, or other logs needed by applications.

A system logger application can write log data into a log stream, which is simply a collection
of data. Data in a log stream spans two kinds of storage:

» Interim storage, where data can be accessed quickly without incurring DASD 1/O

» DASD log data set storage, where data is hardened for longer term access

When the interim storage medium for a log stream reaches a user-defined threshold, the log
data is offloaded to DASD log data sets.There are two types of log streams:

» Coupling Facility log streams

» DASD-only log streams

The main difference between the two types of log streams is the storage medium that system
logger uses to hold interim log data:

» In a Coupling Facility log stream, interim storage for log data is in Coupling Facility list
structures.

» In a DASD-only log stream, interim storage for log data is contained in local storage
buffers on the system. Local storage buffers are data space areas associated with the
system logger address space, IXGLOGR.

Your installation can use just Coupling Facility log streams, just DASD-only log streams, or a
combination of both types of log streams. The requirements and preparation steps for the two
types of log streams are somewhat different.

Some key considerations for choosing either Coupling Facility log steams or DASD-only log
streams are:
» The location and concurrent activity of writers and readers to a log stream's log data

» The volume of log data written to a log stream.

Coupling Facility log streams are required when:

— There needs to be more than one concurrent log writer and/or log reader to the log
stream from more than one system in the sysplex.

— There are high volumes of log data being written to the log stream.

z/OS Version 1 Release 9 Implementation

DASD-only log streams can be used when:

» There is no need to have more than one concurrent log writer and/or log reader to the log
stream from more than one system in the sysplex.

» There are low volumes of log data being written to the log stream.

Note: Because DASD-only log streams always use staging data sets, high volume writers
of log data may be throttled back by the 1/O required to record each record sequentially to
the log stream's staging data sets.

Coupling Facility log stream

Figure 6-1 shows how a Coupling Facility log stream spans two levels of storage; the
Coupling Facility for interim storage, and DASD log data sets for more permanent storage.
When the Coupling Facility space for the log stream fills, the data is offloaded to DASD log
data sets. A Coupling Facility log stream can contain data from multiple systems, thus
allowing a system logger application to merge data from systems across the sysplex.

SYS1 Youngest data » Oldest data

application ——

Structure

L0 LT O

Coupling Facility DASD log data set

Figure 6-1 Log stream data on the Coupling Facility and DASD

When a system logger application writes a log block to a Coupling Facility log stream, system
logger writes it first to a Coupling Facility list structure. System logger requires that a Coupling
Facility list structure be associated with each log stream.

When the Coupling Facility structure space allocated for the log stream reaches the
installation-defined highoffload threshold, system logger moves (offloads) the log blocks from
the Coupling Facility structure to VSAM linear DASD data sets, so that the Coupling Facility
space for the log stream can be used to hold new log blocks. From a user’s point of view, the
actual location of the log data in the log stream is transparent.

Chapter 6. System Logger enhancements 69

DASD-only log stream

Figure 6-2 shows a DASD-only log stream spanning two levels of storage; local storage
buffers for interim storage, which is then offloaded to DASD log data sets for more permanent
storage.

A DASD-only log stream has a single-system scope; only one system at a time can connect
to a DASD-only log stream. Multiple applications from the same system can, however,
simultaneously connect to a DASD-only log stream.

SYS1 Youngest data ———= Oldest data

application ————1

LI O OO [

SYS1 local
storage buffers DASD log data set

Figure 6-2 Log stream data in local storage buffers and DASD log data sets

When a system logger application writes a log block to a DASD-only log stream, system
logger writes it first to the local storage buffers for the system and duplexes it to a DASD
staging data set associated with the log stream. When the staging data set space allocated
for the log stream reaches the installation-defined highofflload threshold, system logger
offloads the log blocks from local storage buffers to VSAM linear DASD data sets. From a
user’s point of view, the actual location of the log data in the log stream is transparent.

Both a DASD-only log stream and a Coupling Facility log stream can have data in multiple
DASD log data sets; as a log stream fills log data sets on DASD, system logger automatically
allocates new ones for the log stream.

6.1.1 Log stream exploiters

70

There are several log stream exploiters, each one with very specific use; there is no unique
recommendation to define a log stream. You must follow the application’s recommendations
to define each log stream.

CICS uses two log streams (DFHLOG and DFHSHUNT) for transaction recovery. As soon the
transaction ends, it deletes all entries from log stream. It is acceptable that all these log
stream entries reside in the interim buffer and do not go to the DASD log data set; if you
handle all the CICS log stream entries in the buffer, you will enjoy better performance.

z/OS Version 1 Release 9 Implementation

OPERLOG uses a log stream to record all the SYSLOG messages for long periods of time on
data sets. These data sets usually are managed by HSM or a similar product.

Any application using IXGLOGR can retrieve data from the log data that resides on DASD;
when they are migrated, it calls the HSM to recall them.

Prior to z/OS V1R7, there was just one task in the IXGLOGR ASID for recalls that were
performed synchronously. If several recall requests arrived at the same time, a recall queue
was built up. If a problem occurred with the first recall on the queue, then the remainder of the
queue would wait for a long period of time until the problem was corrected, thus causing
issues for applications. Also, there was a performance problem if several requests came at
the same time.

6.1.2 z/OS V1R8 improvements of log stream data sets recall

Starting with z/OS V1R8, you can separate log streams into two groups, PRODUCTION and
TEST. This means that you can separate system logger processing for TEST log streams
from your PRODUCTION work log streams on a single system or sysplex. Your
PRODUCTION log streams are then protected from a hang or failure in the System Logger
test environment.

To separate log streams into PRODUCTION and TEST log streams, you can use the
GROUP(PRODUCTION | TEST) parameter in the following ways:

» To group log streams using a batch program, use the GROUP(PRODUCTION | TEST)
parameter on the DEFINE or UPDATE requests on the administrative data utility,
IXCMIAPU.

» To group log streams using a program, use the new GROUP(PRODUCTION | TEST)
parameter on the DEFINE or UPDATE requests on the IXGINVNT service.

When you have log streams separated into PRODUCTION and TEST groups, System
Logger will do data set processing, such as data set allocations, data set recalls, and other
functions for the two log stream groups in two different sets of tasks. In addition, system
logger limits resource consumption of TEST log streams as follows:

» TEST log streams are limited to using a maximum of 25% of the connections allowed,
whereas PRODUCTION log streams can use at least 75% of connection slots.

» TEST log streams are limited to using a maximum of 25% of LOGR couple data set
extents allowed, whereas PRODUCTION log streams can use at least 75%.

By default, log streams are PRODUCTION log streams. This means that existing log streams
with no GROUP designation are PRODUCTION log streams.

Using structures with grouped log streams

A Coupling Facility structure can only have one type of log stream assigned to it, either TEST
or PRODUCTION. If you try to assign a TEST log stream, for example, to a STRUCTURE
with PRODUCTION log streams, the request will fail with a reason code of
IxgRsnCodeBadGroup (X'08E9').

The first log stream that is defined to a structure determines what type of log streams can be
defined to that structure. If the first log stream defined to a structure is a TEST log stream,
you can only define TEST log streams to that structure. If you specify or default to
PRODUCTION for the first log stream defined to a structure, you can only define other
PRODUCTION log streams to that structure.

Chapter 6. System Logger enhancements 71

Other support for separating TEST and PRODUCTION log streams
The following interfaces support the separation of TEST and PRODUCTION log streams:

» The DISPLAY LOGGER command displays the group designation for log streams.

» The IXCMIAPU utility LIST LOGSTREAM request displays the group designation for log
streams.

» SMF record type 88, subtype 1, Log Stream section, includes field SMF88GRP to display
the group designation for each log stream.

» IXGQUERY will return the log stream group designation as long as you specify a large
enough buffer length (200 bytes or greater).

» ENF signal 48 for DEFINE and UPDATE log stream requests will identify the group of the
log stream.

z/OS V1R8 log stream recall processing limitations

Although z/OS V1R8 increased the log stream recall capacity using two groups, it did not
solve the performance or hung problems of the log stream recall processing because the
same situation could occur in each group.

System Logger has single-threaded, synchronous handling of recall requests for migrated log
stream data sets. This means that each data set recall must be satisfied (successfully or
otherwise) before the next migrated data set recall is requested. This occurs in two tasks; one
for the PRODUCTION group, and one for the TEST group.

This can cause limited or slower access to the log stream resources. For example, a recall
request could be necessary during a log stream's offload activity, or when an application is
browsing log data that can result in interference between different log stream activities. A
recall request for one log stream data set could hold up a recall request for another log
stream data set. These problems are addressed in z/OS V1R9, as described in the following
section.

6.2 z/OS V1R9 improvements of log stream data set recalls

72

z/0OS V1R9 continues using two sets of tasks to process the PRODUCTION and TEST log
streams. Now, however, the recalls are processed asynchronously and up to 24 concurrent
requests for PRODUCTION log streams are allowed, and up to 8 concurrent requests for
TEST log streams are allowed.

DFSMShsm or an equivalent function is required. The ability to display data sets being
recalled by System Logger and to have System Logger stop waiting on a data set recall are
enhanced. This provides relief for all System Logger exploiters when an installation makes
use of data set migration/recall capabilities, and it helps to reduce the interference previously
caused by the recall request of one log stream data set needing to be completely satisfied
before System Logger starts the next recall request.

New command support
New command parameters are created to manage the recall environment:

» Usethe D LOGGER,ST,REC command to see the status of the recalls as shown in Figure 6-3
on page 73.

RECALLS or REC - This new keyword is a filter that requests a display of all the outstanding
asynchronous recall requests that system logger has made to DFSMShsm using the
ARCHRCAL service.

z/OS Version 1 Release 9 Implementation

This command also shows data set recalls waiting for a significant number of seconds.

D LOGGER,ST,REC

IXG601I 16.52.38 LOGGER DISPLAY 719

SYSTEM LOGGER STATUS

SYSTEM SYSTEM LOGGER STATUS

SC70 ACTIVE

LOGGER DATA SET RECALLS
GROUP: PRODUCTION
SECONDS DATA SET NAMES
00000038 IXGLOGR.PROD.STREAMO01.A0000001
00000137 IXGLOGR.PROD.STREAM35.A0000041
GROUP: TEST
NO DATA SET RECALLS WAITING

Figure 6-3 Display logger shows the recalls pending progress

» Use the SETLOGR FORCE command to clean up log stream or data set resources related to a
system logger log stream. The command is useful for managing a log stream when a log
stream becomes unusable. The command is also useful for causing Logger to no longer
wait on a particular migrated data set being recalled. System Logger will attempt to
release all the related resources for the log stream or data set based on the request.

Use the SETLOGR FORCE command to stop waiting on an outstanding asynchronous recall
request for a named data set, as shown in Figure 6-4. The new parameter NOREC or
NORECALL directs Logger to stop waiting on an outstanding asynchronous recall request for
the named data set and displays if the recall has been waiting too long. It can be forced,
so applications waiting on the recall request can continue.

Recall requests can also hold up offloads, and messages IXG310, IXG311, and IXG312
can be shown on the console. In these situations, a SETLOGR FORCE,NORECALL request can
be issued to stop waiting on the recall, to allow the affected applications to continue
processing.

setlogr force,norec,dsn=IXGLOGR.PROD.STREAM01.A0000025

IXG6511 SETLOGR FORCE NORECALL COMMAND ACCEPTED FOR
DSNAME=IXGLOGR.PROD.STREAMO1.A0000025

IXG2801 IXGLOGR RECALL REQUEST STOPPED BY SETLOGR COMMAND FOR
DSN=IXGLOGR.PROD.STREAMO1.A0000025

IXG6611 SETLOGR FORCE NORECALL PROCESSED SUCCESSFULLY FOR
DSNAME=IXGLOGR.PROD.STREAM01.A0000025

Figure 6-4 SETLOGR FORCE recall command example

Use the SETLOGR FORCE command when a System Logger service task is not progressing
properly and you receive some of the following messages:

IXG281I, IXG272E, IXG312E and IXG115A

When more than one request is waiting on the same outstanding recall, the SETLOGR
FORCE command will affect all them. Note that these two commands only execute in
z/OS V1R9; in previous releases, a syntax error occurs. This implementation is completely
transparent to the System Logger exploiters, they will get this benefit without any change.

Chapter 6. System Logger enhancements 73

6.3 Cleanup of CF list entries for unconnected log streams

In previous releases, if the LOGR CDS indicated a log stream was never connected or there
are no current systems connected (and no failed persistent connections), then there should
be no CF structure list header information or entries and elements on the lists associated with
the log stream. If this mismatch occurred, the application could not connect to the log stream
structure and it would fail. A similar situation could occur with the log stream structure if a
failed persistent connection occurred and it did not match with the LOGR CDS view.

In both cases, there was no way to clean up log stream structure header information so as to
allow the application to connect to the structure. The System Logger should ensure the list
headers for a log stream are established as in a new state when a log stream had no current
connections.

With z/OS V1R9, if there is a mismatch of information between the LOGR CDS view and the
log stream structure header information, the first system that tries to connect to a log stream
structure will use the LOGR CDS view information to clean up the log stream structure header
information, thus allowing the application to connect to structure. If the cleanup is successful,
then the connection to the log stream can continue. If the cleanup is not successful, then
System Logger fails the log stream connection with an error return and reason code
information along with diagnostic messages to the hardcopy log to aid the invoking program
and installation.

This implementation helps to improve System Logger reliability and availability.

6.4 System Logger publication updates

74

In z/OS V1R9, informational updates are made to publications that have System Logger
descriptions:

» Using the LOGR CDS has more explicit guidance on sysplex IPL implications.

» An authorized services guide section was created and moved from an unauthorized
publication to zZ0OS MVS Programming: Authorized Assembler Services Guide,
SA22-7608. The new chapter is “Using System Logger Services”. Also added is ENF48
usage descriptions.

» Section “A.2.4.2 LOGR couple data set use considerations” was rewritten in z/0S MVS
Setting up a Sysplex, SA22-7625.

» The explanation of message IXC287I now refers to a rewritten section “LOGR couple data
set use considerations” in zZ0S MVS System Messages, Volume 10 (IXC-IZP),
SA22-7625.

» The chapter “Using System Logger Services” was updated and this relevant section was
moved to zZ0OS MVS Programming: Assembler Services Guide, SA22-7627. Another
topic, “Expired Log Stream Token”, was added.

» Other documentation changes for the z/OS V1R9 enhancements are in the following
publications:

— z/OS MVS System Commands, SA22-7627

— z/OS MVS Programming: Assembler Services Reference, Volume 2
(IAARR2V-XCRLX), SA22-7607

— z/0OS MVS Programming: Authorized Assembler Services Reference, Volume 2
(EDTINFO-IXGWRITE), SA22-7610

z/OS Version 1 Release 9 Implementation

SMF recording to log streams

System Management Facility (SMF) collects and records system and job-related information
for an installation. SMF formats the information that it gathers into system-related records (or
job-related records). System-related SMF records include information about the
configuration, paging activity, and workload. Job-related records include information on the
CPU time, SYSOUT activity, and data set activity of each job step, job, APPC/MVS
transaction program, and TSO/E session.

To record SMF records in SMF data sets, an installation must allocate direct access space
and catalog the SMF data sets. IBM recommends that you catalog the SMF data sets in the
master catalog. SMF should have a minimum of two data sets for its use, and IBM
recommends that you run with a minimum of three SMF data sets to ensure availability.

With z/OS V1R9, SMF can optionally utilize the System Logger to record SMF records into
log streams, which can improve the write rate and increase the volume of data that can be
recorded.

In this chapter we introduce the new SMF records write capability to a log stream using the
System Logger facility.

» SMF overview

» SMF exploring log streams

» Processing SMF log streams

© Copyright IBM Corp. 2007. All rights reserved. 75

7.1 SMF overview

76

SMF is a system component that captures system execution informations and records them
into the SYS1.MANXx data set. Also, it has one interface that any application can invoke and
report their performance flow and delays. This information is captured in a user-defined
interval time and recorded in a data set for future processing.

Some installations use the SMF information simply to manage their system and make
performance adjustments in their system definitions. Others installations use the SMF
information to bill their customers.

The amount of SMF record data has increased over the time. SMF writes these records in
one VSAM data set called the SYS1.MANXx data set, shown in Figure 7-1, and when it fills up
it switches to another one and marks the first one as dump required.

When a subsystem or user program wishes to write an SMF record, they invoke the SMF
record macro, SMFEWTM. This macro takes the user record and invokes SMF code to locate
an appropriate buffer in the SMF address space and copy the data there, as shown in

Figure 7-1. If the record is full, another SMF program is scheduled to locate full SMF buffers
and write them to the SYS1.MANXx data set. Each buffer is numbered to correspond to a
particular record in the SMF data set. This allows the records to be written in any order and to
place them correctly in the data set.

Although this is not shown in Figure 7-1, when all records have been written and the
SYS1.MANXx data set is full, SMF switches to a new SYS1.MANXx data set, and marks the full
one as DUMP REQUIRED. That data set cannot be used again until it is dumped and
cleared. Scheduling the SMF dump program must be done in a timely manner to ensure that
the SMF MANX data set is returned to use as soon as possible to ensure that no data is lost
due to an “all data sets full” condition.

SMF Address Space

Record

Program//'

O Program requests to write a
SMF record

O Locates appropriate buffer in
SMF A.S. to write the record

O When ready to write, writes full
buffers to the SMF data set

O Note: Each buffer is numbered
to correspond to a particular
record in the SMF data set

Figure 7-1 Overview of current SMF data record flow

z/OS Version 1 Release 9 Implementation

Current implementation deficiencies

The current implementation deficiencies are addressed by the new support in z/OS V1R9.
Following are the current problems that have new options:

>

Several SYS1.MANXx data sets can be defined. SMF records may be lost if all the
SYS1.MANXx data sets are filled up and not dumped, or during the SMF switch data set.

There are situations when that system can generate a significant amount of SMF records,
exceeding the system capacity to write them into the SYS1.MANXx data sets.

The current implementation of SMF can lose data if writes are being held up, when all
SYS1.MANXx data sets have become full or across SMF data set switch processing.

In addition to the possibility of losing data when recording, the SMF dump program is
required to read and write every record to move the data to archive data sets, where it can
then be processed by other programs (such as for sorting), or by the SMF dump program
again to further filter and partition the data for use. This can result in the data being read
by the SMF dump program several times, as it is read and copied for use by the various
exploiters of SMF data.

The SMF records are written in any order, so they need to be sorted for post processing
and in a sysplex environment, it is necessary to merge all system information in order to
have a sysplex-wide analysis.

Many installations have already set up automation to dump the SMF data sets using
IFASMFDP as a post processor and they are satisfied with this function. This support
continues the same. However, for installations that need more SMF data record write
capacity, or for those whose SMF records are lost during a data set switch, it is
unacceptable.

7.1.1 SMF and log streams with z/OS V1R9

z/OS V1R9 introduces an additional capability to write SMF records to log streams managed
by System Logger. With this new capability you can define several log stream for several
groups of SMF records. You can define one log stream to write just the RMF records types, so
during the post processor they are already isolated. When you define one log stream you
have to define the SMF records type that will be written to this log stream. You can define a
default log stream to write all the remaining SMF records types not defined to a specific log
stream.

This new support uses the following functions and improvements:

» Utilize System Logger to improve the write rate and increase the volume of data that can

be recorded.

System Logger utilizes modern technology such as the Coupling Facility and media
manager to write more data at much higher rates than the current SMF SYS1.MANXx data
set allows.

Provide better management of the data by enhancing SMF to record its data to multiple
System Logger log streams, based on record type. The record data is buffered in
dataspaces, instead of the SMF address space private storage, thus allowing increased
buffering capacity.

Providing keywords on the OUTDD keyword of dump program that allows data to be read
once and written many times. By recording different records to different log streams, SMF
dump processing is also improved because a dump program per log stream can be
submitted, with each being more efficient, since less records are read and ignored. This
reduces processing time because there is less filtering needed by the dump program.

Chapter 7. SMF recording to log streams 77

78

» One SMF record type can be written to more than one log stream. By selecting log
streams based on record type, the data can be partitioned at the point of its creation,
resulting in less reprocessing by the SMF dump program, which means less data read per
dump program instance.

» For each SMF log stream, a dataspace is created as a buffer in the SMF ASID, so each
buffer is 2 GB. Within SMF, each dataspace will have a task dedicated to writing its data to
a particular log stream, increasing the rate at which you can record data to the Logger.

z/OS V1R9 SMF recording to log streams

When recording to log streams, as shown in Figure 7-2, subsystems or user programs still
invoke the SMFEWTM macro to take the user record and invoke SMF code. However, instead
of locating a buffer in SMF private storage, SMF locates a dataspace corresponding to the
user’s record type and log stream where the record will be written. A buffer with space to hold
the record is located and the record is copied there. When the record is full, a writer task is
posted.

Unlike the scheduled approach in SMF data set recording, this task is already started and
ready to write. In addition, writes to System Logger are done at memory-to-memory speeds,
with System Logger accumulating many, many records to write out, resulting in an improved
access currently not possible with current SMF data set recording.

Using a dataspace to hold the records for a given log stream allows a full 2 GB of pageable
memory to be used for buffering records in the event of delays in log stream writing in System
Logger. This allows more data to be buffered than SMF data set recording, which is limited to
the amount of available private storage in the SMF address space.

DS1 description Dataspace 1 Dataspace 2

Y DS2 description

DS2 description

Record :
? DSn description
Y
' Writer Writer
Program Task Task

> Program requests to write a SMF record

> SMF locates correct dataspace

> Locates appropriate buffer to write the record

> If full, buffer passed to task to be written to log
stream

A |
DASD Log
Data Sets

Figure 7-2 SMF data flow using log streams

The benefit in all this is that you can write more data faster, with more functionality. The
System Logger was created to handle large volumes of data. With minimal SMF switch
processing and no record numbering schemes to maintain, this eliminates the switch SMF
command bottleneck.

z/OS Version 1 Release 9 Implementation

Note: The use of log streams for SMF Data is optional. Existing SYS1.MANXx function
continues to exist for installations satisfied with this functionality.

Coupling Facility or DASD-only log streams
There are two types of log streams, and SMF logging supports both of them:

» Coupling Facility log streams

Data is stored in a Coupling Facility structure and then offloaded to DASD. A Coupling
Facility log stream is ideal for merging SMF data from multiple systems. Make sure that a
system’s SMF ID (SID) is unique within the sysplex.

» DASD-only log streams

Data is stored in local storage buffers and then offloaded to DASD. DASD-only log streams
can only be single-system in scope, and only one system can write data to any given
DASD-only log stream.

7.2 Installation of SMF log streams

The following items are prerequisites for installation of this new function to use SMF recording
of log data using the System Logger and log streams.

IXCMIAPU utility

Use the IXCMIAPU utility with TYPE=LOGR to create the log streams. Remember to plan the
retention period, offload data set size, staging data set size, and whether the log stream will
be CF-based or DASD-only.

Ensure sufficient SMS resources for peak recording periods and offload data sets.

SMFPRMxx parmlib member
Update the SMFPRMxx parmlib member to define the use of log streams and consider the
following criteria:

» Plan to retain your SMF MANXx data sets as a fallback plan.
» Update the procedures for SMF SWITCH processing and IEFU29 and IEFU29L exits.
» Update the procedures to indicate how the data will be archived when using log streams.

7.2.1 Defining SMF log streams

Define the log streams and Coupling Facility structures (for Coupling Facility log streams) in
the LOGR policy couple data set using the administrative data utility (IXCMIAPU) utility. You
need to define one new log stream in the LOGR couple data set (CDS) for each LSNAME
statement defined and another (optional) for the DEFAULTLSNAME statement.

You need to consider and define:

» The log stream names and how many log streams to use.

» If you use DASD-only (no automatically merged) or CF structure log (automatically
merged in the CF if more than one system use the same log stream).

» The use of staging data sets.

» Structure names.

Chapter 7. SMF recording to log streams 79

80

» Retention period.
» Autodelete.

» System Logger requires that you have SMS installed and active, although the SMF log
stream data set and staging data sets do not need to be SMS-managed.

IXCMIAPU utility example

An example of defining SMF log streams is shown in Figure 7-4 on page 82. In this example,
three log streams are defined and shown in Figure 7-4 on page 82. One log stream is
DASD-only and the other two are CF structure log streams. For a CF structure log stream, it is
necessary to associate the log stream definition with the structure definition as shown in the
example. In this example we associated one log stream to one structure, so you can have
better control in the CF structure size and the HIGHOFFLOAD threshold; however, you can
associate several log streams to one structure.

Consider the following specifications in the examples shown in Figure 7-3.

» Define the Coupling Facility structures in the CFRM policy couple data set using the
IXCMIAPU utility.

» Review the LOGR CDS (DSEXTENT) definition, to be able to control all the data sets that
the SMF log streams create for a long retention period. Defining DSEXTENT(10), allows
LOGR to control up to 1680 LOGR data sets for all kinds of log stream data sets.
Changing this keyword requires a reallocate of the LOGR CDS.

» Ensure that there is enough DASD space for the new SMF log stream data set that is
dynamically allocated until that space is migrated. If the LOGR policy migrates the file in
two days, then you need guarantee DASD space for at least two or three days.

Dataspace ﬁ
SMF Logger
Address | Address Offload Data Sets

Space Space

Lo
Data (5 Blogk

\

z/0S
D

Log records duplexing

Figure 7-3 System Logger configuration for SMF recording to log streams

Consider the following specifications in the examples shown in Figure 7-4 on page 82.

» For a DASD-only SMF log stream, you must specify the LOGR policy MAXBUFSIZE
parameter to define the maximum log block size, in bytes, that the system can write to the
DASD-only log stream.

IBM suggests a MAXBUFSIZE for a DASD-only log stream of 65532. You are required to
define a MAXBUFSIZE of at least 33024.

z/OS Version 1 Release 9 Implementation

\{

For a Coupling Facility log stream, you must specify the LOGR policy MAXBUFSIZE
parameter to define the maximum log block size, in bytes, that the system can write to the
log stream assigned to the structure you are defining.

IBM suggests that you define a MAXBUFSIZE value between 33024 and 65532. SMF
issues an error message if the MAXBUFSIZE value specified is too small.

The size of the SMF log stream is defined by the LS_SIZE keyword. If you define
LS_SIZE(100000), this allocates each data set with 556 cylinders.

Defining AUTODELETE(YES) and RETPD(365) for a log stream means that data sets are
automatically deleted after 365 days. Defining AUTODELETE(NO) indicates to delete the
entries after 365 days using System Logger services which must be provided as a
user-written application.

HIGHOFFLOAD specifies the percent value you want to use as the high offload threshold
for the Coupling Facility space allocated for this log stream. When the Coupling Facility is
filled to the high offload threshold point or beyond, System Logger begins offloading data
from the Coupling Facility to the DASD log stream data sets. The default HHGHOFFLOAD
value is 80%. You can specify the default in the following way:

HIGHOFFLOAD(80)

Chapter 7. SMF recording to log streams 81

//SMFLOGD ~ JOB 'ACCTNO,ACCTINFO','FIRST LASTNAME',
// MSGLEVEL=(1,1),CLASS=A,NOTIFY=&SYSUID. ,MSGCLASS=A
//EXECL EXEC PGM=IXCMIAPU
//SYSPRINT DD SYSOUT=X
//SYSIN DD *
DATA TYPE (LOGR)
DEFINE STRUCTURE NAME(SMF_PERF)
LOGSNUM(5)
AVGBUFSIZE(32767)
MAXBUFSIZE (65532)
DEFINE STRUCTURE NAME(SMF_REMIND)
LOGSNUM(5)
AVGBUFSIZE(32767)
MAXBUFSIZE (65532)
DEFINE LOGSTREAM NAME (IFASMF.PERF)
DASDONLY (NO)
STRUCTNAME (SMF_PERF)
STG_DUPLEX (YES)
LS_SIZE(100000)
AUTODELETE (YES)
RETPD(365)
HLQ(LOGR)
HIGHOFFLOAD(80)
LOWOFFLOAD (0)
DEFINE LOGSTREAM NAME (IFASMF.DEFAULT)
DASDONLY (NO)
STRUCTNAME (SMF_REMIND)
STG_DUPLEX (YES)
LS_SIZE(100000)
AUTODELETE (YES)
RETPD(365)
HLQ(LOGR)
HIGHOFFLOAD(80)
LOWOFFLOAD (0)
DEFINE LOGSTREAM NAME (IFASMF.JOB)
DASDONLY (YES)
MAXBUFSIZE (65532)
LS_SIZE(30000)
STG_SIZE(30000)
AUTODELETE (YES)
RETPD(365)
HLQ(LOGR)
HIGHOFFLOAD(80)
LOWOFFLOAD (0)
/*

Figure 7-4 JCL example to define an SMF log stream to the LOGR CDS

7.2.2 Updating the CFRM policy for SMF CF structure logstream

CFRM policy is defined using IXCMIAPU utility and it is unique in z/OS sysplex; the new SMF
structure must be appended to the current policy. You need to get a copy of the last CFRM
policy definition using the IXCMIAPU utility and include the statements for the new SMF

structures.

82 z/OS Version 1 Release 9 Implementation

Figure 7-5 has an example of the CFRM statements that you need to include in your current
policy.

STRUCTURE NAME (SMF_PERF)
SIZE(30000)
INITSIZE(30000)
PREFLIST(CF2,CF1)
REBUILDPERCENT (1)

STRUCTURE NAME (SMF_REMIND)
SIZE(30000)
INITSIZE(30000)
PREFLIST(CF1,CF2)
REBUILDPERCENT (1)

Figure 7-5 CFRM statements to include in policy

After you define a new policy, you must activate it using the following command:
SETXCF START,POLICY,TYPE=CFRM, POLNAME=CFRMPOL1

7.2.3 Updating the SMFPRMxx parmlib member

During initialization, SMF searches the SMFPRMxx parmlib member to see whether the
system is using log streams or SMF data sets to record SMF data. To use the new SMF log
stream facility you need to include some new statements in the SMFPRMxx parmlib member.

SMF MANX data sets can still be defined in the SMFPRMxx parmlib member if log streams
are to be used. This allows for a fallback to SMF data sets if the exploitation of log streams
encounters unexpected problems.

The new keywords are as follows:

RECORDING (DATASET | LOGSTREAM)
DEFAULTLSNAME (Togstreamname)
LSNAME (1ogstreamname, TYPE{aa,bb} | ({aa,bb:zz}))

Choosing log stream names

The statement LSNAME specifies the log stream name that will be used for a particular group
of SMF records type to be captured by this log stream. You can define a default log stream
name on DEFAULTLSNAME, and request particular record types go to particular log streams
using the TYPE subparameter on the LSNAME parameter. You can define several LSNAME
statements to segregate the SMF records.

LSNAME (1ogstreamname, TYPE ({aa,bb} | {aa,bb:zz})

TYPE specifies the SMF record types that SMF is to collect to the specified log stream on
the LSNAME parameter. aa, bb, and zz are the decimal notations for each SMF record
type. You cannot specify subtypes on the TYPE subparameter for LSNAME. A colon (:)
indicates the range of SMF record types (bb through zz) to be recorded.

Value Range: 0-255 (SMF record types)
Default: TYPE (0:255) (all types)

Chapter 7. SMF recording to log streams 83

84

The log stream name must be composed as follows:

» The first seven characters must be IFASMF. and if the first six characters are not IFASMF,
the system issues an error message.

» You must have a minimum of 8 characters. A log stream name should be a unique
descriptive identifier, made up of two or more qualifiers (each 1 to 8 characters in length)
separated by periods (.) which you must count as characters.

Each qualifier can contain up to eight numeric, alphabetic, or national (§, #, or @)
characters. The first character of each qualifier must be an alphabetic or national
character.

» You must have a maximum of 26 characters.

» It must conform to other log stream naming conventions as documented in IXGINVNT in
z/0S MVS Programming: Assembler Services Reference, Volume 2 (IARR2V-XCTLX),
SA22-7607.

Note: You can use system symbols and the &SID symbol in SMF log stream names. The
resolved substitution text for the &SID system symbol is the system identifier specified on
the SID parameter in SMFPRMxx.

Be aware that &SID can be used only to name resources in SMFPRMxx; you cannot
specify &SID in other parmlib members.

Choose SMF recording type

If the member specifies RECORDING(LOGSTREAM), SMF will write the SMF data to the log
streams specified on the DEFAULTLSNAME and LSNAME parameters of the SMFPRMxx
parmlib member. You can define DATASET or LOGSTREAM. The default is DATASET.

RECORDING (DATASET | LOGSTREAM)

Although you can identify both SMF data sets and log streams in the SMFPRMxx parmlib
member, only one recording mechanism can be in use at a time. Use the following command
to easily switch between recording types.

SETSMF RECORDING (DATASET|LOGSTREAM)

This facilitates both exploitation of the new function, as well as fallback in case of errors.

Choose default log stream name

The optional statement DEFAULTLSNAME specifies the log stream name that will be used to
capture the SMF records type not defined in any of the LSNAME statements. You should
define another log stream name for the DEFAULTLSNAME following the same convention as
for the of LSNAME statement.

DEFAULTLSNAME (IFASMF.SSID.DEFAULT. SMF)

SMF record types to log streams

If you specify the same record type on two or more different LSNAME parameters, the system
writes the record to all specified log streams. Figure 7-6 on page 85 shows one example of
how to define the new statements in SMFPRMxx. In this case:

Record type 30 will be written to both log streams IFASMF.PER and IFASMF.JOB.
Record type 89 will be written to the IFASMF.PERF log stream.

Record type 04 will be written to the IFASMF.JOB log stream.

All the other SMF record types will be written to the IFASMF.DEFAULT log stream.

vyvyyy

z/OS Version 1 Release 9 Implementation

DEFAULTLSNAME (IFASMF.DEFAULT)
LSNAME (IFASMF.PERF,TYPE(30,89))
LSNAME (IFASMF.JOB,TYPE(30,04))
RECORDING (LOGSTREAM)

Figure 7-6 SMFPRMxx new statements for log streams

In Figure 7-7, with the use of a colon (:), a range of SMF record types (from 70 to 79) are
recorded to log stream IFASMF.PERF and SMF record types 30 and 4 are recorded on log
stream IFASMF.JOB. All the other SMF record types will be written to the IFASMF.DEFAULT
log stream.

DEFAULTLSNAME (IFASMF.DEFAULT)
LSNAME (IFASMF.PERF,TYPE(70:79))
LSNAME (IFASMF.JOB,TYPE(30,04))
RECORDING (LOGSTREAM)

Figure 7-7 SMFPRMxx log stream statements segregating RMF records

Note: This specification can result in duplicate records being recorded.

7.2.4 SMFPRMxx parmlib member considerations

When defining the new statements and keeping the old data set definition in the SMFPRMxx
parmlib member, it is possible to switch between the two recording methods using the SETSMF
command. During an IPL, the recording method statement definition is used or the default is
used.

To use the SETSMF command to switch between modes, you are required to define the option
PROMPT(LIST) or PROMPT(ALL) in the current SMFPRMxx parmlib member.

It is recommended that you define the DEFAULTLSNAME statement for those SMF record
types that do not have a specific log stream defined. If a mismatch occurs between the SMF
record type that is defined in the SYS or SUBSYS statement and the SMF record type that
has been captured by any LSNAME statement, and you are switching from data set mode to
log stream mode, then the system will not complete the SET SMF=XX command execution and
it will continue recording in data set mode.

If you are running with log stream mode and switch to another log stream mode and the
mismatch occurs, the system will continue with the old log stream mode until you fix the
mismatch and reuse the SET SMF=XX command.

Note: For SMF log stream recording, you can direct record types to particular log streams
by using the TYPE subparameter on LSNAME. You still select the records you want to
write with the TYPE/NOTYPE option of SYS or SUBSYS.

This means it is possible to specify record types on the TYPE subparameter of LSNAME

that the system is not actually recording, because they are not specified on SYS or
SUBSYS.

If you are IPLing your system to run in log stream mode and the mismatch occurs, the system
will buffer the SMF records until you fix the problem and reissue the SET SMF=XX command.

Chapter 7. SMF recording to log streams 85

If a mismatch occurs during a change of the SMFPRMxx parmlib member parameters switch,
or an IPL is done, then the following messages may be issued:

IFA702I NO LOGSTREAMS WERE SPECIFIED FOR THE FOLLOWING RECORD TYPES nl-nx
IFA710I LOGSTREAM PARAMETERS WILL NOT BE USED DUE TO ERROR
IFA7171 LOGSTREAMS ARE NOT USABLE BY SMF. DATA BEING BUFFERED TIME=hh.mm.ss

7.2.5 Switching to log stream mode

86

There are several ways to switch to the SMF log stream recording mode:

» Use the SETSMF command if your current SMFPRMxx parmlib member has both (data sets
and log stream) definitions and the PROMPT keyword.

SETSMF RECORDING (LOGSTREAM)

» Use the SET SMF=xx command, if you defined a new SMFPRMxx parmlib member with log
stream definitions.

SET SMF=XX

» When you are IPLing the system and pointing to the new SMFPRMxx parmlib member
that specifies RECORDING(LOGSTREAM), however, this is not the preferred way to
migrate to SMF log streams. This is because, if you have definition problems, the system
will buffer the SMF records in a dataspace until you fix it.

The preferable way to migrate is to create a new SMFPRMxx parmlib member that
includes the new statements, and then use the SET SMF=XX command because most
members use the NOPROMPT option. You will receive the messages shown in the IPL
example in Figure 7-8, Figure 7-9 on page 87, and Figure 7-10 on page 88.

SET SMF=10
TIEE2521 MEMBER SMFPRM10 FOUND IN SYS1.PARMLIB
IEE9671 10.04.06 SMF PARAMETERS 977

MEMBER = SMFPRM10

MULCFUNC -- DEFAULT

.......

SID(SC70) -- DEFAULT
DEFAULTLSNAME (IFASMF.DEFAULT) -- PARMLIB
PROMPT (LIST) -- PARMLIB
DSNAME (SYS1.SC70.MAN3) -- PARMLIB
DSNAME (SYS1.SC70.MAN2) -- PARMLIB
DSNAME (SYS1.SC70.MAN1) -- PARMLIB
ACTIVE -- PARMLIB
*155 TEE357A REPLY WITH SMF VALUES OR U

Figure 7-8 Setting the access to a specific SMFPRMxx parmlib member during IPL

z/OS Version 1 Release 9 Implementation

R 155,U
TEE600I REPLY TO 155 IS;U

IEE9741 10.04.34 SMF DATA SETS 007

NAME VOLSER SIZE(BLKS) %FULL STATUS
P-SYS1.S5C70.MAN1 SBOXD5 1500 0 ALTERNATE
S-SYS1.5C70.MAN2 SBOXD5 1500 67 ACTIVE
S-SYS1.S5C70.MAN3 SBOXD5 1500 0 ALTERNATE

IEF1961 IGD100I 6E16 ALLOCATED TO DDNAME SYS00132 DATACLAS ()

IEF196I IEF2371 6E16 ALLOCATED TO SYS00133
IXC5821 STRUCTURE SMF_PERF ALLOCATED BY SIZE/RATIOS. 010
PHYSICAL STRUCTURE VERSION: CO09A71D3 A709EB4B

STRUCTURE TYPE: LIST

CFNAME: CF2
ALLOCATION SIZE: 30208 K

POLICY SIZE: 30000 K

POLICY INITSIZE: 30000 K

POLICY MINSIZE: 0 K

IXLCONN STRSIZE: 0K

ENTRY COUNT: 678

ELEMENT COUNT: 41802

ENTRY:ELEMENT RATIO: 1: 65

ALLOCATION SIZE IS WITHIN CFRM POLICY DEFINITIONS
IXLO14TI IXLCONN REQUEST FOR STRUCTURE SMF_PERF 011
WAS SUCCESSFUL. JOBNAME: IXGLOGR ASID: 0017
CONNECTOR NAME: IXGLOGR_SC70 CFNAME: CF2

IXLO15T STRUCTURE ALLOCATION INFORMATION FOR 012
STRUCTURE SMF_PERF, CONNECTOR NAME IXGLOGR_SC70
CFNAME ALLOCATION STATUS/FAILURE REASON

CF2 STRUCTURE ALLOCATED AC001800
CF1 PREFERRED CF ALREADY SELECTED AC001800
IEF1961 IGD100I 836A ALLOCATED TO DDNAME SYS00134 DATACLAS ()

TEF196I IEF2371 836A ALLOCATED TO SYS00135
IXC5821 STRUCTURE SMF_REMIND ALLOCATED BY SIZE/RATIOS. 016
PHYSICAL STRUCTURE VERSION: CO09A71D4 33740214

STRUCTURE TYPE: LIST

CFNAME: CF1
ALLOCATION SIZE: 30208 K

POLICY SIZE: 30000 K

POLICY INITSIZE: 30000 K

POLICY MINSIZE: 0K

IXLCONN STRSIZE: 0K

ENTRY COUNT: 678

ELEMENT COUNT: 41802

ENTRY:ELEMENT RATIO: 1: 65

ALLOCATION SIZE IS WITHIN CFRM POLICY DEFINITIONS
IXLO14TI IXLCONN REQUEST FOR STRUCTURE SMF_REMIND 017
WAS SUCCESSFUL. JOBNAME: IXGLOGR ASID: 0017
CONNECTOR NAME: IXGLOGR_SC70 CFNAME: CF1

IXLO15I STRUCTURE ALLOCATION INFORMATION FOR 018
STRUCTURE SMF_REMIND, CONNECTOR NAME IXGLOGR_SC70

Figure 7-9 IPL messages (continued)

Chapter 7. SMF recording to log streams

87

IFA7111 LOGSTREAM PARAMETERS ARE IN EFFECT

IEE5361 SMF VALUE 10 NOW IN EFFECT
D SMF
IFA7141 10.04.36 SMF STATUS 032
LOGSTREAM NAME BUFFERS STATUS
A-IFASMF.DEFAULT 4325 CONNECTED
A-IFASMF.PERF 0 CONNECTED
A-TIFASMF.JOB 0 CONNECTED

Figure 7-10 Final IPL messages and display of current SMF log stream allocations

7.3 Dumping the SMF log stream data set

88

With z/OS V1R9, a new SMF dump program called IFASMFDL is available. The IFASMFDP
utility is used to process the SMF MANXx data sets, isolate the records, create files to be
post-processed, and clean the MAN data sets. Now, with log steam data sets, the new
IFASMFDL utility reads the log streams and can create several different files as required in
just one step.

The record data from the new SMF dump program IFASMFDL should be virtually
indistinguishable from data dumped by the SMF data set dump program IFASMFDP. You will
just need to change your JCL to use the new IFASMFDL utility.

IFASMFDL dump program utility

The SMF log stream dump program dumps the contents of one or more log streams to
sequential data sets on either tape or direct access devices. The SMF log stream dump
program allows the installation to route different records to separate files and produce a
summary activity report.

A new feature in the SMF log stream dump program is the addition of filters on the OUTDD
statements. Previously, each OUTDD would receive all the records specified on the main filter
keywords of DATE/START/END/SID. If it was required to create different OUTDD data sets
with different records from the same input, it was necessary to run the dump program a
second time to create that second data set.

Now, with the new IFASMFDL utility, it is possible to specify those same filters on the OUTDD
statement, allowing the capability to read the log stream one time, and partition the output,
sending different records to different data sets. This should result in fewer invocations of the
dump program being required, in turn causing less impact to the system by reading the log
stream only once.

Note: A feature in the SMF dump program for log streams allows you to partition output
data based on date, time, and SMF ID (SID).

IFASMFDL utility example

In the example shown in Figure 7-11 on page 89, the three OUTDD statements refer to the
three data sets defined in the JCL, and they specify the SMF record types to be written to
each data set. The JCL is explained as follows:

» The DCB= keyword has been coded for the output data set defined by OUTDD2. Any
block size 4096 or greater may be specified. Choosing a block size suitable for the device
type being used will improve storage resource use. For this job, the data set specified by

z/OS Version 1 Release 9 Implementation

OUTDD1 will have a system-determined block size. The data set specified by OUTDD2
will have a block size of 32000.

» The LRECL= keyword has been coded for an output data set defined as OUTDDS. For this
job, the data set specified by OUTDDS3 will have an LRECL of 32760. For OUTDD1 and
OUTDD2, the LRECL will default to 32767.

» The LSNAME parameters contain the names of three log streams to be dumped.
» The OUTDD parameters contain filters selecting the SMF record types to be dumped:

— OUTDD1 specifies that you want to dump record types 0,2,10,15-30, and subtype 1 of
record type 33 starting with those issued at 7:30 am and ending at 6:50 pm.

— OUTDD2 specifies that you want to dump record types 10 through 255 from dates
October 1, 2006 through November 30, 2006.

— OUTDDS specifies that you want to dump record types 10 through 255.

» The DATE parameter specifies, for those OUTDD statements which do not include the
DATE subparameter, that data from January 1, 2006 through December 31, 2006 is to be
written.

» The SID parameters specify that data will be dumped for systems 308A and 308B.

//TFASMFDL JOB accounting information
//STEP EXEC PGM=IFASMFDL
//0UTDD1 DD DSN=SMFREC.FEWTYPES,DISP=(NEW,CATLG,DELETE)
//0UTDD2 DD DSN=SMF.TYPE10.TYPE255,DISP=(NEW,CATLG,DELETE),
// DCB=BLKSIZE=32000
//0UTDD3 DD DSN=SMF.TYPE10.TYPE255B,DISP=(NEW,CATLG,DELETE),
// DCB=LRECL=32760
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
LSNAME (IFASMF.DEFAULT)
LSNAME (IFASMF.PERF)
LSNAME (IFASMF.JOB)
ouTDD (OUTDD1,TYPE(0,2,10,15:30,33(1)),START(0730),END(1850))
OUTDD (OUTDD2,TYPE(10:255)),DATE(2006274,2006334)
OUTDD (OUTDD3,TYPE(10:255))
DATE (2006001,2006365)
SID (308A)
SID (308B)
END(2400) - DEFAULT
START(0000) - DEFAULT

Figure 7-11 Sample job for dumping SMF log streams

Note: There can be any number of input (LSNAME) or output (OUTDD) parameters in the
SMF log stream dump program. The log streams are dumped in reverse order.

For example, in Figure 7-11 on page 89, three log streams are specified. After the SMF log
stream dump program is processed, the output files contain the records from log stream
IFASMF.JOB first, IFASMF.PERF next, followed by the records from IFASMF.DEFAULT.

IFASMFDL utility output

If you want to use the SMF log stream facility to take advantage of the high speed services
that IXGLOGR can provide, and you also want to keep your old way of storing your SMF data,

Chapter 7. SMF recording to log streams 89

90

then you can do it using this new utility. You can define your retention period as long as you

need to copy them. The job output will provide the summary activity report shown in
Figure 7-12.

RECORD
TYPE
0
2
3
5
14
15
17
18
20
22
23
26
28
32
34
35
40
41
42
60
61
62
64
65
66
71
72
73
74
75
78
80
88
89
92
94
TOTAL

SUMMARY ACTIVITY REPORT
START DATE-TIME 05/17/2007-23:55:41

RECORDS
READ

2,538

0

0

45

2,367

1,457

17

9

360

58

51

78

14

6

6

6

23,307

203

12,608

52

32

5

8

23

48

303

29,997

304

23,048

1,515

606

1,229

5,508

102

12,632

50

118,592

NUMBER OF RECORDS IN ERROR

PERCENT
OF TOTAL

2

.14

.04

2.00

19.

10.

203

.23
.01
.01
.30
.05
.04
.07
.01
.01
.01
.01
65
.17
63
.04
.03
.00
.01
.02
.04
.26
29
.26
.43
.28
451
.04

4.64

10.

.09
65
.04
100

)
%

S A° O A O I A S A A N A N A A N A N A A N AN N N I N N N N N N N o

e

AVG. RECORD

LENGTH
74.

148.
471.
347.
100.
144.
97.
52.
134.
444,
188.
320.
215.
152.
76.
332.
556.
592.
327.
188.
458.
339.
335.
1,752.
1,177.
19,704.
16,393.
264.
11,588.
327.
234.
1,737.
216.
348.
3,731.

0

00

64
79
11
00
00
09
00
00
98
00
00
00
00
43
00
93
82
18
00
00
26
18
00
61
00
68
00
00
36
01
76
05
00
88

END DATE-TIME 05/21/2007-12:22:38

MIN. RECORD
LENGTH
74

145
344
344
100
144
91

52
134
442
188
296
215
152
74
332
176
344
279
188
458
300
286
1,752
1,076
19,704
236
264
1,888
231
161
290
168
348
52

MAX. RECORD
LENGTH
74

161
716
380
100
144
107

52

134
449
188
416
215
152
890
332
23,796
691
420
188
458
395
420
1,752
2,296
19,704
32,720
264
21,288
421
308
3,146
348
348
32,720

RECORDS
WRITTEN
1,137

3

3

0

1,612
1,400
21

485
120

59

0

21

8

8

8
21,456
192
10,512
34

30

8

16

14

26

286
28,314
286
21,736
1,430
572
780
5,172
92
10,758
48
106,650

Figure 7-12 SYSOUT output from IFASMFDL dump program execution

Note: SMF recording to the MANXx data sets is retained in this release and the current
configuration can remain as it is. In this release, the record data from the new SMF dump
program IFASMFDL should be virtually indistinguishable from data dumped by the SMF

data set dump program IFASMFDP.

There are expected changes to vendor code that uses “live” SMF data, that is, data that is
still resident in the SMF “MAN” data sets. Vendor programs that read data from data sets
created by the SMF dump program, as indicated above, are not affected.

z/OS Version 1 Release 9 Implementation

7.3.1 Using the SWITCH command with log streams

When you need to dump an SMF log stream in order to archive the data to a permanent
medium so that an existing user-written analysis routine can run against the dump data sets,
you can dump SMF log stream data by issuing the SWITCH SMF command. This command first
dumps the SMF data in the buffers out to the log streams, and then passes control to the
IEFU29L SMF log stream dump exit. Use the SMF log stream dump program IFASMFDL to
dump the specified log stream data to dump data sets. For more information about the
IEFU29L exit, refer to z/0S MVS Installation Exits, SA22-7593.

Note that this differs from the MANx SMF data set dump program, because there is no
CLEAR option on the log stream dump program to delete data. When you use log streams to
record SMF data, there is no reason to delete data during the dump process. System Logger
allows you to manage log data retention using options on the log stream definition in the
LOGR couple data set specified using the administrative data utility IXCMIAPU, as shown in
Figure 7-4 on page 82.

7.4 Migration considerations

SMF MANX data sets can still be defined in the SMFPRMxx parmlib member. This allows a
fallback to SMF data sets if the exploitation of log streams encounters unexpected problems.

Although you can identify both SMF data sets and log streams in the SMFPRMxx parmlib
member, only one recording mechanism can be in use at a time. The SETSMF

RECORDING (DATASET | LOGSTREAM) command allows you to easily switch between recording

types. This facilitates both exploitation of the new function, and fallback in case of errors.

Consider a situation where you need to change the end location of your data to keep the data
completely partitioned throughout (that is, from time of creation to time of archival or deletion).
For example, you may not want to change the location of billing data without the concurrence
of the data’s users. In terms of coexistence, you can use either DASD-only or CF-based log
streams. If multiple systems record to the same log stream, be sure to have unique SMF IDs
(SIDs) for each system.

Migration examples

Consider the following ways to migrate from the current SMF recording to the use of log
streams and the System Logger.

Example 1

You can set up one log stream to write data to a DASD-only log stream, simply replacing SMF
MANXx data sets. This is probably the simplest approach to using log streams because you
will have better performance using a log stream as opposed to using SMF MANXx data sets.
The benefit of this approach is to familiarize yourself with using the log stream.

Use DEFAULTLSNAME(IFASMF.xxx) or LSNAME(IFASMF.xxx, TYPE(0:255)) to specify the
log stream and either use the DEFAULTLSNAME or LSNAME keywords to indicate which log
stream to write the records. Then use the new SMF dump program IFASMFDL to extract and
dump the records.

Chapter 7. SMF recording to log streams 91

Example 2
You can set up several log streams, with each log stream for a particular purpose:

» Specify one log stream is to receive all performance-related records, using a log stream
named IFASMF.PERF.DATA

Record types 30, 70-72 and 99

» Specify a log stream to receive all audit-related records, such as RACF might need, using
a log stream named IFASMF.AUDIT.DATA

Record types 30, 80, 81, and 83
» Specify a log stream for DB2 data, which can be extensive, named IFASMF.DB2.DATA
» Specify a log stream for everything else that can be routed to a default log stream for
retention or deletion as required

With four separate log streams, four separate SMF dump programs can be used to dump and
archive the data. Each dump program can run faster because there are fewer records to
process, filter, or ignore.

The retention and offload parameters of each log stream can be tuned via the IXCM2APU
utility with TYPE=LOGR to ensure proper retention and performance.

92 z/OS Version 1 Release 9 Implementation

GRS enhancements

z/OS provides multiple ways of providing serialized access to data on single or multiple
systems, but global resource serialization (GRS) is a fundamental way for programs to get
the control they need and ensure the integrity of resources in a multisystem environment.

Because global resource serialization is automatically part of a z/OS system and is present
during z/OS initialization, it provides the application programming interfaces that are used by
the applications on the system. The enhancements are designed to make better use of 64-bit
addressing to improve performance for ISGENQ and ENQ/DEQ/RESERVE
LINKAGE=SYSTEM users.

This chapter describes the enhancements to global resource scheduling (GRS) in z/OS
V1R9:

» Global resource serialization (GRS) overview

» Performance enhancements for LATCH processing

» GRS storage constraint relief

» ISGECA API support

» Performance enhancements for CMSEQDAQ lock processing

© Copyright IBM Corp. 2007. All rights reserved. 93

8.1 Global resource serialization overview

In a star complex, global resource serialization (GRS) uses an XES lock structure to serialize
requests for global resources. All systems in a star complex must be members of the same
sysplex and be connected to a Coupling Facility containing the global resource serialization
lock structure (ISGLOCK) to manage contention for global resources. For practical purposes,
where global resource serialization star complex is concerned, the terms sysplex and complex
are synonymous. No channel-to-channel (CTC) connection of systems, other than those
managed by XCF, are supported by global resource serialization in a star complex.

ISGLOCK lock structure

When a system in a star complex issues an ENQ, DEQ, ISGENQ, or RESERVE request for a
global resource, global resource serialization converts the request to a lock request against
the ISGLOCK lock structure. Global resource serialization uses the ISGLOCK lock structure
to coordinate the requests to ensure proper resource serialization across all systems in the
complex. The status of each request is returned to the system that originated the request.
Based on the results of these lock requests, global resource serialization will respond to the
requester with the outcome of the serialization request.

Global ENQ/DEQ processing overview

In a star complex, requests for ownership of global resources will be handled through
ISGLOCK, the lock structure, on a Coupling Facility that is fully connected with all the
systems in the sysplex. Global resource serialization uses the ISGLOCK lock structure to
reflect a composite system-level view of the interest in every global resource, for which there
is at least one requester. In general, global resource serialization alters this composite view
each time you change the set of requesters for the resource.

Each time an ENQ request is received, global resource serialization processing analyzes the
state of the resource request queue for the resource. If the new request alters the composite
state of the queue, an IXLLOCK macro request is made to reflect the changed state of the
resource for the requesting system. If the resource is immediately available, the requester is
then granted ownership of the resource.

If the resource is not immediately available, global resource serialization will maintain the
request in the waiting state. When the appropriate DEQ request is received, global resource
serialization will either resume or post the requester (depending on the ENQ options).

8.1.1 Setting address space ENQ limits

94

GRS enforces a limit on the maximum number of concurrent ENQ, ISGENQ, RESERVE,
GQSCAN, and ISGQUERY requests issued by an address space. The general purpose of
enforcing a limit is to prevent a runaway ENQ address space from exhausting GRS private
storage. In z/OS releases prior to V1R8, the maximum number of concurrent requests is:

» 4,096 for unauthorized requests
» 250,000 for authorized requests

These are system-wide maximums. They apply to all address spaces in the system. Note that
ENQ RET=CHNG, ENQ RET=TEST, and their equivalent ISGENQ requests do not increase
the number of concurrent requests. However, GQSCAN and ISGQUERY REQINFO=QSCAN
requests, where the filled answer area results in a request token for continuation, do increase
the number of concurrent requests.

z/OS Version 1 Release 9 Implementation

Current application ENQ problems

As installations grow and applications get more complex, the number of concurrent ENQ
requests may rise to exceed the maximum values. An unauthorized workload such as CICS
may already exceed the current maximum values in your environment. Future authorized
workloads such as DB2 V8 may pose a similar problem. Some installations are already
zapping the maximum values to allow for a greater number of concurrent ENQs than the
system-wide defaults.

New limits for ENQs

GRS is enhanced in z/OS V1R8 to allow greater flexibility and control over the system-wide
maximums. In z/OS V1R8, the default values are:

» 16,384 for unauthorized requests
» 250,000 for authorized requests

z/OS V1R8 allows you to set the system-wide maximum values. Furthermore, it is now
possible for an authorized caller to set its own address space-specific limits. These new
values substantially increased STAR mode capacity. The majority of the persistent ENQs are
global ENQs as they are data set related. However, z/OS V1R8 only provided minimal relief
for GRS=NONE, GRS=RING mode systems, and systems running some ISV serialization
products.

Current installation modifications

In order to provide support for setting the maximums, some non-programming interfaces with
the z/OS V1R8 are changed. If you are already zapping the maximums at your installation (a
non-programming interface), the changes in z/0S V1R8 may cause some incompatibilities.
Prior to z/OS V1R8, it was necessary to zap the GVTCREQ and GVTCREQA fields in the
GVT to change the maximums. When you upgrade to z/OS V1R8, there is a new
mechanisms for setting the maximums.

Note: The GVTCREQ and GVTCREQA fields are no longer zappable with z/OS V1R8.

To check whether you are currently zapping the maximums in the GVT at your installation,
follow this procedure (remember this is only true for pre-z/OS V1R8 releases):

» From ISPF, you can use ISRDDN as follows:

ISRDDN provides a BROWSE command for browsing storage and loaded modules. We
use the BROWSE command to check the values in the GVT fields.

» From the ISRDDN command line, enter this command:
BROWSE 0.+107+1B0?

This command uses the pointer at offset X’1B0’ of the CVT to get to the GVT. The pointer
to the CVT is located at offset X’10’ in virtual storage. After issuing the command, a
browse screen is displayed.

» To verify you are really looking at the GVT, check for the “GVT” eye catcher at offset X'0’,
as shown in Figure 8-1 on page 96.

» Check the GVTCREQ field value at offset X’80’ and the GVTCREQA field value at offset
84.

If you see the default values in the GVTCREQ and GVTCREQA fields, then you are not
zapping the GVT in your installation. When using the default values, the GVTCREQ field
holds a value of 4,096 (X’1000’) and the GVTCREQA field holds a value of 250,000
(X’3D090’), as displayed in Figure 18-1 on page 376.

Chapter 8. GRS enhancements 95

96

» Check the GVTCREQ field value at offset X’80’ and the GVTCREQA field value at offset
84.

If you see the default values in the GVTCREQ and GVTCREQA fields, then you are not
zapping the GVT in your installation.

Note: When using the default values, the GVTCREQ field and the GVTCREQA field
holds a value of 250,000 (X’3D090’), as displayed in Figure 8-1 on page 96.

BROWSE STORAGE Start:00FD8830 [ine 00000000 O.+107+1B07?
Command ===> Scroll ===> PAGE
AR OK K KK K K K K R K R OK K K K K K K K R R OK K KK K K K Top Of Data LS SR EESEEEEESELEEESEEESEEEES S
+0 (0OFD8830) C7ESE340 B2000800 09100000 C3CIFOF1 = GUT ¥... cIol =

+10 (GOFDB810) 007C3000 GOFBUESD QODOOBOD 02720580 = .@...8.0..... E.0 =

+20 (0OFD8850) 8000DOOO 01810068 OO7FDOCE 00000000 * O....a.C."}H.. .. x

+30 (GOFDB850) OOOODSCO 00001194 EOVEEBOO 7EAAOOOO = ... {...m....=C.. x

+40 (0OFD3870) 0000PEEO OOOOOAOD EOAAOOOO OOOOO00O * *

+50 (DOFD283A) AAF4B860 Q2702000 AAFBAAAN AAF4BD1O x 4% . e.. . (p..4 S
+60 (GOFD88Y0) 02A44076 02A4401C 02A4426B 00030000 = .u f.u ..ua,.... x

+70 (0OFD88AG) OOFSOLFS 10001000 O1FO0000 00000000 = .8.8.. ... 0...... *

+80 (OOFD8830) QUD01000 0003DOID>00FD8B28 00000000 * PNV E *
+90 (0OFD88CO) EZCIFGF3 40404040 00000001 00000000 * SC63 *

+A0 (GOFDBEDO) 0OCODOEO OODOODED EOOOOBOL DOODOOBO * *

+BO (OOFDB8EM) 000OREAO OOOOOAOD EOAOOOOO BOOO0000 * *

+CO (GOUFDB8FO) 0OOVD112 24567700 OODAO/FE O7FE00OD = ir....0.0.. =

+D0 (GOFD8900) 00EODOOO GO002BF2D OOOGEOOA 0O00000A * Xl *

+EQ (GUFD89Y10) 00CDDO14 QOOO0D1M EODOOBEA DOOOO0OA * Ao %

+F0 (GOFD8920) 00000014 00000050 00DEOO64 000000CE = &...A...H x
+100 (00FD8930) 00000014 00028000 00000005 50000000 * 0..... 0... %

Figure 8-1 Verifying GVT fields using the ISRDDN BROWSE command

ISGADMIN service

The ISGADMIN service allows you to programmatically change the maximum number of
concurrent ENQ, ISGENQ, RESERVE, GQSCAN, and ISGQUERY requests in an address
space. This is useful for subsystems such as CICS and DB2, which have large numbers of
concurrently outstanding ENQs, query requests, or both. Using ISGADMIN, you can set the
maximum limits of unauthorized and authorized concurrent requests. It is impossible to set
the maximums lower than the system-wide default values.

New keywords in the GRSCNFxx parmlib member

To allow you to control the system-wide maximums, two new keywords are added to the
GRSCNFxx parmlib member:

ENQMAXU(value) Identifies the system-wide maximum of concurrent ENQ requests for
unauthorized requesters. The ENQMAXU range is 16,384 to
99,999,999. The default is 16,384.

ENQMAXA(value) Identifies the system-wide maximum of concurrent ENQ requests for
authorized requesters. The ENQMAXA range is 250,000 to
99,999,999. The default is 250,000.

SETGRS ENQMAXU and SETGRS ENQMAXA operator commands

z/OS V1R8 provides operator commands to allow you to dynamically set the system-wide
maximums. Use the SETGRS ENQMAXU command to set the system-wide maximum number of
concurrent unauthorized requests, and the SETGRS ENQMAXA command to set the system-wide
maximum number of concurrent authorized requests.

The format of the new operator commands is shown in Figure 8-2 on page 97.

z/OS Version 1 Release 9 Implementation

SETGRS ENQMAXU=nnnnnnnn[,NOPROMPTINP]
SETGRS ENQMAXA=nnnnnnnn[,NOPROMPTINP]

Figure 8-2 Format of the SETGRS ENQMAXU and ENQMAXA operator commands

GRS messages for concurrent requests

When an address space exceeds 80% of the maximum concurrent requests, GRS issues the
ISG368E message. When the number of concurrent requests in the address space drops
below 75% of the maximum, the ISG3691 message is issued and the ISG368E message is
DOMed. You can use the NOPROMPT parameter to automate the response to message
ISG368E.

In general, the SETGRS ENQMAXU and SETGRS ENQMAXA commands are intended for
emergency situations and not for normal operations. Keep in mind that the system-wide
maximums are intended to protect GRS from runaway ENQ address spaces. Increasing the
system-wide maximums makes GRS more vulnerable to run away ENQ address spaces.

If you have an address space that requires a higher maximum than the system-wide
maximums, the recommended action is to change the application to use the ISGADMIN
service to request a higher address space-specific maximum.

8.1.2 Contention notification system movement

Resource contention can result in poor system performance. When resource contention lasts
over a long period of time, it can result in program starvation or deadlock conditions.

When running in ring mode, each system in the GRS complex is aware of the complex-wide
ENQs, which allows each system to issue the appropriate ENF 51 contention notification
event. However, when running in star mode, each system only knows the ENQs that are
issued by itself.

To ensure that the ENF 51 contention notification event is issued on all systems in the GRS
complex in a proper sequential order, one system in the complex is appointed as the
sysplex-wide contention notifying system (CNS). All ENQ contention events are sent to the
CNS, which then issues a sysplex wide ENF 51.

GRS provides two APIs to query for contention information:

ISGECA Obtains waiter and blocker information for GRS managed resources.
ISGQUERY Obtains the status of resources and requester of those resources.

GRS issues an event notification facility (ENF) signal 51 to notify monitoring programs to

track resource contention. This is useful in determining contention bottlenecks, preventing
bottlenecks, and potentially automating correction of these conditions.

During an IPL, or if the CNS can no longer perform its duties, any system in the complex can
act as the CNS. You can determine which system is the current CNS with the D GRS
command. In the example shown in Figure 8-3 on page 98, you can see that the CNS is
SC64.

Chapter 8. GRS enhancements 97

98

D GRS
ISG343I 15.44.37 GRS STATUS 544

SYSTEM STATE SYSTEM STATE
SC65 CONNECTED SC64 CONNECTED
SC70 CONNECTED SC63 CONNECTED

GRS STAR MODE INFORMATION
LOCK STRUCTURE (ISGLOCK) CONTAINS 1048576 LOCKS.
THE CONTENTION NOTIFYING SYSTEM IS SC64
SYNCHRES:: YES
ENQMAXU : 16384
ENQMAXA: 250000
GRSQ: CONTENTION

Figure 8-3 Output of the DISPLAY GRS command

The SETGRS CNS operator command

The CNS can take up a considerable amount of system resources. You may prefer that it
does not reside on your main production system, or you may prefer that it does not reside on
a test system with insufficient capacity to handle the function. Starting with z/OS V1R8, you
can choose the system to act as the CNS with the SETGRS CNS command. The format of
this command is shown in Figure 8-4.

SETGRS CNS=system-name [,NOPROMPT |NP]

Figure 8-4 Format of the SETGRS CNS command

Figure 8-5 shows an example of changing the CNS from system SC64 to system SC70.

SETGRS CNS=SC70
*092 I1SG366D CONFIRM REQUEST TO MIGRATE THE CNS TO SC70. REPLY CNS=SC70
TO CONFIRM OR C TO CANCEL.
092CNS=SC70
IEE600I REPLY TO 092 IS;CNS=SC70
IEE7121 SETGRS PROCESSING COMPLETE
ISG364I CONTENTION NOTIFYING SYSTEM MOVED FROM SYSTEM SC64 TO SYSTEM SC70.
OPERATOR COMMAND INITIATED.

D GRS

ISG3431 15.54.47 GRS STATUS 565

SYSTEM STATE SYSTEM STATE
SC65 CONNECTED SC64 CONNECTED
SC70 CONNECTED SC63 CONNECTED

GRS STAR MODE INFORMATION
LOCK STRUCTURE (ISGLOCK) CONTAINS 1048576 LOCKS.
THE CONTENTION NOTIFYING SYSTEM IS SC70
SYNCHRES: YES
ENQMAXU: 16384
ENQMAXA: 250000
GRSQ: ~ CONTENTION

Figure 8-5 Setting the CNS using SETGRS command

Setting CNS during the IPL

It is currently not possible to set the CNS from the GRSCNFxx parmlib member, because
GRSCNFxx parsing is done too early in system initialization for setting the CNS across the
sysplex. If you require the CNS to reside on a specific system, it is recommended that you
use the SETGRS CNS operator command with the NOPROMPT parameter. You can add the

z/OS Version 1 Release 9 Implementation

command to the COMMNDxx parmlib member to have it issued automatically at IPL. An
example of the SETGRS CNS command with NOPROMPT is shown in Figure 8-6.

SETGRS CNS=SC64,NP
IEE7121 SETGRS PROCESSING COMPLETE
ISG3641 CONTENTION NOTIFYING SYSTEM MOVED FROM SYSTEM SC70 TO SYSTEM SC64.
OPERATOR COMMAND INITIATED.

D GRS
ISG343I 16.04.36 GRS STATUS 746
SYSTEM STATE SYSTEM STATE
SC65 CONNECTED SC64 CONNECTED
SC70 CONNECTED SC63 CONNECTED

GRS STAR MODE INFORMATION
LOCK STRUCTURE (ISGLOCK) CONTAINS 1048576 LOCKS.
THE CONTENTION NOTIFYING SYSTEM IS SC64
SYNCHRES: YES
ENQMAXU: 16384
ENQMAXA: 250000
GRSQ: CONTENTION

Figure 8-6 Setting the CNS using the SETGRS command with NOPROMPT

Coexistence with down-level systems

The support for CNS movement across systems in a GRS star complex requires that all
systems in the complex run z/OS V1R8. Systems running z/OS V1R7 with APAR OA11382
are also supported. If any system in the complex is an earlier release than z/OS V1R7, the
SETGRS CNS command cannot be issued by any member of the complex.

If the CNS system fails, one of the remaining systems in the complex automatically becomes
the new CNS. You can use automation for the rare case when the CNS moves from one
system to another. Depending on the trigger (operator command or system failure), the
system issues one of the following messages in case the CNS moves from one system to
another:

ISG3641 CONTENTION NOTIFYING SYSTEM MOVED FROM SYSTEM xxxx TO SYSTEM yyyy.
OPERATOR COMMAND INITIATED.

ISG3641 CONTENTION NOTIFYING SYSTEM MOVED FROM SYSTEM xxxx TO SYSTEM yyyy.
SYSTEM INITIATED.

8.2 GRS storage constraint relief with Z/OS V1R9

GRS has its own internal storage management system to make the best overall use of its
private storage and maintain performance for its various services. In systems with many data
sets left open for long periods of time, it is possible to exhaust storage. If left unchanged, this
problem would only worsen as system capacity increases.

z/OS V1R9 provides storage constraint relief for all GRS modes by using 64-bit addressing
for storage used to represent all ENQs in all GRS modes. Users that keep more than 100 k
data sets allocated have exhausted the GRS private area to represent all these ENQs. All the
control blocks now reside in 64-bit mode.

Chapter 8. GRS enhancements 99

100

The enhancements for this new support in zZ/OS V1R9 have the following new interfaces:

» A new MOVEWAITER function for the existing ISGADMIN service is being added for
specific queue manipulation required by ISVs.

» A new resource instance token for resources local to the current system is presented to
some |SV-oriented installation exits and also returned by ISGQUERY. This allows the ISV
to be able to coordinate events between exits.

» The ENQTOKEN representing the instance of an ENQ requester’s interest in the resource
(a QEL) is presented to the queued (ISGNQXITQUEUED1) exit.

During the rewrite of these enhancements, the following improvements were made that
provide better performance for ENQ intensive environments and better serviceability:

» The quality of dump contents improves, which helps to insure better first failure data
capture.

» A significantly reduced CMSEQDAQ lock hold time will be experienced.

» Much better performance should be seen for ISGENQ and ENQ/DEQ/RESERVE
LINKAGE=SYSTEM users.

» A detailed system trace is now issued for all ENQ-related services.

» The time that an ENQ/RESERVE/ISGENQ is issued is externalized via GRS IPCS reports
and ISGQUERY. The ENQ time can be useful for problem determination or run time
checks. It has been captured by GRS in previous releases, but had not been externalized.

Note: These enhancements should provide a major increase in capacity for all GRS
modes. It should be noted that GRS RING is not designed for large ENQ capacity and as
such will perform poorly with many outstanding ENQs. Installations should migrate to GRS
STAR if running a RING that is planned to support a large number of ENQs. This
enhancement provides ENQ storage constraint relief and should provide better DB2
performance because more data sets can be concurrently opened.

Some serialization products reference and sometimes alter GRS control blocks. With z/OS
V1R8, to access these control blocks, GRS provides APIs as required so they no longer need
to directly reference GRS blocks. Now with z/OS V1R9, ISGECA, ENF 51, or ISGQUERY
may be used as an alternative to run GRS queue control blocks.

Discontinue using the ISGERQA parameter in with z/0S V1R9

ISGERQA is a non-documented parameter in the DIAGxx parmlib member that could be used
under IBM service recommendation to control the amount of virtual storage below the 2 GB
bar that GRS reserves for the extended resource queue area (ERQA). The ERQA is used
mainly for ENQ-related control blocks and in z/OS V1R9, they were moved above the 2 GB
bar.

Note: If this parameter has been defined previously, you must delete it so that this area
can be used for others GRS functions.

SYS1.PARMLIB(DIAGxx) keyword ISGERQA is an undocumented control that can increase
the size of the GRS below the bar control block storage area (ERQA). It has been used by
various installations to increase the GRS ENQ capacity on older releases. However, it is only
to be used with Level2 support assistance because it can reduce the amount of other virtual
storage available to the GRS address space.

z/OS Version 1 Release 9 Implementation

If you are sharing the parmlib with down-level systems, then isolate the DIAGxx ISGERQA to
those systems only. The reason for this is because the ERQA still exists and the DIAGxx
ISGERQA is still supported and the reason for previously increasing the ERQA has been
eliminated (all ENQ-related persistent blocks are now above the bar). The below the bar
virtual that the ERQA is consuming can be much smaller. The new GRS defaults will insure
that the GRS address space has enough below the bar virtual for other required functions.

8.2.1 Ensure that GRSCNFxx is used properly for GRS=NONE

Prior to z/OS V1R8, the GRSCNF xx parmlib member was not processed when global
resource serialization was operating in NONE mode. Starting with z/OS V1R8, GRSCNFxx is
parsed when IEASY Sxx keyword GRS is set to NONE. If you specify GRS=NONE and a
GRSCNFxx member, the GRSCNFxx member must now be syntactically correct.

In addition, the following keywords are now relevant for all modes including GRS=NONE:

» SYNCHRES
» CTRACE

» ENQMAXA
» ENQMAXU

Step verification

To avoid warning messages and to ensure proper function in GRS=NONE mode, ensure that
the GRSCNFxx member is accessible and contains the correct configuration parameters for a
GRS=NONE mode system. If global resource serialization is not active and GRSCNFxx is not
accessible, the following messages can be issued:

» The system issues message ISG313l when mode-irrelevant keywords are found in
GRSCNFxx parsing.

» The system issues WTOR message 1ISG163D when GRSCNFxx cannot be accessed. If
you press Enter for this WTOR message, the system continues to issue message
ISG372E to indicate that the GRSDEF defaults are used.

GRSCNFOO is the parmlib member selected if you do not specify GRSCNF=xx in parmlib
member IEASYSxx. A copy of GRSCNFOQO is shipped with the system, but it might need
customizing.

Note: APAR OA11382 rolled back this facility to z/OS V1R7 and some facility to z/OS
V1R8, so this APAR should be applied for both previous releases.

8.2.2 GRS exit routines in cross-memory mode

In previous releases, the exit routines ISGNQXITBATCH, ISGNQXITBATCHCND,
ISGNQXITPREBATCH, and ISGNQXITQUEUED1 were called in non-cross-memory mode.
With z/OS V1R9, these exits are called in cross-memory mode.

If your installation uses any of these exit routines, or if any of your ISV software uses these
exit routines, you must ensure that the exit routines run in a cross-memory environment prior
to implementing z/OS V1R9. A failure in any of these exit routines could cause a data integrity
problem or system failure.

Step verification
Determine whether any of the affected exit routines are currently in use on your system by

using the DISPLAY PROG,EXIT command, as shown of Figure 8-7 on page 102.

Chapter 8. GRS enhancements 101

If you are using any of the affected exit routines, do the following:

» If any of the exit routines are owned by ISVs that you did not contact for new z/OS V1R9
support, contact those ISVs to ensure that you have the latest updates.

» If any of the exit routines are owned by your installation, ensure that these exit routines
have been modified to enable execution in a cross-memory environment.

Figure 8-7 displays the D PROG,EXIT output.

D PROG,EXIT

CSv4601 14.58.17 PROG,EXIT DISPLAY 418
DEF EXIT

EXIT
ISGNQXITFAST
SYS.IEFUJT
SYSSTC.IEFU83
HZSADDCHECK
TEASDUMP. LOCAL
IXC_WORK_RESTART
ISGCNFXITSYSPLEX
ISGENDOFLQCB
ISGDGRSRES
IEF_ALLC_OFFLN
TEF_VOLUME_MNT
CNZ_WTOMDBEXIT
SYSSTC.IEFUJP
SYSSTC.IEFU29
SYS.IEFUSO
SYS.TEFUJV
IRREVX01
BPX_POSPROC_INIT
HASP . $EXITO

E

mmmmMmMMMmMMIMMMMmmMmM/MmMmimmm

SYS.IEFACTRT
SYSSTC.IEFUJI
CSVDYLPA
TEASDUMP . QUERY
TEASDUMP. SERVER
ISGNQXIT
ISGNQXITBATCH
ISGNQXITPREBATCH
CNZ_MSGTOSYSLOG
TEF_SPEC_WAIT
TEFDB401
TEFJFRQ
SYSSTC.IEFU85
SYS.IEFU29
SYS.TEFUJP
SYS.IEFU85
TGDACSDX
BPX_IMAGE_INIT
CBRUXTVS_EXIT

DEF EXIT

E

mmMmm M mimMmimMmMmmmommmmmmmm

SYSSTC.IEFACTRT
SYS.TEFU83
CSVDYNEX
TEASDUMP . GLOBAL
IXC_ELEM_RESTART
ISGCNFXITSYSTEM
ISGNQXITQUEUED1
ISGNQXITBATCHCND
TEHINITT_EXIT
TEF_VOLUME_ENQ
CEE_ABEND_EXIT
SYSSTC. IEFUSO
SYSSTC.IEFUS4
SYS.TEFUTL
SYS.IEFUST
SYS.IEFUS4
BPX_PREPROC_INIT
BPX_PREPROC_TERM

m rm m m m m Mmoo mrmmermomomomorm

-

Figure 8-7 D PROG,EXIT output

ISGNQXIT EQDQ exit

The installation-oriented EQDQ exit environment is not being changed. If using the
ISGNQXIT EQDQ exit installed, then consider converting it to the ISGNQXITFAST exit
because it is a better performer. However, unlike the ISGNQXIT exit, the ISGNQXITFAST
exit can be called in a cross-memory environment.

8.2.3 ISGADMIN enhancement

A new function known as MOVEWAITER was introduced in the ISGADMIN services. It allows
one application to move one ENQ WAITER to another position in the queue and optionally
changes its control type via the NEWCONTROL keyword.

Note: This function is intended to only be used by third-party serialization products. Its
misuse can result in deadlocks, incorrect serialization, or loss of data integrity.

102 z/OS Version 1 Release 9 Implementation

8.3 GRS performance enhancements with z/0S V1R9

As CPU power has increased over time, more ASIDs are created and installations have noted
an increase in GRS CPU consumption time, mainly in a sysplex environment. In z/OS V1R9,
changes have been effected in order to obtain better performance with GRS processing.

The cost of a hardware cache miss has been increasing over machine generations. To reduce
cache misses off a free queue, it is better to keep a separate queue per CPU on its own
cache boundary and then have each CPU only take elements off its queue. This technique
has shown to provide performance improvements.

The GRS latch function has been modified to use such an algorithm for its free queues and to
use the new multi-header CPOOL (one header per CPU) support for some of its CPOOL
service-managed storage pools. This benefits all users of GRS latch including z/OS UNIX,
RACF, System Logger, 10S, and ISV software.

GRS latch support

Because the multi-header technique can increase storage demands in the latch set creator
address space, GRS latch support provides the following additional functions:

» Anew ISGLCRT_LOWSTGUSAGE latch set create option to allow latch owners to force
the old algorithm to be used because they know their address space is
storage-constrained. To date, no one is known to have used this function. The default is to
use the multi-header approach.

» The ability for the GRS latch function to detect and react to a storage constraint in the latch
set creator’s address space. When constrained, GRS latch will revert the latch set back to
the old.

To support the movement of most of the control blocks above the bar, several GRS modules
are rewritten to provide better performance in the following areas:

» Reduce contention on the internal CMSEQDAQ lock
» Reduce path length for ISGENQ and ENQ/DEQ/RESERVE LINKAGE=SYSTEM
» LATCH processing

Note: To execute one instruction, all referenced storage must be in the L1 cache of the
processor. If the execution of one latch request starts in one processor and ends in
another, then the references to these storages in the second processor cause a cache
missing.

This new performance algorithm is the default in z/OS V1R9, and it can cause a slight
increase in the latch set creator’s private storage usage. In the unlikely case that the space
is constrained, latch processing will revert back to the old algorithm automatically.
Applications that know their address space storage constrains can force the old algorithm
by using a new ISGLCRT_LOWSTGUSAGE latch set create option.

8.4 GRS debugging improvements

A new system trace was added in z/OS V1R8 for PC ENQ for LINKAGE=SYSTEM or
ISGENQ. The PC, SSRV (new trace) and PR (return) can be used to determine the call
sequence. In z/OS V1R9, the trace is now cut for any type of ISQENQ, ENQ/RESERVE, or
DEQ for LINKAGE=SYSTEM for SVC ENQs. The SSRYV trace contains detailed information

Chapter 8. GRS enhancements 103

104

on the return address, QNAME, return code, scope, disposition, and if RNLs or exits changed
request.

System trace entries

GRS has provided system trace entries for the execution of ENQ/RESERVE (SVC X’38’) and
DEQ (SVC X’30’) forever.

Now, GRS creates one system entry for any execution of the ENQ/RESERVE,
DEQ/RELEASE and ISGENQ, executing in SVC mode, LINKAGE=SYSTEM or PC mode. As
a result, you can now determine the true execution sequence in the trace.

SSRYV trace entries
The SSRYV system trace entries provides many details on the return address:

» What was requested by issuer
— QNAME/UCB - RNAME is not provided
— Disposition: Exclusive/Shared request
— Request scope: STEP, SYSTEM, SYSTEMS
— Was a reserve issued
— What RET was specified: NONE, HAVE, CHNG, USE, ECB, or TEST
— Last element of list issued
— RNL=YES/NO
— Is the TCB specified
» What change was complemented or attempted
— An exit changed the request
— RNLs changed the scope
— Included, excluded, and converted bits to show how change occurred
— Final scope issued
— If areserve, the UCB address is provided
» Final result
— Return or abend code issued

IPCS VERBX GRSTRACE

With z/OS V1R8, the IPCS VERBX GRSTRACE command formats the time stamp information and
the request type. Also, the resource creation time stamp is informed; that is, for how long a
period you could have a contention in this resource.

With z/OS V1R9, the IPCS VERBX GRSTRACE command formats the status of each ENQ
request, if it is the:

» /OWN = owner

» /WAIT = waiter

» /USE = indicates a MASID request where the user is considered an owner via the MASID
target

When using the ENQ or RESERVE requests from authorized callers, use the MASID
(matching ASID) and MTCB (matching TCB) parameters to allow a further conditional
control of a resource.

One task issues an ENQ or RESERVE for a resource specifying a matching ASID. If the
issuing task does not receive control, it is notified whether the matching task has control
(which allows the issuing task to use the resource even though it could not acquire the
resource itself). This process requires serialization between the issuing and requesting
tasks.

z/OS Version 1 Release 9 Implementation

Message Flood Automation

Many z/OS systems are troubled by cases where a user program or a z/OS process itself
issues a large number of messages to the z/OS consoles in a short time. Cases of hundreds
(or even thousands) of messages a second are not uncommon. These messages are often
very similar or identical, but are not necessarily so. Techniques to identify similar messages
can be very difficult and time-consuming.

Message Flood Automation addresses this problem. This implementation does not claim to
identify all cases of erroneous behavior, or to take the “correct” action in all cases. Its
intention is to identify runaway WTO conditions that can cause severe disruptions to z/OS
operation, and to take installation-specified actions in these cases.

The problem that Message Flood Automation is attempting to solve has been with the
operating system since the earliest days. It is most often caused by malfunctioning input or
output devices that flood the system with a very large number of error messages, usually
within a matter of seconds. Message floods can also be caused unintentionally by improperly
designed programs that get stuck in a message loop, as well as by malicious programs that
deliberately generate large volumes of messages in an attempt to cause a system outage.

Message floods are a concern because they monopolize system resources and prevent the
operator (and automation) from seeing and reacting to other system messages in a timely
manner. In some cases, message floods so monopolize system resources that resource
shortages develop and a system outage occurs.

This chapter provides an overview of the Message Flood Automation that was incorporated
into z/OS Version 1 Release 9. In this chapter, the following topics are described:

» Message Flood Automation overview

» Problem statement and solution

» Installation, loading and activating

» Customization and tuning

» Operator commands

© Copyright IBM Corp. 2007. All rights reserved. 105

9.1 Message Flood Automation overview

Message Flood Automation is a new component of z/OS console support that was made
available as a small programming enhancement (SPE) for z/OS Version 1 Release 6,
Release 7 and Release 8 at the end of November 2006. Message Flood Automation is being
incorporated into z/OS Version 1 Release 9. The parent APAR is OA17514, and the SPE is
shipped as follows:

» Release 709 (z/OS v1R6): UA30810 available 06/11/29 (F611)

» Release 720 (z/OS V1R7): UA30811 available 06/11/29 (F611)

» Release 730 (z/OS V1R8): UA30812 available 06/11/29 (F611)

If the Message Flood Automation function is being used prior to z/OS V1R9, the relevant

documentation is available in a user’s guide which can be found at the following link:
http://publibz.boulder.ibm.com/zos1ib/pdf/mfaguide.pdf

You are strongly encouraged to read the user’s guide fully before attempting to set up and
activate Message Flood Automation.

Note: If you have already been running Message Flood Automation and are now installing
a newer level, read the topic “Considerations when migrating from one level to another” in
Message Flood Automation User’s Guide—for z/OS releases prior to z/OS V1R9.

With z/OS V1R9, documentation is available with the standard manuals.

9.2 Message Flood Automation implementation

106

Message Flood Automation is designed to detect and react to a message flood before those
consequences have had an opportunity to occur. A defined installation policy allows
installations to tailor Message Flood Automation to an individual environment by deciding how
quickly the Message Flood Automation should react to a potential message flood and then,
what actions should be taken if a message flood occurs. Depending on the policy that is
established, Message Flood Automation can prevent message buffers from filling, console
queues from becoming overly long, and console displays from becoming unreadable.

Because Message Flood Automation deals with the flood messages as they are being
generated, large numbers of flood messages do not have the opportunity to accumulate in
message buffers or in various queues. This means that there is no need to take action, either
automated or manual, to “flush” these unwanted messages from buffers or queues. (In past
releases, this was one of the more serious aspects of dealing with message floods, that is,
flushing unwanted messages from the queues of each console.)

Furthermore, Message Flood Automation deals with the messages going to all of the various
consoles, including the EMCS consoles used by SDSF and by automation products such as
Tivoli NetView and Tivoli System Automation.

z/OS Version 1 Release 9 Implementation

http://publibz.boulder.ibm.com/zoslib/pdf/mfaguide.pdf

9.2.1 Message flood problems

Message Flood Automation is a new implementation designed to handle disruptions that are
caused due to the following situations:

» Large numbers of messages to the z/OS consoles can obscure important messages and
delay them from being acted on.

» Large numbers of messages to the automation system can delay the processing of normal
messages.

» Messages can use excessive CPU and storage resources. Buffering excessive message
traffic may use large amounts of virtual and real storage, and can cause SQA to overflow
into CSA. This can cause jobs, subsystems, and even complete systems to be delayed or
fail.

Messages can be produced at very high volumes due to:

Malfunctioning 1/0 devices such as DASD, DASD controllers
ESCON/FICON switches

Malfunctioning network devices

Errant programs (unintentional)

Malicious programs

vyvyVvyyy

Message Flood Automation can react to potential message flooding situations in a matter of
tens or hundreds of messages (specifiable by the installation), well before buffers have begun
to fill, well before console queues have begun to build, and well before console message
rates have begun to become enormous.

Furthermore, its actions do not result in residual buffers or queues of messages that must be
“worked down” to return to normal processing. Because its processing is targeted to the
messages that are causing the problem, very few uninvolved messages are acted upon.

By contrast, the act of flushing console queues (with the K Q command) can result in throwing
away many innocent and often important messages. Message Flood Automation can
potentially eliminate the need to issue the K Q command by preventing flood messages from
ever reaching a console. Message Flood Automation has a policy that allows installations to
target individual messages, individual jobs, or started tasks. By targeting specific messages
and units of work, Message Flood Automation is able to minimize the disruption to other work
in the system.

9.2.2 MPF processing

The message processing facility (MPF) controls message processing for an MVS system.
Message Flood Automation runs as part of MPF processing, which occurs after the control
block that represents the message has been created. Message Flood Automation is able to
see and alter any processing of the message that occurs prior to the creation of this control
block.

Note: Some automation products replace the Write-To-Operator (WTO) Supervisor Call
(SVC) with their own code and then invoke the WTO code when they are finished.
Message Flood Automation is able to see and react to messages that have been
“front-ended” by other automation in this way.

Chapter 9. Message Flood Automation 107

MPFLSTxx parmlib member

The IEAVMXIT installation exit or an MPF installation exit (one that you specify on the
USEREXIT parameter in an MPFLSTxx parmlib member) allows you to modify message
processing in a system or sysplex. IEAVMXIT is the general-purpose exit routine that
performs processing that is common to many messages (WTOs). See 9.3.1, “Message Flood
Automation exits” on page 109 an explanation about the detailed use of this exit with
Message Flood Automation support.

Because all messages are processed by MPF, the MPFLSTxx parmlib member tells MPF
what to do with each message. The following is a list of changes that can be made to a
particular message or set of messages:

Suppression Message appears in a hardcopy log but not on a console.
SUP(YES/NO)

Automation This lets the automation subsystem know to process a particular
message.
AUTO(YES/NO/token)

Specifying AUTO(YES) will route the message to EMCS consoles with
the AUTO attribute.

Presentation This controls color, highlighting, and intensity attributes that the
system uses when displaying messages on an operator console. You
can specify these attributes on the .MSGCOLR statement.

9.2.3 MPF processing exit

108

MPF processing is specific to a certain type of message or a particular message ID that is
defined in the MPFLSTxx parmlib member. Figure 9-1 on page 109 shows when MPF
processing is invoked when a message is issued.

This exit is used primarily to do the following kinds of processing of a message:

» Modify the presentation of a message
» Modify the routing of a message
» Suppress or affect the automation of a message

Message flood use of this exit

Message Flood Automation is implemented as a message processing facility (MPF)
IEAVMXIT routine that is called as a part of zZOS WTO processing. The exit examines each
message in the z/OS system, and attempts to identify when too many WTOs are being issued
and by whom.

It then takes appropriate action, usually to suppress the message from being displayed at a
z/OS console, and to indicate that automation processing is not required. It can also issue
commands to cancel the user or process.

z/OS Version 1 Release 9 Implementation

Issuing System Receiving System(s)

MPF

JES 41 JES

"_E_] Hall'_d;c;opy C Dlg
\ MéS B Qhﬂeiig /

Queuing

i

Figure 9-1 Message processing exit (MPF or IEAVMXIT)

9.3 Installing Message Flood Automation

Message Flood Automation does not ship a part named IEAVMXIT because this might cause
the Message Flood Automation function to be inadvertently installed and activated when it is
not desired to use this function. Message Flood Automation consists of the following load
modules in SYS1.LINKLIB:

» CNZZCMXT
» CNZZVMXT

9.3.1 Message Flood Automation exits

Message Flood Automation uses two system exit points; IEAVXMIT as a general message
exit, and CNZZCMXT as a system command exit. The following sample assembly language
programs are in SYS1.SAMPLIB. You select one of the sample programs from
SYS1.SAMPLIB, then assemble it and link it to the Message Flood Automation CNZZVMXT

load module.

» CNZzZVXT1
» CNZzZVXT2

Note: Refer to zZOS MVS Installation Exits, SA22-7593, for additional information about
the installation and use of the message and command exits. Install the IEAVMXIT in every

SYS1.LINKLIB you use.

Chapter 9. Message Flood Automation 109

110

IEAXVMXIT migration considerations

Either CNZZVXT1 or CNZZVXT2 can be used if you do not already have an IEAVMXIT
message exit. CNZZVXT1 is the simplest to use, but CNZZVXT2 can be used without
change, if desired. The difference is that CNZZVXT2 has additional complexity that
CNZZVXT1 does not.

» CNZZVXT1 provides a stub if there is no IEAVMXIT routine installed and Message Flood
Automation is required; CNZZVXT1 will invoke the CNZZVMXT routine.

» CNZZVXT2 invokes the Message Flood Automation message exit CNZZVMXT using a
slightly modified calling mechanism. CNZZVXT2 is documented to show how to place
installation function in the exit both before and after the invocation of the Message Flood
Automation message exit CNZZVMXT.

Note: In this implementation, CNZZVMXT returns to CNZZVXT2, not to the caller of
CNZZVXT2. The CNZZVXT1 implementation has CNZZVMXT return to the caller of
CNZZVXT1, not to CNZZVXT1.

If you already have an IEAVMXIT exit installed, you will need to do one of the following:

» Either put the invocation of Message Flood Automation into your IEAVMXIT using sample
program CNZZVXT2 as an example of how to do this.

» Or fit your existing IEAVMXIT logic into the sample program CNZZVXT2 and rename it
IEAVMXIT.

MPFLSTxx parmlib member

At IPL, the system uses the MPFLSTxx member or members indicated on the MPF keyword
on the INIT statement in CONSOLxx parmlib member. You can specify multiple MPFLSTxx
members on the MPF keyword. In a sysplex, MPF processing has system scope; thus, you
must plan MPF processing on each system in the sysplex.

The MPFLSTxx parmlib member contains statements that can affect the display, automation
and retention of messages. During MPF processing, the RETAIN®, AUTO and SUP
parameters on an MPFLSTxx parmlib member are processed first. Then either a user exit
(specified by the USEREXIT parameter) is invoked or IEAVMXIT is invoked—but not both. A
small part of a MPFLSTxx parmlib member is shown in Figure 9-2.

.NO_ENTRY,SUP(NO) ,RETAIN(I),AUTO(YES)

.DEFAULT, SUP(NO) ,RETAIN(NO) , AUTO(NO)
I1ST10511,SUP(YES),RETAIN(YES) ,AUTO(YES)
1ST10621,SUP(YES) ,RETAIN(YES) ,AUTO(YES)

AOF*,SUP(NO) ,RETAIN(NO) ,AUTO(YES)

CSA*,SUP(YES) ,RETAIN(NO) ,AUTO(YES)

EQQ*, SUP(NO) ,AUTO(YES)

EVJ*,SUP(NO) ,AUTO(YES)

I1XGO54A, USEREXIT (MPFOPLOC)
IEF1251,USEREXIT(MPFASID) ,RETAIN(NO) ,SUP(NO) ,AUTO(YES)
TEF4031,USEREXIT(MPFASID) ,RETAIN(NO) ,SUP(NO) ,AUTO(YES)
IEF1261,USEREXIT (MPFASID) ,RETAIN(NO),SUP(NO) ,AUTO(YES)
IEF4041,USEREXIT (MPFASID) ,RETAIN(NO),SUP(NO) ,AUTO(YES)
TIEE391A,USEREXIT (MPFSMFC)

T1EE3661,USEREXIT (MPFSMFC)

BDT3130,USEREXIT (MPFSBDTN)

Figure 9-2 MPFLSTxx parmlib member

z/OS Version 1 Release 9 Implementation

Using the IEAVMXIT exit

Message Flood Automation message processing runs as IEAVMXIT. Therefore, it can

override the RETAIN, AUTO and SUP specifications set by the MPFLSTxx entry for the

message or set by the NO_ENTRY specification.

Figure 9-3 indicates the point at which the IEAVMXIT exit is entered during MPF processing.
For the message IDs shown in Figure 9-2 on page 110, the ones with the USEREXIT
parameter will use the specific MPF exit specified as shown in Figure 9-3. All other messages
will use the IEAVMXIT exit, which goes through Message Flood Automation; this explains why
individual messages do not go through both paths. Therefore, Message Flood Automation

cannot override specifications set by individual MPF exits.

Note: If an MPFLSTxx entry does not exist for a message, then the settings from the
NO_ENTRY specification are applied. NO_ENTRY allows you to specify the default

processing you want for messages that are not identified in any of the active MPFLSTxx

parmlib members.

MPFLSTxx look-up

Message Specific
IEAVMXIT Flood MPF
Automation Exits
JES
SSi NetView
e]

Figure 9-3 Message Flood Automation IEAVMXIT exit

Note: Use CNZZVXT2 and either integrate your existing IEAVMXIT function into it, or use

CNZZVXT2 as an example of how to place the invocation of Message Flood Automation

into your existing IEAVMXIT message exit. See z/OS MVS Planning: Operations,

SA22-7601, for additional interface information.

The level of the message exit and the level of the command exit must be the same because
they both map the same shared data area. There is code in both to ensure that they are at the

Chapter 9. Message Flood Automation

111

same level. This is primarily a concern for GDPS customers who are migrating from a GDPS
level of Message Flood Automation to the z/OS level of Message Flood Automation.

The selection of the SYS1.SAMPLIB member and assembly should be done as follows:

1. Assemble it with the high-level assembler.

2. Link the assembled member to CNZZVMXT using the linkage editor or Binder.

3. Make changes in the CONSOLxx parmlib member and the MPFLSTxx parmlib members.

Assemble sample code for the exit

Figure 9-4 shows sample JCL to assemble CNZZVXT1 and place it into an existing data set
userid. SAMPLIB.OBJ.

//ASM EXEC PGM=ASMA90,REGION=6144K,

// PARM=('OBJECT,NODECK,XREF (SHORT),LIST(133),ALIGN',
// 'MACHINE(ZS-2,LIST),GOFF')

//SYSLIB DD DSN=SYS1.MACLIB,DISP=SHR

// DD DSN=SYS1.MODGEN,DISP=SHR

//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(20,5)),DSN=&SYSUT1
//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL, (20,5)),DSN=&SYSUT2
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL, (20,5)),DSN=&SYSUT3
//SYSPRINT DD SYSOUT=A

//SYSPUNCH DD DUMMY

//SYSLIN DD DSN=userid.SAMPLIB.0BJ(CNZZVXT1),DISP=0LD
//SYSIN DD DSN=SYS1.SAMPLIB(CNZZVXT1),DISP=SHR

Figure 9-4 JCL model to assemble CNZZVXT1

Linking CNZZVXT1 or CNZZVXT2 with CNZZVMXT

Figure 9-5 shows sample JCL to link either CNZZVXT1 or CNZZVXT2 to CNZZVMXT. The
result of the link will be a part named IEAVMXIT in SYS1.LINKLIB. For the SYSLMOD, you
may use any data set in the LINKLIB concatenation.

CNZZVXT1, CNZZVXT2, CNZZVMXT and CNZZCMXT are all AMODE=31 and
RMODE=ANY.

//LKED EXEC PGM=IEWL,REGION=0M,
// PARM='XREF,LIST,RENT,REUS,AC(0)"
//SYSPRINT DD SYSOUT=A
/ /BASE DD DSN=SYS1.LINKLIB,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSLMOD DD DSN=SYS1.LINKLIB,DISP=SHR
//SYSLIN DD DSN=userid.SAMPLIB.OBJ(CNZZVXT1),DISP=SHR
// DD *
SETCODE AC(0)
INCLUDE BASE(CNZZVMXT)
ENTRY IEAVMXIT
NAME IEAVMXIT(R)

Figure 9-5 JCL model to link either CNZZVXT1 or CNZZVXT2 to CNZZVMXT

Important: The attribute RF was removed from members CNZZCMXT and CNZZVMXT in
SYS1.LINKLIB in z/OS Version 1 Release 9. You must remove the parameter REFR from
your linking JCL when you execute in a Version 1 Release 9 system.

112 z/OS Version 1 Release 9 Implementation

Creating an SMP/E ++USERMOD

As an alternative to manually assembling and linking CNZZVXT1 or CNZZVXT2 with
CNZZVMXT, you can use SMP/E to perform the operation for you, creating an SMP/E
++USERMOD.

IBM recommends using the SMP/E ++USERMOD approach because that method allows
SMP/E to automatically determine if and when your user exit must be relinked. It is necessary
to keep both the user exit and the IBM load modules synchronized, and SMP/E is best
positioned to do this automatically for you.

Note: As an example of SMP/E ++USERMOD, refer to “Creating an SMP/E
++USERMOD” in z/OS MVS Planning: Operations, SA22-7601.

CONSOLxx and MPFLSTxx parmlib member considerations

Installing the Message Flood Automation code into the system libraries is not sufficient. You
must also make changes to two SYS1.PARMLIB members:

» MPFLSTxx parmlib member (using CNZZCMXT)

Add a (dot) .CMD USEREXIT entry in a MPFLSTxx parmlib member. The .CMD entry
causes the Message Flood Automation command exit to be automatically loaded at IPL or
whenever a SET MPF= command is processed. For example:

.CMD USEREXIT(CMDRPL,CMDMVS,CMDGSYS,CMDCPF,CNZZCMXT)

Where CNZZCMXT is the Message Flood Automation command exit and the other exit
names are installation-defined. If you already have one or more command exits specified,
simply add CNZZCMXT to the existing specification.

Add CNZZCMXT either before or after any existing exits. The .CMD statement supports a
maximum of 6 exit specifications.

» CONSOLxx parmlib member (using IEAVMXIT)

Add a UEXIT(Y) parameter to the INIT statement in the CONSOLXxx parmlib member.
UEXIT(Y) is the default and it is recommended that you explicitly code UEXIT(Y) in order
to cause the automatic loading of the Message Flood Automation message exit at IPL and
when K M,UEXIT command is processed. This is not strictly necessary because the default
is UEXIT(Y), but explicitly specifying UEXIT(Y) can serve to remind you that a user exit is
in use.

INIT MLIM(1500)
RLIM(999)
LOGLIM(6000)
AMRF (Y)
APPLID(SCSMCS&SYSCLONE.)
UEXIT(Y)

You must make sure that the INIT statement in the CONSOLxx parmlib member being
used does not have UEXIT(N) specified.

9.3.2 Loading and activating

The Message Flood Automation code can be loaded dynamically; there is no need to do an
IPL. If you use the Link List Look aside facility, you will need to perform a Link List Lookaside
refresh to bring the Message Flood Automation code into storage.

Chapter 9. Message Flood Automation 113

114

The CNZZCMXT command exit routine will be automatically loaded into storage after it has
been link-edited into a data set in the LINKLIB concatenation and an LLA refresh (or IPL) has
been performed.

» If you make the command exit available by changing the libraries referred to in the
LINKLIST concatenation, you must issue the following command:

SETPROG LNKLST,UPDATE,JOB=*MASTER*

If you manipulate the libraries that are in your link list concatenation, refer to zZ0S MVS
Planning: Operations, SA22-7601, for details about using the SETPROG command.

After the Message Flood Automation code has been placed into storage, a K M,UEXIT=Y
command can be used to actually load and enable the Message Flood Automation message
exit. Likewise, a SET MPF= command can be used to load and activate the Message Flood
Automation command exit.

Because the command exit uses data structures that are set up by the message exit, it is best
to load and activate the command exit after loading and enabling the message exit. The
reverse sequence will also work, but the command exit will be unable to perform any
Message Flood Automation commands until the message exit has been loaded and creates
the shared data structures.

Do the following in order to load and activate Message Flood Automation dynamically:
1. Use a F LLA,REFRESH command to load the Message Flood Automation code.

2. Use a K M,UEXIT=Y command to activate IEAVMXIT and CNZZVMXT.

3. Use a SET MPF= command to reload MPFLSTxx and cause the .CMD entry to be
processed, loading the Message Flood Automation command exit.

F LLA,REFRESH

CSV210I LIBRARY LOOKASIDE REFRESHED

K M,UEXIT=Y

CNZZ0161 Message Flood Automation policy initialized.
IEE7121 CONTROL PROCESSING COMPLETE

SET MPF=J3

IEE2521 MEMBER MPFLSTJ3 FOUND IN SYS1.PARMLIB

IEE7121 SET MPF PROCESSING COMPLETE

D MF,STATUS

CNZZ0421 Message Flood Automation V2ROMOO DISABLED. 289
Policy INITIALIZED. Using PARMLIB member: internal
Intensive modes: REGULAR-OFF ACTION-OFF SPECIFIC-OFF
Message rate monitoring DISABLED. 0 msgs 0 secs

Figure 9-6 Expected messages to load and enable Message Flood Automation

Note: These commands load and enable Message Flood Automation message exit
(IEAVMXIT) and command exit (CNZZCMXT) with the internal policy. After this, you must
load your policy by using the SET MSGFLD= command, and turn Message Flood Automation
on by issuing a SETMF ON command.

z/OS Version 1 Release 9 Implementation

9.4 Customization and tuning

An installation policy to control message flooding situations is specified through the new
MSGFLDxx parmlib member.

Message Flood Automation is performed on all subsequent messages using either default
actions or actions specified through a MSGFLDxx parmlib member after a SETMF ON
command is issued that activates Message Flood Automation.

9.4.1 Providing a MSGFLDxx parmlib member

Prepare one or more MSGFLDxx members of PARMLIB and customize the message
threshold values provided before enabling Message Flood Automation on your system.

You may have as many MSGFLDxx parmlib members as you want, but Message Flood
Automation only supports one member being active at a time. Message Flood Automation
processing requires that the MSGFLDxx suffix (the xx) be alphabetic or numeric. National or
other special characters are not supported.

IBM provides a usable sample MSGFLDxx parmlib member named CNZZMFxx in the
SYS1.SAMPLIB library. However, it is recommended that you customize this sample
MSGFLDxx member before you attempt to use it.

MSGFLDxx statements
The following statement types are provided in MSGFLDxx parmlib member:

» Comment statements
» Msgtype statements

REGULAR, ACTION, and SPECIFIC
» DEFAULT statements

The DEFAULT statement specifies the default action to be taken for a specific address
space that exceeds the job threshold message rate, or a specific message that exceeds
the message threshold message rate.

» DEFAULTCMD statements

The DEFAULTCMD statement specifies the default command that will be issued if a CMD
action has been specified for the address space.

» JOB statements

JOB statements identify up to 10 specific jobs for which specific actions are to be taken if
REGULAR or ACTION messages from the job are involved in a message flood.

» MSG statements
The MSG statement defines up to 30 specific messages for which specific actions are to
be taken if the message is involved in a message flooding situation.

Figure 9-7 on page 116 displays the sample MSGFLDxx parmlib member CNZZMFXX that is
supplied in SYS1.SAMPLIB.

Chapter 9. Message Flood Automation 115

/* ___ */
/* Sample MSGFLDxx PARMLIB member. */
*

/e e */
/* ___ */
/* REGULAR message specifications. */

/* ___ */

REGULAR MSGTHRESH=50,J0BTHRESH=20, INTVLTIME=1

REGULAR SYSIMTIME=2,J0BIMTIME=2

DEFAULT LOG,NOAUTO,NODISPLAY,NOCMD

DEFAULTCMD '&,CANCEL & -- cancelled by Message Flood Automation'
JOB AOC%NV* AUTO

JOB LLA* AUTO

JOB ZAP1 CMD

/* ___ ~k/
/* ACTION message specifications. */
/* ___ */

ACTION MSGTHRESH=50,J0BTHRESH=20,INTVLTIME=1

ACTION SYSIMTIME=2,JOBIMTIME=2

DEFAULT LOG,NOAUTO,NODISPLAY,NOCMD,NORETAIN

DEFAULTCMD '&,CANCEL & -- cancelled by Message Flood Automation'
JOB AOC%NV* AUTO,RETAIN

JOB LLA* AUTO

JOB ZAP2 CMD

/* ___ */
/* SPECIFIC message specifications. */
/* ___ ~k/

SPECIFIC MSGTHRESH=50, INTVLTIME=1
SPECIFIC SYSIMTIME=2

SPECIFIC MSGIMTIME=2

SPECIFIC MSGLIMIT=20

DEFAULT LOG,NOAUTO,NODISPLAY,NORETAIN
MSG I0SO01E

MSG I0S003A

MSG I0S0501I

MSG I0S0511

MSG I0S0711

MSG I0S2511

MSG 10S4441

MSG I0S450E

Figure 9-7 Sample MSGFLDxx parmlib member

Note: Refer to z/0OS MVS Planning: Operations, SA22-7601, for more detailed information
about the parameters.

9.4.2 Types of message classes processed

116

The Message Flood Automation processing handles three separate types of message
classes. The definitions of how these classes are defined is in the MSGFLDxx parmlib
member. Each class of messages is handled separately.

Message Flood Automation can take action against “privileged” messages which are queued
to consoles even in storage shortage situations. The message classes are as follows:

» SPECIFIC messages
A set of messages identified by the installation that are to be handled separately

z/OS Version 1 Release 9 Implementation

» ACTION messages
Messages that have one or more of the following descriptor codes set:
— 1 - System failure messages (typically messages with a W (wait) message ID suffix)

— 2 - Immediate action required messages (typically messages with an A (action) or D
(decision) message ID suffix)

— 3 - Eventual action required messages (typically messages with an E (eventual action)
message ID suffix)

— 11 - Critical eventual action required messages (typically messages with an E (critical
eventual action) message ID suffix)

» REGULAR messages
Messages that do not fall into any of the preceding categories.

Note: REGULAR messages include the “command echo” messages which put the text of
a command into the display area of a console and place the text of a command into the
SYSLOG and OPERLOG. Descriptor codes describe the significance of messages.

They indicate whether the system or a task stops processing, waits until some action is
completed, or continues. This code also determines how the system will display and delete
the message.

9.4.3 Message class controls

Each class has its own set of controls, as shown in Figure 9-8. Message Flood Automation
classes run in one of two modes: normal or intensive. Each set of controls operate
independently; for example, the system may be in intensive mode for regular messages but
not for action messages. The effect is that action messages will still be processed by z/OS in
the normal way.

INTVLTIME (Interval Timit time)

JOBIMTIME (Job inter-message mean time) - not supported for SPECIFIC
JOBTHRESH (job message threshold) - not supported for SPECIFIC

MSGIMTIME (Message inter-message time) - not supported for REGULAR and ACTION
MSGLIMIT (Message threshold Timit) - not supported for REGULAR and ACTION
MSGTHRESH (Message threshold)

SYSIMTIME (System inter-message time)

Figure 9-8 Message class controls that are defined in parmlib

The use of these message class controls for each message class is shown in Figure 9-9 on
page 121.

Message class modes
The Message Flood Automation normal and intensive class modes are explained here.

Normal mode In normal mode, messages are counted. When a threshold number
(MSGTHRESH) of messages has been counted, the time taken to count
those messages is determined. If the time is less than a limit value
(INTVLTIME), the system is placed into intensive mode. It is expected
that this determination is likely to be done relatively infrequently, every 50
to 100 messages or more. The INTVLTIME value should be set to
identify high message rates. A value of 5 seconds for INTVLTIME

Chapter 9. Message Flood Automation 117

118

indicates an average rate of 20 messages per second if MSGTHRESH is
set to 100.

The processing overhead in normal mode is therefore very small. Only a
very small number of instructions are executed in the exit for each
message. No dynamic storage is obtained or freed, and no recovery
environment is established.

Intensive mode In intensive mode, each message is subject to extra processing.
Messages are counted for each address space (up to a maximum of 10)
issuing messages and compared to a further limit value (JOBTHRESH).
If any one address space issues JOBTHRESH messages within
INTVLTIME, then it is subject to action from that time on. This action may
be installation-specified, but is typically defaulted to be no-display and
no-automation.

At the end of each interval of MGGTHRESH messages, a check is made
to see if intensive mode should be maintained, and whether address
spaces in “act-upon mode” should remain so. Message bursts can end
suddenly. The address space that issues them may suddenly exit a
tightloop condition and resume normal processing. In this circumstance,
it is likely that subsequent messages are important and should be
processed normally. To allow this to happen, there are two further
controls: system inter-message time (SYSIMTIME), and job (or
message) inter-message time (JOBIMTIME or MSGIMTIME).

When in intensive mode, if the time since the last message is greater than
SYSIMTIME, then intensive mode is discontinued. This ensures that the
first message after a break is not acted upon.

Similarly, if an address space is in act-upon mode, and the time since its
last message exceeds the JOBIMTIME, then it is removed from act-upon
mode. For specific messages, if a message is in act-upon mode, and the
time since the last message exceeds the MSGIMTIME, then the
message is removed from act-upon mode.

Use of message class controls

Table 9-1 on page 119 shows the combinations of message class control keywords that are
supported for each message class. As mentioned, each class of messages is handled
separately, and has its own set of controls (MSGTHRESH, INTVLTIME, and so on). Each set
of controls operates independently; the system can be in intensive mode for regular
messages, but not for action messages. z/OS still processes action messages in the normal
way.

The control algorithms for regular and action messages are identical and are as described
previously. For specific messages, the control algorithm is similar although it is applied to
individual messages and not to jobs or address spaces.

The MSGLIMIT parameter performs the same function in specific message processing that
the JOBTHRESH parameter performs in regular and action message processing. The
MSGIMTIME parameter performs the same function in specific message processing that the
JOBIMTIME parameter performs in regular and action message processing, although it is
applied against specific messages rather than address spaces.

z/OS Version 1 Release 9 Implementation

Table 9-1 Message class type and keyword combinations

msgtype=regular msgtype=action msgtype=specific
INTVLTIME INTVLTIME INTVLTIME
JOBIMTIME JOBIMTIME
JOBTHRESH JOBTHRESH
MSGIMTIME
MSGLIMIT
MSGTHRESH MSGTHRESH MSGTHRESH
SYSIMTIME SYSIMTIME SYSIMTIME

Message class control default values

The system default values, either before the MSGFLDxx parmlib member is read, or
accepting the IBM defaults, are as follows:

REGULAR MSGTHRESH=50
REGULAR JOBTHRESH=20
REGULAR INTVLTIME=1
REGULAR SYSIMTIME=2
REGULAR JOBIMTIME=2

ACTION MSGTHRESH=50
ACTION JOBTHRESH=20
ACTION INTVLTIME=1
ACTION SYSIMTIME=2
ACTION JOBIMTIME=2

SPECIFIC MSGTHRESH=50
SPECIFIC MSGLIMIT=20
SPECIFIC INTVLTIME=1
SPECIFIC SYSIMTIME=2
SPECIFIC MSGIMTIME=2

Message class control value ranges

The value for JOBTHRESH, MSGLIMIT, and MSGTHRESH is a positive, non-zero integer
count of messages in the range 1 to 999999999.

The value for INTVLTIME is a positive, non-zero integer time in seconds in the range 1 to
999999999.

The value for SYSIMTIME, JOBIMTIME and MSGIMTIME is a positive, non-zero floating
point time in seconds in the range 0.000001 to 16777215.0.

Operator commands to display individual Message Flood Automation

The values specified for each of the message class controls can be displayed by the following
operator command. The command can be used is any of the following forms:

DISPLAY MSGFLD,MSGTYPE=msgtype,keyword
DISPLAY MF,MSGTYPE=msgtype,keyword

D MSGFLD,MSGTYPE=msgtype, keyword

D MF,MSGTYPE=msgtype, keyword

Chapter 9. Message Flood Automation 119

For example:

D MF,MSGTYPE=REGULAR,MSGTHRESH
CNZz3011 Value of REGULAR MSGTHRESH is 20

9.4.4 Message Flood Automation guidelines

120

Message Flood Automation thresholds should be set based on the mean (most common)
message rate, not on the maximum message rates. The following guidelines should be used
when defining the message class controls:

» The REGULAR message threshold (MSGTHRESH) should be set somewhat higher than
the mean message rate, and your REGULAR message inter-message time (SYSIMTIME)
at or slightly below the mean message rate inter-message time.

» The ACTION job message threshold (JOBTHRESH) must be set to a value less than that
of MSGTHRESH. A JOBTHRESH value that is 30 to 40% of MSGTHRESH is a useful
starting point.

» The SPECIFIC MSG message threshold (MSGLIMIT) must be set to a value less than that
of MSGTHRESH. A MSGLIMIT value that is 15 to 20% of MSGTHRESH is a useful
starting point.

Guideline examples

Setting MSGTHRESH=50 and INTVLTIME=1 specifies a message rate of

50 messages/second. Setting MSGTHRESH=100 and INTVLTIME=2 also specifies a
message rate of 50 messages/second. You can use different combinations of threshold and
interval to trade off message flood detection responsiveness and message flood detection
overhead.

The general idea is to set the various thresholds high enough that they are not being triggered
by normal fluctuations in message rates but are triggered when sudden, very high message
rates are encountered. For REGULAR messages, using one of the suggested threshold
values provided by the CNZZ043| message is a good first approximation. Set your thresholds
high enough that Message Flood Automation is not constantly oscillating into and out of
intensive mode.

Using the MSGTHRESH=50 and INTVLTIME=1 specification makes Message Flood
Automation more responsive to detecting message flooding situations because only 50
messages are counted between computations of the message rate. However, the overhead
of the message rate computation is incurred twice as frequently as the MSGTHRESH=100
and INTVLTIME=2 specification.

Message Flood Automation message rate monitoring

It is very important that the message rate thresholds be properly set in the Message Flood
Automation policy. You can determine the values that are appropriate for your system by
using the Message Flood Automation Message Rate Monitoring function, which can be run
without enabling any other Message Flood Automation function.

Run the Message Rate Monitoring function on the system that you intend to run Message
Flood Automation on, and not on a test system. It is also very important that you obtain a
representative sample. We recommend that you run the Message Rate Monitoring function
for a 24-hour period that encompasses some of your busiest processing time.

z/OS Version 1 Release 9 Implementation

Enable message rate monitoring

You enable the Message Rate Monitoring function using the SETMF MONITORON command.
When you have obtained a representative sample, Message Rate Monitoring should be

turned off using the SETMF MONITOROFF command.

The D MF,MSGRATE command will display a graph of the message rates that were observed

and recommendations for setting the message threshold values.

Run Message Rate Monitoring periodically (or whenever your processing load increases) to

ensure that the message threshold values that you are using are still valid.

SETMF MONITORON
CNZZ902I Message rate monitoring ENABLED.
D MF,STATUS
CNZZ0421 Message Flood Automation V2ROMOO DISABLED.
Policy INITIALIZED. Using PARMLIB member: internal
Intensive modes: REGULAR-OFF ACTION-OFF SPECIFIC-OFF
Message rate monitoring ENABLED. 120186 msgs 1167 secs
D MF,MSGRATE,10
CNZZ0431 Message Flood Automation
Instantaneous Message Rates

120187 messages in 1183 seconds 101.595 msg/sec
% of time at msg rate 67113 messages w/most common rate
100.000% *kkkkkkkkkkkhhkkk
90.000% *kkhkhkhkkkhxkhxhkkdxK
80.000% *kkhkhkhkkkhkhkhkrkhxh®
70.000% KhkRKKRRKKIRK K IR K KRR K
60.000% KhKRKKKRRKK AR K IR KK h KRR K
50.000% B X
40.000% *kkkkhhhhhhhkhkkrrkhrhhhhk
30.000% khkhkkkrkhkhkkkkhkhkxkxk
20.000% e X
10.000% *hkhkhkhkhxkkhkhkhkhkxkhxh®

O+-m+>mtmmtm et b o m e [oo e
0 1 8 64 1K 8K messages/second

Suggested threshold for 95% is 1
Suggested threshold for 96% is 200
Suggested threshold for 97% is 1198
Suggested threshold for 98% is 1686
Suggested threshold for 99% is 2523
SETMF MONITOROFF
CNZZ903I Message rate monitoring DISABLED.
D MF,STATUS
CNZZ042I Message Flood Automation V2ROMOO DISABLED.
Policy INITIALIZED. Using PARMLIB member: internal
Intensive modes: REGULAR-OFF ACTION-OFF SPECIFIC-OFF
Message rate monitoring DISABLED. 0 msgs 0 secs

Figure 9-9 Commands to ENABLE/DISPLAY/DISABLE message rate monitoring

Note: For more detailed information graph parameters, refer to zZOS MVS Planning:
Operations, SA22-7601.

Chapter 9. Message Flood Automation

121

Tuning MSGFLDxx parmlib member

Set the REGULAR message MSGTHRESH value from the “suggested threshold” values
provided at the bottom of the Message Rate Monitoring graph. We recommend using the
99% threshold value. This means that in the sample, 99% of the messages occurred at a
message rate lower than the threshold value. Use of this threshold value will ensure that
Message Flood Automation is not taking action unnecessarily.

The interval time value should be set to one for all of the message types. Setting the value to
one will allow Message Flood Automation to be responsive without entailing undue overhead.

For the REGULAR and ACTION message types, the job threshold must always be less than
the overall message threshold. These relationships are checked and will cause warning
messages to be produced when the policy is loaded, or when the various values are
displayed by operator command. A useful value for the job threshold is 20 to 30% of the
respective overall message threshold.

For the SPECIFIC message type, the message limit must be less than the overall message
threshold. This relationship is checked and will cause a warning message to be produced
when the policy is loaded, or when the various values are displayed by operator command. A
useful value for the message threshold is 10 to 15% of the respective overall message
threshold.

The ACTION and SPECIFIC MSGTHRESH values should be set lower than the REGULAR
MSGTHRESH value because the messages in these classifications typically occur much less
frequently than more common messages.

9.4.5 Turning Message Flood Automation ON or OFF

122

Message Flood Automation command processing becomes active as soon as the message
exit and command exits are loaded and enabled. This will occur automatically during an IPL
and whenever a SET MPF= command is processed that has a (dot) .CMD entry for the
Message Flood Automation command exit.

Message Flood Automation message processing will be loaded and enabled automatically at
IPL and whenever a K M,UEXIT(Y) command is processed. Although Message Flood
Automation message processing is automatically loaded and enabled, no message
processing will occur until it is explicitly turned on by operator command.

Note that Message Flood Automation can be affected by SET MPF=xx commands that have
nothing to do with Message Flood Automation processing. For example, if a SET MPF=
command loads an MPFLSTxx parmlib member that does not have the .CMD statement for
loading the command exit and Message Flood Automation was previously active, Message
Flood Automation command processing will be deactivated. (The symptom for this is that
none of the Message Flood Automation commands will be recognized.)

After the Message Flood Automation code has been installed in the system libraries and the
various parmlib members have been customized, you can use the following commands to
turn Message Flood Automation On or OFF:

» Load your Message Flood Automation policy
SET MSGFLD=xx
or
T MSGFLD=xx
where xx is the suffix of a MSGFLDxx parmlib member.

z/OS Version 1 Release 9 Implementation

» Turn Message Flood Automation message processing ON
SETMF ON

» Turn Message Flood Automation message processing OFF
SETMF OFF

SET MSGFLD=00

CNZZ0161 Message Flood Automation policy initialized.

CNZZ4011 Message Flood Automation loading: MSGFLDO0O

CNZZ4101 Message Flood Automation loading of MSGFLDOO complete.

SETMF ON

CNZZ0411 Message Flood Automation ENABLED. PARMLIB member:MSGFLDOO
D MF,STATUS

CNZZ0421 Message Flood Automation V2ROMOO ENABLED.

Policy INITIALIZED. Using PARMLIB member: MSGFLDOO

Intensive modes: REGULAR-OFF ACTION-OFF SPECIFIC-OFF

Message rate monitoring DISABLED. 0 msgs 0 secs
SETMF OFF

CNZZ0411 Message Flood Automation DISABLED. PARMLIB member:MSGFLDOO
D MF,STATUS

CNZZ0421 Message Flood Automation V2ROMOO DISABLED.

Policy INITIALIZED. Using PARMLIB member: MSGFLDOO

Intensive modes: REGULAR-OFF ACTION-OFF SPECIFIC-OFF

Message rate monitoring DISABLED. 0 msgs 0 secs

Figure 9-10 Expected messages when loading and enabling Message Flood Automation

Note: You cannot use a COMMNDxx parmlib member to issue SET MSGFLD commands to
load the MSGFLDxx parmlib member because COMMNDXxx processing occurs prior to the
availability of the system services required to read SYS1.PARMLIB.

Also, you cannot use COMMNDxx to issue the SETMF ON command to enable Message
Flood Automation because COMMNDxx processing occurs before the CNZZCMXT
command exit is automatically loaded by the system during IPL.

9.4.6 Displaying your policy

Almost all of the currently active Message Flood Automation policy can be displayed using
the DISPLAY MSGFLD,parameters command.

Almost all of the Message Flood Automation policy can be modified, when necessary, by the
operator using the SETMF command. Consult zZZOS MVS Planning: Operations, SA22-7601, for
details of the SETMF command syntax. Because changes made by the SETMF command will
persist only until the next IPL, IBM recommends that changes that you want to be permanent
be made in your MSGFLDxx parmlib member. You may find the SETMF command useful
during Message Flood Automation testing and during emergency situations.

» Display your Message Flood Automation policy, as follows:
— DISPLAY MSGFLD,PARAMETERS

The PARAMETERS option displays in tabular form all of the threshold values and all of
the time periods over which they are evaluated.

Chapter 9. Message Flood Automation 123

>

— DISPLAY MSGFLD,DEFAULTS

The DEFAULTS option will display in tabular form all of the default actions that will be
taken for each of the three message classes: SPECIFIC messages, ACTION
messages and REGULAR messages.

— DISPLAY MSGFLD,JOBS

The JOBS option will display in tabular form the names of all of the jobs that will have
unique actions taken for them.

— DISPLAY MSGFLD,MSGS

The MSGS option will display in tabular form the identifiers of all of the messages that
will have unique actions taken for them.

Dynamically modify your Message Flood Automation policy with the following command:
— SETMF command

9.5 Command summary

124

Operator commands exist to do the following functions for Message Flood Automation:

>
>

v

YyVyVYyVYVYYVYYY

Enable message flood checking

Disable message flood checking

Reinitialize the counts, indicators and actions, and read the specified MSGFLDxx parmlib
member

Display the status of the Message Flood Automation function

Display whether intensive mode is active for the different classes of messages
Display the counts and parameters used by Message Flood Automation
Modify the counts and parameters used by Message Flood Automation
Enable message rate information gathering

Disable message rate information gathering

Display message rate information

Free the common storage area that is used by Message Flood Automation

All of these commands are implemented through a formal z/OS command exit (CNZZCMXT).

Message Flood Automation SET, SETMF, and DISPLAY commands do not perform authorization
checks and therefore cannot be restricted through the installation's security product.

You can use the following to perform DISPLAY, SET, and SETMF Message Flood Automation
commands.

Note: Refer to z/0S MVS Planning: Operations, SA22-7601, for more detailed information
about the commands.

DISPLAY MSGFLD command

Figure 9-11 on page 125 displays commands for all of the Message Flood Automation
parameters.

z/OS Version 1 Release 9 Implementation

DISPLAY MSGFLD,PARAMETERS
DISPLAY MSGFLD,DEFAULTS
DISPLAY MSGFLD,JOBS
DISPLAY MSGFLD,MSGS
DISPLAY MSGFLD,MODE
DISPLAY MSGFLD,MSGRATE[,n]
DISPLAY MSGFLD,STATUS

DISPLAY MSGFLD,MSGTYPE=ACTION{,JOBTHRESH}
{ ,MSGTHRESH}
{,INTVLTIME}
{,JOBIMTIME}
{,SYSIMTIME}

DISPLAY MSGFLD,MSGTYPE=REGULAR{,JOBTHRESH}
{ ,MSGTHRESH}
{,INTVLTIME}
{,JOBIMTIME}
{,SYSIMTIME}

DISPLAY MSGFLD,MSGTYPE=SPECIFIC{,MSGTHRESH}
{, INTVLTIME}
{,SYSIMTIME}
{ ,MSGIMTIME}
{,MSGLIMIT}

DISPLAY may be abbreviated D and MSGFLD may be abbreviated MF.

Figure 9-11 DISPLAY MSGFLD command

SET MSGFLD command
Use this command to change to a new policy.

SET MSGFLD=xx

SET may be abbreviated T.

Figure 9-12 SET MSGFLD command

SETMF commands

To modify the Message Flood Automation parameters being used, use the SETMF command.
The SETMF commands, shown in Figure 9-13 on page 126, use the same msgtype and
keyword specifications as the DISPLAY MSGFLD command, so any value that may be displayed
by DISPLAY MSGFLD may be set using the SETMF command.

One or more keyword=value pairs may be specified, separated by a comma.

Chapter 9. Message Flood Automation 125

SETMF ON

SETMF OFF

SETMF FREE

SETMF MONITORON
SETMF MONITOROFF

SETMF MSGTYPE=ACTION{,JOBTHRESH=value}
{ ,MSGTHRESH=value}
{,INTVLTIME=value}
{,JOBIMTIME=value}
{,SYSIMTIME=value}

where value is a count of messages, or time in seconds
or fractions of a second (SYSIMTIME and JOBIMTIME only)

SETMF MSGTYPE=ACTION,
DEFAULT=action[,action]

SETMF MSGTYPE=ACTION,JOB=jobname,
[,action][,action]

where action is LOG|NOLOG, DISPLAY|NODISPLAY,
AUTO|NOAUTO, RETAIN|NORETAIN,
CMD | NOCMD
SETMF MSGTYPE=REGULAR{,JOBTHRESH=value}
{,MSGTHRESH=value}
{,INTVLTIME=value}
{,JOBIMTIME=value}
{,SYSIMTIME=value}

where value is a count of messages, or time in seconds
or fractions of a second (SYSIMTIME and JOBIMTIME only)

SETMF MSGTYPE=REGULAR,
DEFAULT=action[,action]

SETMF MSGTYPE=REGULAR,JOB=jobname
[,action][,action]
SETMF MSGTYPE=SPECIFIC{,MSGTHRESH=value}
{,INTVLTIME=value}
{,SYSIMTIME=value}
{ ,MSGIMTIME=value}
{,MSGLIMIT=value}

where value is a count of messages, or time in seconds
or fractions of a second (SYSIMTIME and MSGIMTIME only)

SETMF MSGTYPE=SPECIFIC,
DEFAULT=action[,action]

SETMF MSGTYPE=SPECIFIC,MSG=msgid
[,action] [,action]

Figure 9-13 SETMF commands

126 z/OS Version 1 Release 9 Implementation

10

WLM enhancements

The z/OS Workload Manager (WLM) is enhanced with improved performance routing, priority
settings, and cancel functionality, further improving on the mainframe's leadership position in
workload management capabilities. With z/OS WLM, you can define business and
performance goals customized for your applications. The z/OS system decides how much
resource, such as CPU and storage, should be given to applications that serve the workload
to meet the goal. WLM constantly monitors the system and adapts resource applications to
meet application goals, taking into account not only server resources, but network traffic,
router bottlenecks, application health, and transaction prioritization as well, thus providing
autonomic, policy-based z/OS performance management that can be tuned to meet your
applications' needs.

This chapter provides information about the WLM enhancements introduced in z/OS
Version 1 Release 9. The following improvements are discussed:

» Promote jobs which have been cancelled

» Start minimum number of servers

» WLM/SRM enhancements for blocked workloads

» RMF enhancements for blocked workloads

» zAAPs and zIIPs support stage 3 routing

© Copyright IBM Corp. 2007. All rights reserved. 127

10.1 Promote jobs which have been cancelled

Occasionally you may need to cancel an address space because it is holding up other work,
and you need to get that address space out of the system quickly. Sometimes, however,
cancel processing takes a long time to complete because the job is being pre-emptied by
higher priority work and hence is not dispatched. When an address space is cancelled, the
majority of cancel processing runs in the address space being cancelled, so it is running at
the dispatch priority of the address space. The process of canceling this address space may
take a long time to terminate because all processors are too busy processing work with
higher importance.

10.1.1 z/OS V1iR9 enhancement

WLM is now changed to increase the priority of canceled address spaces. SRM can now
promote the address space being cancelled to a higher dispatch priority in order to give the
address space sufficient access to a CP in order to have it terminate faster. This can
eliminate the need to reset the priority of a canceled job, task, or user to speed address space
termination when resolving resource contention issues.

10.1.2 Migration and coexistence considerations

128

The BRINGIN SYSEVENT, an internal service used during cancel processing, is no longer
used by the z/OS operating system and is removed with z/OS V1R9. While the BRINGIN
SYSEVENT was not a public interface, use of this function by other than the operating system
can cause problems in production environments. If the current job in an address space has
been canceled and if the BRINGIN service were not issued, an address space that had been
swapped out because of a shortage might be kept out until the shortage had been relieved.

Use of this SYSEVENT with z/OS V1R9 causes an ABEND of the caller, abend code x’15F",
reason code 4.

Note: Refer to zZ0S MVS System Codes, SA22-7626, for more information about the
abend code x’15F’ and reason code 4.

A new CANCEL SYSEVENT is now used to request a swap in and promote of an address
space. This allows for operator or user CANCEL processing to be done more quickly and
release system resources. This new service is used to accelerate the cancel process.

When the CANCEL command for an address space has been accepted by the command
processor, the command processor notifies SRM that cancel processing is starting for the
address space.

Note: System events (SYSEVENTS) are indicated by an entry to system resources
manager (SRM) through direct branch or SVC 95 (SVC X'5F'). SYSEVENTS appear in the
generalized trace facility (GTF) and system trace records.

z/OS Version 1 Release 9 Implementation

10.2 Start a minimum number of servers

Workload management creates as many server address spaces as are needed to meet the
goals of the work running in the servers, unless the application has limited the number of
server instances that workload management can create using IWM4SLI.

WLM starts and stops server address spaces depending on the workload and the system
capabilities. This self-optimization logic is enhanced by an additional parameter that allows
the application to decide in which way the minimum amount of servers are to be started by
WLM.

Note: The IWM4SLI service was introduced with z/OS V1R6 to support the 64-bit address
space.

10.2.1 z/OS V1iR9 enhancement

The IWM4SLI service should be used to tell WLM the total number of server instances which
are supported by the application. WLM will ensure that no more server instances will be
started in the system.

Use the AE_SERVERMAX parameter to establish a maximum number, which is particularly
useful for applications such as MQSeries® and workflow that connects to back-end
applications supporting a limited number of parallel connections. Use the AE_SERVERMIN
parameter to establish a minimum number, because this allows an application to keep a
number of servers active, even during low utilization periods. In addition, you can specify
AE_SPREADMIN=YES to ensure that the defined minimum number of servers are distributed
evenly across all of the service classes used to execute work requests in the application
environment.

New parameters
The new parameters that can be specified using the IWM4SLI service are:

» START_MINIMUM=SERIAL
» START_MINIMUM=PARALLEL

When AE_SERVERMIN=ae_servermin is specified it indicates whether WLM will start the
minimum number of servers one by one or in parallel. The default is
START_MINIMUM=SERIAL.

START_MINIMUM=SERIAL The server tasks specified in AE_SERVERMIN will be
started one by one. This means the next server will only be
started if the previous server has connected to WLM.

START_MINIMUM=PARALLEL The server tasks specified in AE_SERVERMIN will be
started in parallel. This means WLM will start additional
servers even when the previous servers have not
connected to WLM.

In such environments, the startup of the minimum servers can be accelerated. This new
service used by WLM started server address spaces is called by the first server address
space, which then decides in which way the remaining servers will be started.

Chapter 10. WLM enhancements 129

130

Server region support

When the first request is queued to an application environment, workload management
detects that there are no active servers for the request, and automatically starts one. The
MVS procedure name and start parameters are taken from the application environment
definition in the service definition. As the workload fluctuates, workload management adjusts
the number of server address spaces so the goals of the work are met.

When the server initializes, it must establish itself as a server address space using the
IWM4CON service with SERVER_MANAGER=YES parameter, and indicate which
application environment it is servicing. The subsystem type and name specified on the server
connect must match the values specified on the associated queueing manager connect.
Immediately after invoking the IWM4CON service, the server region optionally establishes a
maximum and/or minimum number of server instances that can be started for a given
application environment.

The first server region that connects decides the minimum amount of server address spaces
and also decides in which way they will be started (serial or parallel), as shown in Figure 10-1.
If any server uses this service to define limits, the limits apply for al/ servers of the application
environment, regardless of whether or not other servers use the service.

If a server defines new limits during execution, WLM attempts to meet the new limit definitions
as soon as possible. If the maximum limit for servers is reduced during execution, it is not
predictable when WLM is able to meet the new maximum definition. This depends highly on
the execution time of the running work requests. Therefore, changing the limits during
execution should be done very carefully and primarily during times of low application
utilization.

Control Region Server Region

Connect (wm4con)

W Connect (lwm4con) [
Classify (wmcLsFy)| L Limit (iwm4sli) -
& "R Select (iwm4ssl)

Begin (iwm4sthg)

Disconnect (wm4pis) e (P i)

Disconnect (iwm4dis‘

0
.....................*-‘

o 0
odeoccccccccccccccccned

Figure 10-1 Server regions connecting to WLM

The logic that decides how many servers can be in which states is changed and has been
extended by the special case that the minimum amount of servers is not reached. The new
parameter on IWMA4SLI decides if the servers need to connect before the next server start will
be initiated by WLM, as shown in Figure 10-2 on page 131.

z/OS Version 1 Release 9 Implementation

Server States

{ If START_MINIMUM is SERIAL, only
: one server per application environment
t can be in one of these states at once.

Ilnitializing I

P
L) oo

T

If START MINIMUM is PARALLEL
and ServerMin is not reached, multiple
servers can be in these states.

[Connect to WLM]

‘ ¢ As soon as ServerMin is reached, the

I c ted I ! parameter has no meaning anymore.
onnecte L] Secececcccccccccccccccccnncccccacccccccccaccced

Figure 10-2 Server regions establishing a minimum or maximum number

The syntax of the WLM service IWMA4SLI is described in zZ0S MVS Programming: Workload
Management Services, SA22-7619.

10.2.2 Exploiters of the new service request

Every application that uses the WLM services to manage its server address spaces and has
a minimum limit for the amount of servers can use this new parameter.

The usage of this new parameter makes only sense if the application suffers from a long
startup time of the minimum amount of servers specified on the IWM4SLI service.

If the long startup time is caused by a long processing time of the servers before they connect
to WLM, this new parameter may speed up the total time needed to start up the minimum
amount of servers.

10.3 WLM enhancements for blocked workloads

During periods of 100% CP utilization, it is possible that discretionary workloads (workloads
defined by your installation to have lower dispatch priority) are not dispatched for execution.
These discretionary workloads may obtain and hold serially reusable resources required by
other workloads, which may block the progress of higher dispatch priority workloads. In z/OS
V1R9, it is possible to specify that any address space and any enclave that has work that is
ready to run but does not get CP service within a certain time interval can be temporarily
promoted to a higher dispatching priority. Resource measurement facility (RMF) supports this
function by reporting relevant measurements.

When low priority work obtains a resource and then gets suspended in favor of higher
importance work, the resource that the high importance work needs is then blocked. The high
priority work is now in effect blocked by the lower priority work and WLM resolves this with
z/0OS V1R9 by granting limited CP access to work units which could not get hold of a CP for
an extended period of time. WLM periodically examines the IN-queue and identifies work

Chapter 10. WLM enhancements 131

units which have been CP denied. The dispatching priority of these work units is temporarily
raised to allow execution of a small number of instructions. This assumes that such short
periods of CP access does not harm high importance work and could help low importance
work to release locks and other critical resources.

10.3.1 Promote higher dispatch priority

WLM defined goals allow high importance work better access to system resources than lower
importance work, but these goals cannot guarantee that all work will always get access to the
system resources within a certain period of time. Given the high utilization of some systems,
WLM is not able to ensure that all work can actually run in the system. In many cases this is
not a problem, and installations are aware of the fact that lower importance work has to wait
until resources become available. However, in certain cases, this can lead to unwanted
consequences.

Because there are cases where WLM does not know what work is holding important
resources, WLM gives work that did not get access to a CP for some elongated time period a
small amount of access to the CPU. The z/OS V1R9 support periodically examines the
IN-queue and identifies work units which have been CP-starved for an extended period of
time. WLM can then promote these work units and guarantee that the promoted work gets
access to a CP, but cannot take over the CP.

This can eliminate the need to manually increase the priority of low priority work holding a
resource to accelerate resolving resource contention issues.

Blocked workload implementation

The support is invoked by using two new parameters, BLWLTRPCT and BLWLINTHD, in the
IEAOPTxx parmlib member to control the percentage of CPU spent for promotion.

BLWLINTHD This specifies the threshold time interval for which a blocked address space
or enclave must wait before being considered for promotion.

If the CPU utilization of a system is at 100%, then workloads with low
importance (low dispatch priority) might not get dispatched anymore. This
can lead to problems if the low priority work holds a resource that is
required by high priority workloads. Therefore, if an address space or
enclave has ready-to-run work units (TCBs or SRBs) but does not get CPU
service for the specified time interval because of its low dispatch priority, it
will be temporarily promoted to a higher dispatch priority. Address spaces
that are swapped out are not considered for promotion.

Minimum is 5 seconds. Maximum is 65535 seconds.
Default is 60 seconds.

BLWLTRPCT This specifies how much of the CPU capacity is to be used to promote
blocked workloads.

This parameter does not influence the amount of CPU service that a single
blocked address space or enclave is given. Instead, this parameter
influences how many different address spaces or enclaves can be
promoted at the same point in time. If the value specified with this
parameter is not large enough, blocked workloads might need to wait
longer than the time interval defined by BLWLINTHD.

Minimum is 0 units. Maximum is 200 units (=20%). (0% implies trickle
should not occur.)

Default is 5 (=0.5%), max is 200 (=20%).

132 z/OS Version 1 Release 9 Implementation

For detailed information about the new IEAOPTxx parameters, refer to zZ0S MVS
Initialization and tuning Reference, SA22-7592.

10.4 RMF enhancements for blocked workloads

RMF enhances the Workload Activity report and the CPU Activity report to provide
information about the handling of blocked workload. In addition, RMF provides new overview
conditions for the Postprocessor based on SMF record 72-3. This new functionality is
available as SPE and needs to be installed as APAR OA18244. If the CPU utilization of a
system is at 100%, workloads with low importance (low dispatch priority) might not get
dispatched anymore. This could cause problems if the work holds a resource and by that
holds up more important workloads. Therefore, any address space or enclave which has
ready-to-run work units but does not get CPU service within a certain time interval due to its
low dispatch priority will be temporarily promoted to a higher dispatch priority. RMF supports
this function by reporting relevant measurements in the new Blocked Workload Promotion
section of the Postprocessor CPU Activity report. The Postprocessor Workload Activity report
provides the CPU time, that transactions of a certain service or report class were running at a
promoted dispatching priority.

10.4.1 RMF CPU Activity report

The CPU Activity report is extended by a BLOCKED WORKLOAD ANALYSIS section. This
new section lists the number of blocked dispatchable units that may get promoted in their
dispatch priority to help blocked workloads (promote rate). This value is derived from the OPT
parameters BLWLTRPCT and BLWLINTHD. To help customers tune those new OPT
parameters, the new section also lists the average exploitation of the promote rate during the
measurement interval. A value below 100% indicates that not all blocked workloads could be
promoted. To assess the amount of workload still being blocked, the average number of
address spaces and enclaves found blocked (waiters for promote) is listed. The average
across the measurement interval might be quite low although there might be considerable
peaks of blocked workload. Thus, the peak value detected during the measurement interval is
listed as well.

Blocked workioad analysis

The field WAITERS FOR PROMOTE, shown in Figure 10-3 on page 134, displays the
“number of waiters”. This report can be used to adjust the BLWLTRPCT parameter. As long
as the number of waiters is greater than 0, the system has blocked work, indicating a need to
increase BLWLTRPCT. The Blocked Workload Analysis section lists the number of blocked
dispatchable work units that are eligible for dispatching priority promotion. This section also
lists the defined average promotion rate and the percentage used during the measurement
interval. A value below 100% indicates that not all blocked workloads could be promoted. To
assess the amount of workload still being blocked, the average and peak number of address
spaces and enclaves found blocked is also listed and defined as follows:

DEFINED Average number of blocked dispatchable work units which may get
promoted in their dispatching priority per second. This value is derived
from OPT parameter BLWLTRPCT.

USED (%) The utilization percentage of the defined promote rate during the
reporting interval.

AVG Average number of address spaces and enclaves found blocked
according to BLWLINTHD during the report interval.

PEAK Highest number of address spaces and enclaves found blocked during

the report interval.

Chapter 10. WLM enhancements 133

CPU ACTIVITY
z/0S VIR9
CPU 2094 MODEL 714 H/W MODEL S18

BLOCKED WORKLOAD ANALYSIS

OPT PARAMETERS: BLWLTRPCT (%) 0.5 PROMOTE RATE: DEFINED 50000 WAITERS FOR PROMOTE: AVG 0.001
BLWLINTHD 60 USED (%) 95 PEAK 15

Figure 10-3 Blocked workload analysis in CPU Activity Report

If you experience a problem with blocked work holding resources for too long but you see no
waiters in the RMF data, you might want to decrease BLWLINTHD. Also SMF Record 99
Subtype 1 shows the number of address spaces or enclaves waiting longer than the
threshold. The field name is SMF99_CCTRCWTR and is shown in Table 10-1.

Table 10-1 System state information section for SMF record type 99

Offsets Name Length | Format Description

28 120 SMF99_CCTINTHD 2 Binary OPT parameter BLWLINTHD
starvation threshold

29 122 SMF99_CCTTRPCT | 2 Binary OPT parameter BLWLTRPCT for
percentage of CP trickling

31 138 SMF99_CCTRCWTR | 4 Binary Number of address spaces or
enclaves waiting longer than the
threshold

For more information about SMF Record 99 Subtype 1, including details of the new fields,
refer to z/0S MVS System Management Facilities, SA22-7630.

10.4.2 RMF Workload Activity report

134

Using the RMF WLMGL report, you can analyze the following areas:

» Identify service classes running work units at a promoted dispatching priority

» Monitor the amount of CPU time that transactions of the service or report class (period)
were running at a promoted dispatching priority

The amount of CPU time transactions that were running at a promoted dispatching priority is
provided in the SERVICE TIMES block.

In Figure 10-4, the field PROMOTED shows the CPU time in seconds that transactions in this
group were running at a promoted dispatching priority.

WORKLOAD ACTIVITY

-TRANSACTIONS- TRANS-TIME HHH.MM.SS.TTT --DASD I/0-- ---SERVICE---- --SERVICE TIMES-- ----APPL%---- ----- STORAGE-----
AVG 10.07 ACTUAL 1.00.895 SSCHRT 20.8 1I0C 96199 CPU 1.400 CP 0.20 AVG 980.42
MPL 10.07 EXECUTION 59.616 RESP 2.8 CPU 266554 SRB 0.200 AAPCP 0.00 TOTAL 9868.59
ENDED 1 QUEUED 1.278 CONN 0.2 MSO 9131 RCT 0.000 IIPCP 0.00 SHARED 127.67
END/S 0.00 R/S AFFIN 0 DISC 0.0 SRB 39610 11T 0.200

#SWAPS 30 INELIGIBLE 0 Q+PEND 0.5 TOT 411494 HST 0.000 AAP 0.00 --PAGE-IN RATES--
EXCTD 0 CONVERSION 0 I0SQ 2.0 /SEC 457 AAP 0.000 IIP N/A SINGLE 0.0
AVG ENC 0.00 STD DEV 0 1Ip N/A BLOCK 0.0
REM ENC 0.00 ABSRPTN 45 SHARED 0.0
MS ENC 0.00 TRX SERV 45 PROMOTED 0.333 HSP 0.0

Figure 10-4 Field PROMOTED in Workload Activity Report

z/OS Version 1 Release 9 Implementation

10.4.3 New SMF record types

SMF record type 70 subtype 1 and 72 subtype 3 are handled consistently within RMF. New
fields are appended to the end of the respective data sections. If SMF records without the
new fields are formatted by the RMF Postprocessor, the appropriate report fields are reported
with ZERO values. No compatibility PTFs are required. This support is rolled back as SPE
APAR OA18244.

The CPU control section is updated with information about blocked workloads as described in
Table 10-2. The RMF Postprocessor CPU activity report uses this information to format the
BLOCKED WORKLOAD ANALYSIS section.

Table 10-2 SMF record type 70 subtype 1 (CPU Activity) — CPU control section

Offset | Name Length | Format Description

55 SMF70STF 1 Binary Flag BIT 0 to 4 meaning not changed.

BIT 5 = OPT parameter BLWLTRPCT changed.
BIT 6 = OPT parameter BLWLINTHD changed
BIT 7 = reserved

96 60 | SMF70PMI 4 Binary Accumulated number of blocked dispatchable
units per second that may get promoted in their
dispatch priority. To get the average promote
event rate, divide SMF70PMI by SMF70SAM.

100 64 | SMF70PMU 4 Binary Number of blocked dispatchable units being
promoted during the interval

100 64 | SMF70PMW | 4 Binary Accumulated number of address spaces and
enclaves being blocked during the interval. To get
the average number of waiters for promote, divide

SMF70PMW by SMF70SAM.

108 6C | SMF70PMP 4 Binary Maximum number of address spaces and
enclaves found being blocked during the interval.

11270 | SMF70PMT 2 Binary 1/1000s of a CP for promote slices (OPT
parameter BLWLTRPCT).

11472 | SMF70PML 2 Binary Swapped-in starvation threshold. When an

address space or enclave has not received CPU
service within this time interval, it is considered
being blocked (OPT parameter BLWLINTHD).

The service or report class period data section of SMF record type 72-3 is extended with a
new field holding the CPU time at promoted dispatching priority to help blocked workloads,
and it is shown in Table 10-3. This field is used to format the PROMOTED field in the
Resource Consumption Section of the WLM Workload Activity Report.

Table 10-3 SMF record type 72 subtype 3 (Workload Activity) — SC/RC period data section

Offset Name Length Format Description

576 240 | R723TPDP 8 Float Total CPU time at promoted dispatching priority
(in 1024 microsecond units)

In addition, two new overview control statements are provided based on this new SMF record
type 72-3 fields, as shown in Table 10-4 on page 136.

Chapter 10. WLM enhancements 135

Table 10-4 New overview conditions based on SMF record 72-3

Condition Condition Name Source Algorithm
Percentage of CPU PROMPER R723TPDP Sum(R723TPDP) /
time at promoted Interval length x 100

dispatching priority

Time at promoted PROMSEC R723TPDP Sum(R723TPDP)
dispatching priority in
seconds

Note: Both overview conditions can be specified with a service class (period), report class
(period), workload or the POLICY qualifier.

10.4.4 RMF Distributed Data Server

There are new metrics for the RMF Distributed Data Server. For resource type MVS_IMAGE,
the CPU time at promoted dispatching priority is provided by:

» WLM workload
» WLM service class and service class period
» WLM report class and report class period

Exploit the new metrics with RMF PM or the RMF Monitor Il Data Portal for z/OS.

10.5 Improved assist processor routing services

136

The zSeries platform recently introduced specialty processors that can be deployed and
exploited by qualified workloads on z/OS. This includes support for the following processors:

» zAAP (zSeries Application Assist Processor)

These processors can be used for JAVA application workloads on z/OS (including
workloads running under z/OS WebSphere Application Server).

» zIIP (System z Integrated Information Processor)
These processors can be used by qualified z/OS DB2-related workloads.

When the Sysplex Distributor routes incoming connections based on Workload Manager
(WLM) system weights (in addition to using WLM information about general CPU capacity), it
will optionally (if all systems in the sysplex are V1R9 or later) consider available zAAP CPU
capacity, available zIIP CPU capacity, or both. When configured on the VIPADISTRIBUTE
statement, a composite WLM weight is determined based on the available capacity of each
processor type and the expected use of each processor type by this application.

The sysplex routing services provide routing recommendations to help distributed programs
make the routing decisions. The recommendations are based on processor capacities. The
sysplex routing services allow work associated with a server to be distributed across a
sysplex. They enable distributed client/server environments to balance work among multiple
servers.

With zAAPs and zlIPs two new processor types are introduced for z/OS systems. It is now
possible that a substantial amount of work is executed on the assist processors in addition to

z/OS Version 1 Release 9 Implementation

regular CPs. In previous releases, the routing recommendation is based on the capacity of
regular CPs only.

With z/OS Version 1 Release 9, routing services provide individual weights for all processor
types and also a combined server weight based on usage of all processors. The benefit is
better routing recommendations in environments with assist processors.

Prior to z/OS V1R9, the routing services only return weights based on capacity of regular
CPs, but the capacity of assist processors influence how the work can be processed. Routing
services now provides individual weights for all processor types and also a combined server
weight based on usage of all processors. This provides better routing recommendations in
environments with assist processors such as zlIPs and zAAPs.

10.5.1 Sysplex routing services IWMSRSRS improvements

In previous releases the routing recommendation is based on the capacity of regular CPs
only. With z/OS V1R9, routing recommendations now take the capacity of assist processors
(zAAPs and zlIPs) into account.

This new support is invoked by the following WLM services:
» IWMSRSRS FUNCTION=SELECT or IWMSRSRS FUNCTION=SPECIFIC

The existing calls now return a list of registered servers in a sysplex along with 4 weight
values for each server (3 individual, 1 combined) which tell the caller the relative number
of requests to send to the server

» IWM4SRSC

This existing call now returns the weight(s) for one specific server that is identified by its
STOKEN.

» IWMWSYSQ EXTENDED_DATA=YES

This existing call returns capacity information for all processor types of all systems in the
sysplex.

For more information about WLM services, refer to MVS Programming: Workload
Management Services, SA22-7619.

IWMSRSRS service

The IWMSRSRS service, shown in Figure 10-5 on page 138, provides three functions:
SELECT, QUERY and SPECIFIC. This call returns a list of registered servers known to the
system on which the service is invoked.

When either the SELECT or the SPECIFIC function is chosen, IWMSRSRS returns a list of
servers in the sysplex which are associated with the input location name along with a relative
weighting for each server. These servers are identified by their Network ID and LU name,
which were previously registered using the sysplex router register service, IWMSRSRG,
which allows a caller to register as a server.

Chapter 10. WLM enhancements 137

138

SYS 2
SYS 1 SYS 3
[Servera] Server &
Server B
% Server C
Server A
Server A Server B
Server B || [Server [System Weight SO(VO Server C
Server C|| [x SYS1 50
B SYS 2 30 3
Cc SYS 3 20 0
SYS1: avail. Capacities % 20 /0
SYS2: avail. Capacities
SYS3: avail. Capacities
50% ot Web
outing
Manager Requests

Figure 10-5 IWMSRSRS service

IWMSRSRS routing recommendation

Each system in the sysplex has information about all registered servers and all processor
capacities.To get a routing recommendation, you can call the IWMSRSRS service with a
LOCATION parameter on any system in the sysplex. It returns recommendations, called
weights (numbers between 0 and 64) for each server that was registered under that
LOCATION ID. Then you would use those weights to distribute the incoming request between
the servers according to the size of their weights, as shown in Figure 10-5. The base
calculation for FUNCTION=SPECIFIC and FUNCTION=SELECT is the same as in previous
releases.

In previous releases:
» Only one weight (SYSR_WEIGHT) is returned and it is based only on regular CP capacity.
» A system was nof returned if it had less than 5% of displaceable capacity at the selected
importance level
With z/OS Version 1 Release 9:
» SYSR_WEIGHT now is the combined weight of all available processor resources.
» The individual weights have been added:
— SYSR_CPU_WEIGHT (corresponds to SYSR_WEIGHT of previous releases)
— SYSR_ZAAP_WEIGHT
— SYSR_ZIIP_WEIGHT

» A system is not returned if it has no displaceable capacity for regular CPs at the selected
importance level

— As a result, potentially more systems may be returned.

— If a system has no displaceable capacity for an assist processor, it is returned and
missing capacity is reflected in the weight.

IWMSRSRS details - Step 1

The IWMSRSRS service calculates the CP system weight to find the importance level where
at least 5% of displaceable capacity is available. This results in an importance level 5. A

z/OS Version 1 Release 9 Implementation

shown in Figure 10-6, systems B and C meet the criteria. As shown in Figure 10-7, however,
system A does not meet the criteria.

Selected Importance Level = 5
Total capacity at level 5 40+390+700 = 1130
CPU System Weight for System A 40*64/1130 = 2
CPU System Weight for System B 390*64/1130 = 22
CPU System Weight for System C 700*64/1130 = 40

Figure 10-6 Results from the calculation of the system weights

Note: Prior to z/OS V1R9, system A would have been removed from the list of eligible
systems. Now with the new changes, system A is still considered because the
consumption is not zero.

Figure 10-7 Capacity for regular CPs

IWMSRSRS details - Step 2, 3, and 4

With z/OS V1R9, three new output weights have been introduced: the CPU weight, the zZAAP
weight and the zIIP weight. The CPU weight is computed the same way as the weight prior to
V1R9, taking only CPU data into account. The zAAP and the zIIP weights are computed
taking only zAAP, respectively zIIP, data into account. The weight (also referred to as “mixed”
weight) is a combination of these three processor weights.

With z/OS V1R9, the new support from this service now attempts to include special purpose
processors in the calculation of the weights, as explained here.

» Step2
— Calculate the system weights for the assist processors.
— Systems which have been excluded in step 1 are no longer considered.
— In this step, no system is excluded.
» Step 3
— Calculate the server weight.
— Use the proportion of the work using the processor types to calculate a system weight
for the server and scale the resulting weight to 64.

Chapter 10. WLM enhancements 139

140

>

Step 4
— Include other weight factors (zAAPs and zIIPs).

The results are shown in Figure 10-8.

Processor Weights - Step 2

Regular CPs 5 2 22 40
zAAPs 4 15 51 0
zlIPs 7 20 15 * 29

Server Processor Usage - Step 3

Server X
Service 200/ 200/ 200 100| 300 100 200 0 50
Portion 33 33 33 20 60 20 80 0 20

Server System Weights - Step 4

A |System B [System C
CRllenI B ﬁ o "[Portion(i) e ProcType()]
System weight (unscaled) 12| 38| 37
Scaling Gde UnscaledWedght(i)

> UnscaledWdght(i)
Resulting System Weight 9| 28| 27

Figure 10-8 Calculation of the weights

Server weights on System C
During Step 4, the following calculations for system C servers are as explained here.

>

>

| 2

»

Calculate the server weights.
Divide the system weights by the number of servers on system.
Only for function=SPECIFIC: include other server performance factors.

In case one of the servers has a mixed weight=0: return only 1 server (and undivided
weight): the server with maximum performance.

The results are shown in Figure 10-9 on page 141.

z/OS Version 1 Release 9 Implementation

Server Weights - Step 4 System C

Server

Processor

System Weight 27 | 40 | 0 | 29 | 27 | 40 | O | 29 (27| 40| O | 29

of Servers 3
Divided weights 9 13 0 10 9 13 0 10| 9 | 13 0 10

Server performance 100% 25% 66%
factors (Pl, Queue
Server Weights 9 13| 0 10 4 6 0 5/ 6 8 0 6

Figure 10-9 Server weight calculation for System C

IWMSRSRS additional enhancements

The restriction that no more than 96 servers per system could be returned is now relieved.
With z/OS V1RO, up to 300 servers per system will be returned from the IWMSRSRS service.
This is also valid for WMSRSRS FUNCTION=QUERY service calls.

This support is available for zZOS V1R6 and above via APAR OA18531. In addition, the C
interface to IWMSRSRS IWMDNSRYV has also been extended to return the new weights.

10.5.2 Sysplex routing services IWM4SRSC improvements

The IWM4SRSC service provides information about how well a server is suitable to receive
work from a WLM point of view. The IWM4SRSC service allows you to check a specific
server before routing work to it from WLM. Thus, the information obtained can be used for
making balanced routing decisions with programs like Sysplex Distributor and their exploiters
(for example, TCP/IP).

The input to the IWM4SRSC service is the STOKEN of an address space. The output is an
indicator of how well the address space itself and the transactions or enclaves (if it is a
registered transaction server, an enclave server or an enclave owner) are performing relative
to their WLM goal and to the displaceable capacity for its WLM importance on that system.

The service returns an indicator that can be used for load balancing by comparing it to calls of
this service for other servers. The indicator output is a weight. This weight is calculated based
on six factors, as follows:

» |tis a combination of the three processor weights (CPU weight, zZAAP weight and zIIP
weight) and

» The respective consumed service units (CPU weight, zZAAP weight and zIIP weight)

Chapter 10. WLM enhancements 141

IWM4SRSC

Service for non-registered Servers SYSA
with LPAR Scope SERV A
IWM4SRSC
SERV A
Work Requests
SYSB
Routing IWM4SRSC SERV B
Manager SERV B
: SYSC
Routing
: IWM4SRSC
Recommendation R Ery.e SERV C

Figure 10-10 IWMA4SRSC service for non-registered servers with LPAR scope

Weight calculation
The CPU, zAAP and zlIP weights are each computed based on the following four factors:

» The first factor is how well this server, or the transactions or enclaves it is related to, fulfill
their goals.

» The second factor is how much other work with lower importance can be displaced, if it
receives more work to handle on this system.

» The third factor is the abnormal termination factor. This depends on the ratio of abnormal
terminations to normal terminations as reported by the IWMRPT service. If no
terminations were reported by IWMRPT, this factor is neutral (=1).

» The fourth factor is the health factor of this server. It is dependent on the health indicator
which was reported to WLM for this server by the IWM4HLTH service or by IWMSRSRG. If
no health indicator was reported, this factor is also neutral.

Create output weight as a number
These four factors are combined to create the output weight as a number.

To make it easier for the caller to determine, how far the weights were influenced by the
abnormal terminations and health factors, those values can also be output through the
optional parameters ABNORM_COUNT and HEALTH.

The processor weights are returned through the optional CPUWEIGHT, ZAAPWEIGHT, and
ZIIPWEIGHT parameters. The respective parts of these weights in the WEIGHT are returned
through the optional parameters CPUPROPORTION, ZAAPPROPORTION, and
ZIIPPROPORTION.

The WEIGHT is equal to the sum of these three proportion fields. As WLM computes the

values with higher precision, and rounds them before output, the WEIGHT actually returned is
probably greater than the sum of the returned proportion fields by one or two units.

142 z/OS Version 1 Release 9 Implementation

IWM4SRSC new and changed parameters

There are required output parameters, which contain the weight of how well the server is
performing. When all systems in the sysplex are running z/OS V1R9, the weight is based on
capacities of all processor types. Otherwise, WEIGHT and CPUWEIGHT will be identical.
The parameters are as follows:

»CPUWEIGHT=cpuweight
An optional output parameter, which contains the weight of how well the server
is performing on regular CPs. This is equivalent to the old weight returned on
z/0S VIR8 or before.

»ZAAPWEIGHT=zaapweight

An optional output parameter, which contains the weight of how well the server
is performing on zAAPs. ZAAPWEIGHT will return O if there is at least one
systems in the sysplex with a z/0S level prior to VIR9.

,ZIIPWEIGHT=ziipweight

An optional output parameter, which contains the weight of how well the server
is performing on zIIPs. ZIIPWEIGHT will return O if there is at least one
systems in the sysplex with a z/0S level prior to VIR9.

»CPUPROPORTION=cpuproportion

An optional output parameter. When all systems in the sysplex are running z/0S
VIR9 the returned WEIGHT value (specified above) is a composite value that is
based on the amount of each processor type that a server is consuming. The
returned value of this parameter will be the proportion of CPUWEIGHT that was
used to determine the composite WEIGHT for this application.

»ZAAPPROPORTION=zaapproportion

An optional output parameter. When all systems in the sysplex are running z/0S
VIR9 the returned WEIGHT value (specified above) is a composite value that is
based on the amount of each processor type that a server is consuming. The
returned value of this parameter will be the proportion of ZAAPWEIGHT that was
used to determine the composite WEIGHT for this application.

ZITIPPROPORTION=z1iipproportion

An optional output parameter. When all systems in the sysplex are running z/0S
VIR9 the returned WEIGHT value (specified above) is a composite value that is
based on the amount of each processor type that a server is consuming. The
returned value of this parameter will be the proportion of ZIIPWEIGHT that was
used to determine the composite WEIGHT for this application.

The returned weights are a number between 0 and 64.

10.5.3 IWMWSYSAQ service

The purpose of this service is to query information about the systems in the sysplex that are
in goal mode. The query system information service, IWMWSYSQ, returns a list of systems
running in goal mode and information related to available CPU capacity and resource
constraints.

The enhancement for z/OS V1R9 is available via a new parameter EXTENDED_DATA
where:

» EXTENDED_DATA=YES

Chapter 10. WLM enhancements 143

Using this option allows additional information to be returned in the output area, as
follows:

— The system level which contains the total system capacity has been added.
— Data is returned for all processor types.
— In addition the following information is supplied:
e Uniprocessor speed of a single processor.
e zAAP and zlIP normalization factors (deviation from regular processor speed if
applicable).
» EXTENDED_DATA=NO

Using this option returns the output area the same as in previous releases

10.5.4 Migration and coexistence considerations

When pre-z/OS V1R9 systems are active in a sysplex, the weights are based on regular CP
capacity as before because there is no information available about zAAP and zlIP capacities
from the older releases.

In a z/OS V1R9 system, you automatically get the new combined server weights without
changes to the service invocation.

10.6 Group capacity limit

In z/OS V1R8 and z/OS V1R9, the WLM defined capacity mechanism is extended to handle
LPAR groups instead of a single LPAR. This is called group capacity limit support. Since the
use of defined capacity began some years ago, there is a requirement to have more flexibility
when defining capacity limits for LPARs, so an enhanced mechanism is needed.

The group capacity limit balances the capacity between groups of partitions on the same
processor. This requirement, related to WLM, requires the use of IBM System z9 and z/OS
V1R8 and higher. The software support allows grouping of LPARs in the same processor and
the LPARs are then managed on a group basis using the existing WLM defined capacity
mechanism.

10.6.1 Defined capacity review

144

The enhancement to WLM to support group capacity limits requires an understanding of all
the concepts of, processors in LPAR mode, shared logical CPs, LPAR dispatching, LPAR
weights, and the 4-hour rolling average.

Defined capacity

As part of the z/OS support of Workload License Charges, you can set a defined capacity
limit, also called a soft cap, for the work running in a logical partition. This defined capacity
limit is measured in millions of service units per hour (MSUs). It allows for short-term spikes in
the CPU usage, while managing to an overall, long-term, rolling 4-hour rolling average. It
applies to all work running in the partition, regardless of the number of individual workloads
the partition may contain.

LPAR weights

LPAR weights are used to control the distribution of shared CPs between LPs. Therefore, LPs
with dedicated CPs do not use LPAR weights.

z/OS Version 1 Release 9 Implementation

LPAR weights determine the guaranteed (minimum) amount of physical CP resource an LP
should receive (if needed). This guaranteed figure may also become a maximum when either:

» All the LPs are using all of their guaranteed amount (for example, if all LPs were
completely CPU-bound).

» The LP is capped using traditional LPAR capping.

An LP may use less than the guarantee if it does not have much work to do. Similarly, it can
use more than its weight if the other LPs are not using their guaranteed amount.

LPAR LIC

LPAR LIC uses weights and the number of logical CPs to decide the priority of logical CPs in
the logical CP ready queue. The following formulas are used by LPAR LIC in the process on
controlling the dispatching of logical CPs:

» WEIGHT(LPx)% = 100 * WEIGHT LPx/ SUM_of_ACTIVE LPs WEIGHTs

This indicates the percentage of the total shared physical CP capacity that will be
guaranteed to this LP. This percentage will vary, depending on the weights of all the active
LPs.

» TARGET(LPx) = WEIGHT(LPx)% * (# of NON_DEDICATE_PHYS_CPs)

This indicates, in units of shared physical CPs, how much CP resource is guaranteed to
the LP. This figure cannot be greater than the number of logical CPs in the LP. This is
because you cannot use more physical CPs than the number of logical CPs you have
defined—each logical CP can be dispatched on only one physical CP at a time. So, even if
there are eight physical CPs available, an LP that has been defined with only four logical
CPs can only ever use four of the physical CPs at one time. If you specify a weight that
guarantees you more capacity than can be delivered by the specified number of logical
CPs, the additional unusable weight will be distributed among the other LPs.

» TARGET(LCPx)% = TARGET(LPX) / (# of LCPs_in_LPx) * 100

This takes the TARGET(LPx) value (that is, the number of physical CPs of capacity) and
divides that by the number of logical CPs defined for the LP. The result determines the
percentage of a physical CP that should be given to each logical CP. This is turn
determines the effective speed of each logical CP.

Over time, the average utilization of each logical CP is compared to this value. If Target is
less than Current, then the logical CP is taking more CP resource than the guarantee and
its priority in the ready queue is decreased. It does not mean that it is prohibited from
consuming CP; it simply means that it will tend to sit lower in the queue than other logical
CPs that have used less than their guaranteed share of the CP resource.

Also, these logical CPs are going to be preemptable by an 1/O interrupt for a logical CP
that is behind its target. If Target is greater than Current, then the logical CP is taking less
CP resource than the guarantee and its priority in the ready queue is increased. This
means that it has a better chance of being dispatched on a physical CP. Also, these
logical CPs are not going to be preempted by an /O interrupt for another logical CP.

4-hour rolling average

WLM enforces the defined capacity limit by tracking the partition's CPU usage and continually
averaging it over the past 4 hours. Spikes above the defined capacity limit are possible, as
shown in Figure 10-11 on page 146 with the dashed line, as long as they are offset by low
points that keep the 4-hour average at or below the defined capacity limit. When this 4-hour
average goes over the defined capacity limit, then WLM caps the partition (soft cap). At that
point, it can use no more than the defined capacity limit, until the average drops below the
limit.

Chapter 10. WLM enhancements 145

At IPL, WLM defaults to a 4-hour time interval that contains no partition CPU usage. This
allows the defined capacity limit to be exceeded at IPL and therefore avoids capping during
this time.

— Defined Capacity ~" Utilization *= 4-hour Rolling Average

) ;
[}
a Defined capacity
=
0 5 10 15 20
IPL Time (hours) <«—Defined capacity
1 PR/SM and WLM work together to:
. . LPAR3
> Enforce the capacity defined for | ~——
the group L PAR2
> Enforce the capacity optionally A~
defined for each LPAR LPAR1

Figure 10-11 Defined capacity example showing 4-hour rolling average with three LPARs

10.6.2 Group capacity definition rules

146

Each partition manages itself independently from all other partitions and the group capacity
you define is based on defined capacity. Therefore, a 4-hour rolling average of the group
MSU consumption is used as a base for managing the partitions of the group.

Each partition is going to see the consumption of all the other LPARs on the processor. If the
partition belongs to a group, it identifies the other partitions in the same group and calculates
its defined share of the capacity group based on the partition weight (compared to the group).
This share is the target for the partition if all partitions of the group want to use as much CPU
resources as possible.

If one or more LPARSs do not use their share, this donated capacity is distributed over the
LPARs which need additional capacity. Even when a partition receives capacity from another
partition, it never violates its defined capacity limit (if one exists).

Defining group capacity limits
A capacity group has to be defined using the following rules:

Consists of multiple LPARs on the same processor.

LPARs must run at least z/OS V1R8 or higher.

It is possible to define multiple groups on a processor.

A partition can only belong to one group.

A group member can have a defined capacity also.

A capacity group is independent of a sysplex and an LPAR cluster.

vyVvVyVvYyVvYyYYvYyy

z/OS Version 1 Release 9 Implementation

10.6.3 Group capacity example

This implementation should make the use of use soft capping easier to utilize CPU capacity
across multiple logical partitions on the same processor. With group capacity limits, it is no

longer necessary to worry about the SCRT reporting period in order to balance the defined

capacity across two LPARs. In the following example:

» Assume a processor with a total capacity of 500 MSU and two partitions named PROD
and TEST in which the MSU consumption should be controlled via soft capping.

» LPAR PROD should use a defined capacity limit of up to 300 MSU and LPAR TEST of up
to 100 MSU.

» During certain periods LPAR PROD needs more capacity while at the same time LPAR
TEST does not need all of its capacity.

Current LPAR support

Without group capacity, you must now perform the following steps to ensure that the SCRT
reporting agrees with the IBM contract in order to avoid additional charges:

1. Reduce the defined capacity limit of partition TEST by 50 MSU. The new defined capacity
limit is now 50 MSU for TEST.

2. Wait for one hour to assure that the SCRT reporting period contains this change.
3. Now you can increase the defined capacity limit for partition PROD to 350 MSU.

This requires some planning in advance.

Using group capacity support

With group capacity, the situation becomes much easier because you must define a group for
the LPARs PROD and TEST and a group limit of 400 MSU. Now you have two options
regarding how you can configure your partitions to ensure that a CPU consumption of 300
MSU is guaranteed for PROD and 100 MSU for TEST, as follows:

1. Ensure that the partition weights for PROD and TEST entitle partition PROD to a % share
and TEST to a % share. For example, set the weights to 300 for PROD and 100 for TEST.
So the actual weight setting must confirm your objectives with other partitions which might
run on the system. With such a setting, PROD is now able to obtain % of the 400 MSU and
TEST % of it. During periods where one partition uses much less capacity than the other
partition, that LPAR is able to get up to 400 MSU.

2. If you want to ensure that PROD can get everything and TEST not more than the 100
MSUs, you can also set an individual defined capacity limit of 100 MSU for TEST. Now
TEST is only able to receive 100 MSU while PROD gets always at least 300 MSU and can
use up to 400 MSU if TEST does not need the capacity.

Both examples assume that the partition weights of all partitions on the processor allow
PROD and TEST to consume the desired amount of service.
10.6.4 Hardware and software for group capacity

Group capacity limit is available with z/OS V1R8. The hardware requires is an IBM System z9
with a new microcode level.

Using the HMC or SE of the new microcode level installed processor, there are two new input
values in the LPAR configuration panel. These are “Group Name” and “Group Limit”, as
shown in Figure 10-12 on page 148.

Chapter 10. WLM enhancements 147

148

& https://sczhmcé.itso.jbrh.com - SCZHMCE: Change LPAR Group Controls - Mozilla Firefox [;]@

% Chygeﬁ'AR Group Controls

&

Input/Qutput configuration data set (IOCDS): a2

Group Name | Member Partitions | Group Capacity Value
DEFAULT 0
GROUP1 200

Save to Profiles || Change Running System | Save and Change || Reset || Cancel | Help |

Done sczhmcé.itso.ibm.com (5%

Figure 10-12 HMC LPAR configuration panel allowing group capacity limit definitions

New HMC panels
The group name and limit field are available in processor activation Profile and also in
Change Dynamic LPAR configuration panel.

Customers can define a capacity group by entering the group name and group limit value for
the partitions which should belong to the same group. The group limit definition is
independent from the defined capacity definition. Both limits can be defined and both work
together.

Group capacity considerations
Here are the other hints and tips of new group capacity limit mechanism

»

»

Capacity group consists of multiple LPARs on the same processor.

All LPARs that are exist in a group must run z/OS V1R8; otherwise, the group limit may
not be enforced correctly.

WLM only manages partitions with shared CPs. Dedicated partitions and partitions with
weight completion equal to YES are ignored. If they have been defined to a group, they will
be excluded from the group. Only the partitions with wait completion equals NO and
shared processors are managed towards the capacity limit.

It is possible to define multiple groups on a processor

A capacity group is independent of a sysplex and an LPAR cluster. Your test system and
prod system can be in the same group if there are running in the same processor.

A partition can only belong to one group
Each z/OS system manages itself independently from all the other partitions.

Group capacity is based on defined capacity. Therefore, a 4-hour rolling average of the
group MSU consumption is used as base for managing the partitions of the group.

Each partition sees the consumption of the other partitions on the processor. It identifies
the other partitions that are exist with it on the same group. Each partition calculates its
defined share of the capacity group based on the partition weight. This share is target for
the partition if all partitions of the group want to use as much CPU resources as possible.
If one or more LPARs do not use their share, this donated capacity will be distributed over
the LPARs which need additional capacity that are in the same group. Even when a

z/OS Version 1 Release 9 Implementation

partition receives capacity from another partition, it never violates its defined capacity limit
if one exists.

10.6.5 Group capacity limit example

In the example shown in Figure 10-13, there are five z/OS partitions in the processor.
Partitions A, B, and C belong to group1. Partitions D and E do not belong to any group. The
limit that is defined for group1 is 200 MSUs. The processor has a higher capacity than 200

MSUs.

Partition Group Name Group Limit Weight Target MSU Defined Capacity

[MSU] consumption (Softcap) [MSU]
based on Weight

A Group1 70 93 n/a
B Group1 200 50 67 80
C Group1 30 40 30
D nla n/a 100 nl/a 120
E nl/a n/a 50 n/a n/a

Figure 10-13 Sample processor LPAR configuration

The weights that have been defined for each partition make the target MSU consumption
based on the weight the values shown in Figure 10-13.

Partition A
Partition A can use up to 200 MSUs based on the 4-hour rolling average. If all three partitions
want to use as much as possible, partition A will only get up to 93 MSUs.

Partition B

Partition B can use up to 80 MSUs because an individual soft cap is defined. If all three
partitions want to use as much as possible, partition B can only get up to 67 MSUs.

Partition C

Partition C can use up to 30 MSUs because the defined capacity is smaller than the target
based on partition weight. If the other partitions does not need more, partition C cannot use
more than 30 because of its individual soft cap definition of 30 MSUs.

Group capacity after an IPL
Considering the defined capacity 4-hour rolling average startup after an IPL, the group-wide
capping starts when the 4-hour rolling group average reaches the group limit.

When a system is IPLed and joins a group, it does not have the history of the MSU
consumption of the complete group. Therefore, it can take up to 4 hours until all systems in
the group have the same view. During that time period, the group limit cannot be guaranteed.
The group might use more than the group limit because the new partition does not have the
complete history. If this happens, the other partitions will be reduced in their capacity based
on their weight in the group.

Removing a member from the group

A partition can be dynamically removed from a group. A partition can be dynamically added to
another group. In this situation, the changed partition has no knowledge about unused
capacity of the new group, and also it does not keep a history from its previous activity.
Therefore, all systems must again learn the new situation and the limit cannot be guaranteed.

Chapter 10. WLM enhancements 149

Group capacity limit and IRD

Group capacity limits can work together with Intelligent Resource Director (IRD) weight
management. IRD weight management may change the weight of partitions in a capacity
group and thus change the target share of the partition in the capacity group.

Group capacity limits can also work together with the IRD VARY CPU ON/OFF command
management. Both functions should have no influence on each other.

Note: The Intelligent Resource Director extends the concept of goal-oriented resource
management by allowing you to group system images that are resident on the same
physical server running in LPAR mode, and in the same parallel sysplex, into an “LPAR
cluster” This gives Workload Management the ability to manage processor and channel
subsystem resources, not just in one single image but across the entire cluster of system
images.

10.6.6 RMF and SMF updates to support group capacity limit

The RMF Monitor | CPU Activity Report and Monitor Ill CPC Capacity Report are changed to
support group capacity limits. New Overview conditions are also added related to the usage
of group capacity limit. The Group Capacity Report example shown in See Figure 10-14 gives
all the information needed to understand how the MSUs are used in the group. For more
detailed information about RMF enhancements related to group capacity limits, refer to

Figure 10-14.
GROUP CRAPRACITY REPOCRT
z/05 V1RS& SYSTEM ID REMF1 DATE 04/12/2005
RPT VERSION V1RS8 EMF TIME 16.00.00
GROUP-CAPACITY PARTITION S5YSTEM -- M5U -- WGT -CAPPING-- - ENTITLEMENT -
HAME LIMIT DEF ACT DEF WLM3 MINIMUM MAXTMUM
CGRPO10 200 EMF1 RMFSYS501 4] 122 90 HO 3.0 128 200
BEMF2 RMF5YS501 70 T0 50 NO 0.0 70 T0
TOTAL 132 140
CGRE0200 250 DCHM1 DOMSYS01 40 38 20 HO 2.2 23 40
DCOMH2 DCOMSYS02 4] 130 100 HO 0.0 117 250
DOM3 DOMSYS502 30 30 25 HO 0.0 29 30
DOMINOI1O DOMSYS03 4] 50 25 NO 0.0] 250
TOTAL 248 170

Figure 10-14 RMF Monitor | Group Capacity Report

SMF records
The SMF type 70 record contains group name, group membership and group MSU limit. The

SMF type 99 record trace data has a new subtype 11 to analyze group capacity data.
10.6.7 Examples related to usage of group capacity limit

Following are two different examples related to use of group capacity limit. In the first
example there are partitions with individual defined capacities. In the second example, there
are partitions which have no individual defined capacity.

150 z/OS Version 1 Release 9 Implementation

Example 1

In the first example, usage of group capacity limits are with partitions that have individual
defined capacities. There are three LPARs (IRD3, IRD4 and IRD5) in the same processor.
They are grouped and have a group capacity limit of 50 MSUs. The individual defined
capacities and weights are shown in Figure 10-15. Following the period after the IPL, you can
see the usage or bonus given to IRD4 and IRD5. Following this initial period of the IPF, the
partitions are then capped to 5 MSUs.

Partition Limit Weight Target MSU | Based on Limits

IRD3 = nia 51 ~85 ~40

RD4 [] 5 101 ~16.7 5

IRD5 O 5 151 ~24.8 5
200

10+ — — — — - — — — —
IPL bonus for IRD4 and IRDS based on their
defined capacities is expired. The partitons |~~~ ~~~~~~~~~~~~~~~---~- -~~~
IRD4 and IRD5 are capped now to 5 MSU

160 - — — —

20+---4 P----/ A

IPL bonus for the group is expired. Partition IRD3
w4 W/ - - - - is now capped too but can use around 40 MSU
because IRD4 and IRD5 only use 5 MSU each

oL -———f

60 +

o0l
AN AL N D S AN N AN O LN L LS AN L N D O A O N SO DO N S S A O N LS AN L0 N S A O
ERNR T E L CEC L L E L ¢ @QQQ Q&Q@Q&Q&Q\ (\(5\.\'(”\.5\(\'3‘61, Q’i‘b(\'gj(\'ﬂ@?
AT DA P S S Y B o g P W (B D (O P AP DP TS 90 P D D DO D D S S D
\\\\\\\'\\'\'\\\\\\\"[;Q;"b'b'L‘l/‘L'l/"b"b'b,]:\,ﬂ/,ﬂ'&&',ﬂ;&'&,{b&‘,ﬁ',{?’,{?'@'@'

Figure 10-15 Group capacity limit usage for example 1

Example 2

The second example shows the group capacity limit effects on partitions without individual
defined capacities. IRD3, IRD4, and IRD5 are the LPARs.Their weights and group limit are
shown in Figure 10-16 on page 152, along with the actual MSU values consumed by the
LPARs.

Chapter 10. WLM enhancements 151

152

Partition Limit Weight | Target MSU
iRD3 [] nia 52 ~8.5
IRD4 [_| nia 102 ~18.7
o iRD5 [nia 152 ~24.8
Group 50 306 50

120 4

High demand all partitions CPU demand only on IRD3 and IRD4

100 -

IRD3 gets
7.6-9 MSU

80 1

IRD3 gets 16-19 MSU
(additional 8 MSU)

60 1

40

20

o
RGN

SRR SRR SRR
PR P WP PR PRSP0 o o
OGN A IR AN A 2 PP WP T

/5

IRD4 gets 16.5-

IRD4 gets 30-32 MSU
18.3 MSU

(additional 14 MSU)

Figure 10-16 Group capacity limit usage for example 2

In Figure 10-17, you see the same LPARs with 4-hour rolling average values within the same
interval as in Figure 10-16. The IPL bonus that is given can be seen significantly in this
example.

4 Hour Averages
OIRD4 @IRD3 WIRD5
920
81 | IPL Bonus
o 4 Hour Average for the Group
< Group Limit + 1.5 MSU
60 (Reason: Cap Pattern being used)
50
40
30 4
20+ - — —
10+ - —
0 T RN e e e n e s
A A (A AN R A BN A N A D A D X S BN DDA RN B A AR B, AN K A B O AN B DA K BN O
EEEEECEECCEEE &S ECLLREREEEELEE L ELLLEELELSE L & PP
S SP IS PR PRSP P10 @ oD D 2D D D DD D D DD D P DD D DD D DD DD D PP
e S S P B S R S P S P B S P R S P S P S PR oS P S P P S

Figure 10-17 Group capacity limit usage example with the 4-hour rolling average

In Figure 10-18 on page 153, LPAR IRD3 capping and unused capacity values are shown, as
well as the actual MSU values for both the capped and uncapped portions.

z/OS Version 1 Release 9 Implementation

Unused Capacity and Capping

‘-MSU Uncapped MSU Capped = ImgLimit —Donated

80

70+----f |RD3demands |- ---------

Capping using cap patterns
because allowed consumption

0 exceeds weight

Capping using phantom
weight because allowed
consumption is below weight

Notice: Higher fluctuation in real
MSU consumption (leads to
deviation for Group Average)

50

407 Notice: No fluctuation in real

MSU consumption
30

MSUs donated by
other partitions
(IRD5) from which
IRD3 gets around 8
MSUs

20

o
SESESESENES

N A AN N O
LS
P TS

FTEE S

AN D R BB (B A N B N\
RN R \.\é\ ' (\é’ o
R N L RN o Lo N o
& $

F S FFHFF P EE NS

N

Figure 10-18 Group capacity limit usage for example 2 with LPAR IRD3 in detail

Chapter 10. WLM enhancements

153

154 z/OS Version 1 Release 9 Implementation

11

C/C ++ enhancements

The C language is a general purpose, versatile, and functional programming language that
allows a programmer to create applications quickly and easily. C provides high-level control
statements and data types as do other structured programming languages. It also provides
many of the benefits of a low level language.

The C++ language is based on the C language and includes all of the advantages of C. In
addition, C++ also supports object-oriented concepts, generic types or templates, and an
extensive library. The C++ language introduces classes, which are user-defined data types
that may contain data definitions and function definitions. You can use classes from
established class libraries, develop your own classes, or derive new classes from existing
classes by adding data descriptions and functions. New classes can inherit properties from
one or more classes. Not only do classes describe the data types and functions available, but
they can also hide (encapsulate) the implementation details from user programs. An object is
an instance of a class. The C++ language also provides templates and other features that
include access control to data and functions, and better type checking and exception
handling. It also supports polymorphism and the overloading of operators.

This chapter describes:

» SUSv3 implementation in z/OS V1R9

» Compiling an SUSv3 application

» Invoking thread support

» Setting environment variables affects run-time behavior
» New APIs

» New Threading Interfaces

» Modified APIs

» Software Dependencies

» Migration and coexistence considerations

» Language Environment C run-time is missing SUSv3 support

© Copyright IBM Corp. 2007. All rights reserved. 155

11.1 SUSv3 implementation in zZ/OS V1R9

Single Unix Specification version 3 (SUSv3) incorporates POSIX.1, POSIX.2, and their
subsequent amendments, as well as the core volumes of the Single Unix Standard, Version
2.

Language Environment’s implementation of SUSv3 is based on IEEE Std 1003.1-2004, which
is comprised of IEEE STD 1003.1-2001 and the two subsequent corrigenda issued after the
initial release of the new standard.

From the C/C++ and LE point of view, many standards have been implemented in the latest
z/OS releases and we continue with this implementation in z/OS V1R9.

Note: Language Environment C run-time APIs are compatible with most of SUSV3,
although not fully compliant.

Today, C applications use APIs and expect behaviors that were not implemented in the
Language Environment C run-time prior to z/OS V1R9. z/OS V1R9 has updated the XL
C/C++ run-time Library with changes designed to meet the X/Open System Interface
extension as defined in the Single Unix Specification, Version 3. z/OS V1R9 has
enhancements to make it easier to develop, port, and deploy contemporary C/C++
applications on z/OS in the following areas:

» Support for the thread option (pthread interfaces)
» Addition of any other missing headers, APls, and functionality

11.1.1 z/OS V1R9 and SUSv3

156

The SUSv3 implementation adds a number of new functions to the XL C/C++ Run-Time
Library, while applying modifications to the signatures of some existing functions in SUSv3 as
result of the following behaviors:

» Addition or removal of arguments
» Use of const declarator
» Specialization of argument types
» Use of restrict keyword

The SUSv3 namespace excludes all withdrawn headers, functions, external variables, and
constants. The specification further targets additional symbols for removal in a future version
of the standard.

Note: Applications compiled for SUSv3 are also implicitly C99, and therefore there is no
need to define feature test macro _ISOC99_SOURCE when _XOPEN_SOURCE 600 or
_POSIX_C_SOURCE 200112L is defined.

Another behavioral difference is the change in the return value of most threads functions.
The POSIX.4a, draft 6 threads behavior indicates a return of -1 on failure with the error
code set in errno. In SUSv3, the majority of these functions now return the error code on
failure rather than a value of -1. With the exception of pthread_getspecific(), the z/OS
implementation will continue to set errno in addition to returning the error code.

z/OS Version 1 Release 9 Implementation

Feature test macros

Many of the symbols that are defined in headers are “protected” by a feature test macro
(FTM). These protected symbols are invisible to the application unless the user defines the
feature test macro with #define, using either of the following methods:

» In the source code before including any header files.
» On the compilation command

With z/OS V1R9, the following feature test macros are new:
» _|IEEEV1_COMPATIB

» _ STDC_WANT_DEC_FP__

» _UNIX03_THREADS

» _UNIX03_WITHDRAWN

Note: The LANGLVL compiler option does not define or undefine these macros.

11.1.2 Compiling an SUSv3 application

C++ applications can access C99 run-time library functions by using feature test macros. To
expose C99 interfaces, C++ applications can define the appropriate feature test macros
before including the identified header.

Single UNIX Specification, Version 3 aligns with ISO/IEC 9899:1999, and is commonly
referred to as the “C99 language standard”. In some cases, SUSv3 extends the C99
definition, although in the case of a conflict, it always defers to the C99 standard. For this
reason, applications compiled for SUSv3 are also implicitly C99, and you do not need to
define feature test macro _ISOC99_SOURCE when _ XOPEN_SOURCE 600 or
_POSIX_C_SOURCE 200112L is defined. Some applications define feature test macros to
inform the compiler and to expose a namespace, as follows:

» _POSIX_C_SOURCE 200112L

This defines the SUSv3 POSIX symbols and prototypes, and incorporates the
namespaces defined by _POSIX_SOURCE, _POSIX1_SOURCE, _MSE_PROTOS, and
_ISOC99_SOURCE. These feature test macros are redundant in this context and do not
need to be defined separately.

» _XOPEN_SOURCE 600

This defines the X/Open System Interface (XSI) symbols and prototypes, and incorporates
all the namespace of _POSIX_C_SOURCE 200112L as well as those of
_UNIX02+THREADS, _OPEN_SYS_MUTEX_EXT, and _LARGE_FILE (if compiling with
langlvi(longlong) or its equivalent). These feature test macros are redundant in this context
and do not need to be defined separately.

_UNIX03_SOURCE

This feature test macro exposes new Single UNIX Specification, Version 3 interfaces. It does
not change the behavior of existing APIs, nor expose interfaces controlled by feature test
macros such as _XOPEN_SOURCE_EXTENDED. Functions and behavior exposed by
_UNIX03_SOURCE are a subset and not the complete implementation of the Single UNIX
Specification, Version 3.

Chapter 11. C/C ++ enhancements 157

It defines the functions that were added prior to z/OS V1R9. The following functions have
been added under _UNIX03_SOURCE:

» z/0OS V1RO06: diclose(), dlerror(), deopen(), and disym()
» z/OS V1R07: sched vield(), strerror_r(), and unsetenv()

» z/OS V1RO08: flockfile(), ftrylockfile(), funlockfile(), getc_unlocked(), getchar_unlocked(),
putc_unlocked(), and putchar_unlocked()

» z/OS V1R09: posix_openpt(), pselect(), and sockatmark()

Functions withdraw in SUSv3

If it is necessary to continue using the following functions in an application written for Single
UNIX Specification, Version 3, then define the feature test macro _UNIX03_WITHDRAWN
before including any standard system headers. The macro exposes all interfaces and
symbols removed in Single UNIX Specification, Version 3.

Following are the functions, headers, and constants withdrawn from SVSv3:

» Functions: advance(), brk(), chroot(), compile(), cuserid(), gamma(), getdtablesize(),
getpagesize(), getpass(), getw(), putw(), re_comp(), re_exec(), regecmp(), regex(), sbrk(),
sigstack(), step(), ttyslot(), and valloc()

» Headers: <re_comp.h>, <regexp.h>, and <varargs.h>
» Constants: loc1, _loc1, loc2, locs, L_cuserid, NOSTR, and YESSTR

11.1.3 Invoking Threads support

158

Several other implementation-specific feature test macros impact support of SUSv3. An
application may request SUSv3 threads support by defining _UNIX03_THREADS or as part
of XSI. Because the Threads Option is a required component of XSI, you do not need to
define _UNIX03_THREADS when _XOPEN_SOURCE 600 is defined. Another new macro,
_UNIX03_WITHDRAWN, preserves symbols withdrawn from the UNIX standard, making
them visible in the SUSv3 namespace.

Note: Program developers have the option of writing SUSv3 applications that still use the
old threads behavior. An application may override the implicit XSI threads behavior by
defining both _OPEN_THREADS and _XOPEN_SOURCE 600, if there is a reason to
maintain the previous POSIX.4a, draft 6 behavior.

On the other hand, concurrent definition of the _ UNIX03_THREADS and
_OPEN_THREADS macros is not allowed and will generate a compile-time error
message.

Language Environment provides additional support in the C/C++ run-time library for SUSv3,
including new APIs and behaviors for the Thread functions, as follows:

» _UNIX03_THREADS

It provides support for SUSv3 threads option. The same support is provided if you define
_XOPEN_SOURCE 600, unless there is an override.

» _OPEN_THREADS

It supports the POSIX.4a, draft 6 threading model. It is mutually exclusive with #define
_UNIX03_THREADS.

z/OS Version 1 Release 9 Implementation

» _OPEN_THREADS 2
Adds support to SUSv3 pthread APIs introduced in z/OS V1R7 to POSIX.4a base.

— Functions: pthread_getconcurrency(), pthread_setconcurrency(),
pthread_setcancelstate(), pthread_setcanceltype(), pthread_sigmask()
pthread_testcancel(), pthread_key_delete()

— Constants: PTHREAD_CANCEL_ENABLE, PTHREAD_CANCEL_DISABLE,
PTHREAD_CANCEL_DEFERRED, PTHREAD_CANCEL_ASYNCHRONOUS

» _OPEN_THREADS 3

Adds support to SUSv3 pthread APlIs introduced in z/OS V1R7 and z/OS V1R9 to
POSIX.4a base.

— Functions: pthread_atfork(), pthread_attr_getguardsize(),
pthread_attr_getschedparam(), pthread_attr_getstack(), pthread_attr_getstackaddr(),
pthread_attr_setguardsize(), pthread_attr_setschedparam(), pthread_attr_setstack(),
pthread_attr_setstackaddr()

— Constants: PTHREAD_CANCEL, PTHREAD_COND_INITIALIZER,
PTHREAD_CREATE_DETACHED, PTHREAD_CREATE_JOINABLE,
PTHREAD_EXPLICIT_SCHED

Note 1: The feature test macros _UNIX03_THREADS and _ OPEN_THREADS may not be
used together. If both are defined, the features.h header will generate an error during
compile time.

Note 2: Defining _XOPEN_SOURCE 600 assumes _UNIX03_THREADS support for the
application, but a user may choose to override the pthread behavior by defining
_OPEN_THREADS with one of its allowed values. This combination allows the possibility
of getting all the new SUSv3 support (except for threads) while maintaining POSIX.4a
draft6é behavior in an existing application.

Note 3: Either _UNIX03_THREADS or _XOPEN_SOURCE 600 establish a complete
SUSv3 implementation of the Threads option.

Note 4: One major difference between SUSv3 thread interfaces and the POSIX.4a Draft 6
implementation concerns failures. Most of the SUSv3 versions return an error value if they
do not complete successfully, whereas the Draft 6 versions return -1 and set errno. The
Language Environment implementation of SUSv3 continues to set errno in these functions
in addition to returning the errno value on failure.

Note 5: SUSv3 adds support for static initialization of condition variables.

11.1.4 Setting environment variables affects run-time behavior

The following z/OS XL C/C++ specific environment variables are supported to provide various
functions. z/OS XL C/C++ variables have the prefix _CEE_ or _EDC_. Do not use these
prefixes to name your own variables. The following environment variables affect run-time
behavior:

» _EDC_SUSV3

This indicates behavioral changes that are provided for SUSV3 compliance in an error
path. The affected interfaces are typically setting errno to values that were not used before
and, in some cases, returning failure for conditions that had not been tested before
SUSV3. By default, the affected interfaces will not check for these conditions. When the
value of _EDC_SUSV3 is set to 1, the SUSV3 behavior is enabled.

Chapter 11. C/C ++ enhancements 159

Existing programs using these interfaces and running with _EDC_SUSV3=1 might fail in
z/OS V1R9 with an errno, where in the past, they might have appeared to succeed. The
user must set _EDC_SUSV3=1 to get the new behavior.

z/0OS XL C/C++ Run-Time Library Reference documents the use of _EDC_SUSV3 in
individual interface descriptions. The functions that are affected by the _EDC_SUSV3
environment variable are: setenv(), readdir(), getnameinfo(), and tcgetsid().

The _EDC_SUSV3 environment variable can be set with the function:
setenv("_EDC_SUSV3","1",1)

Value Description
1 Enable SUSv3 behavior for setenv(), readdir(), getnameinfo(), and tcgetsid().
0 Functions perform without SUSV3 behavior. This is the default. It is equivalent

to unsetting the environment variable.
» _EDC_EOVERFLOW

This sets the behavior of the ftell(), fseek(), fstat(), Istat(), stat(), and mmap() functions. By
default, these functions will not check for the EOVERFLOW error condition. Setting
_EDC_EOVERFLOW to YES enables testing for this condition, and if overflow is
detected, setting errno to EOVERFLOW and returning an error.

The _EDC_EOVERFLOW environment variable can be set with the function:
setenv (" _EDC_EOVERFLOW,"YES", 1)

Value Description
YES Check for EOVERFLOW error conditions.
<other> Ignore setting of EOVERFLOW. This is the default. It is equivalent to

unsetting the environment variable.

EOVERFLOW indicates a file offset or some other file attribute too large to represent in its
container (that is, the datatype is too small). It is not possible to reach this error in a 64-bit
application. _EDC_EOVERFLOW is provided as a way to give users the option to turn off the
new behavior in applications in which the affected functions may have appeared successful
and were not setting the EOVERFLOW errno.

Note: The guideline for integrating new behavior into existing library code was that
recompilation of an existing application could not lead to different results with respect to
success or failure on the call to the affected function. This class of change was seen as an
extension rather than needing a separate SUSv3 interface. Functions not meeting this
criterion were introduced in a separate interface, or isolated with an environment variable.

11.1.5 New APIs

160

The following new functions are introduced with SUSv3:
» posix_openpt() - Open a pseudo-terminal device

The posix_openpt() function establishes a connection between a master device for a
pseudo-terminal and a file descriptor. The file descriptor is used by other I/O functions that
refer to that pseudo-terminal. This complements existing functions: grantpt(), ptsname(),
unlockpt() associates a file descriptor with a master device for a given pseudo-terminal

» pselect() - Monitor activity on files/sockets/message queues

The pselect() and select() functions monitor activity on a set of sockets and/or a set of
message queue identifiers until a timeout occurs, to see if any of the sockets and message

z/OS Version 1 Release 9 Implementation

queues have read, write, or exception processing conditions pending. This call also works
with regular file descriptors, pipes, and terminals. This is very similar to select(), except
that pselect() supports timeout expressions using nanoseconds sigmask as an argument
modification of the timeout object upon successful completion. pselect() is not affected by
_OPEN_MSGQ_EXT or _OPEN_SYS_HIGH_DESCRIPTORS.

» sockatmark() - Determine if socket is at the out-of-band data mark

The sockatmark() function determines whether the socket specified by the descriptor s is
at the out-of-band data mark. If the protocol for the socket supports out-of-band data by
marking the stream with an out-of-band data mark, the sockatmark() function returns 1
when all data preceding the mark has been read and the out-of-band data mark is the first
element in the receive queue. The sockatmark() function does not remove the mark from
the stream. If the protocol for the specified socket supports marking out-of-band data, then
sockatmark() returns one of the following:

1 Stream has been marked and all data preceding the mark has been read.
0 No mark, or data in the receive queue still precedes the mark.
-1 Error; errno is set.

» netinet/tcp.h - Definitions for the Internet Transmission Control Protocol (TCP)

This is a new header, first released in Issue 6. It is derived from the XNS, Issue 5.2
specification.

» sys/select.h - Type definitions for select() / pselect()
This is a new header, first released in Issue 6. It is derived from IEEE Std 1003.1g-2000.

11.1.6 New Threading interfaces

Several Thread attribute accessors are added:
» pthread_attr_getguardsize(), pthread_attr_setguardsize()

pthread_attr_getguardsize() gets the guardsize attribute from attr and stores it into
guardsize. attr is a pointer to a thread attribute object initialized by pthread_attr_init(). The
retrieved guardsize always matches the size stored by pthread_attr_setguardsize(),
despite internal adjustments for rounding to multiples of the PAGESIZE system variable.

» pthread_attr_getstack(), pthread_attr_setstack()

The pthread_attr_getstack() function gets both the base (lowest addressable) storage
address and size of the initial stack segment from a thread attribute structure and stores
them into addr and size respectively. attr is a pointer to a thread attribute object initialized
by pthread_attr_init(). Get and set the thread stack size and stack address attributes. It is
used for application-specified stack. It is not recommended on z/OS, but is available for
compliance. It is better to let Language Environment handle the stack.

» pthread_attr_getstackaddr(), pthread_attr_setstackaddr()

The pthread_attr_getstackaddr() function gets the stackaddr attribute from attr and stores
it into addr. The stackaddr attribute holds the storage location of the created thread's initial
stack segment. attr is a pointer to a thread attribute object initialized by pthread_attr_init().
Get and set the thread stack address attribute. It is also used for application-specified
stack. It is not recommended on z/OS (or in the UNIX standard), but required for
compliance, even though marked obsolescent in the SUSv3 standard.

» pthread_attr_getschedparam(), pthread_attr_setschedparam()

pthread_attr_getschedparam() gets the scheduling priority attribute from attr and stores it
into param. attr is a pointer to a thread attribute object initialized by pthread_attr_init().

Chapter 11. C/C ++ enhancements 161

param points to a user-defined scheduling parameter object into which
pthread_attr_getschedparam() copies the thread scheduling priority attribute. Get and set
the thread schedparam attribute. Being of minimal implementation, it is included for
compliance. z/OS services always control scheduling on the platform. It is an implemented
the interface for registering and executing fork handlers.

» pthread_atfork()

The pthread_atfork() function registers fork handlers to be called before and after fork(), in
the context of the thread that called fork(). Fork handler functions may be named for
execution at the following three points in thread processing:

— The prepare handler is called before fork() processing commences.
— The parent handler is called after fork() processing completes in the parent process.
— The child handler is called after fork() processing completes in the child process.

This function registers 3-tuples of fork handlers (prepare, parent, and child) to be run
immediately before the fork and in the child and parent after a successful fork. Not all three
need to be present.

11.1.7 Modified APls

The following APls are modified in z/OS V1R9;

» sysconf() now supports required SUSv3 constants.

» confstr() now supports required SUSv3 constants.

» getnameinfo() is enhanced to use NI_NUMERICSCOPE and EAI_OVERFLOW.
» gai_strerror() is extended to support EAl_OVERFLOW.

» sigwait() prototype adds a second arg to return the signal ID.

» getdate() handles a new %C format specifier for century number.

11.1.8 Migration and coexistence considerations

The z/OS C/C++ compiler must be C99-compliant if SUSV3 applications use features of C99
that require this compiler level (for example, complex.h functionality).

Set environment variable _EDC_OVERFLOW=YES to allow EOVERFLOW reporting in ftell(),
fseek(), fstat(), Istat(), stat(), and mmap)

Set environment variable _EDC_SUSV3=1 to get new SUSv3 error handling for setenv(),
readdir(), getnameinfo(), and tcgetsid().

Compile with the _UNIX03_WITHDRAWN feature test defined to preserve visibility of
elements removed from SUSv3, such as Legacy Feature Group from SUSv2.

Review differences in SUSv3 function signatures and behavior.

Note: Default settings of _EDC_OVERFLOW and _EDC_SUSV3 preserve old behavior, so
these environment variables do not raise a migration issue. However, users should be
aware of the behavioral differences in the application environment when setting them.

162 z/OS Version 1 Release 9 Implementation

12

ISPF enhancements

This chapter describes the enhancements to ISPF in z/OS V1R9. The enhancements in z/OS
V1R9 concentrate mostly on cross-platform support.

The following topics are discussed:

» Edit and browse z/OS UNIX files

» Support for editing ASCII files

» Mixed case characters in ISPF command tables

© Copyright IBM Corp. 2007. All rights reserved. 163

12.1 Edit and browse z/OS UNIX files

In z/OS V1R8, ISPF was enhanced to process z/OS UNIX files. The z/OS V1R8 support

includes the ability to edit, browse, create, delete, rename, copy and replace z/OS UNIX files.
This support is implemented as a directory list utility. The utility is available as option 17, z/OS
UNIX Directory List Utility, under the ISPF Utilities menu (option 3 from the main ISPF panel).

The z/OS UNIX Directory List Utility provides a subset of the functions supported by ISHELL.
The functions supported by the directory list utility are aimed to assist with basic tasks
undertaken by ISPF users such as programmers, and not z/OS UNIX administrators. The
z/OS UNIX Directory List Utility was designed to behave and support commands similar to
the data set list utility (ISPF option 3.4). The intention is to assist users already familiar with
ISPF functions to work with z/OS UNIX files in an interface similar to what they are already
used to, instead of OMVS or ISHELL.

In z/OS V1R8, however, the OEDIT and OBROWSE commands, used to edit and browse
z/OS UNIX files, use the EDIF and BRIF services to interface with the ISPF EDIT and
BROWSE functions. This does not provide the full functionality available with the native ISPF
EDIT and BROWSE functions.

12.1.1 ISPF enhancement in z/OS V1R9

164

In z/0OS V1R9, the ISPF EDIT, VIEW and BROWSE functions are enhanced to support z/OS
UNIX files. This includes support for z/OS UNIX files via options 1 and 2 on the main ISPF
panel, as well as the ISPF EDIT, VIEW and BROWSE service interfaces. In addition, the Edit
Entry, Browse/View Entry, Edit Copy, Edit Move and Edit Create panels are modified so that
the “Other” data set name field is a scrollable field which supports z/OS UNIX files and path
names up to 1023 characters in length. ISPF assumes a z/OS UNIX path name is entered in
this field when the first character is one of the following:

/ (forward slash) Identifies an absolute path name

~ (tilde) Represents the path name for the user’s home directory.

. (dot) Represents the path name for the current working directory.

.. (dot dot) Represents the path name for the parent directory of the current

working directory.

Following are examples of the use of these characters:

» Assuming a user's home directory is /u/smith, specifying ~/test/tst1.sh is the equivalent of
specifying the absolute path name /u/smith/test/tst1.sh.

» Specifying ./pgma.c is the equivalent of specifying the absolute path name
/u/proj1/dev/pgma.c when the current working directory is /u/proj1/dev/.

» Specifying ../test/pgma.c is the equivalent of specifying the absolute path name
/u/proj1/test/pgma.c when the current working directory is /u/proj1/dev/.

ISPF Edit Entry Panel

Figure 12-1 on page 165 displays the new look of the “Other” data set name field on the Edit
panels, as follows:

Other Partitioned, Sequential or VSAM Data Set, or z/0S UNIX file:

As shown in Figure 12-1 on page 165, the new Edit Entry Panel and View Entry Panel now
support z/0OS UNIX file names on the “Other” data set name field.

z/OS Version 1 Release 9 Implementation

Record length field

Another new field on these panels is the Record length field. The Record length field is added
to allow a record length to be specified when browsing a z/OS UNIX file. The value entered in
this field is used by ISPF to display the data in the file as fixed-length records, rather than
using the new line character to delimit each record. This is useful for browsing files which
would otherwise have very long records if the new line character is used as the record
delimiter.

Menu ReflList RefMode Utilities MWorkstation Help

Edit Entry Panel
Command ===>

ISPF Library:

Project . . . PELEG

Group JCL .

Type MERSS

Member . . . (Blank or pattern for member selection list)

Other Partitioned, tial or VSAM Data Set, or
. fu/ipeleqg +

Name .
Volume Serial (If not cataloged)

Workstation File:
File Name

Options
Initial Macro Confirm Cancel/Move/Replace
Profile Name . Mixed Mode

Edit on Workstation
Preserve VB record length

Format Name .
Data_Set Password

Figure 12-1 z/OS UNIX files support on the Edit Entry Panel

o~

Note: The Record Length field can be used when editing a z/OS UNIX file. It allows you to
specify a record length which is used by the editor to load the records from the file into the
edit session as fixed-length records. When the file is saved, it is saved with fixed length
records. So the Record Length field allows you to convert a variable length file to a fixed
length file.

The value specified in the Record Length field must be able to accommodate the largest
record in the file. If the editor finds a record that is larger than the length specified, an error
message is displayed and the edit session does not proceed.

Browsing z/OS UNIX files

On the Edit Entry Panel, the Record length field has a slightly different affect than on the View
Entry Panel. With EDIT, ISPF normally treats z/OS UNIX files as having variable length
records. The Record length field on the Edit Entry Panel allows you to specify a record length
which ISPF EDIT will use to load the records from the file into the edit session as fixed length
records. When the file is saved, it is saved with fixed length records. So the Record length
field allows you to convert a variable length records file into a fixed length records file.

Figure 12-2 on page 166 and Figure 12-3 on page 166 show the difference when browsing a
z/OS UNIX file without specifying a record length and when browsing a z/OS UNIX file with
record length of 40 specified. The z/OS UNIX file that is browsed is:

/Z19RB1/samples/magic

Chapter 12. ISPF enhancements 165

166

Menu Utilities Compilers Help

BROWSE fZ219RB1/samples/magic Line 00000000 Col 001 072
Command === Scroll ===> HALF
SOK K K KK KK 3K K K K K K KK K K K K K K K KK KK K K K K K K Top OT Data s sk k kKK K kK K K K K K K K K XK K K K %K 3K 3K K ¥ K XK K K %X XK

Magic

#..Magic file for "file" command.

H

#.The fields of this file are as follows:

#.byte offset, value type, optional operator (= by default), value
t#.to match (numeric or string), and string to be printed. Numeric
#.values may be decimal, octal, or hex. Also note that the last
#.5tring may have 1 printf format spec.

#.The '>' in occasional column 1's is magic: it forces file to
#.continue scanning and matching additional lines. The first line
#.afterwards not so marked terminates the search.

H

#.Magic numbers are the byte codes at the start of a file which indicate

ngure 12-2 Brows_ihg a z/0S UNIX file, no record length s_pecified

Figure 12-3 illustrates browsing a z/OS UNIX file with record length of 40 specified.

Menu Utilities Compilers Help

BROWSE /Z19RB1/samples/magic Line 00000000 Col 001 040
Command === Scroll ===> HALF
KK K K K K KK K K K K K K K K K K K K K K K K K K KK K K K K Top OFT Data o sk ok & K KK K K K K K K K % 5K K K K % K K K KK K K K K
H Magic.#..Magic file for "file" command
..H.#.The fields of this file are as fol
lows: .H.byte offset, walue type, optiona
1 operator (= by default), wvalue.#.to ma
tch (numeric or string), and string to b
e printed. HNumeric.H.values may be deci
mal, octal, or hex. Also note that the
last.H.string may have 1 printf format s
pec..#.The '>' in occasional column 1's
is magic: it forces file to.H#H.continue s

canning and matching additional lines.

Figure 12-3 Browsing a z/OS UNIX file, record length of 40 specified

ISPF Edit Entry Panel usage

From Figure 12-1 on page 165 with the z/OS UNIX file specified (/u/peleg), when the Enter
key is used, the z/OS UNIX Directory List utility is invoked by ISPF to display the contents of
the directory, as shown in Figure 12-4 on page 167.

Figure 12-4 on page 167 now shows that previously file names, aaaa, bapi.c and mylibar.c,
have been edited by specifying a record length. This is seen in the Fmat field with the
specification of the file format shown as n1 (new line).

z/OS Version 1 Release 9 Implementation

Menu Utilities Miew O0Options Help
z/05%5 UNIX Directory List Row 1 to 21 of 25

Command ===> Scroll ===> PAGE

Pathname . /u/peleg

Command Filename Message Type Permission Audit Ext Fmat

Dir rwxr-xr-x fff--—-

e Dir r-xr-xr-x —-—-—-—-—-—
.profile File rwx------ fff--—- --5- -——-
.sh_history File rWw------- fff--- —-5- ———-
a.out File rwxr-xr-x fff--- --g- --—-—-
aaaa File rwx------ fff-—— -—-s- nl
bapi File rwxr-xr-x fff-—— ——g- ————
bapi.c File rwx—-—-—--- fff--— ——5- nl
bapi.o File rw-r--r-- fff--- --g- —-——-
bapi2 File rwxr-sxr-x fff--- --g- ————
bapiZ.c File rux------ fff--—- --5- ———-
bapi2.o File ru-r--r-— fff-—— ——g5- ————
mylibar.a File rw-r--r-- fff--- --g- --—--
mylibar.c File rwx------ fff-—— —-——-s5- nl
mylibar.o Filte rw-r--r-- fff--- --5- --—-
mulibar.x File rw-r--r-- fff--- --g- ----

Figure 12-4 The z/OS UNIX Directory List panel

Note: Beginning with z/OS V1R8, z/OS UNIX files could have a file format. The possible
file formats are listed in Table 12-1 on page 167.

Table 12-1 Possible file formats for zZOS UNIX files

Value Format options

NA not specified

BIN binary data file

Value Text data delimeters

NL new line

CR carriage return

LF line feed

CRLF Carriage Return followed by Line Feed
LFCR Line Feed followed by Carriage Return
CRNL Carriage Return followed by New Line

ISPF ENQ requests on z/0S UNIX files

If you enter a forward slash (/) in the Command field next to one of the file names, the
following Directory List Actions panel pops up, as shown in Figure 12-5 on page 168.

To avoid possible data corruption, ISPF issues an exclusive ENQ request to prevent two or
more users from editing the same z/OS UNIX file at the same time. The ENQ major name is
SPFEDIT. The ENQ minor name is a 12-byte string compromising these three binary

integers:

» The file’s i-node number (4 bytes)
» The file’s device number (4 bytes)
» A sysplex indicator (4 bytes) is set to 1 when z/OS UNIX is running with SYSPLEX(YES)

Chapter 12. ISPF enhancements

167

This is the same ENQ that is issued by the 0EDIT command.

Directory List Actions

File ———-- /u/peleg/bapi.c
DIRLIST Action
- 1. Edit 8. Copy Out
2. View 9. Copy In
3. Browse 10. Information
4. Neuw 11. Modify Mode Fields
5. Directory List 12. Modify Extended Attrs
6. Delete 13. Execute command
7. Rename

Select a choice and press ENTER to process data set action.

F1=Help F3=Exit F12=Cancel

Figure 12-5 Directory List Actions panel

12.2 ISPF personal data set lists

168

ISPF personal data set lists are enhanced in z/OS V1R9 to support saving and retrieving
z/OS UNIX file path names. Retrieval of path names is supported on the ISPF Edit, View, and
Browse panels to allow a path name to be entered in the “Other” data set name field.
Retrieval of path names is also supported on the z/OS UNIX Directory List Entry panel. Users
can also add path names manually to their personal data set lists.

Personal data set lists are a good way to group (by project, for example) data sets and z/OS
UNIX file path names that you use frequently. You can use personal data set lists to avoid
typing in data set names and z/OS UNIX file path names, and to create customized data set
lists similar to those using ISPF Option 3.4.

Figure 12-6 on page 169 shows an example of an ISPF personal data set list with z/OS UNIX
file names mixed together with MVS data sets.

REFACTD command

The REFACTD command can be used to display the same Personal Data Set List panel. If you
have one or more personal data set lists, ISPF displays the current list. If you have no
personal data set lists, ISPF displays the reference list called REFLIST, which is updated by
ISPF whenever a new data set is used by ISPF.

z/OS Version 1 Release 9 Implementation

File VMiew Q0ptions Help

Personal Data Set List
Command ===>

Enter a list action to perform or select a data set entry to retrieve.
Action: S=Save A=5ave As D=Delete this list E=Extended Edit L=DSLIST

Action HName Description Created Referenced
_ REFLIST Last 30 referenced data sets 07/08701 15:08
More: +
Select Data Set, DSLIST Level or z/0S UNIX file Volume WS
. fu/peleg
fu/peleqg/temp

fu/rogers
/u/rogers/rich. txt
/fu/rogers/tstio2
fu/rogers/CEEDUMP . 2006061
/u/rogers/CEEDUMP . 20060614.094113. 67305623
/Z219RB1/samples/magic
'SYS1.TCPPARMS'
'CPAC.PROCLIB'
'SYS1.IBM.PROCLIB'
'SYS1.PARMLIB'

'"HAIMO. OUTPUT'
"HAIMO.RESOLY.OMP'
'SYS1.PROCLIB'

'SYS1.PROCLIB' TCBSY1
'SYS1.PARMLIB' TCBSY1
OESVP . EXEC

Figure 12-6 ISPF personal data set list with z/OS UNIX file names

12.3 EDIT primary commands support

While you are using the PDF editor to edit or view data, the following primary commands can
be entered on the command line, as they now support the specification of a z/OS UNIX path
name as an operand with z/OS v1R9:

COMPARE command
COPY command
CREATE command
MOVE command
REPLACE command

vyvyyvyyvyy

The pathname is new and is specified in the same format accepted by the “Other” data set
name field on the edit panels. If these commands are used when editing a z/OS UNIX file, the
“I” character can be specified as the first character of the path name to represent the directory
name of the directory containing the file currently being edited.

Note: For more information about the syntax of these commands, refer to z/OS ISPF Edit
and Edit Macros, GC34-4820.

The COMPARE command

The COMPARE command can now be used to compare a member, data set or z/OS UNIX file
being edited with another member, data set, or z/OS UNIX file. The new syntax of the
COMPARE command is shown in Figure 12-7 on page 170, where dsname is the name of a
member, data set, or z/OS UNIX file to which the current file is compared.

Chapter 12. ISPF enhancements 169

>>--COMPARE-- | -dsname----- I EEr |-=|-===-- |-=|-====-- LT ——— ><
| -NEXT-=----- | |-EXCLUDE-| |-SAVE-| |-SYSIN-|

Figure 12-7 Syntax of the COMPARE command

Figure 12-8 displays an ISPF edit screen for file /u/rogers/rich.ixt. You can see, on the
Command line, the command compare /u/peleg/aaaa. When the Enter key is pressed, file
/u/rogers/rich.txt is compared to file /u/peleg/aaaa.

File Edit Edit_Settings Menu Utilities Compilers TIest Help

EDIT /fufrogers/rich. txt Columns 00001 QOO72
Command ===> compare /fu/peleg/aaaa Scroll ===> HALFE
SR R KK K KK K KKK K KKK K R K KK K KK K K K KK Top Of Data KK KKK R KKK K R K K DR K K K DK K KK
000001 asdfsadf

oJolololoped asdfasdfasdfasdf

HEEEEE KEEERE R KRR KRR RERR KRR RE BOTTom OFT Data s s s s s kK sk 8 K K R K K K K K KK K KK

Figure 12-8 Using the COMPARE command to compare to z/OS UNIX files

If the file pathname specified to be compared against is larger than the number of characters
that can be entered on the Command line, then specify the dsname / to indicate a long path
name is required. A pop-up window containing a scrollable field for entering the long path
name is displayed, as shown in Figure 12-9.

File Edit Edit_Settings Menu Utilities Compilers Test Help

ReflList RefMode

Edit Compare - z/05% UNIX File Entry
Command ===>

Pathname . . . / +

Instructions:
Provide a z/05 UNIX file pathname and press ENTER to proceed with the
COMPARE.

Enter END , EXIT or CANCEL to cancel the COMPARE.

Fi1=Help F3=Exit F4=Expand F12=Cancel

Figure 12-9 Specify a long path name for the COMPARE command

The COPY command

The COPY command can now be used to copy data from a z/OS UNIX file into a member, data
set or zZ/OS UNIX file currently being edited. To do this, specify the path name for the z/OS
UNIX file as a parameter with the COPY command. You can also specify the path name on the
Edit/View Copy panel that is displayed when no data source is specified with the COPY
command. If the path name for a directory is specified, the z/OS UNIX Directory List utility is
invoked to allow you to select the regular file to be copied.

The new syntax of the COPY command is shown in Figure 12-10 on page 171.

170 z/OS Version 1 Release 9 Implementation

|
| -member--------- | |-AFTER--|
| - (member) ------- | |-BEFORE-|
| -dsname--------- |
| -dsname (member) - |
| -pathname------- |
D e itk <

|-start_line--end_line-|

Figure 12-10 Syntax of the COPY command

For example, if editing file /u/usr1/prog1 entering on the command line, copy /u/usrl/srcl,
copies data from file src1 into the current file being edited

The CREATE command

The CREATE command can now be used to create a z/OS UNIX regular file from the data
currently being edited. If currently editing a z/OS UNIX file and the CREATE command is used
to create a new z/OS UNIX file, then the file permissions for the new file are set to the same

values as

the file permissions of the file being edited. If currently editing a sequential data set

or a member and the CREATE command is used to create a new z/OS UNIX file, then the file

permissio

ns are set to 700 (rwx --- ---).

The new syntax of the CREATE command is shown in Figure 12-11.

53 - CREATE = == m o e m e ><
| -CRE----| |-member--------- | |-lTabela--labelb-|
| - (member) ------- |
| -dsname (member) - |
|-dsname--------- |
| -pathname------- |

Figure 12-11 Syntax of the CREATE command

Where pathname is used to specify the path name of a regular z/OS UNIX file to be created.

In Figure 12-12, the CREATE command is used to create a member in the file system. PDS
member ROGERS.JCL.VERS5(GENER) is created as file GENER in directory /u/rogers.

File Edit Edit_Settings HMenu Utilities Compilers Test Help
EDIT ROGERS. JCL.VERS5(GENER) - 01.15 Columns 00001 OOO72
Command ===» create /u/rogers/gener Scroll ===> HALF

HEEEEX
CCo100
000200
000300
000400
000500
000600
000700
000800
CCO900

KKK KK K

KKK KR K K K R K KK KK K K K K KK KK Top Of Data O R K R K KK KK K K R K R K KK K K K K KR
/ /ROGERSC JOB (POK, 999) ,MSGCLASS=T, NOTIFY=ROGERS

/ /PRINT EXEC PGM=IEBGENER

//SYSPRINT DD SYSOUT=T

//SYSUT2 DD SYS0UT=J

//SYSUT1 DD DISP=0LD,DSN=ROGERS.JCL.VERSS5 (GENER)

//TAPE DD DSN=(ROGERS.A),DISP=(NEW, KEEP), UNIT=3490

//SYSIN DD DUMMY

£ *®

Iy

35K KK KKK K K K KK KKK IO KO R KRR KKK BOottom OFf Data s o sk sk ik ik KK 5 K K 5 5K K K 3K K K K 3K % ¥ ¥ X

Figure 12-12 Using the CREATE command to create a file in the file system

Chapter 12. ISPF enhancements 171

The MOVE command

The MOVE command can now be used to move data from a z/OS UNIX file into the data being
edited. To do this, specify the path name for the z/OS UNIX regular file as a parameter with
the MOVE command. You can also specify the path name on the Edit/View Move panel that is
displayed when no data source is specified with the MOVE command. If the path name for a
directory is specified, the z/OS UNIX Directory List utility is invoked to allow you to select the
regular file to be moved.

Note: The z/OS UNIX regular file is deleted after the data is moved.

The new syntax of the MOVE command is shown in Figure 12-13.

>3 MOV E — e e e e e e ><
| -member--------- | |---AFTER----- label-|
| - (member) ------- | | -BEFORE-|
| -dsname--------- |
| -pathname------- |

Figure 12-13 Syntax of the MOVE command

Where pathname is used to specify the path name of a regular z/OS UNIX file to be moved.

Use the MOVE command to move a file into the file that is currently being edited, as shown in
Figure 12-14 where the file named data in directory /u/rogers is moved into /u/rogers/cbprnt
following the first statement.

File Edit Edit Settings Menu Utilities Compilers Test Help

EDIT /ufrogers/cbprnt Columns 00001 00072
Command ===> move /fufrogers/data Scroll ===> HALF
MR CKOK KK RO OK KK R KO K KK K K K KK K KK KKK K K K K K K K Top OFT Data o s r K ok K K K ¥ K K K K ¥ K K K K K K K K K K KK XK

AOBOO1 //COMPRESS JOB (QQQ,POK),'PHUL ROGERS', CLASS=A,MSGCLASS=T,

Figure 12-14 MOVE command to move an existing file into a file being edited

Note: The file being moved is deleted. A warning window appears prior to the move to
indicate this, as shown in Figure 12-15 on page 172.

Move has been requested for z/0S UNIX file:
/u/rogers/rich.txt
Moved files are deleted.

Instructions:

Press ENTER key to confirm move request.
(Moved files will be deleted.)

Enter END or EXIT command to return to the
edit session without moving data.

Figure 12-15 Warning window regarding the MOVE command

172 z/OS Version 1 Release 9 Implementation

The REPLACE command

The REPLACE command can now be used to replace the data in a z/OS UNIX regular file using
the data being edited. If the z/OS UNIX file does not exist, it is created.

The new syntax of the REPLACE command is shown in Figure 12-16.

>>— - REPLACE--===== oo e e - ><
| -REPL----| | -member--------- | |-labela--labelb-|
| -REP----- | |- (member)------- |
| -dsname (member) - |
| -dsname--------- |
| -pathname------- |

Figure 12-16 Syntax of the REPLACE command

Where pathname is used to specify the path name of a regular z/OS UNIX file to be replaced.

Figure 12-17 shows the REPLACE command the replaces the data in the file named gener at
/u/rogers with the existing data in the edit screen /u/rogers/cbprnt. Before the replace takes
place, a window appears with the following text.

Replace has been requested for data set:
/u/rogers/gener
Data will be over-written.

Instructions:

Press ENTER key to confirm replace request.
(Data set will be replaced.)

Enter END or EXIT command to return to edit
session without replacing data.

Press the Enter key to do the replace.

File Edit Edit _Settings Menu Utilities Compilers Test Help

EDIT /u/rogers/chprnt Columns 00001 00072
Command ===> replace /u/rogers/gener Scroll ===> HALF
SRR KKK K KKK KKK K KK K DR K K R KK R K KR KK K K K Top Of Da‘ta SR KR KK DR KK K KK K KK K KK K K K K K K K K KK K
CCOB01 //ROGERSC JOB (POK,999) ,MSGCLASS=T, NOTIFY=ROGERS

000002 //PRINT EXEC PGM=IEBGENER

000003 //SYSPRINT DD SYSOUT=T

00OO04 //SYSUT2 DD SYSO0UT=J

000005 //SYSUT1 DD DISP=0LD, DSN=ROGERS. JCL.VERSS5(GENER)

000006 f/TAPE DD DSN=(ROGERS.A),DISP=(NEW,KEEP), UNIT=3490

000007 //SYSIN DD DUMMY

000008 /*

CCOOo9 7/

KKK OK K ORI OK K KRR KKK KRR R KRR OE R KKK RX BOtTom OF Datla o ko s % K % K K % K K K K KK ¥ K K K KK ¥

Figure 12-17 REPLACE command to replace an existing file with the current file

12.4 EDIT macro command support

You can use edit macros, which look like ordinary editor commands, to extend and customize
the editor. You create an edit macro by placing a series of commands into a data set or
member of a partitioned data set. Then you can run those commands as a single macro by

Chapter 12. ISPF enhancements 173

typing the defined name in the command line. Edit macros can be either CLISTs or REXX
EXECs written in the CLIST or REXX command language, or program macros written in a
programming language (such as FORTRAN, PL/I, or COBOL).

The following EDIT macro commands now support z/OS UNIX file path names as sources or
targets for data:

» COPY
» CREATE
» MOVE

» REPLACE

The macros have the same syntax as the EDIT primary commands described in 12.3, “EDIT
primary commands support” on page 169.

Furthermore, the following EDIT macro commands are enhanced to support z/OS UNIX file
names:

» DATASET - Now returns a z/OS UNIX file path name when editing a z/OS UNIX file
» BLKSIZE - Now returns the value of 0 (zero) when editing a z/OS UNIX file

12.5 ISPF services support

ISPF services help you develop interactive ISPF applications. These services can make your
job easier because they perform many tedious and repetitious operations. In z/OS V1R9, the
EDIT, BROWSE, VIEW and FILEXFER ISPF services are enhanced to support zZOS UNIX
files.

The EDIT ISPF service

The EDIT service can now be called by ISPF applications to edit the data in z/OS UNIX files.
The new FILE parameter is used to pass the name of an ISPF variable with a value set to the
path name of the z/OS UNIX file to be edited. The new RECLEN parameter is used to specify
a numeric value for the record length to be used when editing a z/OS UNIX file. This
parameter causes the records to be loaded into the editor as fixed length and saved back in
the file as fixed length.

The new syntax of the EDIT ISPF service is shown in Figure 12-18.

ISPEXEC EDIT FILE(file-var) [PANEL (panel-name)]
[MACRO(macro-name)]
[PROFILE(profile-name)]
[FORMAT (format-name)]
[MIXED(YES|NO)]
[LOCK(YES|NO)]
[CONFIRM(YES|NO)]
[WS(YES|NO)]
[PRESERVE]
[PARM(parm-var)]
[RECLEN(rec-1en)]

Figure 12-18 Syntax of the EDIT ISPF service

Where file-var is the name of an ISPF variable containing the path name of a z/OS UNIX
regular file or directory, and rec-1en is the record length to be used when editing the file.

z/OS Version 1 Release 9 Implementation

The BROWSE ISPF service

The BROWSE service can now be called by ISPF application to display the data in zZZOS
UNIX files. The new FILE parameter is used to pass the name of an ISPF variable with a
value set to the path name of the z/OS UNIX file to be browsed. The new RECLEN parameter
is used to specify a numeric value for the record length to be used when browsing the z/0OS
UNIX file. This parameter causes new line characters in the data to be ignored as record
delimiters.

The new syntax of the BROWSE ISPF service is shown in Figure 12-19.

ISPEXEC BROWSE FILE(file-var) [PANEL (panel-name)]
[FORMAT (format-name)]
[MIXED(YES|NO)]
[RECLEN(rec-1en)]

Figure 12-19 Syntax of the BROWSE ISPF service

The z/OS V1R9 changes are where file-var is the name of an ISPF variable containing the
path name of a z/OS UNIX regular file or directory, and rec-1en is the record length to be
used when browsing the file.

The VIEW ISPF service

The VIEW service can now be called by ISPF applications to display and manipulate the data
in z/OS UNIX files. The new FILE parameter is used to pass the name of an ISPF variable
with a value set to the path name of the z/OS UNIX file to be viewed.

The new syntax of the VIEW ISPF service is shown in Figure 12-20.

ISPEXEC VIEW FILE(file-var) [PANEL (panel-name)]
[MACRO (macro-name)]
[PROFILE(profile-name)]
[FORMAT (format-name)]
[MIXED(YES|NO)]
[CONFIRM(YES|NO)]
[WS(YES|NO)]
[CHGWARN(YES|NO)]
[PARM(parm-var)]

Figure 12-20 Syntax of the VIEW ISPF service

Where file-var is the name of an ISPF variable containing the path name of a z/OS UNIX
regular file or directory to view.

The FILEXFER ISPF service

The FILEXFER service can now be called by ISPF applications to upload data into or
download data from z/OS UNIX files to the workstation. The syntax of the FILEXFER ISPF
service is unchanged from previous version. However, the value of the ISPF variable
specified with the HOST parameter can now be set to the path name of the z/OS UNIX
regular file to be uploaded or downloaded.

Note: For additional information, refer to z/ZOS ISPF Services Guide, SC34-4819.

Chapter 12. ISPF enhancements 175

12.6 PDF installation-wide data set allocation exit

The PDF installation-wide data set allocation exit allows you to create, delete, allocate, and
deallocate data sets instead of using those functions provided by PDF. Note that allocations
done by ISPF, the TSO ALLOCATE command, or TSO commands are not handled by the exit.

In z/OS V1R9, the PDF data set allocation exit is changed to support the allocation of z/OS
UNIX files to a DD. Two additional parameters are now passed to the exit:

Path name pointer A pointer to an area of storage containing the absolute path name of
the z/OS UNIX file to be allocated.

Path name length A full word binary integer that is the length of the z/OS UNIX file path
name.

When the exit receives control due to an allocation request, the SVC 99 parameter list that is

passed to the exit contains the following additional parameters:

» PATHNAME, key 8017

Path name of the z/OS UNIX file to allocate. Path name is of the form /dev/fdnnn, where
nnn is the file descriptor number. The real path name can be obtained via the path name
pointer and path name length parameters. Maximum length for PATHNAME is 1023 bytes.

» PATHOPT, key 8018

A 4-byte field containing the file options for the z/OS UNIX file.
» FILEORG, key 801D

A 1-byte field indicating the organization of the z/OS UNIX file.

Note: Existing data set allocation exits will continue to function without any changes to
process these additional parameters.

12.7 Support for editing ASCIl data

176

With the increasing use of Java and WebSphere products on z/OS, more and more data is
stored in ASCII files on z/OS. One example is XML documents for WebSphere Application
Server. Prior to z/OS V1R9, there were few facilities available in z/OS to display and change
ASCII data, especially under ISPF. In general, it is necessary for ISPF users to download their
ASCII files to a workstation that supports the ASCII character set, edit the files on the
workstation, and upload them back to the z/OS system.

In z/OS V1R9, an ASCII editing facility is provided through the ISPF editor. The ASCII editing
facility translates ASCII data in a file to EBCDIC before displaying it at the terminal and
translates EBCDIC data to ASCIl when receiving input from the terminal to write to the file. A
new SOURCE primary command for the ISPF editor is provided in z/OS V1R9 to control the
ASCII editing facility.

To activate the ASCII editing facility for a file, perform these steps:
1. Start editing the file as you would for a normal EBCDIC file.
2. Then, enter the following command: SOURCE ASCII

After SOURCE ASCII is issued, the ISPF editor treats the source data as ASCII data and
converts it from ASCII to the Coded Character Set ID (CCSID) of the terminal for display
purposes. The data in the file remains unchanged. When you input or modify data at the

z/OS Version 1 Release 9 Implementation

terminal, the ISPF editor translates the data entered from the CCSID of the terminal to ASCII
before storing the data in the file.

To change back to the normal editing mode, where the data is not translated from and to
ASCII when displaying and receiving input from the terminal, issue the primary EDIT
command: RESET SOURCE.

Note: The ASCII editing facility uses the z/OS Unicode Conversion Services to translate
the data between ASCII (CCSID 850) and the CCSID supported by the terminal. It is
required that z/OS Unicode Conversion Services be installed and the required translations
specified to it, in order for the ASCII editing facility to be operable.

Handling line feed characters

Many times ASCII files contain line feed characters. When such an ASCII file is uploaded
from the workstation to a fixed length data set, the data may not be structured correctly
according to the line feed characters. The LF primary command is a new ISPF editor primary
command that restructures the data in the file based on the line feed characters.

Figure 12-21 shows an ASCII file opened in the ISPF editor. As noticed, the data in the file is
unreadable, since it is in the ASCII character set.

File Edit Edit_Settings Menu Utilities Compilers Test Help

EDIT PELEG.SRC(TEST8) - 01.10 Columns 00001 0EOT2
Command ===> Scroll ===> HALFE
K K K KKK K K K K K K K K K K K K K KK KK K K K K K K K K K K K Top OT Data kK kK KK K K KKK KK K K K K K K K K K K K K KKK ¥
000001 EAE /soN A%/ARE A2E --NAT-N>A%IAA+/_A

000002 /oNA%/AE - /%N/EAE
000003 /oNA%/AE -N_o?EEE
000004 /oNA%/BE ~+/EEENA
0005 N>A%IAA o/EC >/_A

SRR KKK KKK K KK R K KKK R R ROR KRR R KRR R Rk BOTLom OF Data s s x o i ok ok % K ok K K K K KK 3K K K ¥ K K KK X

Figure 12-21 ASCII file in the ISPF editor without the ASCII editing facility

After starting the editor, we issue the SOURCE ASCII and LF primary commands in order to
activate the ASCII editing facility and restructure the ASCII file according to the line feed
characters it contains. The result is shown in Figure 12-22.

File Edit Edit_Settings Menu Utilities Compilers Test Help

EDIT PELEG.SRC(TEST8) - 01.10 Columns 00001 00072
Command ===> Scroll ===> HALF
SO KK RO KK K K K Top Of Data SKK K K K K K K K R K
PO0OOR1 fx set api flags for __iew_includeName() =/

pEOOD2 apiflags._ aliases = 1;
000003 apiflags._ imports = 1;
000004 apiflags.__attrib = 1;
000EOS /x include path name =/

SR K KK KKK KK K KR R KKK KKK KK KRR KKK KRR BOTTom oOFT Data sk sk r sk Kk K K K K K KK KK K K K K K XK XK XK

Figure 12-22 ASCII file in ISPF editor with the ASCII editing facility started (source ASCIl command)

LF command

The LF primary command allows you to realign the data being edited by interpreting the ASCII
line feed character X'0A".

Note: After issuing the LF command, if the data is saved, it is saved in the realigned state.
There is no command to reverse the alignment. The command should not be executed
twice against the data, because the blanks following the line feed character will be
interpreted as part of the data for the next line.

Chapter 12. ISPF enhancements 177

12.8 Mixed case in ISPF command tables

Prior to z/OS V1R9, the ISPF Command Table Utility (option 3.9 from the primary ISPF
menu) converted all characters in the Action field to upper case. This prevented users from
defining commands with actions that required lower case characters or case sensitivity, such
as z/0S UNIX commands.

In z/OS V1R, ISPF allows you to define commands in ISPF command tables with lower case
characters using the ISPF Command Table Utility. A new option field is added to the
Command Table Utility — Extended Command Entry panel (panel ISPUCMX) to allow mixed
case data entered in the Action field to be saved in the command table as mixed case. An
example of this is shown in Figure 12-23 on page 179. If this option is not selected, data
entered in the Action field is converted to upper case before being saved in the command
table.

The column headings on the panel shown in Figure 12-23 on page 179 are:
Verb

Trunc

Action

The command verb, which is the name of the command you are defining in the
command table. A command verb must be 2 to 8 characters long, inclusive, and
must begin with an alphabetic character. The content of this column is assigned
to the ZCTVERB system variable.

The minimum number of characters that you must enter to find a match with the
command verb. If this number is zero or equal to the length of the command verb,
you must enter the complete command verb. For example, in Figure 119 the
PREPARE command has a truncation value of 4. Therefore, for the TST
application used as the example in the figure, only the first four letters, PREP,
must be entered to call this command. The content of this column is assigned to
the ZCTTRUNC system variable.

The actual coding of the action to be carried out when you enter the command.
The action length must not be greater than 240 characters. The content of this
column is assigned to the ZCTACT system variable.

For the mixed case support with z/OS V1R9, follow these steps to enter data on the panel
shown in Figure 12-23 on page 179.

To enter or edit the coding for the action:

1.

Enter the E command table line command to display the Extended Command Entry panel
(ISPUCMX).

. Type the required coding in the Action lines.

Normally, any text you type in lower case is translated to upper case before it is saved. To
define some of the parameters in lower case, select the option Allow mixed-case in
Action field on the Extended Command Entry panel. The case of the text you type is not
translated and is saved as you input it.

Note: When you select the Allow mixed-case in Action field option:

2

»

The first word must be input in upper case.

If you use &ZPARM to obtain parameters from the command line, the parameters
may be translated to upper case (regardless of the setting of the Allow mixed-case
in Action field option).

3. Optionally, type a brief description of the purpose of the command in the Description lines.

4. Press PF3 to return to the Command Table Editing panel.

178 z/OS Version 1 Release 9 Implementation

File Menu Utilities Help

Command Table Utility
ISPUCMXK Extended Command Entry
Command ===3>

Make changes to the command and select Update to update the entry or
Cancel to ignore the changes.

Verb . . . HESLIST
Trunc . . . 4
Action . . SELECT CMD(%OSHELL df —-kP)

Description List all currently mounted file systems

Enter / to select option
/4 Allow mixed-case in Action field

Update Cancel
F1=Help F2=Split F3=Exit F7=Backward F8=Forward
F9=Swap Fl12=Cancel

Figure 12-23 New field on the Command Table Utility - Extended Command Entry panel

The mixed case support is further extended to support Dialog Tag Language (DTL) CMD
tags. A new MIXC keyword can now be specified with the CMDACT tag to prevent the
command action specified with the CMD tag from being converted to upper case.

Chapter 12. ISPF enhancements

179

180 z/OS Version 1 Release 9 Implementation

13

Security enhancements

This chapter discusses the enhancements to security components in z/OS V1R9.

The following z/OS components are discussed:
» RACF

» Java Security API (JSec)

» 2z/OS Cryptographic Services - System SSL
» 2z/OS Cryptographic Services - PKI Services

© Copyright IBM Corp. 2007. All rights reserved. 181

13.1 RACF enhancements

13.1.1 Password phrase minimum length change

182

Password phrase support was introduced in z/OS V1R8. A password phrase is a character
string consisting of mixed-case letters, numbers, and special characters including blanks.
Password phrases have security advantages over passwords in that they are long enough to
withstand most hacking attempts, and yet are unlikely to be written down because they are so
easy to remember.

You can issue the PHRASE operand of the ADDUSER or ALTUSER command to assign a password
phrase for a user. This enables the user to authenticate using a password phrase instead of a
password when using an application that supports password phrases. For example:

ALTUSER ARUNDATI PHRASE('sm@11things')

Currently, the only z/OS V1R9 application that supports user authentication using a password
phrase is the Hardware Configuration Manager (HCM).

Password phrases can also provide an interoperability solution. Most platforms allow
passwords longer than 8 characters. z/OS allows a maximum of 8 characters. Using
password phrases, you can keep your z/OS password in sync with other platforms.

RACF enforces the following rules on the value of a new password phrase:
» Must be a text string of 14 to 100 characters

» Must not contain the user ID (as sequential upper case or sequential lower case
characters)

» Must contain at least 2 alphabetic characters (A-Z, and a-z)

» Must contain at least 2 non-alphabetic characters (numerics, punctuation, or special
characters)

» Must not contain more than 2 consecutive characters that are identical

These rules cannot be altered or overridden. The original decision on a minimum length of 14
characters for a password phrase is based on the premise that at least 14 characters are
needed, with this limited set of rules applied to them, to be at least as secure as an 8
characters password with the SETROPTS password rules available.

However, if you want to use password phrase as an interoperability solution, you may run into
problems, because you cannot set passwords with a length between 9 and 13 characters.
This is due to the fact that normal passwords are limited to an 8-character maximum, and
password phrases are limited to a 14-character minimum.

RACF in z/OS V1R9 allows you to change the minimum length of new password phrases to
9 characters. To do so, a new RACF exit, ICHPWX11, must be installed. With the ICHPWX11
RACF exit installed, the minimum length of password phrases is 9 characters. When the exit
is not installed, the minimum stays 14 characters, as on z/OS V1R8.

The new password phrase exit is invoked by RACROUTE REQUEST=VERIFY processing
and the ADDUSER, ALTUSER, PASSWORD, and PHRASE commands. The exit gains control when a
new password phrase is processed, and can examine the value specified for the password
phrase and enforce installation rules in addition to the RACF rules. For example, although
RACF does not allow the user ID to be part of the password phrase, the exit could perform

z/OS Version 1 Release 9 Implementation

more complex tests to also disallow the company name, the names of months, and the
current year in the password phrase.

To allow you to easily perform your own tests on the password phrase, a sample ICHPWX11
exit is shipped in member RACEXITS in SYS1.SAMPLIB. The sample exit uses the new
System REXX component in z/OS V1R9 to invoke a sample REXX exec. The sample REXX
exec is shipped as member IRRPHREX in SYS1.SAMPLIB. The exit passes all its input
information to the REXX exec, so you can perform all your installation-specific tests on the
password phrase from within the REXX exec.

The REXX language is known for its strong string manipulation functions and therefore allows
you to examine the password phrase easily. Furthermore, after the exit is installed, the REXX
exec can be changed without requiring a re-IPL, as opposed to the other RACF exits.

To install the sample exit provided by IBM, do the following:

1. Install the ICHPWX11 exit in the link pack area so that RACF finds it during initialization.
2. Copy the REXX exec from member IRRPHREX in SYS1.SAMPLIB to SYS1.SAXREXEC.
3. Re-IPL your system.

If you change the password phrase quality rules that are coded in the IRRPHREX exec, you
do not need to re-IPL. The changes you make to IRRPHREX take effect immediately when
you save them. If you make changes to ICHPWX11, you must re-IPL to activate your
changes.

13.1.2 Writable key ring functions

You can use RACF to create, register, store, and administer digital certificates and their
associated private keys, and build certificate requests that can be sent to a certificate
authority for signing. You can also use RACF to manage key rings of stored digital
certificates. Digital certificates and key rings are managed in RACF primarily by using the
RACDCERT command, or by using an application that invokes the R_datalib callable service
(IRRSDLOO or IRRSDL64).

The R_datalib callable service provides an application programming interface to the
Common Data Security Architecture (CSDA) data library functions, and is used by System
SSL to establish secure sessions between servers. RACF has three categories for managing
digital certificates:

» User certificate

This is a certificate that is associated with a RACF user ID and is used to authenticate the
user's identity. The RACF user ID can represent a traditional user, or be assigned to a
server or started procedure.

» Certificate-authority certificate

This is a certificate that is associated with a certificate authority and is used to verify
signatures in other certificates.

» Site certificate

This is a certificate that is associated with an off-platform server or other network entity,
such as a peer VPN server. This category of certificate can also be used to share a single
certificate and its private key among multiple RACF user IDs. When used for sharing, a
certificate may be referred to as a placeholder certificate.

Prior to z/OS V1R9, there was no mechanism available to applications that wanted to
programmatically populate certificates in RACF.

Chapter 13. Security enhancements 183

184

In z/OS V1R9, the R_datalib callable service is enhanced with new functions to create or
delete key rings, add or delete certificates to or from RACF, and connect or remove
certificates from key rings. Using the new functions of the R_datalib callable service,
applications can programmatically manage certificates in RACF.

Five new function codes are defined for the new R_datalib functions:

X’07’ NewRing Create a new key ring or remove all the certificates from an existing
key ring.
X’08’ DataPut Add a certificate to the RACF database (if it does not already exist),

and connect it to a key ring.

X’09’ DataRemove Remove a certificate from the key ring, and optionally delete it from the
RACF database if the certificate is not connected to any other rings.

X’0A’ DelRing Delete a key ring.

X’0B’ DataRefresh Refresh the in-storage certificates in the RACF database if the
DIGTCERT class is RACLISTed. If the DIGTCERT class is not
RACLISTed, no action is performed. DataRefresh might be required
after calling DataPut or DataRemove.

The RDATALIB RACF class

In addition to the new function codes, a new RACF class is now provided to allow more
granular access control over the users of the R_datalib functions. The new RACF class name
is RDATALIB. The format of the profiles in the RDATALIB class is:

<ring_owner>.<ring_name>.<function>
The new R_datalib functions in z/OS V1R9 are considered update functions. Therefore, their
profiles are of the form:

<ring_owner>.<ring_name>.UPD
The older functions, prior to z/OS V1R9, only list the RACF database and therefore their
profiles are of the form:

<ring_owner>.<ring_name>.LST

For a virtual key ring, the profile format is:
<ring_owner>.IRR _VIRTUAL_KEYRING.LST

For a virtual key ring owner, the possible IDs are SITE, CERTAUTH, or an ordinary RACF ID.

If the new profiles are absent, R_datalib reverts to checking authorization using the old
IRR.DIGICERT.” profiles in the FACILITY class.

For example, suppose that an application running under user ID CERTSRVR needs to be
able to install certificates in all the key rings that start with MYC, and are owned by MYCJOB
in the RACF database. Issue the commands shown in Figure 13-1 to authorize CERTSRVR:

RDEFINE RDATALIB MYCJOB.MYC*.UPD UACC(NONE)
PERMIT MYCJOB.MYC*.UPD CLASS(RDATALIB) ID(CERTSRVR) ACCESS(UPDATE)

Figure 13-1 RDATALIB class RACF commands example

z/OS Version 1 Release 9 Implementation

13.1.3 UTF8 characters support in digital certificates

As described in 13.1.2, “Writable key ring functions” on page 183, you can use RACF to store
digital certificates. Prior to z/OS V1R9, RACF had a limitation that prevented certificates
containing multibyte UTF8 characters in the Subject Distinguished Name or Subject Alternate
Names of a certificate from being stored in the RACF database. This limitation prevented
some applications from being able to store their certificates in the RACF database.

In z/OS V1R9, RACF allows you to store certificates containing multibyte UTF8 characters in
the Subject Distinguished Name or Subject Alternate Names and for such certificates to be
used for authentication to RACF.

However, a limitation still exists. To be able to store a certificate with multibyte UTF8
characters in the RACF database, the UTF8 characters must be convertible to characters in
the IBM-1047 code page. The reason for this limitation is that RACF uses z/OS Unicode
Conversion Services internally to convert the UTF8 characters in the Distinguished Names
and Subject Alternate Names to IBM-1074 characters before storing them in the RACF
database.

Certificates containing UTF8 characters are supported by the RACDCERT RACF command,
the initACEE callable service and the R_datalib callable service.

Note: UTF8 support is not available for PKI Services yet. You cannot use a certificate with
UTF8 characters as the PKI Services CA certificate.

13.1.4 REFRESH warning message after RACDCERT commands

On releases before z/OS V1R9, RACF did not issue a warning message indicating a
SETROPTS REFRESH command is required to pick up changes in the DIGTCERT or DIGTNMAP
classes even if they were RACLISTed. The lack of a warning message may cause users to
forget to issue a SETROPTS REFRESH command after changing profiles in these RACF classes.

Therefore, in z/OS V1R9, RACF issues a warning message to remind you to issue a SETROPTS
REFRESH command against the DIGTCERT and DIGTNMAP classes after a RACDCERT
command. For example, assume that the DIGTCERT class is RACLISTed. Then issue the
following command:

RACDCERT ADD(mycert) WITHLABEL(‘My Cert’)

This message is issued by RACF:
IRRD175I The new profile for DIGTCERT will not be in effect until a SETROPTS
REFRESH has been issued.

The warning message is issued, if necessary, after RACDCERT GENCERT, ADD, MAP,
DELETE, DELMAP, ALTER, REKEY and IMPORT.

Note: The DIGTRING class is not involved. Changes in key rings do not require SETROPTS
REFRESH because in-storage key ring information is not used in any key ring-related
process.

Chapter 13. Security enhancements 185

13.2 Java security API

186

Starting with z/OS V1R9, a Java interface is provided for performing RACF functions. The
Java security API (JSec) provides easy integration into a security environment that runs other
Java code, on or off z/OS, and provides easy mapping to the RACF user and group
administration commands (such as ADDUSER, ALTUSER, CONNECT, and so on) while providing
RACF extensibility.

JSec is shipped with z/OS V1R9 in two jar files in the HFS:

» /usr/include/java_classes/userregistry.jar

» /usr/include/java_classes/RACFuserregistry.jar

No other steps are required to install JSec support in z/OS V1R9. To use JSec on another

platform, download the JSec jar files to that platform and include them on your CLASSPATH.
The following are required to run a Java application that uses JSec:

» The client system where the JSec program is running on must be running at least
Java(TM) 2 Runtime Environment V5.

» The z/OS system with the RACF database you wish to administer must be running IBM
Tivoli Directory Server (LDAP server) configured with an SDBM back-end.

To compile a Java program that uses the JSec interface, the JSec jar files must be included in
the program’s CLASSPATH environment variable. In z/OS UNIX, this can be achieved by
using the command shown in Figure 13-2:

export CLASSPATH=$CLASSPATH:/usr/include/java_classes/userregistry.jar:usr/include/java_
classes/RACFuserregistry.jar

Figure 13-2 Adding JSec jar files to the CLASSPATH

JSec returns RACF user and group data as Attributes, a common Java class used to describe
pairs of names and values. Attribute names follow the format segmentName_fieldName. For
example, the attribute name for the UID field in the OMVS segment is OMVS_UID.

JSec classes
The JSec Java classes are packaged in two packages:

» com.ibm.security.userregistry
» com.ibm.eserver.zos.racf.userregistry
Package com.ibm.security.userregistry contains three interfaces:
» SecAdmin
This is the interface for security administration of users and groups.
» User

This interface extends java.security.Principal by providing methods to get the attributes of
user and the groups that the user belongs to.

» UserGroup

This interface extends java.security.acl.Group to return attributes of the group and to allow
group membership to have qualifying attributes. UserGroup is intended to be a group of
individual users.

z/OS Version 1 Release 9 Implementation

Package com.ibm.security.userregistry also contains an Exception SecAdminException,
which is a super class of all exceptions thrown from this package.

Package com.ibm.eserver.zos.racf.userregistry contains the following classes:
» RACF_Group

This class implements UserGroup interface for RACF groups.
» RACF_remote

RACF_remote defines characteristics and connection parameters of a remote RACF to be
accessed via LDAP/SDBM.

» RACF_SecAdmin

This class implements SecAdmin interface to RACF and provides additional utility
methods (including cloning a user ID, and the ability to display attributes in alphabetical
order).

» RACF_User
This class implements the User interface for RACF users.
» RACFattribute

This is a data structure that keeps track of the data, behavior, and so on that is associated
with each RACF attribute.

» Segment

This is a simple data class that keeps three pieces of information for each RACF non-base
segment.

The complete Javadoc™ for the JSec API classes and sample programs can be found at:

http://www-03.ibm.com/servers/eserver/zseries/software/java/

Example

Figure 13-3 on page 188 shows an example of how to use the JSec interface to connect to a
remote RACF database and list the attributes for user JAVA1. We use the RACF_remote
class constructor to connect to a z/OS LDAP server with an SDBM back-end running on our
test system SC60. System SC60’s DNS address is wtsc60.itso.ibm.com, and the z/OS LDAP
server SDBM back-end is listening on port 3389. User JAVA1 with password JAVA1 is used
for the LDAP bind. The SDBM suffix is O=ITSORACF.

After a connection with RACF on SC60 is established, we use the RACF_SecAdmin class to
define a RACF administrator. The RACF administrator is then used to create a User object for
user JAVA1. The User object is used to get JAVA1’s attributes from the RACF database.
Finally, JAVA1’s RACF attributes are output using the displayAttributes() method of the
RACF_SecAdmin object.

Chapter 13. Security enhancements 187

http://www-03.ibm.com/servers/eserver/zseries/software/java/

import com.ibm.eserver.zos.racf.userregistry.*;
import com.ibm.security.userregistry.*;

import javax.naming.*;

import javax.naming.directory.*;

public class TestJSec {
public static void main(String[] args) {

RACF_remote SC60_RACFdb = new RACF_remote(
"Tdap://wtsc60.itso.ibm.com:3389",
"simple",

"JAVA1",
"JAVA1", // password during testing
"o=itsoracf"

)

try {
SecAdmin racfAdmin = new RACF_SecAdmin(SC60 RACFdb);

if (racfAdmin != null) {
User JAVAl1 = racfAdmin.getUser("JAVA1");

BasicAttributes attrJAVAl = JAVAl.getAttributes();

System.out.printIn("Attributes returned for JAVAL:");
RACF_SecAdmin.displayAttributes(attrJAVAL);
}
}
catch (Exception e) {
System.out.printin("Exception in TestdSec.java " +
e.getMessage() + "\n");
e.printStackTrace();

}

Figure 13-3 Using JSec to list user attributes

The output from this example is shown in Figure 13-4 on page 189. Note that some attributes
are shown with the value No values. These are attributes with a Boolean value, meaning they
either exist for the RACF entity or do not.

For example, a BASE_OPERATIONS attribute exists for user JAVA1. This attribute has no
value; it is only there to indicate that the user has the OPERATIONS attribute in RACF.

188 z/OS Version 1 Release 9 Implementation

PELEG @ SC65:/u/peleg>java TestdSec
Attributes returned for JAVAL:
BASE_CREATED: 03.268
BASE_DAYS: ANYDAY
BASE_DFLTGRP: SYS1
BASE_LAST-ACCESS: 07.149/15:17:38
BASE_NAME: JAVALl USER
BASE_OPERATIONS: No values
BASE_OWNER: WELLIE2
BASE_PASS-INTERVAL: 254
BASE_PASSDATE: 07.149
BASE_PASSWORD: Password Exists
BASE_SPECIAL: No values
BASE_TIME: ANYTIME
BASE_USERID: JAVA1

OMVS: No values

OMVS_HOME: /u/javal
OMVS_PROGRAM: /bin/sh
OMVS_UID: 0000000000

TSO: No values

TSO_ACCTNUM: MVS

TSO_COMMAND: ISPPDF
TSO_MAXSIZE: 00000000
TSO_PROC: BPXPROC

TSO_SIZE: 02000000

TSO_UNIT: SYSDA

Figure 13-4 JSec program output

13.3 System SSL enhancements

System SSL is part of the System SSL Cryptographic Services base element of z/OS. Some
parts of System SSL ship in HFS files and some in PDS and PDSE data sets. System SSL
has three FMIDs:

» HCPT390 - Cryptographic Services System SSL (base element)
» JCPT391 - Cryptographic Services Security Level 3 (optional priced feature)
» JCPT39J - Japanese

13.3.1 Introduction to the SSL protocol

Secure Sockets Layer (SSL) is a communications protocol that provides secure
communications over an open communications network, for example, the Internet. The SSL
protocol is a layered protocol that is intended to be used on top of a reliable transport, such as
TCP/IP.

SSL provides data privacy and integrity, as well as server and client authentication based on
public key certificates. After an SSL connection is established between a client and server,
the SSL protocol transparently adds encryption and integrity to the data communications
between the client and the server. System SSL supports the SSL V2.0, SSL V3.0 and
Transport Layer Security (TLS) V1.0 protocols. TLS V1.0 is the latest version of the secure
sockets layer protocol.

Chapter 13. Security enhancements 189

190

System SSL provides a set of SSL C/C++ callable application programming interfaces that,
when used with the z/OS Sockets APIs, provide the functions required for applications to
establish this secure sockets communication.

In addition to providing the API interfaces to exploit the SSL and TLS protocols, System SSL
is also providing a suite of Certificate Management APIs. These APIs give the capability to
create and manage your own certificate databases, utilize certificates stored in key
databases, key rings or tokens for purposes other than SSL, and to build and process
PKCS #7 standard messages.

In addition to providing APls for applications to use for both SSL and certificate management
support, System SSL also provides a certificate management utility called gskkyman. This
utility allows for the management of certificates stores in a key database file or z/OS

PKCS #11 token.

An overview of how SSL works
The SSL protocol begins with a handshake. During the handshake, the client authenticates
the server, the server optionally authenticates the client, and the client and server agree on
how to encrypt and decrypt information. In addition to the handshake, SSL also defines the
format used to transmit encrypted data.

X.509 (V1, V2 or V3) certificates are used by both the client and server when securing
communications using System SSL. The client must verify the server's certificate based on
the certificate of the Certificate Authority (CA) that signed the certificate, or based on a
self-signed certificate from the server. The server must verify the client's certificate (if
requested) using the certificate of the CA that signed the client's certificate. The client and the
server then use the negotiated session keys and begin encrypted communications.

The SSL protocol runs above the TCP/IP and below higher-level protocols such as HTTP. It
uses TCP/IP on behalf of the higher-level protocols. Figure 13-5 on page 191 shows a
schematic description of the SSL protocol.

z/OS Version 1 Release 9 Implementation

Client

J

Client HELLO

Cipher suite
negotiation

) (£

| Client certificate(optional)

J
x

~

i [

Encrypted data
transfer

) £

- J

Figure 13-5 Overview of the SSL protocol

The capabilities of SSL address several fundamental concerns about communication over the
Internet and other TCP/IP networks:

» SSL server authentication

This allows a client application to confirm the identity of the server application. The client
application through SSL uses standard public-key cryptography to verify that the server's
certificate and public key are valid and has been signed by a trusted CA that is known to
the client application.

» SSL client authentication

This allows a server application to confirm the identity of the client application. The server
application through SSL uses standard public-key cryptography to verify that the client's
certificate and public key are valid and have been signed by a trusted CA that is known to
the server application.

» An encrypted SSL connection

This requires all information being sent between the client and server application to be
encrypted. The sending application is responsible for encrypting the data and the
receiving application is responsible for decrypting the data. In addition to encrypting the
data, SSL provides message integrity. Message integrity provides a means to determine
whether the data has been tampered with since it was sent by the partner application.

13.3.2 Certificate revocation lists (CRLs) granularity

System SSL supports X.509 certificates and certificate revocation lists (CRLs). CRLs provide
a means for certificates to be revoked prior to their expiration time. Certificate revocation may
be required due to several reasons; for example, the issuer of the certificate is no longer
trustable, or the keys associated with the certificate have been compromised. System SSL
supports CRLs that are stored in LDAP directories.

Chapter 13. Security enhancements 191

Prior to z/OS V1R9, when System SSL was performing validation of a certificate against CRL
entries in an LDAP directory, System SSL did not require a CRL entry to exist for a certificate.
Furthermore, System SSL would fail the validation of a certificate if CRL checking was
specified and the application could not contact (bind to) the LDAP server. The application had
no control of how to enforce the use of CRLs during the validation process. However, some
applications may require a more strict enforcement, while other applications may be satisfied
with a less restricted enforcement.

To give more flexibility to the applications, a new tuning environment variable and
environment attribute is added in z/OS V1R9 to define the SSL environment. The tuning
variables allow the application to specify one of the following:

High security Certificate validation requires the LDAP server to be contactable and a
CRL to be defined.

Medium security Certificate validation requires the LDAP server to be contactable, but
does not require a CRL to be defined. This is the same behavior as
previous releases and is the default.

Low Security Certificate validation will not fail if the LDAP server cannot be
contacted.

The new CRL controls are set at the SSL environment level and apply to all secure
connections within that SSL environment. An SSL environment defines common attributes
that will apply to all the application’s secure connections.

There are two ways to set the CRL security granularity level:

» Setting the environment variable GSK_CRL_SECURITY_LEVEL to HIGH, MEDIUM or
LOW. Figure 13-6 shows an example of how to set the environment variable to HIGH:

export GSK_CRL_SECURITY LEVEL=HIGH

Figure 13-6 Setting the CRL security level using an environment variable

Refer to Appendix A of System SSL Programming Guide, SC24-5901, for more
information about environment variable settings.

» Using the SSL API function gsk_attribute_set_enum to set attribute
GSK_CRL_SECURITY_LEVEL to one of the following:

— GSK_CRL_SECURITY_LEVEL_HIGH
— GSK_CRL_SECURITY_LEVEL_MEDIUM
— GSK_CRL_SECURITY_LEVEL_LOW

Figure 13-7 shows an example of setting the GSK_CRL_SECURITY_LEVEL attribute to
HIGH.

rc = gsk_attribute_set_enum(
env_handle,
GSK_CRL_SECURITY_LEVEL,
GSK_CRL_SECURITY_LEVEL_HIGH
)3

Figure 13-7 Setting the CRL security level using the SSL API

192 z/OS Version 1 Release 9 Implementation

For more information about parameters of the gsk_attribute_set_enum API function, refer
to System SSL Programming Guide, SC24-5901, as well as the SSL header file
/ust/lpp/gskssl/include/gskssl.h.

13.3.3 Rehandshake notification

Prior to z/OS V1R9, after an SSL handshake had completed establishing a secure
connection, the application could cause a rehandshake to occur in order to have new session
keys established for the connection or to have the session’s cipher algorithm reset. This
rehandshake is known as a renegotiation of the secure connection. Either side of the secure
connection can initiate a rehandshake. The TLS Protocol Version 1.0 RFC (RFC 2246) allows
application data to flow during the handshake renegotiation. However, some implementations
do not tolerate data flow during the renegotiation.

In z/OS V1R9, rehandshake notification callback support allows applications to suspend the
flow of data until the rehandshake is complete, if they desire to do so, and thus be able to
support more implementations of the SSL/TLS protocol.

In order for an application to be notified when a handshake is being renegotiated or
completed, the application is required to register callback routines with System SSL. Callback
routines are routines that reside in the application and are passed control by System SSL
when a particular condition is met or a certain event occurs. In this case, the callback
functions receive control when a secure connection is being renegotiated or when the
renegotiation is completed.

Two rehandshake notification functions are provided by System SSL. The first callback
function is intended to give applications the capability of knowing when a rehandshake is
occurring. The second function gives applications the capability of knowing when a
rehandshake has completed. Effectively, these two callback functions also allow applications
to know when the connection is being renegotiated, and when it is again ready for normal
secure communications.

Note: This support is limited to the SSL V3.0 and TLS V1.0 protocols. SSL V2.0 does not
support renegotiation of established secure connections.

The identification of the callback routines is done through the gsk_attribute_set_callback
API function. Use the gsk_reset callback structure to point to the application’s callback
functions. Then, use gsk_attribute_set_callback to identify the functions to System SSL.

An example is shown in Figure 13-8 on page 194. This example focuses on statistics
gathering, but the same concept can be used to control the flow of application data during a
handshake renegotiation. The callback routines can suspend application data flow when the
rehandshake is initiated, and resume data flow after the rehandshake complete callback is
called.

Chapter 13. Security enhancements 193

/* Callback 1 - Rehandshake init */

int rehandshakes_initiated = 0;

void Reset_Init(gsk_handle con_handle) {
rehandshakes_initiated++;

}s

/* Callback 2 - Rehandshake complete */

int rehandshakes_completed = 0;

void Reset_Complete(gsk_handle con_handle) {
rehandshakes_completed++;

}s

gsk_reset_callback rehandshake_callbacks;
rehandshake_callbacks = {Reset_Init, Reset_Complete};

rc = gsk_attribute_set callback(
env_handle,
GSK_SESSION_RESET CALLBACK,
rehandshake_callbacks

)s

Figure 13-8 Setting System SSL rehandshake callback functions

In the example, whenever a rehandshake is initiated, the application’s Reset_Init function is
called. When the handshake has completed, the Reset_Complete function is called.

13.3.4 Host name validation

194

System SSL provides an API function, gsk_validate_server, for applications to validate a
server’s certificate by specifying the host name associated with the server. The server
certificate must contain the specified server’s host name as either the common name (CN)
element of the subject name or as a DNS entry for the subject alternate name extension.
System SSL first compares the host name against the value of the CN in the certificate and if
no match is found, proceeds to compare against the DNS value in the subject alternate name
extension.

The RFC for HTTP over TLS (RFC 2818) and several other Internet protocol standards
require that the DNS subject name in the subject alternate name extension be compared to
first and only if that is not present, a check against the CN in the certificate should be
performed. Prior to z/OS V1R9, this was not achievable by the System SSL API.

In z/OS V1R9, System SSL adds a new API function that gives applications the flexibility to
specify the order and how comparisons are to be performed against the host name and the
X.509 certificate. The new API function is called gsk_validate_hostname. It allows you to
specify a value option that controls the composition and the order of the host name validation
process. Four options are available:

» GSKCMS_VALIDATE_HOSTNAME_CN

This validates the host name against the CN of the certificate first and then against the
DNS entry for the subject alternate name extension if no match is found in the CN.

» GSKCMS_VALIDATE_HOSTNAME_CN_ONLY
This validates the host name against the CN of the certificate only.

z/OS Version 1 Release 9 Implementation

» GSKCMS_VALIDATE_HOSTNAME_DNS

This validates the host name against the DNS entry in the subject alternate name
extension first and, only if that is not present, validates the host name against the CN.

» GSKCMS_VALIDATE_HOSTNAME_DNS_ONLY
This validates the host name against the DNS entry in the subject alternate name
extension only.

Figure 13-9 shows an example of using gsk_validate_hostname to set the validation process
to check the DNS entry first and then CN.

#include <gskcms.h>

gsk_validate_hostname(
x509_certificate,
hostname,
GSKCMS_VALIDATE_HOSTNAME_DNS

)s

Figure 13-9 Controlling the System SSL host name validation process

13.3.5 Hardware-to-software switch notification

System SSL uses the Integrated Cryptographic Service Facility (ICSF) if it is available. ICSF
provides hardware cryptographic support which will be used instead of the System SSL
software algorithms. System SSL checks for the hardware support during its runtime
initialization processing, and will use the hardware support if available.

System SSL also takes advantage of the CP Assist for Cryptographic Function (CPACF)
when available. CPACF is a set of cryptographic instructions available on all CPs of a 2990,
2890, and z9 EC and z9 BC processors. The SHA-1 algorithm is always available. The
SHA-256 algorithm is available on the z9 EC and z9 BC. CPACF DES/TDES Enablement,
feature 3863, provides for clear key DES and TDES instructions. On the z9 EC and z9 BC,
this feature also includes clear key AES for 128-bit keys. ICSF is not required in order for
System SSL to use the CPACF.

On top of that, System SSL contains software implementations for every cryptographic
algorithm that it requires. If a severe ICSF error occurs during a cryptographic operation,
System SSL stops using the hardware support and reverts to using the software algorithms.
The switch to software support is done transparently to the application. Prior to z/OS V1R9,
System SSL did not issue a notification of the switch to software support, so no corrective
action could have been taken by the system programmers.

Starting with z/OS V1R9, the System SSL started task, GSKSRVR, issues two new
notification messages when a switch occurs. The messages are:

GSK01051E jobname/ASID - Hardware encryption error. ICSF hardware encryption
processing is unavailable

GSK01052W jobname/ASID - Hardware encryption error. algorithm encryption
processing switched to software

In order to provide notification about the switch from hardware to software, the System SSL
started task GSKSRVR must be started before any application using System SSL. This
allows System SSL to detect the switch and inform the started task of the event. The
GSKSRVR started task initially displays message GSK01051E to inform about the switch
from hardware to software. The GSKSRVR system log contains more detailed messages

Chapter 13. Security enhancements 195

about the actual encryption function that converted to System SSLs software
implementation.

These messages provide the system programmers with an indication that the switch has
occurred. The system programmers need to ensure that ICSF hardware encryption services
are up and functioning correcily.

Note: To utilize hardware encryption again, after the problem is fixed, a restart of the SSL
application or process is needed. The GSKSRVR started task does not need to be
restarted.

13.4 PKI Services enhancements

z/0OS Cryptographic Services PKI Services allow you use z/OS to establish a PKI
infrastructure and serve as a certificate authority for your internal and external users, issuing
and administering digital certificates in accordance with your own organization's policies. The
users in the organization can use a PKI Services application to request and obtain certificates
through their own Web browsers, while the authorized PKI administrators approve, modify, or
reject these requests through their own Web browsers.

The Web applications provided with PKI Services are highly customizable, and a
programming exit is also included for advanced customization. You can allow automatic
approval for certificate requests from certain users and, to provide additional authentication,
add host IDs, such as RACF user IDs, to certificates you issue for certain users. You can also
issue your own certificates for browsers, servers, and other purposes, such as virtual private
network (VPN) devices, smart cards, and secure e-mail.

PKI Services supports Public Key Infrastructure for X.509 version 3 (PKIX) and Common
Data Security Architecture (CDSA) cryptographic standards. It also supports the following:

» The delivery of certificates through the Secure Sockets Layer (SSL) for use with
applications that are accessed from a Web browser or Web server.

» The delivery of certificates that support the Internet Protocol Security standard (IPSEC) for
use with secure VPN applications or IPSEC-enabled devices.

» The delivery of certificates that support Secure Multipurpose Internet Mail Extensions
(S/MIME), for use with secure e-mail applications.

z/OS is certified as ldenTrust-compliant. This allows z/OS installations to participate in the
IdenTrust infrastructure by configuring PKI Services to operate as an IdenTrust compliant
certificate authority (CA).

13.4.1 Automatic certificate renewal processing

Prior to z/OS V1R9, certificate owners had to manually renew their certificates after they
received an expiration notification. To make renewal of certificates easier, PKI Services in
z/OS V1R9 support automatically sending a renewed certificate to the owner before the old
certificate expires.

Automatic certificate renewal is done through the PKI Services configuration file, pkiserv.conf,
and the template file, pkiserv.tmpl.

196 z/OS Version 1 Release 9 Implementation

The relevant parameters in pkiserv.conf are:
» ExpireWarningTime=

This parameter indicates how soon before certificate expiration to send a warning
message or a renewed certificate (that is, the number of days or weeks before the day and
time the certificate expires). If automatic certificate renewal is active, this parameter
indicates how soon before certificate expiration to renew the certificate and send it to the
owner.

This parameter is optional. Its absence indicates no expiration checking is performed and
no automatic certificate renewal occurs. Also, if the parameter is present but has an
incorrect value or if PKI Services is configured to operate without LDAP, no expiration
checking or automatic certificate renewal is done.

» RenewCertForm=

The full path name or data set name containing the “renewed certificate”. Defaults to no
certificate sent.

In addition, update the pkiserv.tmpl file with the following:
» The AUTORENEW tag

This tag determines whether the certificate is to be automatically renewed when it
approaches expiration. This tag has the form <AUTORENEW=value>, where value can
have the value Y, y, N, or n. If the AUTORENEW tag has any other value, or does not
immediately follow the NICKNAME tag, PKI Services operates as if the tag is not present.
The tag has the following meanings:

— AUTORENEW tag not present means that the certificate is not set up for automatic
renewal.

— AUTORENEW=Y means that the certificate is enabled for automatic renewal.
AUTORENEW=N means that the certificate is eligible for automatic renewal, but
automatic renewal is disabled.

Note: Adding the AutoRenew=Y tag does not enable all certificates to be automatically
renewed. It enables only the newly issued certificates after the template is been
updated.

» The notification e-mail address of the receiver

A renewed certificate gets all the information from the original certificate, but with a new
expiration date which is set from the expiration date of the original certificate plus the NotAfter
value from template. Furthermore, exit hooks can be set up to add criteria to disallow
automatic renewal and to perform post processing for the renewed certificate.

Example

We want to set up PKI Services so that all the certificates generated from the “1-Year PKI
SSL Browser Certificate” template are renewed 30 days before they expired. We update the
pkiserv.conf file, as shown in Figure 13-10.

ExpirelWarningTime=30d
RenewCertForm=/etc/pkiserv/renewcertmsg.form

Figure 13-10 Example updates to pkiserv.conf

We also update the pkserv.tmpl file, as shown in Figure 13-11 on page 198.

Chapter 13. Security enhancements 197

<TEMPLATE NAME=1-Year PKI SSL Browser Certificate>
<TEMPLATE NAME=PKI Browser Certificate>
<NICKNAME=1YBSSL>

<AUTORENEW=Y>

%%NotifyEmail%%

Figure 13-11 Example updates to pkiserv.tmpl

Now 30 days before the certificate expires, an e-mail with a renewed certificate will be sent.

13.4.2 RACF-style distinguished name

The AuthName1 parameter in pkiserv.conf is used to specify the LDAP administrator’s
Distinguished Name (DN). The value specified in the AuthName1 parameter is used by PKI
Services to perform LDAP binding. LDAP binding is the process of authenticating a DN to the
LDAP server. The DN is used to identify unambiguously a collection of attributes in the
directory.

In z/OS V1R9, the LDAP administrator DN specified in the PKI Services configuration file can
now be a RACF-style DN. underlying RACF data. A RACF-style DN for a user or group
contains two required attributes plus a suffix. The required attributes are racfid, which
specifies the user ID or group ID, and profiletype, which specifies user or group. The suffix
specifies the SDBM suffix. The suffix for SDBM may contain additional attributes.

To use the new support, explicitly specify a RACF-style DN for theAuthName1 parameter in
pkiserv.conf. An example is shown in Figure 13-12.

AuthName1=RACFID=ADMIN,PROFILETYPE=USER,0=RACFDB,C=US
AuthPwdl=secret

Figure 13-12 Specifying a RACF-style DN in pkiserv.conf

You can also implicitly specify a RACF-style DN for the PKI Services LDAP administrator
using the BindProfile1 parameter in pkiserv.conf. For example, to define an LDAP bind profile
named MY.LDAP.SERVER1 in RACF with the equivalent attributes as the previous example,
use the RACF command in Figure 13-13, then specify BindProfile1=MY.LDAP.SERVER1 in
pkiserv.conf.

RDEFINE LDAPBIND MY.LDAP.SERVER1 PROXY (LDAPHOST(1dap://some.ldap.host:389)

BINDDN (' RACFID=ADMIN,PROFILETYPE=USER,0=RACFDB,C=US"') BINDPW('secret®))

Figure 13-13 Specifying a RACF-style DN using a RACF bind profile

13.4.3 E-mail notification for administrators

198

In z/OS V1R9, PKI Services support sending an e-mail notification to the PKI Services
administrators to notify them of requests waiting for their approval.

Otherwise, the PKI Services administrators have no way of knowing about new requests,
other than by logging on to the PKI Services Web application periodically.

z/OS Version 1 Release 9 Implementation

New parameters are added to pkiserv.conf for the new e-mail notification support:
» AdminNotifyNew<n>

The e-mail address to which natification should be sent immediately when a request is
created and requires approval. The natification is only sent once. There can be multiple
entries, where <n> is 1 for the first entry and increases sequentially for additional entries.

» AdminNotifyReminder<n>

The e-mail address to which reminder notifications of requests pending approval should
be sent when PKI Services starts, and once a day thereafter. There can be multiple
entries, where <n> is 1 for the first entry and increases sequentially for additional entries.

» AdminNotifyForm
The full path name or data set name containing the request(s) pending for approval
message form. Defaults to no notification sent.

It is possible to use AdminNotifyNew, AdminNotifyReminder, or both.

13.4.4 Longer validity period for certificates

Starting with z/OS V1R9, PKI Services allows specifying a certificate validity period greater
than 10 years, which was the limitation on previous releases. The new limit is 9999 days,
which is about 27 years.

This enhancement allows you to define certificates with longer validity periods. For example,
to set up a template for certificates with validity for 20 years, specify the following in
pkiserv.tmpl, as shown in Figure 13-14.

<CONSTANT>
%%NotAfter=7300%%
</CONSTANT>

Figure 13-14 Example of specifying a certificate validity period

The R_PKIServ callable service supports a NotAfter parameter for the GENCERT, REQCERT,
GENRENEW and REQRENEW function codes. The NotAfter parameter now also supports
values greater than 10 years.

13.4.5 Query on expiring certificates

The PKI Services administration Web pages allow PKI administrators to process certificate
requests, preregistration records, and individual certificates. In addition, the PKI Services
administration Web pages allow administrators to perform searches for certificate requests,
preregistration records, and certificates.

Prior to z/OS V1R9, there was no interface allowing administrators to search for certificates
based on the number of days they will expire in. So the administrators could not easily know
which certificates were about to expire.

In z/OS V1R9, the administration Web pages are enhanced to allow administrators to search
certificates using future days until expiration as a search criteria. Figure 13-15 on page 200
shows the new Web page for the administrator to perform searches on certificates and
certificate requests.

Chapter 13. Security enhancements 199

200

Certificate Requests

O Show all requests

 Show requests pending approval
C Show approved requests

C Show completed requests

C Show rejected requests

(C Show preregistered requests

Additional search criteria (Optional)
Requestor's name

Show recent activity only | (Not Selected)

« Specify search criteria for certificates and certificate requests

Issued Certificates

O Show all issued certificates
O Show revoked certificates
O Show suspended certificates
O Show expired certificates

@ Show active certificates (not expired. not revoked, not suspended)

O Show rejections in which the client has been notified © Show disabled certificates (suspended or revoked, not expired)

O Show automatic renewal enabled certificates

O Show automatic renewal capable certificates

Within one week
Within two weeks

=

Show certificates that will expire (Mot Selected) ¥| (Only applicable to active certificates when recent activity is not selected)
(Not Selected)

I Find Certificates or Cert| " (thin one day]

Figure 13-15 Web page for searching certificates that are about to expire

z/OS Version 1 Release 9 Implementation

14

z/OS Communication Server

This chapter describes some of the z/OS Communication Server enhancements introduced in
z/OS Version 1 Release 9:

» zlIP-assisted IPSec
» Policy-based routing
For complete information about all the new functions introduced in this release (as well as the

past three releases) regarding IP and SNA functions, refer to zZ0S Communication Server:
New Function Summary, GC31-8771.

© Copyright IBM Corp. 2007. All rights reserved. 201

14.1 zlIP-assisted IPSec

zlIP-assisted IPSec enables zZOS Communications Server to direct CPU-intensive IPSec
processing to an IBM System z9 Integrated Information Processor (zIIP). In z/OS V1R9
Communications Server, this function can lower the computing cost incurred by the IPSec
protocols, while at the same time increasing the processing capacity of your general purpose
central processors (CPs).

This function can also be enabled on machines with no zlIPs, so that you can project the
effectiveness of zIIP for your current IPSec workload. When this function is enabled on a z/OS
server with no zlIPs, MVS accounts for the zIIP-eligible workload that was processed on CPs,
in SMF record types 30 and 7x. You can use this accounting information to project the
percentage of your workload that would be zlIP-eligible, if you had zIIPs configured to your
MVS image.

IBM System z9 Integrated Information Processor (zlIP) was introduced at the beginning of
2006. zIIP is a specialty engine designed to free up general purpose CPs and lower the
software costs for selected workloads.

In the following text, the word “ipse” is spelled in two different ways with different meanings,
as follows:

IPSec This refers to the Vlirtual Private Network (VPN) IP Security (IPsec), a
pee-to-peer IP tunnel.
IPSEC This refers to the IPSEC feature in z/OS Communication Server that

provides TCP/IP filtering (firewall) and VPN IPsec.

Communication Server’s IPSec is the second IBM’s exploiter of the zIIP assist processor. The
first one was DB2 V8. It uses the System z9 crypto hardware, Crypto Express2 (CE2), for the
following:

» Data encryption and decryption
» Authentication
Even using the CE2, some bulk workloads such as FTP or Tivoli Storage Manager (TSM) can

utilize a significant amount of CPU. The cost of CPU is relative to the amount of data being
moved.

In some cases, when running an LPAR at a high utilization level, the usage of IPSec could be
a problem. In most of the cases the TCP/IP address space has a high priority and depending
on the workload priority, this problem can be magnified. To minimize the problem the IPSec
workload could run on a different TCP/IP address space with a lower priority, but the CPU
consumption problem will remain.

For more information on the zIIP configuration, see and perform a search on zIIPs:

http://www.ibm.com/support/techdocs

14.1.1 Implementation of zlIP-assisted IPSEC

202

A new option was included in the GLOBALCONFIG statement to enable the SRB-mode
IPSec Authentication header (AH) and Encapsulating Security Payload (ESP) protocols to be
processed on zIIP. Figure 14-1 on page 203 shows the GLOBALCONFIG statement to
configure the zlIP-assisted IPSec function.

z/OS Version 1 Release 9 Implementation

http://www.ibm.com/support/techdocs

GLOBALCONFIG
ZITP IPSECURITY

Figure 14-1 ZzIlIP IPSec configuration

The other option (the default) is ZIIP NOIPSECURITY, which leaves the IPSec processing
running on general CPs.

Configuring GLOBALCONFIG ZIIP IPSECURITY causes inbound ESP and AH Protocol
traffic to be processed in enclave SRBs, and targeted to available zIIPs. Outbound ESP and
AH protocol traffic may also be processed on available zIIPs in the following cases:

» When the application invoking the send() function is already running on a zIIP
» When the data to be transmitted is in response to normal TCP flow control (for example,
data transmitted in response to a received TCP acknowledgement or window update)

If the machine does not have a zIIP installed, there is an option to project the CPU in the
IEAOPTxx parmlib member called PROJECTCPU. Figure 14-2 shows how to configure this
option.

PROJECTCPU=YES

Figure 14-2 IEAOPTxx PROJECTCPU configuration example

14.1.2 Example of zliP-assisted IPSec implementation

In our test environment we implemented the zlIP-assisted IPSec function by defining a VPN
IPSec tunnel between two z/OS images, SC70 and SC65.

Network configuration
To define a VPN in z/OS is necessary to configure the following components:

» |IPSECURITY in the TCP/IP profile.

» Policy Agent (PAGENT) address space to handle all the configurations and install them in
the TCP/IP stack.

» Traffic Regulation Management Daemon (TRMD) address space to log all the IPSEC
messages.

» Internet Key Exchange daemon (IKED) address space to perform the key management.
» SYSLOGD address space to write the messages on a log file.

IPSECURITY

On a System z9, an additional assist for IPSec protocol traffic is available with the z9
Integrated Information Processor (zlIP). To enable zIIP IP security in Communications Server,
specify ZIIP IPSECURITY on the GLOBALCONFIG statement. With zIIP IP security enabled,
traffic using the AH and ESP protocols can be processed on available zIIPs. When enabled
on a z9 z/OS image that includes zlIPs, the zIIP IP security function can reduce the IPSec
processing load on general purpose central processors, beyond what is achievable using just
CPACF or the z9 Cryptographic Coprocessor.

When zIIP IP security is enabled, you might need to modify some Workload Manager (WLM)
definitions. The IPSec traffic that can be processed on available zIIP processors is assigned
to an independent WLM enclave. The WLM independent enclave encapsulates the IPSec

Chapter 14. z/0S Communication Server 203

204

workload as execution units that are separately classified and managed in a WLM service
class.

IPSECURITY is configured by using the IPCONFIG statement shown in Figure 14-3.

IPCONFIG
IPSECURITY

Figure 14-3 IPCONFIG configuration

When IPSECURITY is configured, the TCP/IP automatically installs an implicit deny all
firewall rule, blocking all the traffic to the stack. In our implementation we defined a rule to
allow all the traffic to flow before defining the other rules using the Pagent configuration.
VPNs are only supported by using the pagent IPSEC configuration rules. The IPSEC
definition in the TCP/IP profile is called the default policy.

Important: Be careful when defining the IPSECURITY on TCP/IP. The TCP/IP stack has
to be restarted or activated to use this function. If the TCP/IP stack is activated with no
rules defined, either by the IPSEC statement or by the PAGENT daemon, then all traffic to
and from the stack will be blocked.

If you attempt to use the zIIP IPSECURITY support (to direct IPSec AHIESP protocol
processing to zlIP), issue Netstat STATS (or onetstat -S) while IPSec workload is running.
The inbound and outbound counters Packets Handled by zIIP will be rising if IPSec
workload is in fact being processed on zIIP(s).

If these counters are not rising while IPSec traffic is flowing, verify both of the following
items:

» GLOBALCONFIG ZIIP IPSEC parameters are specified in the TCPIP profile (use
NETSTAT Config/-f to verify).
» zIlIP(s) are configured to the z/OS image (use MVS D M=CPU command to verify).

IPSEC statement

The IPSEC statement to define the IPSEC default policy is shown in Figure 14-4. This
configuration will install the default policy allowing all traffic to flow in and out the stack.

IPSEC
IPSECRULE * * NOLOG PROTOCOL *
ENDIPSEC

Figure 14-4 IPSEC configuration example

The instructions on how to configure the PAGENT, TRMD, IKED, and SYSLOGD daemon
can be found in the following publications:

» Communication Server for zZOS V1R7 TCP/IP Implementation, Volume 4: Policy-Based
Network Security, SG24-7169

» Sysplex eBusiness Security z/0S V1R7 Update, SG24-7150
» z/OS Communication Server IP Configuration Guide, SC31-8775
» z/OS Communication Server IP Configuration Reference, SC31-8776

The following definition shows the PAGENT configuration for both systems, SC70 and SC65.
Figure 14-5 and Figure 14-6 show the main pagent configuration file. This file points to

z/OS Version 1 Release 9 Implementation

configuration files to specific TCP/IP stacks. In our configuration we have only one TCP/IP
address space called TCPIP.

LoglLevel 127
TcpImage TCPIP /u/rodolfi/policy/sc70/tcpip.policy purge flush

Figure 14-5 SC70 pagent configuration file referenced by the pagent daemon

LoglLevel 127
TcpImage TCPIP /u/rodolfi/policy/sc65/tcpip.policy purge flush

Figure 14-6 SC65 pagent configuration file referenced by the pagent daemon

Figure 14-7 and Figure 14-8 show the configuration files for the TCPIP stack in both systems.
They point to another file which contains the IPSEC policy definitions.

TcpImage TCPIP
IPSecConfig /u/rodolfi/policy/sc70/tcpip.policy.ipsec

Figure 14-7 SC70 TCPIP stack policy

TcpImage TCPIP
IPSecConfig /u/rodolfi/policy/sc65/tcpip.policy.ipsec

Figure 14-8 SC65 TCPIP stack policy

Appendix C.1, “IPSEC policy configuration for SC70” on page 500 shows the IPSEC
configuration for the SC70 system. It was generated using the IBM Configuration Assistance
for z/OS CS V1RO9.

Appendix C.2, “IPSEC policy configuration for SC65” on page 503 shows the IPSEC
configuration for the SC65 system. It was also generated using the IBM Configuration
Assistance for z70OS Communications Server V1R9.

There are only two IPSEC rules defined on each of the preceding examples:

» One rule that allows all inbound and outbound traffic in the TCP/IP stack. Usually this rule
does not exist, but in our example we defined it to facilitate the tests.

» Another rule that creates a VPN on demand between SC70 and SC65 when any type of
traffic occurs. “On demand” means that the VPN will be activated when any traffic
matching a specific rule is encountered.

Note that an implicit rule denying all traffic is always created either having the default policy
rules or the pagent policy.

To start the VPN between the systems, we issue a ping command to the other side or
generate any kind of traffic between the two systems.

For this implementation we created two REXX programs that are kept in a loop. Each one of
the systems, SC70 and SC65, will have a client and a server version talking to each other and
sending packets. This programs only send (client) and receive (server) data. This is the only
traffic we tested in our implementation.

Figure 14-9 shows the Server REXX program.

Chapter 14. z/0S Communication Server 205

/* REXX */
parse arg port .
src=Socket('Initialize','ziips"')
s=Word (Socket ('Socket'),2)
ipaddress=Word(Socket ('GetHostId'),2)
src=Socket('Bind',s,'AF_INET' port ipaddress)
src=Socket('Listen',s,10)
src=Socket('Ioctl',s,'FIONBIO', 'OFF')
say 'ZIIPS: Waiting on' ipaddress port '...
parse value Socket('Accept',s) with . ns . np nia .
say 'ZIIPS: Connected by' nia 'on port' np 'and socket' ns
call Socket 'Ioctl',ns,'FIONBIO','OFF'
call Time 'R'
bytes=0
do forever
parse value Socket('Read',ns) with rc size .
if rc<>0 then leave
bytes=bytes+size
if Time('E')>10
then do
say 'ziips throughput:' port ipaddress np nia size,
Format (bytes/Time('E')/1204/1024,5,3)
if bytes=0 then Teave
bytes=0
call Time('R")
end

end

call Socket 'Close',ns
call Socket 'Terminate'
exit

Figure 14-9 REXX server

Figure 14-10 on page 207 shows the Client rexx program.

206 z/OS Version 1 Release 9 Implementation

/* REXX */
parse arg image port .
src=Socket('Initialize','ziipc')
s=Word (Socket ('Socket'),2)
src=Socket ('Connect',s,'AF_INET' port '9.12.4.'image)
trace off
nb=64000
data=Copies('*',nb)
call Time 'R’
bytes=0
do forever
parse value Socket('Write',s,data) with rc nb .
bytes=bytes+nb
if Time('E')>10
then do
say 'ziipc throughput:' image port nb,
Format (bytes/Time('E')/1024/1204,5,3)

bytes=0
call Time('R")
end
end
src=Socket ('Terminate')
exit

Figure 14-10 REXX client

We have to start the client and the server on each side by using the following commands:

On SC70:

ziipsl 1952 (1952 is the listening port)

On SC65:

ziipsl 1952

On SC70:

ziipcl 48 1952 (48 is the last octet of the ip address and 1952 the TCP port)
On SC65:

ziipcl 202 1952

Figure 14-11 REXX startup example

After starting the programs, we can monitor the zlIP-assisted IPSec environment and
configuration.

Chapter 14. z/OS Communication Server 207

First we have to check whether the zIIP is available to be used. We issue the D M=CPU
command.

D M=CPU
IEE1741 13.47.59 DISPLAY M 523
PROCESSOR STATUS

ID CPU SERIAL

00 + 16991E2094
01 + 16991E2094
02 +A 16991E2094
03 +A 16991E2094
04 +I 16991E2094
05 +I 16991E2094

CPC ND = 002094.518.1BM.02.00000002991E

CPC ST = 2094.710.1IBM.02.000000000002991E

CPC ID = 00

CPC NAME = SCZP101

LP NAME = Al6 LP ID = 16

CSSID =1

MIF ID =6

+ ONLINE - OFFLINE . DOES NOT EXIST W WLM-MANAGED

N NOT AVAILABLE

A APPLICATION ASSIST PROCESSOR (zAAP)

I INTEGRATED INFORMATION PROCESSOR (zIIP)
CPC ND CENTRAL PROCESSING COMPLEX NODE DESCRIPTOR
CPC SI SYSTEM INFORMATION FROM STSI INSTRUCTION
CPC ID CENTRAL PROCESSING COMPLEX IDENTIFIER

CPC NAME CENTRAL PROCESSING COMPLEX NAME

LP NAME LOGICAL PARTITION NAME

LP ID LOGICAL PARTITION IDENTIFIER

CSS ID CHANNEL SUBSYSTEM IDENTIFIER

MIF ID MULTIPLE IMAGE FACILITY IMAGE IDENTIFIER

Figure 14-12 D M=CPU command

As you can see in Figure 14-12, we have two zlIPs available in the system (CPU ID 04 and
05), and they are online.

208 z/OS Version 1 Release 9 Implementation

The netstat -S command in Figure 14-13 shows how many packets are being handled in a

zIIP processor.

RODOLFI @ SC65:/u/rodolfi>netstat -S
MVS TCP/IP NETSTAT CS VI1R9 TCPIP Name: TCPIP 14:31:01
IP Statistics
Packets Received = 1095389266
Inbound Calls from Device Layer =0
Inbound Frame Unpacking Errors =0
Inbound Discards Memory Shortage =0
Received Header Errors =0
Received Address Errors = 22
Datagrams Forwarded =1
Unknown Protocols Received =0
Received Packets Discarded =0
Received Packets Delivered = 1095282062
Output Requests = 1170732490
Qutput Discards No Route = 216
Qutput Discards DLC Sync Errors =0
Qutput Discards DLC Async Errors =1
Qutput Discards Memory Shortage =0
Output Discards (other) =0
Reassembly Timeouts =0
Reassembly Required =0
Reassembly Successful =0
Reassembly Failures =0
Datagrams Successfully Fragmented = 0
Datagrams Failing Fragmentation =0
Fragments Created =0
Fragments Created =0
Inbound Packets handled by zIIP = 1074645575
Outbound Packets handled by zIIP = 873127703

Figure 14-13 Netstat -S command example

The netstat -f (configuration) command in Figure 14-14 can be used to check whether the zIIP

support is enabled.

RODOLFI @ SC65:/u/rodolfi>netstat -f
MVS TCP/IP NETSTAT CS VI1R9 TCPIP
Global Configuration Information:
TcpIpStats: No
M1sChkTerm: No
Seg0ffload: No
ExplicitBindPortRange:
Sysplex Monitor:
TimerSecs: 0060 Recovery: Yes

XCFGRPID:
SysplexWLMPo11: 060
00000-00000

MonIntf: No DynRoute: No
zIIP:
IPSecurity:Yes

ECSALimit: 0000000K PoolLimit: 0000000K
IQDVLANID: 0

DelayJdoin: No

Name: TCPIP 14:37:00

AutoRejoin: No

Figure 14-14 Netstat -f command example

The Resource Measurement Facility (RMF) monitor can be used to check how much CPU is
being used by the zIIP. In our test we used the Monitor 1ll to show some details of how the
zIIP is being utilized by LPARs and address spaces.

Chapter 14. z/0S Communication Server 209

The CPC Capacity screen in Monitor Il shows how the CPU is being used by partitions; see
Figure 14-15.

RMF V1IR9 CPC Capacity Line 1 of 61

Samples: 119 System: SC65 Date: 05/16/07 Time: 12.04.00 Range: 120 Sec

Partition: All 2094 Model 710
CPC Capacity: 640 Weight % of Max: **** 4h Avg: 29 Group: N/A

Image Capacity: 256 WLM Capping %: 0.0 4h Max: 52 Limit: N/A

Partition --- MSU --- Cap Proc Logical Util % - Physical Util % -
Def Act Def Num Effect Total LPAR Effect Total

*CP 66.0 6.1 64.3 70.3
All 0 37 NO 2.0 28.2 28.8 0.1 5.6 5.8
A16 0 33 NO 2.0 24.8 25.5 0.1 5.0 5.1
*1IP 12.0 2.1 77.1 79.2
A1l NO 2.0 39.2 39.5 0.3 39.2 39.5
Al6 NO 2.0 37.7 38.0 0.3 37.7 38.0

Figure 14-15 RMF CPC Capacity example

Figure 14-15 displays how the partitions are using zIIP, A16 (SC70), and A11 (SC65).

The next RMF examples, Figure 14-16 and Figure 14-17 on page 211, show how the zIIP is
being used by the address spaces on SC70 and SC65 systems in the RMF Processor Usage

screen.
RMF VIR9 Processor Usage Line 1 of 11
Samples: 119 System: SC70 Date: 05/16/07 Time: 12.04.00 Range: 120 Sec
Service --- Time on CP % --- ----- EAppl % -----
Jobname CX Class Total AAP IIP CP AAP IIP
RODOLFI3 O SYSSTC1 24.4 0.0 0.0 24.4 0.0 0.0
RODOLFI4 0 SYSSTC1 8.9 0.0 0.0 8.9 0.0 0.0
TCPIP SO SYSSTC 4.8 0.0 0.0 4.8 0.0 74.0
RMFGAT SO SYSSTC 1.5 0.0 0.0 1.5 0.0 0.0
XCFAS S SYSTEM 0.7 0.0 0.0 0.7 0.0 0.0
WLM S SYSTEM 0.6 0.0 0.0 0.6 0.0 0.0
VTAM44 S SYSSTC 0.2 0.0 0.0 0.2 0.0 0.0
MASTER S SYSTEM 0.1 0.0 0.0 0.1 0.0 0.0
SMSVSAM S SYSTEM 0.1 0.0 0.0 0.1 0.0 0.0
JES2 S SYSSTC 0.1 0.0 0.0 0.1 0.0 0.0
CATALOG S SYSTEM 0.1 0.0 0.0 0.1 0.0 0.0

Figure 14-16 SC70 RMF Processor Usage example

As we can see in Figure 14-16, the TCPIP address space is using most of the CPU. It is
responsible for the ESP and AH protocol processing, encrypting and decrypting all the data.
Figure 14-17 on page 211 shows the SC65 system and we can see that most of the CPU
utilization was displaced to the zlIPs.

210 z/OS Version 1 Release 9 Implementation

RMF VIR9 Processor Usage Line 1 of 16

Samples: 119 System: SC65 Date: 05/16/07 Time: 12.04.00 Range: 120

Service --- Time on CP % --- ----- EAppl % -----
Jobname CX Class Total AAP IIP (o AAP IIP
RODOLFI3 0 SYSSTC1 28.7 0.0 0.0 28.7 0.0 0.0
RODOLFI4 O SYSSTC1 8.7 0.0 0.0 8.7 0.0 0.0
TCPIP SO SYSSTC 5.5 0.0 0.0 5.5 0.0 76.9
RMFGAT SO SYSSTC 1.4 0.0 0.0 1.4 0.0 0.0
XCFAS S SYSTEM 0.8 0.0 0.0 0.8 0.0 0.0
WLM S SYSTEM 0.6 0.0 0.0 0.6 0.0 0.0
AOPMSGS SO STC 0.4 0.0 0.0 0.4 0.0 0.0
VTAM44 S SYSSTC 0.3 0.0 0.0 0.3 0.0 0.0
HZSPROC SO STC 0.3 0.0 0.0 0.3 0.0 0.0
VAINI T TSO 0.3 0.0 0.0 0.3 0.0 0.0
MASTER S SYSTEM 0.1 0.0 0.0 0.1 0.0 0.0
GRS S SYSTEM 0.1 0.0 0.0 0.1 0.0 0.0
SMSVSAM S SYSTEM 0.1 0.0 0.0 0.1 0.0 0.0
IXGLOGR S SYSTEM 0.1 0.0 0.0 0.1 0.0 0.0
CATALOG S SYSTEM 0.1 0.0 0.0 0.1 0.0 0.0
GPMSERVE SO STC 0.1 0.0 0.0 0.1 0.0 0.0

Sec

Figure 14-17 SC65 RMF Processor Usage example

It is possible to enable and disable the zIIP usage by using the OBEYFILE command. We just

have to change the option in GLOBALCONFIG to ZIIP NOIPSECURITY and update the

profile to disable the zIIP utilization. To enable, simply configure back to ZIIP IPSECURITY.

Now we can turn the zIIP off on SC65 and see how the system will behave, as shown in

Figure 14-18.

RMF VIR9 Processor Usage Line 1 of 11

Samples: 120 System: SC65 Date: 05/16/07 Time: 12.21.00 Range: 120

Service --- Time on CP % --- ----- EAppl % -----
Jobname CX Class Total AAP IIP CP AAP IIP
TCPIP SO SYSSTC 46.1 0.0 0.0 46.1 0.0 0.0
RODOLFI4 0 SYSSTC1 30.7 0.0 0.0 30.7 0.0 0.0
RODOLFI3 0 SYSSTC1 15.7 0.0 0.0 15.7 0.0 0.0
RMFGAT SO SYSSTC 1.3 0.0 0.0 1.3 0.0 0.0
XCFAS S SYSTEM 0.6 0.0 0.0 0.6 0.0 0.0
WLM S SYSTEM 0.6 0.0 0.0 0.6 0.0 0.0
RMF S SYSSTC 0.5 0.0 0.0 0.5 0.0 0.0
AOPMSGS SO STC 0.4 0.0 0.0 0.4 0.0 0.0
VTAM44 S SYSSTC 0.2 0.0 0.0 0.2 0.0 0.0
MASTER S SYSTEM 0.1 0.0 0.0 0.1 0.0 0.0
GPMSERVE SO STC 0.1 0.0 0.0 0.1 0.0 0.0

Sec

Figure 14-18 SC65 RMF Processor Usage example 2

The jobname TCPIP represents the TCP/IP address space and the jobnames rodolf3 and

rodolfi4 are the REXX server and client programs, respectively. Without the zIIP, the CPU
utilization was displaced back to the general CPs. For the CPC activity screen, see the

Figure 14-19 on page 212.

Chapter 14. z/OS Communication Server

211

RMF VIR9 CPC Capacity Line 1 of 61
Samples: 120 System: SC65 Date: 05/16/07 Time: 12.21.00 Range: 120 Sec
Partition: All 2094 Model 710
CPC Capacity: 640 Weight % of Max: **** 4h Avg: 31 Group: N/A
Image Capacity: 256 WLM Capping %: 0.0 4h Max: 57 Limit: N/A
Partition --- MSU --- Cap Proc Logical Util % - Physical Util % -
Def Act Def Num Effect Total LPAR Effect Total
*CP 66.0 5.6 68.0 73.6
A1l 0 66 NO 2.0 5 51.7 0.0 10.3 10.3
Al6 0 26 NO 2.0 19 20.0 0.1 3.9 4.0
*1IP 12.0 1.3 32.5 33.8
A1l NO 2.0 0.0 0.0 0.0 0.0 0.0
Al6 NO 2.0 32.4 32.6 0.2 32.4 32.6

Figure 14-19 RMF CPC Capacity example 2

A white paper called “Capacity Planning for zlIP-assisted IPSec” is available at the following
link. It describes in detail how to plan for zIIP capacity.

http://www.ibm.com/support/docview.wss?rs=852&uid=swg27009459

14.2 Policy-based routing

When TCP/IP has to route a packet to the network, the decision is based on the destination
address in the packet IP header. All traffic sent to a destination address has to use the same
route. You can have more than one network interface being used to the same route (multipath
route); for example, having two OSA cards connected to the same network.

Because the System z9 has the capability of having multiple interfaces, running many
different workloads, with different requirements. The only way to accomplish that today is
running the application in another partition, or creating another TCP/IP stack with different
route tables. In one z/OS image, it is possible to have up to eight TCP/IP stacks, which allows
the possibility of having up to eight route tables.

This new policy-based routing allows the packet route to be selected based on one or more of
the following criteria:

Source IP address

Destination IP address
Source TCP port

Destination TCP port

Protocol (UDP and TCP)
Jobname

Netaccess security zone
Multi-level security (MLS) label

vyVVyVYyVYVYVYYVYYVY

The routing decision is always taken for outbound traffic (data being sent from z/OS). The
outbound traffic that meets any subset of the criteria listed can be targeted to a specific
network interface and first-hop routers.

212 z/OS Version 1 Release 9 Implementation

http://www.ibm.com/support/docview.wss?rs=852&uid=swg27009459

Now the TCP/IP can have multiple routing tables:

» Atleast one, the main routing table, defined in the TCP/IP profile
» Zero (0) or more policy-based routing tables

A policy-based routing table works the same way as the main routing table. It can contain:

Static routes only.

Dynamic routes only.

A combination of static and dynamic routes.

The static routes can be replaceable or non-replaceable (replaceable or not by using
dynamic routing via OMPROUTE).

vyvyyy

The routes in a policy-based route (PBR) table is limited to specific link or next hops by:
» Static routes: by defining static routes for the route table using only specific links ad
first-hops.

» Dynamic routes: by configuring the links and first-hops to be considered by OMPROUTE.
OMPROUTE will only generate routes for the links and first-hops that were specified in the
routing table.

PBR is implemented using a pagent policy. The PBR is a new policy in the pagent
configuration file. A PBR policy can be created based on a subset of the various criteria.

Traffic that matches a certain criteria, like the jobname for example, can be defined to use up
to eight different route tables, plus the main routing table, optionally, as a backup. All traffic
that does not match any defined criteria will use the main routing table, if it is defined.

Look at the example in Figure 14-20.

Solution
Policy-Based Routing Sample
Main route table Policy-based route table
Dest Link First Hop
10.1.4.1 LINK1 10.1.1.1
10.1.4.2 LINK2 10.1.2.1
10.1.4.3 LINK3 10.1.3.1
10.1.5.1 LINK2 10.1.2.1
10.1.5.2 LINK3 10.1.3.1

4 .4.4.}@ ES - . 10.1.3.1)

10.1.3.0/24
10.1.1.0/24 10.1.2.0/24
—
10.1.4.0/24 10.1.5.0/24)
Y /j

Figure 14-20 Routing scenario example

Chapter 14. z/0S Communication Server 213

In the example we have two different routing tables:

» The main routing table spreading the traffic between three different links: LINK1, LINK2,
and LINKS.

» A PBR policy redirecting all the traffic to a specific link, LINK3. Any criteria could be
specified in the PBR policy to utilize this PBR table, like a specific jobname.
The route table is selected as follows:

1. Each route table defined for a specific traffic is searched, in the order they are defined, for
a route to the traffic destination.

2. If any active route to the destination (from the more specific to more general, host, subnet,
network, supernet, or default) matched the packet destination, then that route is used.

3. The main route table will be searched last, if it defined to be used as a backup.

The routing selection algorithm performed for a single PBR table is the same as the algorithm
used for the main route table.

Note: The routing selection algorithm works the following way:
1. If a route exists to the destination address, a host route, then it is used.
2. If no host route exists to the destination address, then:

a. If subnet, network or supernet routes exists to the destination, then the route with
the most specific network mask (the mask with most of the bits on) will be used.

b. If the destination is a multicast destination and a multicast default route exists, then
that route is used.

3. Default routes are used when no other route exists to a destination.

The only type of traffic supported by the PBR policy is the locally originated IPv4 TCP and
UPD. The main route table will always be used for:

» All IPv6 traffic

» All forwarded traffic

» All traffic using IP protocols other than TCP and UDP, including ICMP (ICMP Echo
requests, PING, will continue to be routed using the main route table).

14.2.1 Policy-based routing implementation

214

The PBR policy is configured in a pagent flat-file. It consists of:

» Routing rules
» Routing actions
» Routing tables

The LDAP is not supported for the PBR policy, only flat-files are supported. The IBM
Configuration Assistant for zZOS Communication Server can be used to generate the PBR
configuration flat file. In our implementation we demonstrate how to create a simple PBR
policy using the configuration assistant.

Routing rules
A routing rule specify a set of traffic characteristics and an action to be taken for outbound
traffic that matches those characteristics.

z/OS Version 1 Release 9 Implementation

A routing rule definition consist of:

Source IP address:

Destination IP address

Traffic descriptor (characteristics)
Priority

Time condition

A reference to a routing action

vVvyyvyvYyyvyy

The source and the destination IP address can be specified as a single IP address, a
prefix/mask specification, a range of IP addresses, or it can reference a group of IP
addresses.

Important: The source IP address for an outbound TCP connection or an outbound UDP
packet can be influenced by a number of configuration and application options. See the
source IP address information in zZOS Communications Server: IP Configuration Guide for
the hierarchy of ways that the source IP address of an outbound packet is determined.

For the following source IP address selection methods, a route lookup is needed to
determine the source |IP address:

» SOURCEVIPA: static VIPA address from the HOME list
» HOME IP address of the link over which the packet is sent

Do not use the IP source address as a selector for traffic that relies on one of the above
two methods to select its source IP address. At the time the route lookup is done, the
source IP address is not known.

The traffic descriptor specifies the following characteristics of outbound traffic:

Source port, single or a range of ports

Destination port, single or a range of ports

TCP or UDP protocol

Job name: a trailing asterisk (*) can be used as a wild card
Security zone: netaccess security zone

Security label: Multi-level security

vyvvyvYyyvyy

The traffic descriptor can be specified inline, as a reference, or as a reference to a group of
traffic descriptors.

The priority controls the order in which rules are searched for a match. Some rules for priority
specification:

» Can be specified from 1 to 2.000.000.000 (2 billion)

» Defaultis 1 (lowest priority)

» [f a packet can match more than one rule, priority should be used to ensure that the rules
are searched in the intended order.

» For rules with the same priority, the order in which the rules are searched is unpredictable.

Note: Priority is not explicitly configured when the Configuration Assistant is used to

generate the routing configuration file. The rule priority is determined by the order of the
rules as shown on the rules panel.

The time condition specifies when the routing rule is to be active. It is possible to specify a
specific date, a date range, a mask for months of the year and days of the week.

Chapter 14. z/0S Communication Server 215

216

Routing action

Routing action specifies the routing tables to be used for traffic that matches a routing rule.
Up to eight routing tables can be specified for a routing action, and they are searched in the
order specified.

There is an option to use or not the main route table, specified in the TCP/IP profile, if no
active route is found in any of the specified policy-based route tables.

Route table

The route table defines a policy-based route table. The maximum number of policy-based
route tables that can be defined for a TCP/IP stack is 255. Only active route tables are
installed in the TCP/IP stack. Route tables are considered active if it is referenced by an
active routing rule and its associated action.

A policy-based route table can contain static routes, dynamic routes or both (IPv4 routes
only). A route table definition consists of:

» Table name

» Route entries (static routes)

» Dynamic routing parameters entries (controls the calculation of dynamic routes by
OMPROUTE)

» Advanced parameters

The route table name uniquely identify a policy-based route table and has to be 1 to 8
characters long. The name EZBMAIN and ALL in upper case, lower case, or mixed case are
reserved. The EZBMAIN is the main route table, defined in the TCP/IP profile. We
recommend you define all the route table names either all in upper case or all in lower case.

A route entry defines a static route and the syntax is similar to that of BEGINROUTES
statement in TCP/IP profile.

The dynamic routing parameters are used by OMPROUTE to control the dynamic routes
added to the policy-based route table. Multiple dynamic routing parameters can be configured
on a route table. Each dynamic routing table parameter consists of a link name and a first hop
IP address.

The advanced parameters are:

» Multipath: the main route table uses the multipath definition in TCP/IP profile. If a different
multipath definition is needed, the options are:

Use global (as defined in the IPCONFIG statement in TCP/IP profile)

Per connection

Per packet

Disable (use only the first active route to a destination)

» Ignore path mtu update: indicates whether IPv4 ICMP Fragmentation Needed messages
should be ignored for this route table.

» Dynamic XCF routes: indicates whether direct routes to dynamic XCF addresses on other
TCP/IP stacks should be added to this route table

For a complete description of the PBR implementation and statements syntax, refer to the
following publications:

» SC31-8775 - z/0S V1R9 Communication Server IP Configuration Guide
» SC31-8776 - z/0S V1R9 Communication Server IP Configuration Reference

z/OS Version 1 Release 9 Implementation

Important: Considerations on FLUSH/NOFLUSH and PURGE/NOPURGE policy agent
options for policy-based routing:

» FLUSH/NOFLUSH:
— NOFLUSH option is not supported.

— Routing policies are always deleted prior to installing new policies at the following
times:

e Policy agent startup.
* Tcplmage/PEPInstance statement added.
e MODIFY/REFRESH command issued.
» PURGE/NOPURGE:
— PURGE option is not supported.
— Routing policies are never deleted during policy agent shutdown or when a
Tcplmage/PEPInstance statement is deleted.

To remove all routing policies from a TCP/IP stack, delete the RoutingConfig statement
from the policy agent image configuration file for the stack.

14.2.2 Policy-based routing implementation example

Here we describe how to implement a simple PBR policy using the configuration assistant.
Keep these considerations in mind when using the configuration assistant for PBR policy
definitions:

» Only stack-specific routing policy files are created (no common routing policy).

» Use the RoutingConfig statement in pagent configuration file to specify the routing policy
file name.

» Routing rules are called “connectivity rules” within the Configuration Assistant.
» The routing action is combined with the routing rule as a single object to configure.

» The routing rule priority value is not manually configured. Priority is set based on the order
of rules as displayed on rules panel.

» The policy agent configuration statements that are generated will be read by policy agent
with no syntax errors.

Now start the configuration assistance. Figure 14-21 on page 218 shows the first screen.

Chapter 14. z/OS Communication Server 217

218

] Configuration Assistant - Current Backing Store (Read-Write) = C:\Program Files\IBM\zCSConfigAssist\V1R8\files\demo u@ﬁ

File Edit Perspective Help

Main Perspective

Configuration Assistant Mavigation Tree
4 Work with 2/05 Images

2/05 Communication Server technologies

Select the technology pou want to configure and click Configure.

Technology Description

AT-TLS Application Transparent - Tranzport Layer Security

IPSec IP Security

D% Intrugion Detection Services -
M55 Metwork, Security Services

QoS Quality of Service

FER Policy bazed routing

Work with settings for 2205 Images

Add a New 2/05 Image...

Ta work with a specific 2205 Image or TCP/P Stack, select the 2/05 Image ar TCPAP Stack from the Mavigation Tree.

Figure 14-21 Configuration assistance main screen

The configuration assistance in z/OS 1.9 has some improvements from the previous release.
Previously, for a particular policy like AT_TLS or IPSEC, configuration assistance stored the
policies configuration in different files, one for each policy. Now, all the policies are kept in a
single configuration file.

In the main screen we have now different technologies, called perspectives, for each possible
policy.

First we created the z/OS images, SC65 and SC70. With the right mouse button, we clicked
Work with 2/0S images then selected add new z/OS image. Figure 14-22 shows the screen
where you enter the name of the image.

121 Mew z/0S Image: Information

2/05 Image information

Enter a name for the 2/05 Imags: | SCES

Enter a description:

[R—T— ——— -]

Figure 14-22 Configuration assistance image creation

We clicked OK to create the image. Then we repeated the same steps to create the SC70
image. After inserting an image, a question popped up asking if we wanted to add a stack for
the image we created. We answered No. After creating the images, the following screen
displayed.

z/OS Version 1 Release 9 Implementation

1 Configuration Assistant - z/0S Image Settings

File Edit Perspective Help

Main Perspective

Configuration Assistant Mavigation Tree : 2/05 Image Infarmation

| wwork with 2/05 Images Enter a name for the 2/05 Image: © SCES
Image - SCE!
L4 Image - SC70 Enter a description:

2/085 Image information update action

z/05 Communication Server technologiss

Select the technology you want to configure and click Configure.

Technology Diescription Status - 2/05 Image Level Settings

AT-TLS Application Trangparent - Transport Layer 5ecurity Dizabled

IPSec IP Security Dizabled

DS Intrusion D etection Services Digabled

NS5 Network Security Services Dizabled

QoS Quality of Service Dizabled

FER Policy based routing Dizabled 77

Aidd a new TCPP Stack to this 2405 Image and define security iules for the new Stack

Add Mew TCPAP Stack.

Figure 14-23 Configuration assistance images created

Now we have to enable the policies we want to work with. We selected the PBR policy and

enabled it by clicking Enable. Then we clicked Add New TCP/IP Stack, and Figure 14-24
displayed.

% New TCP/IP Stack: Name
TCPAP Stack Information:

Enter the name of the TCPAP Stack; ~| TCPIP

Enter a description:

0k | [Cancel][Helo]

Figure 14-24 Configuration assistance new stack

After adding the stack, TCPIP, for both systems, we had to enable the PBR policy again for
the stack on every image. We selected the stack on one of the images as shown in
Figure 14-25 on page 220, then selected the PBR policy and clicked Enable.

Chapter 14. z/OS Communication Server 219

E Configuration Assistant - TCP/IP Stack Settings
File Edit Perspective Help

Main Perspective

Configuration Assistant Navigation Tree : TEP/P Stack Information:
4 \'\:’mk IS Enter the name of the TCP/IP Stack: *| TCRIF
(=44 Image - SCES

i # Stack - TCPIP Enter a description:
=24 Image - SC70

‘@ Stack - TCPIP

Stack intormation update action

z/05 Communication Server technalogies

Select the technology you want to configure and click Configure.

Technology Description Status - TCP/IP Stack Lewel Settings

AT-TLS Application Transparent - Transport Layer Security Disabled

IPSec IP Security Dizabled

DS Intrusion Detection Services Disabled

NS5 Metwork Security Services Dizabled

Qo5 Quality of Service Digabled

FER Policy based routing Digabled o

Close

Figure 14-25 Configuration assistance stack policy enablement

The status of the policy will appear as Incomplete, in red, because there is no configuration
defined for the stack; see Figure 14-26.

Configuration Assistant - TCP/IP Stack Settings

[Bjl=]] ¥
e Edit Perspective Help
lain Perspective

hfiguration Assistant Mavigation Tree : TCP/IP Stack Infarmation:

[Work with 2/05 Images
b4 Image - SCES

Enter the name of the TCF/IF Stack: | TCPIP

Stack - TCPIP Enter a description:
|-G [mage SEE7D Stack information update action
Stack - TCPIP

2/05 Communication Server technologies

Select the technology you want to configure and click Configure.

Technology Description Status - TCPAP Stack Level Settings
AT-TLS Application Transparent - Transport Layer Security Disabled

IPSec IP Security Disabled

DS Imtrusion Detection Services Disabled

M55 Network Securty Services Disabled

QoS5 Huality of Service Disabled

PBR Palicy based routing Incomplete

Figure 14-26 Configuration assistance stack policy enablement 2

220 z/OS Version 1 Release 9 Implementation

We clicked Configure. The configuration assistance asked if we wanted to configure a
connectivity rule; we clicked Yes and reached Figure 14-27.

X

[F1 Connectivity Rule: Welcome

‘welcome to the Connectivity Rule wizard.

Step 1. Specify the Connectivity Rule name

Mame: * TOES

Description

Click Mext and the Connectivity Rule rule wizard will walk you thraugh the following:

Step 2: Specify outbound packet characteristics
A -Traffic Descriptor [protocal, partz, job name, securnity labels, securnity 2ones)

B. - Source addreszes

C. - Destination addresses

Step 3. Specify how to route packets which match the outbound packet characternistics

Figure 14-27 Configuration assistance rule name

We choose the name T065 for this rule, and then clicked Next. Now we had to define a traffic
descriptor to be used for that rule. In our case we used the same REXX programs from the
zIIP IPSec implementation. We added a TCP traffic descriptor as shown in Figure 14-28 on

page 222.

Chapter 14. z/OS Communication Server 221

[F7 Rule Step 2A: Traffic Descriptor

Traffic Descriptor [IF protocols, ports, job name, security labels, security zones)

Dro pou want bo match thiz rule baged on the Traffic Descriptor
(") Mo - rule matehing is not dependent on a specific Traffic Descriptor

() es - Select a Traffic Descriptor from the list;

(%) *res - Specily the Traffic Descriptor parameters:

Steps
1. Select a rov from the Protocol table and click the "<--Add..." button o add a new traffic tope,
2. Provide additional detailz related ta your braffic type selection when prampted. Then click OF.

Ligt of traffic types in thiz Traffic Descriptor Protocal
Protocal Local Part Remate Port Job Mame TCR
LDP

<-4dd...

BT

Figure 14-28 Configuration assistance traffic descriptor creation

We selected Yes - Specify the Traffic Descriptor parameters:, and then clicked Add.
Figure 14-29 displayed, showing the characteristics of the traffic we wanted.

1 Mew Traffic Type

Destination part

Source port

(&) All ports (%) All ports
() Single part () Single port:
() Port range () Port range:

() All ephemeral ports [1024-65535) () All ephemeral ports [1024-65535)

Additional identification of the lozal application [Optional)

Jobname: | RODALFI®

Additional advanced zettings for traffic identification [Dptional)

Advanced Traffic Descrptor Details...

0] H Cancel H Help]

Figure 14-29 Configuration assistance new traffic type

222 z/OS Version 1 Release 9 Implementation

For Source, we selected All ports, for Destination we selected All ports and all jobnames
initiating by RODOLFI*, then clicked OK. Figure 14-30 then displayed.

[C1 Rule Step 2A: Traffic Descriptor

Traffic Descriptor [IF protocols, ports, job name, security labels, security zones)

Do wow want to match this rule based on the Traffic Descriptor

() res - Select a Traffic Descriptor from the list:

(#) res - Specify the Traffic Descriptor parameters:

Steps
1. Select a raw from the Protocol table and click the "'<--4dd.. " buttan to add & new traffic type.
2. Provide additional detailz related to pour traffic tupe selection when prompted. Then click QF,

Ligt of traffic types in thiz Traffic Descriptor Protocal
Protacal Local Part Remate Part Job Mame TCP
TCF &ll Parts (&l Parts RODOLFI® uorP

Modiy. | [Delete

T

Figure 14-30 Configuration assistance traffic descriptor defined

Now the traffic descriptor is defined. We clicked Next. Now we specified an IP source
address (in our case, 9.12.4.202) for the SC70 image; see Figure 14-31 on page 224.

Chapter 14. z/OS Communication Server 223

224

IC1 Rule Step 2B: Source Address

Source address [|[Pv4 address, range, or subnet)
Do pou want to match this rule baged on the sournce |F address?

(") Mo - ule matching is not dependent on the source addiess

(%) Yes- Specify the P address: fl9124.202 Single 1Pvd address: xowxx
IPvd zubnet: WY
P4 range: WAL LY

() Yes- Specify a group of addresses:

() Yes - Select an address group from the list:

[|

Figure 14-31 Configuration assistance source ip address

Then we clicked Next to configure the destination IP address, 9.12.4.48, as shown in
Figure 14-32 on page 225.

z/OS Version 1 Release 9 Implementation

F1 Rule Step 2C: Destination Address

Destination address [IPv4 address, range, or subnet)

Do wou want o match this rule bazed on the destination P address?

(") Mo - rule matching is not dependent on the destination address

(#) "res - Specify the |P address: ¥ 912.4.48 Single IPvd address: wicix
IPwd zubret: WY
P4 range: WL

(") res - Specify a group of addresses:

(") "r'es - Select an address group fram the list:

[Optional) Time Conditionz

[Time Conditions - Advanced

T

Figure 14-32 Configuration assistance destination IP address

Then we clicked Next to define a route table, as shown in Figure 14-33 on page 226.

Chapter 14. z/OS Communication Server 225

226

hﬁ Rule Step 3: Route Table

Lze thiz panel ta specify the rautes far this rule.

Primary Route Table:
Select a Route Table from the list:

Mo route tables are defined; click the Mew button to create a new one.

Mew...

Secondary Route Tables: [Optional)
[Additional Route Tables - Advanced

Fall Back Routing:

Indicate action if no uzable routes are found for this rule

(%) Use the Stack's main route table (BEGINROUTES, OMPROUTE)

These routes are uzed when outbound 1P packets match the outbound packet characteristics zpecified for thig mle,

() Use only route tables specified for this rule. IF no usable routes are available, packets are nat routed.

Firizh

l [Cancel

Figure 14-33 Configuration assistance new route table

We created a new route table. As an example, we defined a new route redirecting the traffic
for the two partitions from the OSA card to the XCF links. In our configuration we had the
iQDIO defined. All traffic flowing between these two partitions will be done by using the iQDIO
links. See the main routing tables for both partitions, SC65 and SC70, in Figure 14-34 and

Figure 14-35 on page 227.

RODOLFI @ SC65:/u/rodolfi>netstat -r

MVS TCP/IP NETSTAT CS VIR9 TCPIP Name: TCPIP
Destination Gateway Flags Refcnt
Default 9.12.4.1 UGS 000000
9.12.4.0/22 0.0.0.0 us 000003
9.12.4.48/32 0.0.0.0 UH 000000
9.12.4.49/32 0.0.0.0 UH 000000
10.1.101.0/24 0.0.0.0 Us 000000
10.1.101.63/32 0.0.0.0 UHS 000000
10.1.101.64/32 0.0.0.0 UHS 000000
10.1.101.65/32 0.0.0.0 H 000000
10.1.101.65/32 0.0.0.0 UH 000000
10.1.101.70/32 0.0.0.0 UHS 000000
127.0.0.1/32 0.0.0.0 UH 000000

16:32:22
Interface
0SA2020LNK
0SA2020LNK
0SA2020LNK
STAVIPAILNK
IQDIOLNKOAO016541
IQDIOLNKOAO16541
IQDIOLNKOAO16541
EZASAMEMVS
IQDIOLNKOA016541
IQDIOLNKOA016541
LOOPBACK

Figure 14-34 SC65 main routing table

z/OS Version 1 Release 9 Implementation

Default
9.12.4.0/22

9.12.4.202/32
9.12.4.203/32

10.1.101.0/24
10.1.101.63/32
10.1.101.64/32
10.1.101.65/32
10.1.101.70/32
10.1.101.70/32
127.0.0.1/32

RODOLFI @ SC70:/u/rodolfi>netstat -r
MVS TCP/IP NETSTAT CS VI1R9
Destination

Gateway

O OO O OO0 OO o v
cCooooo0o0o0 0O
cCoocoooooooo
cCcoocoooooooo

2.4.1

Flags

TCPIP Name: TCPIP

Refcnt
000000
000003
000000
000000
000000
000000
000000
000000
000000
000000
000000

16:30:58
Interface
0SA2020LNK
0SA2020LNK
0SA2020LNK
STAVIPAILNK
IQDIOLNKOA016546
IQDIOLNKOA016546
IQDIOLNKOAO16546
IQDIOLNKOA016546
EZASAMEMVS
IQDIOLNKOA016546
LOOPBACK

Figure 14-35 SC70 main routing table

We redirected the traffic from the OSA card, OSA2020 link, to the iQDIO links, IQDIOLNNK?*.
Next we created a new route table. We clicked New, as shown in Figure 14-33 on page 226.
Then Figure 14-36 on page 228 was shown.

Chapter 14. z/OS Communication Server

227

F Mew Route Table
e > Uze thiz panel bo configure a route table.

Static Routes

Lirk Mame | First Hop Destination Address MTU Size Fieplaceable

Add...

Diynamic Foutes

Link. Mame Firzt Hop

add...

H Cancel H Help]

[rm—r—T

Figure 14-36 Configuration assistance adding a route table

We choose 65HS (65 via HiperSockets™) as the route table name. Then we added a new
static rule by clicking Add under the static routes list (empty now). Figure 14-37 on page 229

was displayed.

228 z/OS Version 1 Release 9 Implementation

IE1 New Static Route Table Entry

Destination address: | 9.12.4.48 DEFALLT ary |Pvd address

[Pwd address: s
[Pywd subnet: iy

[Pvd address: wuux

Link narme: * 1QDI0LMEDADTE
MTU zize: " 1500 [bptes]
[] Allows this route entry ta be replaced by OMPROUTE

| Advanced Settings |

First hop address: | 10.1.101.65 DIRECT first hop equals destinatian

| k. || Cancel H Help

Figure 14-37 Configuration assistance new rule parameters

The static rule will contain the following parameters:

» Destination address: 9.12.4.48 (OSA address for partition SC65)

» First hop address: 12.1.101.65 (XCF link address for partition SC65)
» Link name: IQDIOLNKOAOQ16546 (the link name for the iQDIO)

» MTU size: 1500

Then we clicked OK to create this static rule. Figure 14-38 on page 230 displayed.

Chapter 14. z/OS Communication Server

229

%1 New Route Table
|Jge this panel to configure a route table.
— Route table name: *| B5HS
=
—
e Description:
Static Routes
Lirk Marme Firzt Hop Destination Address MTU Size Fieplaceable
100 OLMK QAT EE4E 10.1.101.65 912448 1500 Mo
add. || Modty. || Dekte ||ViewDstais e lp Mave Dawn
Dynamic Routes
Lirk Mame First Hop
Add... lete bl i Move Down
[Ok l [Cancel] ’ Help

Figure 14-38 Configuration assistance new route table created

Then we clicked OK to complete the process of creating a PBR rule. Figure 14-39 on
page 231 displayed.

230 z/OS Version 1 Release 9 Implementation

IF1 Rule Step 3: Route Table

|Jze thiz panel to specify the routes for thiz rule.
Theze routes are uzed when outbound [P packets match the outbound packet characteristics specified for thig mle,

Primary Route T able:
Select a Foute Table from the list:

EEHS hd

Mew... l [Copy... l [Wl odify. ..] [View Details...] [Show where Used...

Secondary Route Tables: [Optional)
[Additional Route T ables - Advanced l

Fall Back Routing:

Indicate action if no uzable routes are found for this le
(#) Use the Stack’s main raute table [BEGINROUTES, OMPROUTE)

(") Use anly route tables specified for this rule. If no usable routes are available, packets are not routed.

< Back [Firizh] [Caticel]

Figure 14-39 Configuration assistance finishing the pbr rule

Then we clicked Finish and the SC70 definitions were created. Figure 14-40 on page 232
displayed.

Chapter 14. z/OS Communication Server 231

IC1 Configuration Assistant - TCP/IP Stack Settings

BEX

File Edit Perspective Help
PER Perspective
Canfiguration Assistant Mavigation Tree 4 Connectivity Rules
_iPBR TCRAP Stack Information:
=4 "Work with Reusable Objects .
i # Tiaffic Descriptors Enter the name of the TCPAP Stack: | TCPIP
Lo g Hic=loous Enter a description:
i b # Route tables
= J wiork with 2/05 Images
— 4 Image - SCE5
i heef® Incomplete Stack - TCPIP
=24 Image - 5C70 Click the Add... button for each Connectivity Fule you want to add to this Stack.
- [#_Btack-TCFIR Source Addiess | Destinalion Address | Traffic Descriptor [Route table [status [Name [
9124202 912448 | Inlined | B5HS |Enabled TOES
Aedd..] [Capy...] [Wodify...] | Dielete] | iew Detas.. Health Check...
[M ain Perspective] [Apply Chamgas] { ak. J l Cancel] [Help]

Figure 14-40 Configuration assistance SC70 pbr rule created

We clicked Apply Changes to save the configuration under the image. Then we repeated the
same steps for the system SC65 using the following parameters:

» Connectivity rule name: TO70
» Same traffic descriptor
» |IP source address: 9.12.4.48
» |IP destination address: 9.12.4.202
» Route table name: 70HS
» Static rule entry:
— Destination address: 9.12.4.48
— First hop address; 10.1.101.70
— Link name: IQDIOLNKOA016541
— MTU size: 1500
Now we had both systems configured by the configuration assistance. Appendix C.3, “SC65
pbr configuration files” on page 507 and Appendix C.4, “SC70 pbr configuration files” on
page 507 show how the PBR configuration file will look for both systems.
Next we had to install all the policies on both systems by:
» Transferring the files using the configuration assistance or any other FTP client
» Updating the pagent configuration

To transfer the policies to the systems, we clicked one of the images in the left panel, as
shown in Figure 14-41 on page 233.

232 z/OS Version 1 Release 9 Implementation

IIF] Configuration Assistant - z/OS Image Settings u@ﬁ
File Edit Perspective Help

PBR Perspective

Configuration Assistant Mavigation Tree 4 Image Infoimation
A BBR . . 2/05 Image |rfarmation
=4 Work with Reusable Objects
: -# Traffic Descriptors Erter & name for the 2/05 Image: | SC70
- Addiess Gioups Enter a description:
-# Route tables

g _4 Work with 2/05 Images
<4 Image - SCE5

--# Stack - TCPIP
. J Image - SC70
L..@ Stack - TCPIP Add a new TCP/AP Stack to this 2/05 Image and define security nles for the new Stack

Add Nevs TCP/P Stack...

Inztallation and spstem administration instructions

Wiew the produced configuration files, FTP the files to the z/05 system, and
abtain information and instructions far the spstem administrator,

Install Configuration Files. ..

ok J{ Cancel][Help]

Figure 14-41 Configuration assistance transferring the files

Then we clicked Install Configuration Files, and the following screen displayed.

IE] Installation - Image= "SC70" a
Inztall Configuration Configuration Files Installation
W To complete installation for Image, "SCF0". pou must FTP the fallowing files
=4 Image - SC70 SC70 - Configuiation Files
File Sent | FTF Location |
TCPIP - PER: Policy &0ent Stack Configuration Mo | Audpbr/TCPIP. policy |

l Show Configuration File] [FTP] [Spstern Administration Infarmation] [View Pralogue History.

Fermanently zave pending changes after FTP?

Figure 14-42 Configuration assistance file transfer options

We selected the file to transfer and clicked FTP. Note that the Sent information displays No.
That means the FTP policy configuration was changed in that file and has not transferred to
z/OS yet. Each time we perform a change in any configuration that affects a configuration file,
this field will display No, indicating that we have to transfer the file to z/OS. After clicking FTP,
Figure 14-43 on page 234 will display.

Chapter 14. z/0S Communication Server 233

234

I FTP Configuration File <

Enter FTF information ta zend the files.

Logir information

Host name; | 9.12.4.202
Port number; 21
Uger ID: " rodolf

L]
Pazaword: FEREERETE [] Save password

[]UseS5L

FTF file including full path

File mame and location: | Audrodolfidpolicy/sc70cpip. policy. phr

Data tranzfer mode

(o) Default () Pazsive () Active

Comment far the configuration file prolague [optional)

Send || Cloze || Help |

Figure 14-43 Configuration assistance FTP parameters

We completed the FTP information to send the file and then clicked Send to transfer the
configuration file to the appropriate system and location.

After the file is successfully transferred, you need to update the pagent configuration file to
point to the PBR configuration and update the configuration by using the modify command on
z/OS console.

The new pagent configuration file for both systems are shown in the following figures.

RODOLFI @ SC70:/u/rodolfi/policy/sc70>cat tcpip.policy
TcpImage TCPIP

IPSecConfig /u/rodolfi/policy/sc70/tcpip.policy.ipsec

RoutingConfig /u/rodolfi/policy/sc70/tcpip.policy.pbr

Figure 14-44 SC70 pagent configuration file for stack tcpip

z/OS Version 1 Release 9 Implementation

RODOLFI @ SC65:/u/rodolfi/policy/sc65>cat tcpip.policy
TcpImage TCPIP

IPSecConfig /u/rodolfi/policy/sc65/tcpip.policy.ipsec

RoutingConfig /u/rodolfi/policy/sc65/tcpip.policy.pbr

Figure 14-45 SC70 pagent configuration file for stack tcpip

Next, we activated the new configuration by using the modify update command on the pagent
address space.

F PAGENT65,UPDATE
EZ784431 PAGENT MODIFY COMMAND ACCEPTED
EZZ87711 PAGENT CONFIG POLICY PROCESSING COMPLETE FOR TCPIP : ROUTING

Figure 14-46 Pagent update command

To verify if the new policies are being used in both systems, you can issue the command
netstat -A. This command shows for each connection whether a PBR policy is being used;
refer to the examples in Appendix C.5, “SC65 netstat -A command” on page 508 and
Appendix C.6, “SC70 netstat -A command” on page 510.

In both systems, for the connections established by the REXX programs, the PBR policy is
being used. The pasearch command was also changed to support the new PBR policy. The
-R option was added to display the policies; refer to the example in Appendix C.7, “pasearch
-R command” on page 512.

Chapter 14. z/0S Communication Server 235

236 z/OS Version 1 Release 9 Implementation

15

System REXX for z/OS

System REXX for z/OS Base is part of the simplification trend introduced with the “New Face
of z/0S”. SYSREXX (or System REXX) is to provide an infrastructure through which REXX
execs may be run outside the normal TSO/E or batch environments, using a simple
programming interface. This enables the leveraging of base operating system components by
new style applications that will, over time, lead to simplified interaction and more intuitive
system management capabilities on z/OS.

The possibilities for exploiting existing REXX code through the use of SYSREXX are vast,
whether to provide operator assists or to provide routines that can be leveraged by new
strategic initiatives. System REXX provides a gateway for new style applications to interface
with z/OS components

While the New Face matures, System REXX adds real value today through exploitation
possibilities for operator assists and also certain system management processes.

© Copyright IBM Corp. 2007. All rights reserved. 237

15.1 Introduction to System REXX (SYSREXX)

System REXX is a new base element in z/OS V1R9. As a new part of the BCP, System REXX
includes an addition to the Capacity Provisioning component (FMID HPV7740) and the
System REXX for z/OS base component. System REXX for z/OS base was a Web deliverable
in z/OS V1R8, known as System REXX Support for zZOS V1R8 and z/OS.e V1R8, and was
identified by FMID HBB77SR.

Note: System REXX is a new facility shipped in z/OS V1R9 and was available via a Web
deliverable in z/OS V1R8. It runs REXX execs in an authorized environment, and these
REXX execs can invoke TSO/E commands. This new support is made available with a
TSO/E APAR OA20186 that enables this capability for z/OS V1R8 systems.

The introduction of System REXX in z/OS is due to a requirement to provide an infrastructure
to support Web-based interactions with z/OS components as part of the “New Face of z/0S”
initiative for simplifying z/OS management. The cornerstone of this new infrastructure is
SYSREXX, which allows execs to be run simply and independently from traditional TSO/E
and batch environments. This implementation has two interfaces:

» A single program interface (AXREXX)
» Operator exploitation directly from a console

The expected benefit of this implementation is to:

» Enable rapid development and deployment of system programmer tools and operator
assists

» Be exploited by new and old style applications
» Allow health checks to be written in REXX

As a beginning in z/OS V1R9, SYSREXX is the required environment for CIM and Health
Checker REXX execs to be written.

15.2 SYSREXX address space (AXR)

238

AXR is a subsystem that is started during master subsystem initialization. It reads the AXROO
parmlib member and allocates the REXXIN data set. When REXX work arrives via a PC
directly into the appropriate server, SYSREXX or console-initiated REXX execs are detected
by the AXR SSi listener, converted to F AXR command format, and queued to the command
server’'s CIB control block. Then, in turn they are selected and scheduled for processing.

Removing the AXR address space
The System REXX address space, AXR, is non-cancelable, but can be terminated by
invoking the following command:

FORCE AXR,ARM

When the AXR address space terminates, an ENF signal 65 with a qualifier of 40000000x is
issued. AXR can be restarted by starting the AXRPSTRT procedure, which can be found in
SYS1.PROCLIB. When the AXR address space initializes, an ENF signal of 80000000x is
issued. To restart the AXR address space, issue:

S AXRPSTRT

z/OS Version 1 Release 9 Implementation

15.2.1 SYSREXX from consoles

When REXX work requests originate from an operator console, that is detected by an AXR
SSil listener function (shown in Figure 15-1), or a program interface called using the AXREXX
macro service (shown in Figure 15-2 on page 240).

MGCR(E) Commands

MPF command
user exit

SSI AXR Listener

| (Listens for operator commands)

Hardcopy

Consoles

Figure 15-1 AXR listener function that intercepts commands for SYSREXX

15.2.2 AXREXX macro service

AXREXX provides a macro interface for System REXX services. Before issuing the AXREXX
macro service, the caller does not have to place any information into any general purpose
register (GPR) or access register (AR) unless using the input register in register notation for a
particular parameter, or using it as a base register.

Note: See z/OS MVS Programming: MVS Authorized Assembler Services Reference,
Volume 1 (ALESERV-DYNALLOC), SA22-7609, for a complete description of AXREXX
macro parameters.

The AXREXX invoker can limit the amount of time that an exec can run by using the
TIMELIMIT/TIMEINT keywords. When the time limit is reached, System REXX invokes HALT
interpretation on the REXX environment where the exec is running. If the exec still does not
complete after waiting for some time, the task running the exec is detached. Invokers who
specify a time limit should realize that time out is an error condition and that for SYNC=YES
invokers, the final values of output arguments and variables will not be returned to the
AXREXX invoker.

AXREXX supports an interface to CANCEL an exec. SYNC=NO AXREXX invokers can obtain
the Request Token via the OREQTOKEN parameter for later input to AXREXX CANCEL
command. Cancel is processed as if the exec timed out.

Chapter 15. System REXX for zZOS 239

Using the AXREXX macro service

The System REXX environment provides a functional package that allows a REXX exec to
invoke system commands and to return the results back to the invoker in a variety of ways.
When System REXX execs are initiated through an assembler macro interface called
AXREXX or through an operator command, there are two different execution environments
that are supported:

TSO=NO

TSO=YES

When TSO=NO is specified on the AXREXX invocation, the exec is
executed in an MVS host command environment, sharing the address
space where it is executing with up to 63 other concurrently running
TSO=NO execs. Data set allocation, other than provided by the AXREXX
macro, is not supported in the TSO=NO environment.

The TSO=YES environment supports all of the host commands that
TSO=NO supports, along with some of the host commands supported by
TSO/E. If TSO=YES is specified on the AXREXX invocation, the exec will
run isolated in a single address space, and can safely allocate data sets
without concern of a DDNAME conflict with a concurrently running exec. If
the exec were to exit with data sets allocated, System REXX will free the
allocations. The TSO environment is established by the dynamic TSO
service (IKITSOEV) and does not support all of the TSO functionality.
Running under the MASTER subsystem further restricts what TSO host
commands will work.

Applications that perform input/output to data sets other than those
specified on the REXXINDSN and REXXOUTDSN AXREXX keywords
should use TSO=YES.

As shown in Figure 15-2, the REXX server controls a group of worker subtasks that attach
daughter subtasks to process TSO=NO requests. Initially 4 are started, but up to 64 are
started as required.

The TSO server controls a group of worker subtasks that start between 1 to 8 address spaces
to process TSO=YES requests.

Commands, REXX execs

V

AXR Listener

AXREXX TSO=NO AXREXX TSO=YES
PC PC
AXR Address
Space

Y + Y

REXX Server CMD Server TSO Server

Y Y
Up to 64 subtasks Up to 8 subtasks

Figure 15-2 System REXX overview of REXX exec processing

z/OS Version 1 Release 9 Implementation

Note: In both environments the exec runs in problem state, key 8, in an APF authorized
address space under the MASTER subsystem; thus any modules that are loaded, linked or
attached from the exec must reside in an APF authorized library.

Also in both cases, the REXX exec runs under the WLM enclave of the AXREXX invoker.
Neither the TSO=YES nor the TSO=NO environments support UNIX System Services host
commands.

15.3 Customizing System REXX

The customization necessary to use System REXX involves the AXRxx parmlib member and
the user ID to be associated with System REXX and CPF command prefix for issuing console
commands.

AXRO00 parmlib member

During AXR address space initialization, the AXRxx parmlib member is read. A sample
member is supplied in SYS1.SAMPLIB with member AXR0O0, as shown in Figure 15-3.

CPF defines a 1 to 8 character command prefix value for System REXX that can be used
instead of specifying the F AXR command. This prefix may be defined as either SYSTEM or
SYSPLEX in scope, where:

SYSTEM System scope indicates that the CPF will only be recognized on the system it
is defined on.

SYSPLEX Sysplex scope indicates that it will be recognized throughout the SYSPLEX,
and the command will be routed to the system on which it is defined.

Using the defaults could result in a very unusual prefix. For example, if the SYSCLONE value
is 63, then the CPF prefix is REXX63.

CPF('REXX&SYSCLONE.',SYSPLEX) /* Defines REXXnn as a sysplex
wide cpf value */

AXRUSER (AXRUSER) /* AXREXX security=axruser results in the
exec running in a security environment
defined by the userid AXRUSER */

Figure 15-3 SYS1.SAMPLIB member AXR0OO

Following is parameter setting in the AXR0O0 member in parmlib to set the CPF character to @
and having a sysplex scope:

CPF('@',SYSPLEX) /* DEFINES @AS A SYSPLEX WIDE CPF VALUE */

AXRUSER specification and security

The AXRUSER parameter in the AXRxx parmlib member specifies a 1 to 8 character user ID
that is used to define the security environment that an exec initiated using the AXREXX
macro when SECURITY=BYAXRUSER is specified. The exec will run with the level of
authorization associated with the specified user ID. The installation needs to provide the
user ID with SAF access to the resource SYSREXX.<userid>. If this parameter is omitted,
then the default is AXRUSER.

Chapter 15. System REXX for zOS 241

The following security considerations are necessary for a SYSREXX environment.
» AXREXX is an authorized system service, therefore, security controls are essential for:
— Access to APF library

— Permissions, standard security administration to determine what can be accessed or
run.

» EXECs by default use the invoker’s security environment, but alternatively access can be
given as follows:

— Access authority of a third party
— A special user ID assigned to AXRUSER
» EXECs use the invoker’s enclave service class, so this can do the following:
— Prevent CPU priority inversion and excessive resource usage
— Allow resource usage to be charged back to the enclave service class

The SECURITY and UTOKEN parameters on the AXREXX macro service determine the
security environment that the exec runs in. If omitted, the exec will run under the same
security environment as its invoker. The security environment determines the data sets that
may be accessed and the commands and programs that may be invoked.

» When SECURITY=BYUTOKEN is specified, the invoker can provide a UTOKEN to define
the specific security environment that the exec should run under (see z/OS Security
Server RACROUTE Macro Reference).

» When SECURITY=BYAXRUSER is specified, the exec will run under the security
environment associated with the value (user ID) of the AXRUSER parameter specified in
the AXRO0O0 parmlib member. This could be useful if the installation wants to invoke
AXREXX in an address space that does not have a security environment, such as the
MASTER address space. The exec should not invoke any services that alter the security
environment of the task running the exec.

In all cases, the REXX exec runs under a WLM enclave of the AXREXX invoker.

15.4 Using System REXX

242

System REXX allows REXX execs to be executed outside of conventional TSO/E and batch
environments. The possibilities for exploiting REXX code through the use of System REXX
are vast, whether to provide operator assists or to provide an easy way to process files and
strings. The System REXX environment provides a function package that allows a REXX
exec to invoke the system commands and to return results back to the invoker in a variety of
ways. System REXX execs may be initiated through an assembler macro interface called
AXREXX, or through an operator command.

SYS1.SAXREXEC data set

The SYS1.SAXREXEC data set contains execs that IBM has provided. These execs should
never be deleted or modified in any way.

This data set is where user-written execs should be added. These user-written execs should
not start with the letters A through I, because those letters are reserved for use by IBM.

z/OS Version 1 Release 9 Implementation

Important: The SYS1.SAXREXEC data set is unique in the system. Therefore, take great
care that a regular backup of this SYS1.SAXREXEC data set is taken as follows:

» User-written execs be easily restored in case of a restore of the resident volume

» IBM execs be easily restored in case of an human error while editing other members of
this PDS

New functions for writing execs
When executing, the invoked REXX exec has three specific new functions:

AXRCMD Issue a console command and return command responses.

AXRCMD is used to issue a system command from within the exec and
obtain one or more command responses. The arguments that can be
specified are:

» Command text - the system command to be invoked. This is an optional
argument. If it is omitted, no command will be issued, but a response
from the last command issuance will be returned if one exists.

» Msgstem - the stem of a list of variables into which AXRCMD places the
command response message text. This is an optional argument. If it is
omitted, the command text must be specified. To place the message text
into compound variables which allows for indexing, msgstem should end
with a period (.) as in “messg.” for example.

AXRCMD places each line of the retrieved message into successive
variables. For example, if the command response is a 3-line message,
messg.1 contains line 1, messg.2 contains line 2 and messg.3 contains
line 3. messg.0 will contain the number of lines.

If msgstem does not end with a period, the variable names are appended
with consecutive numbers. For example, suppose you specify msgstem
as “conmsg” (without a period). If AXRCMD retrieves a message that
has two lines of message text, AXRCMD places the text in the variables
consmsg1 and consmsg2. The variable consmsg0 contains the number
of lines in the message text, which is 2.

» Time — The amount of time in seconds that AXRCMD should wait for a
command response. This is an optional argument. If it is omitted,
AXRCMD will not wait before attempting to determine whether a
command response was returned. A value of 0 — 21474535 seconds
may be specified.

AXRWTO Issue a single line message to a console
AXRMLWTO [ssue a multiline line message to a console

REXX exec example

Using the new REXX exec functions, Figure 15-4 on page 244 is an example of an exec that
issues the D IPLINFO command.

Chapter 15. System REXX for zZOS 243

/* REXX */

MYRESULT = AXRCMD('D IPLINFO',VAR.,5)

GADCON = 'FIRSTLINE'

X = AXRWTO('D IPLINFO')

X = AXRMLWTO(SUBSTR(VAR.1,1,50), 'GADCON','C")

DO I =2 TO VAR.O

X = AXRMLWTO(SUBSTR(VAR.I,1,50),'GADCON','D")
END

X = AXRMLWTO(, 'GADCON','E")

EXIT O

Figure 15-4 Sample REXX exec names IPLINFO in SYS1.SAXREXEC

Figure 15-5 shows the REXX exec IPLINFO issued on a console. The F AXR,IPLINFO
command gives the same result.

GIPLINFO

TEE2541 17.13.09 IPLINFO DISPLAY
SYSTEM IPLED AT 14.34.13 ON 07/09/2007
RELEASE z/0S 01.09.00 LICENSE = z/0S
USED LOADS8 IN SYSO.IPLPARM ON C730
ARCHLVL = 2 MTLSHARE = N
IEASYM LIST = XX
IEASYS LIST = (R3,70) (OP)
IODF DEVICE C730
IPL DEVICE D31C VOLUME Z19RC1

Figure 15-5 REXX exec @IPLINFO issued on a console

Note: When System REXX execs are invoked from a console, the execs are always run in
a TSO=YES environment.

SYSREXX status command

You can use the F AXR command to either obtain status about System REXX, or to initiate the
execution of a REXX exec. You can also use the prefix defined in the CPF parameter of the
AXRO00 parmlib member to replace the F AXR command. Figure 15-6 on page 245 displays
the use of the specified CPY prefix, @, to issue the status command.

z/OS Version 1 Release 9 Implementation

@SR ST
AXR0200I SYSREXX STATUS DISPLAY 296
SYSTEM REXX STARTED AT 14.35.42 ON 07/09/2007
PARMLIB MEMBERS: AXR00
CPF: @ (SYSTEM) AXRUSER: STC
TIMEINT: 30
SUBSYSTEM: AXR
REQUESTS QUEUED: 0 ACCEPTING NEW WORK
REXX WORKER TASKS: ACTIVE: O TOTAL: 4
IDLE: 4 MAX: 64
ASYNC: 0 SYNC: 0
UNTIMED: O
TSO SERVER SPACES: ACTIVE: O TOTAL: 0
IDLE: 0 MAX: 8
ASYNC: 0 SYNC: 0

Figure 15-6 SYSREXX status command

SYSREXX supported commands
For MVS commands and TSO commands, the following are supported with SYSREXX:

MVS LINK, LINKMVS, ATTACH, ATTCHMVS, ATTCHPGM, CPICOMM, LU62, and

APPCMVS

TSO ALLOCATE (excludes the SYSOUT operand), FREE, ALTLIB, ATTRIB, CALL,

DELETE, EXEC, HELP, PROFILE, SMCOPY, and TIME

15.5 Usage and migration considerations

The potential for having SYSREXX available has many possible benefits:

»

It represents an easy way for Web-based servers to run commands or functions and get
back pertinent details.

It provides a method for system and application components to exploit REXX parsing
strengths.

It allows you to leverage REXX coding skills, which are extensive and span all operating
systems.

It allows new health checks to be written quickly.
It provides simplified operator assist functions and quick fixes when necessary.

It presents exploitative possibilities for customer code, IBM, and ISV components and
products.

15.5.1 Writing REXX execs

From a programming point of view, SYSREXX can be invoked by a new AXREXX macro
service, and the following list of environments can be used:

>

>

Caller must be authorized.
Two environments of execution:
— TSO=NO Limited data sets support.

Chapter 15. System REXX for zZOS 245

— TSO=YES Full data sets support permitted (no sysout).
» Two modes of execution

— SYNC=YES
— SYNC=NO

When REQUEST=EXECUTE is specified, you can specify an optional parameter that
indicates whether the request is synchronous. The defaultis SYNC=YES.

— SYNC=YES Indicates the request is synchronous.
— SYNC=NO Indicates the request is asynchronous.

» Two operations are supported
— REQUEST=EXECUTE | CANCEL

» Arguments and variables are used to pass input to and receive output from the REXX
exec.

» The parameter list is mapped by the AXRZARG macro.
» Data types supported:
— Input is converted to strings.
— Output is returned as signed or unsigned, char, binary, hex.
» The security environment of requester is used.
» No STORAGE external function.
» No dubbing.
» Time limitations are applied to execs; the default is 30 seconds.
» Cancellation of the REXX exec using APl with OREQTOKEN parameter.

» REXX execs are read from SYS1.SAXREXEC (cataloged, unique; that is, no
concatenation).

Note: From a REXX exec perspective, to differentiate whether it is called from a TSO/E
environment or from a SYSREXX (either TSO=YES or TSO=NO) environment, you can
rely on the contents of AXREQTOKEN. If it is equal to itself, it means that the REXX exec is
running in a TSO/E environment. Otherwise, it is running in a SYSREXX environment.

A more detailed example can be found in Appendix B, “System REXX for z/OS” on

page 495. The example illustrates how, from within the exec itself, to differentiate when it is
running in a TSO=YES or NO environment, and whether it has been invoked from a
console or from a program using the AXREXX macro service.

15.5.2 Using input and output files

246

If you are using input and output data sets, they may either be sequential or partitioned. If
partitioned, then the REXXINMEMNAME or REXXOUTMEMNAME keywords must be
specified. If the output data set does not exist, System REXX creates a sequential or
partitioned data set consisting of 3 primary blocks, 3 secondary blocks and 1 directory block
(if it is a PDS) where each block is 27920 bytes. The data set is kept when the exec
completes, and any excess space is released.

z/OS Version 1 Release 9 Implementation

When using the AXREXX macro service, there are many parameters that can be used during
processing of the REXX exec, for example:

» Using input data sets

AXREXX allows TSO=NO invokers to pass an input data set via the REXXINDSN
parameter and both TSO=NO and TSO=YES invokers to specify an output data set via the
REXXOUTDSN parameter. The input data set is used by REXX functions that require
input from a user such as PARSE EXTERNAL, or could be read directly via EXECIO,
using the DDNAME specified by the REXX variable AXRINDD.

» Using output data sets

If an output data set is specified, any SAY or TRACE output from the exec is directed
there. Data may also be written to the output data set via EXECIO using the DDNAME
specified by the REXX variable AXROUTDD. Any error messages that the REXX
interpreter issues are also directed to the output data set. If no output data set is supplied,
then SAY, TRACE, and REXX messages are directed to the console specified by the
CONSNAME keyword as part of a multi-line WTO AXR0500I.

The AXREXX user should be careful not to flood the system with messages and be
especially careful when using REXX Tracing when the output is directed to a console. If
CONSNAME and REXXOUTDSN are both not specified, the output is lost.

If System REXX detects that the output data set runs out of space, the exec is terminated
and a return code of 8 is returned to the AXREXX invoker. If there is no data for the
PARSE EXTERNAL command in the input data set, a null string is returned.

15.5.3 Other AXREXX parameters

When the request is issued with the SYNC=YES option, the invoker is suspended and the
results of the request are provided to the invoker upon resumption. For SYNC=NO, when a
failure occurs in attempting to process the exec and System REXX cannot pass a return code
back to the AXREXX invoker, message AXR0203l is issued to the console specified on the
CONSDATA keyword. If the request is successful, no message is issued.

When command text is specified, AXRCMD invokes the MGCRE macro to issue the
command. When the START command is invoked, AXRDIAG contains the return code from
MGCRE in hexadecimal, followed by the ASID of the new address space (also in
hexadecimal), separated by a blank.

15.5.4 Arguments and variables within a REXX exec

Within a REXX exec invoked through the AXREXX macro service, 20 arguments and 256
variables are supported. Currently, a maximum supported length is 512 bytes. The total
variable storage available for each request is 128 KB.

The REXX exec calling program can, beforehand, allocate storage for variables in one of the
following ways:

» In the requester’s (or other) address space
» In high virtual storage above the bar
» In dataspaces as ALET qualified addresses are supported

Note: The actual location of arguments and variables is totally transparent to the called
REXX exec.

Chapter 15. System REXX for z/OS 247

248

AXRZARG macro service

The AXRZARG macro provides an argument list mapping, and the following special variables
are set by AXR:

AXRREQTOKEN 32 Hex Request Token
AXRINDD 8 Char If RexxInDsn Specified
AXROUTDD 8 Char If RexxOutDsn Specified

Using variables and arguments

The AXREXX macro allows the invoker to specify up to 20 arguments and 256 variables by
specifying the REXXARGS or REXXVARS parameter, respectively. To use the REXXARGS
and REXXVARS parameters, the AXREXX invoker must create a header section mapped by
AXRARGLST followed in contiguous storage by 1 or more AXRARGENTRY sections. The
mappings for AXRARGLST and AXRARGENTRY can be found in AXRZARG.

» AXRARGLST contains the following:

— AxrArgLstld - set this to either AxrArgLstAcro or AxrVarLstAcro, depending on
whether this is for the RexxArgs parameter or the RexxVars parameter.

— AxrArgLstVer - set to O (the current version).

— AXRARGLstNumber- set to the number of arguments or variables; that is, the number
of AXRARGLstEntrys that follow.

— Other fields must be cleared to zero (0).
» AXRARGLSTERtry contains the following:

— AXRARGAddr - set this to the 64-bit address of the buffer containing the argument or
variable. If the argument or variable resides below 2 G, use AXRARGAddrLow and
make sure AXRARGAddrHigh is zero (0).

— AxrNameAddr - set this to the 64-bit address of the buffer containing the name of the
argument or variable. This field can be set to zero (0) if this is for an input-only
argument. If this name resides below 2 G, use AXRNameAddrLow and set
AXRNameAddrHigh to zero (0).

— AXRARGLength - set this to the length of the buffer containing the argument or
variable. Note that different argument/variable types have specific requirements
regarding lengths.

— AXRARGAIet - set this to the ALET of the argument/variable. It must be on the DUAL of
the task that invokes AXREXX. If the argument/variable resides in the invoker’s
primary address space, set this to zero (0).

— AXRARGNameAlet - set this to the ALET of the buffer containing the name of the
argument/variable. It must be in the DUAL of the task that invokes AXREXX. If the
name resides in the invoker’s primary address space, set this to zero (0).

— AXRArgOutLength - System REXX sets this to the length of data returned to the
invoker. Note that this value is in units of bytes for types Signed, Unsigned and Char; it
is in units of hex digits (half bytes) for type HexString, and it is in units of bits for type
BitString.

— AxrArgNameLength - set this to the length of the name of the argument. This must
contain the actual length of the argument or variable and not include any trailing
blanks.

— AxrArgType - set this to the type of the argument/variable.

— AXRARGInput - set this if the argument/variable in the REXX exec is to be initialized to
a value on entry to the exec.

z/OS Version 1 Release 9 Implementation

— AXRArgOutput - set this if you want to retrieve the final value of the argument and
variable on exit from the exec for a SYNC=YES request. Note that if the variable is not
set by the exec, System REXX will fail the request.

— Other fields must be cleared to zero (0).

REXX supported data types
Because the only data type in REXX is the character string, System REXX must first convert

input arguments or variables into this format. The invoker must specify the data type of the
argument or variable in AXRARGTYPE.

The following data types are supported:

» Unsigned (AXRARGTYPEUNSIGNED) - the input is treated as an unsigned integer value.
The length must either be 4 bytes or 8 bytes.

» Signed (AXRARGTYPESIGNED) - the input is treated as 2s complement signed integer
value. The length must either be 4 bytes or 8 bytes.

» Character (AXRARGTYPECHAR)- the input is treated as a character string. The length
can be from 0 to 512 bytes.

» Hexadecimal (AXRARGTYPEHEXSTRING) - the input is treated as a hexadecimal string.
The length is specified in hexadecimal digits (2 per byte) and can be from 0 to 512
hexadecimal digits in length.

» Bit (AXRARGTYPEBITSTRING) — The input is treated as a bit string. The length is
specified in bits (8 per byte), and can be from 0 to 32.

Error conditions

If AXREXX encounters an error while attempting to control the invoker’s input into an REXX
argument or variable, System REXX indicates in AXRARGLstEntrylnError the number of the
argument or variable that caused the error. AXREXX then returns a specific reason code
indicating the problem with the argument or variable and abort the request.

If the exec successfully completes (no run time errors), and the AXREXX invocation specifies
SYNC=YES, then System REXX will attempt to obtain the final values of any output
arguments or variables (that is, those that have indicated AXRARGOUTPUT), convert them
into the specified data type and insert their converted values into the AXREXX invoker’s
buffers specified by AXRARGADDR and AXRARGALET.

If there is any failure with attempting to process a single output argument or variable, System
REXX will abort and not attempt to retrieve subsequent arguments or variables. Because
output arguments are retrieved prior to output variables, if System REXX fails to process an
output argument, no subsequent output arguments are processed and no output variables
are processed.

In addition to output arguments and variables, System REXX also returns the return code
from the exec in the AXRDIAGEXECRETCODE area in the AXRDIAG (see AXRZARG for the
mapping). The return code is returned as a 31-bit signed binary value. If it cannot be
converted into such a value, or if the exec does not return a return code, then
AXRDIAGNOEXECRETCODE will be set on.

Variables provided by AXREXX

In addition to any input argument or variables that the AXREXX invoker may provide, System
REXX sets the following variables:

» AXREQTOKEN - contains a 16-byte value which uniquely identifies the AXREXX
invocation request.

Chapter 15. System REXX for zZOS 249

» AXRINDD - if the REXXINDSN keyword is specified, this variable will contain the name of
the DD used for allocating the input data set; otherwise, it is not set.

» AXROUTDD - if the REXXOUTDSN keyword is specified, this variable will contain the
name of the DD used for allocating the output data set; otherwise, it is not set.

250 z/OS Version 1 Release 9 Implementation

16

z/OS XL C/C++ Metal option

This chapter describes the performance and usability enhancements provided by z/OS XL
C/C++ for the z/OS V1R9 release. Two major areas of support are described: one for
developing a C-coded system program (through a new Metal option), and the other for
supporting decimal floating-point formats (DFP) assisting in avoiding potential rounding
problems. Other usability and performance enhancements are also provided.

© Copyright IBM Corp. 2007. All rights reserved. 251

16.1 Metal option introduction

The z/OS XL C compiler-generated object code relies on the support provided by the
Language Environment. In addition to depending on the C run-time library functions that are
only available in the Language Environment, the XL C generated object code also depends
on the establishment of an overall execution environment, which includes automatic storage.
This dependency on the Language Environment prohibits you from using the XL C compiler
to generate code to run in an environment where the Language Environment does not exist.

Prior to z/OS V1R, all z/OS XL C compiler-generated code required Language Environment.
In addition to depending on the C runtime library functions that are available only with
Language Environment, the generated code depended on the establishment of an overall
execution context, including the heap storage and dynamic storage areas. These
dependencies prohibit you from using the XL C compiler to generate code that runs in an
environment where Language Environment did not exist.

The Metal C Runtime Library is a set of LPA-resident C functions that can be called from a C
program created using the z/OS XL C compiler Metal option. This is a new base element in
z/OS V1R9.

16.1.1 XL C Metal compiler option

252

The XL C Metal compiler option, introduced in z/OS V1R9, generates code that does not
have access to the Language Environment support at run time. Instead, the Metal option
provides C language extensions that allow you to specify assembly statements that call
system services directly. Using these language extensions, you can provide almost any
assembly macro, and your own function prologs and epilogs, to be embedded in the
generated HLASM source file. When you understand how the Metal-generated code uses
MVS linkage conventions to interact with HLASM code, you can use this capability to write
freestanding programs.

Figure 16-1 on page 253 lists the overall enhancements for IBM z/OS XL C/C++.

The Metal-generated object code does not depend on any run-time environment. Any system
services that the program needs can be obtained directly by using the system macros
supplied by the operating system.

z/OS Version 1 Release 9 Implementation

XLC Arch () Hardware facility Hardw. | “machine | XLC min XL.C Note
arch. models level option
no LE
AR-mode 31/64 1.9 METAL Envrt
decimal floating point z9 1.8 DFP (EI;(AT’;?\IIE;Q'W
. extended-immediate 29 x- xlation
facility 3
6 long/displacement z990 x - xlation
facility z890 2
7900 default for
5) 64-bit mode ESAME 1.2 TARGET(2/0S 7)
z800 and above
. z900
4 long long operations ESA/390 2800
3 IEEE (binary) floating-pt G5-G6
Branch Relative and
2 Halfword Immediate (Gl
. . . G1
1 Logical String Assist 9021
produced code is
0 executable on all
models

Figure 16-1 Overall enhancements for IBM z/OS XL C/C++

C/C++ support for decimal floating-point formats

z/OS XL C/C++ supports, in release 8 and 9, the decimal floating-point (DFP) formats in
addition to the current hex and binary floating-point formats. This support is available on the
IBM System z9 BC and IBM System z9 EC models, and is activated at the XL compiler in
C/C++ via a new DFP option when LANGLVL is set to EXTENDED. The decimal formats are
specified by the revised IEEE 754 floating point standard.

This support assists with avoiding potential rounding problems, which can result from using
binary or hexadecimal floating-point types to handle decimal calculations. z/OS XL C/C++
provides the following:

» Decimal type specifiers through the _Decimal32, _Decimal64, and _Decimal128 reserved
keywords

» Decimal literal support
» Conversion between decimal types and the other floating-point types

16.2 XL C Metal option

The XL C compiler generated code needs Language Environment to execute. However, a
need exists to run C programs where Language Environment is not available or is
undesirable, such as with the long-awaited support for AR mode programming.

Therefore, the XL C compiler provides a new option called Metal, reflecting the idea of a
programming environment closed to the bare Metal (or silicon) of the chip. This new option
allows the opportunity to do the following:

» Enable code generation with no Language Environment dependencies

» Provide support for programmer supplied prolog/epilog code

Chapter 16. z/OS XL C/C++ Metal option 253

» Provide support for programmer-embedded HLASM statements within the C code
» Provide support for AR mode programming from the C language

Note: The Metal option is only available for programs written in strict C language. There is
no support whatsoever for C++ programs.

16.2.1 Metal option overview

A new mode of code generation is added to the XL C compiler. The Metal option serves as
the switch to enable this new mode of code generation so that the code generated follows the
standard MVS linkage conventions and does not have Language Environment dependencies.
In the new mode of code generation, you can specify:

» The #pragma prolog/epilog directives that can be used to supply a programmer’s own
prolog and epilog code

» The __asm syntax that can be used to supply embedded HLASM statements

» The new language constructs and facilities to support accessing data stored in data
spaces

» The subset of C library functions available for this mode

With this new mode of code generation, it is therefore possible to use C language to:
» Write installation exits

» Develop programs that runs without Language Environment assistance

» Have a much simpler way of writing AR mode programs

By definition, a C function needs a stack space to store function scope variables and
temporary storage for compiler-generated code. Normally, Language Environment supplies
the stack space. When the generated code has no Language Environment at hand, the stack
space may need to be supplied by the programmer.

Without Language Environment, C library functions are unavailable. Thus, there needs to be
a way for the C function to enlist system services directly. Therefore, the code has to be
compatible with the linkage expected by corresponding MVS system components. For more
information about this topic, refer to zZ0S Metal C Programming Guide and Reference,
SA23-2225.

16.2.2 Using the Metal option

254

The term “Metal” can denote “raw” and “fundamental”. Thus, the code generated by this
option should be the fundamental code sequence that can run with minimal environmental
dependencies, as follows:

» The linkage convention mostly follows those described in z/0OS MVS Programming:
Assembler Services Guide, SA22-7627.

» With the Metal option, other capabilities are enabled such as supplying a user’s own
prolog and epilog code, embedding a user’'s own HLASM statements in the C source
code, and AR mode programming.

» Some other compiler options become meaningless (such as XPLINK, DLL, RENT, and so
on).

z/OS Version 1 Release 9 Implementation

» The application build process now requires an additional step to invoke the assembler to
assemble the compiler-generated code; see Figure 16-2. An equivalent JCL procedure
can be found in Appendix A, “Metal option of XL C compiler” on page 491.

x1c =S —gMetal foo.c produces foo.s
as —c foo.s produces foo.o
1d —o foo —e MAIN foo.o produces the executable foo

Figure 16-2 New sequence in application build

» The C-generated programs can now be mixed with programs written in HLASM.
» AMODE 64 code is also supported.
» Zz/Architecture hardware is required.

GENASM option

To allow programmer-injected HLASM statements, the compiler needs to produce code in
HLASM source code. The GENASM option can be used to name the output HLASM source
file.

The GENASM option also enables the compiler to process the __asm statements. The =S flag
on the x1c command is equivalent to specifying the GENASM option. Currently, the GENASM
option can only be used with the Metal option.

Programmer-supplied prolog and epilog code
The compiler generates default prolog and epilog code which operates on a 1 M stack space.

It may be necessary for the programmer to supply prolog and epilog code to set up whatever

the environment is.

There are several ways to supply customized prolog and epilog code:

» Using the #pragma prolog/epilog directives to apply the prolog/epilog to a single function

» Using the PROLOG and EPILOG® options to apply the same prolog and epilog to all
extern functions in the source file

Global set symbols are used to communicate compiler information to the user code; the
intended use of this capability is for the programmer to specify a macro that contains the
prolog/epilog code.

Programmer-embedded HLASM statements

An example of a printf like __asm statement for embedding user HLASM statements using
the following syntax is shown here.

__asm (code format_string : output : input : clobbers)

Where:

» code_format_string is a string literal similar to a printf format specifier.

» output is a comma-separated list of output operands; the list is optional.

» inputis a comma separated list of input operands; the list is optional.

» clobbers is a comma-separated list of clobber registers; the list is optional.

The colons separating output, input, and clobbers are required because these components
are specified by position. Any or all of these components can be omitted. Trailing colons as a

Chapter 16. z/OS XL C/C++ Metal option 255

result of omitting one or more components can be omitted. Input and output have the
following general syntax.

constraint (C_expression) , constraint (C_expression) , ...

Each constraint (C_expression) pair represents one operand. Zero (0), one, or more can be
specified, separated by commas.

Keep in mind that using standard hw_builtin functions is preferred, rather than using __asm
statements. Overall, the programmer is fully responsible for the correctness of the supplied
HLASM statements. This __asm function can be called from a C program, using the Metal

option, in the following way.

int main() {
struct WTO_PARM {
unsigned short len;
unsigned short code;
char text[80];} wto_buff = { 4+11, 0, "hello world" };
_asm(" WTO MF=(E,(%0)) " : : "r"(&wto_buff));

return 0;

}

16.2.3 Linkage conventions

The standard register convention used is as follows:

» The 72-byte standard save area is used for AMODE 31 code.

» The 144-byte FASA save area is used for AMODE 64 code.

» The 216-byte F7SA save area is used when the function has calls to AR mode functions.

» A Next Available Byte (NAB) convention is adopted to supply stack space to the called
functions. To use NAB, a sizable stack frame has to be established for the whole program
calling chain; meanwhile, there is no provision for detecting the stack floor condition.

Prolog and epilog code

The compiler generates default prolog and epilog code which operates on a 1 M stack space.
It may be necessary for the programmer to supply a specific prolog or epilog code to set up
whatever environment is necessary.

There are two ways to supply customized prolog and epilog code:
» Using the #pragma prolog and epilog directives to apply the prolog and epilog to a single
function

» Using the PROLOG and EPILOG options to apply the same prolog and epilog to all extern
functions in the source file.

16.2.4 AR-mode and the Metal option

256

The XL C compiler provides AR-mode programming support under the Metal option. An
AR-mode function can access data stored in data spaces by using the hardware access
registers.

For more information about AR-mode, see zZOS MVS Programming: Assembler Services
Guide, SA22-7605. A non-AR-mode function is said to be in primary mode.

z/OS Version 1 Release 9 Implementation

A C language construct is provided for:

» Marking a function to be an AR mode function by the __attribute__((armode)) attribute

» Qualifying a pointer to be a far pointer by the __far qualifier.

There is also an option ARMODE for marking every function in the source file to be AR-mode

functions. Built-in functions are provided for manipulating far pointers. The constructors are
as follows:

» void * __far __set_far_ALET_offset(unsigned int alet, void * offset);
» void * __far __set_far_ALET(unsigned int alet, void * __far offset);
» void * __ far __set_far_offset(void * __far alet, void * offset);

The extractors are as follows:
» unsigned int __get_far_ALET(void * __far p);
» void * __get_far_offset(void * __far p);

Standard string and memory functions are provided as “far-versions” for processing data
stored in data spaces.

16.2.5 Metal C runtime library

Although the compiler generates default prolog and epilog code that allows the Metal C code
to run, you might be required to supply your own prolog and epilog code to satisfy runtime
environment requirements. Metal C avoids excessive acquisition and release operations by
providing a mechanism that allows a called function to rely on preallocated stack space. This
mechanism is the next available byte (NAB). All Metal C runtime library functions, as well as
functions with a default prolog code, use it and expect the NAB address to be set by the
calling function.

A new runtime library provides useful utility functions for users of the Metal C compiler such

as:

» Utility functions for manipulating data

» Memory management

» Does not support floating point or I/O

» Supports AMODE 31 and AMODE 64

» Requires Primary ASC mode (except for “far-versions”, all data has to be in primary
address space)

The Metal C runtime library has LPA-resident functions which are made available during the
IPL and are called through system vectors. Corresponding standard header files are provided
for these functions which are completely independent of Language Environment.

A starter set of standard C functions is provided, such as:

» Data manipulation, conversion

» Character classification

» Memory management

For a complete list of functions, refer to z/0S Metal C Programming Guide and Reference,
SA23-2225.

Chapter 16. z/OS XL C/C++ Metal option 257

16.3 Decimal floating point

Decimal arithmetic is the norm in human calculations, and human-centric applications must
use a decimal floating-point arithmetic to achieve the same results.

Initial benchmarks indicate that some applications spend 50% to 90% of their time in decimal
processing, because software decimal arithmetic suffers a 100x to1000x performance
penalty over hardware. The need for decimal floating-point in hardware is there.

Existing designs, however, either fail to conform to modern standards or are incompatible
with the established rules of decimal arithmetic. This chapter introduces a new approach
available in the IBM System z9 models and provided by z/OS V1R9, consisting of decimal
floating-points—which not only provides the strict results necessary for commercial
applications, but also meets the constraints and requirements of the IEEE 854 standard that
is being finalized.

The hardware implementation of this arithmetic is expected to significantly accelerate a wide
variety of applications.

16.3.1 The need for decimal arithmetic

Despite the widespread use of binary arithmetic, decimal computation remains essential for
many applications. Not only is it required whenever numbers are presented for human
inspection, but it is also often a necessity when fractions are involved.

Decimal fractions (rational numbers whose denominator is a power of ten) are pervasive in
human endeavours, yet most cannot be represented by binary fractions; the value 0.1, for
example, requires an infinitely recurring binary number. If a binary approximation is used
instead of an exact decimal fraction, results can be incorrect even if subsequent arithmetic is
exact.

For example, consider a calculation involving a 5% sales tax on an item (such as a $0.70
telephone call), rounded to the nearest cent. Using double-precision binary floating-point, the
result of multiplying 0.70 by 1.05 is a little under 0.73499999999999999, whereas a
calculation using decimal fractions would yield exactly 0.735. The latter would be rounded up
to $0.74, but using the binary fraction the result returned would be the incorrect $0.73.

For this reason, financial calculations (or, indeed, any calculations where the results achieved
are required to match those which might be calculated by hand), are carried out using
decimal arithmetic.

Further, numbers in commercial databases are predominately decimal. Commercial
databases contain identifiably numeric data, and of these the majority is decimal (such as the
SQL NUMERIC). A large number of those that are non-decimal are integer types which could
have been stored as decimals.

16.3.2 Extended precision floating-point numbers

Since introduction, z/Architecture predecessors have introduced different formats of
floating-points which can be depicted as shown in Figure 16-3 on page 259.

258 z/OS Version 1 Release 9 Implementation

» S/390 Hexadecimal FP instructions
— 54 standard S/390 hexadecimal floating point instructions

» 121 base-2 FP instructions G5-G6 / xc arch(3)
—87 - IEEE binary floating point (BFP) - facility
=26 - Hexadecimal floating point (HFP) - extension
-8 - FPSextensions - 4 to convert HFP and BFP

» 12 additional floating point (AFP) registers
= AFP control bit (Control Register 0 bit 45)

> 57 new FP instructions = Floating Point Control (FPC) register

—45 new - Decimal floating point (DFP) - facility
=12 new - FPS (convert to/from DFP) instruct.
=2 _new Rounding Modes in FPC

CRO . FPCreg FP regs (0,2,4,6)
I I /A [oxe_[] Iy
45
Extended status - - / |
control
AFP 1,3,5,7,8-15
- ya regs ()
" pic007 V4 4

/
Data exception codes

AN
p Al
I

Figure 16-3 Zz/Architecture floating points

16.3.3 New floating-point data types

z/0OS XL C/C++ provides three z/Architecture floating-point number data types:
» Single precision (32 bits), declared as float

» Double precision (64 bits), declared as double

» Extended precision (128 bits), declared as long double

Extended precision floating-point numbers give greater accuracy to mathematical
calculations.

z/OS XL C/C++ also supports IEEE 754 floating-point representation (base 2 or binary
floating-point formats). By default, float, double, and long double vales are represented in
z/Architecture floating-point formats (base-16 floating-point formats).

However, the IEEE 754 floating-point representation is used if you specify the FLOAT(IEEE)
compiler option.

As of z/OS V1R9, XL C/C++ also supports IEEE 754 decimal floating-point representation
(base-10 floating-point formats), with the types _Decimal32, _Decimal64, and _Decimal128,
if the DFP compiler option is specified.

16.3.4 Decimal arithmetic context

Decimal arithmetic is implemented as a set of specific operation codes handling DFP number
operands stored under a defined encoding format. The whole is handled as part of the

Chapter 16. z/OS XL C/C++ Metal option 259

common |-stream of the application, but within a context to which two characteristics have
been added: commercial rounding and precision, as explained in the following sections.

Commercial rounding

The extra rounding mode is known as round-half-up, which is a requirement for many
financial calculations (especially for tax purposes and in Europe). In this mode, if the digits
discarded during rounding represent greater than or equal to half (0.5) of the value of a one in
the next left position, then the result should be rounded up. Otherwise, the discarded digits
are ignored.

This is in contrast to round-half-even, the default IEEE 854 rounding mode, where if the
discarded digits are exactly half of the next digit, then the least significant digit of the result
will be even.

z/Architecture implementations offer two further rounding modes:
» Round-half-down (where a 0.5 case is rounded down)
» Round-up (round away from zero)

The rounding modes in IEEE 854, together with these three modes, are the same set as
those available in Java.

Precision

The working precision setting in the context is a positive integer which sets the maximum
number of significant digits that can result from an arithmetic operation. It can be set to any
value up to the maximum length of the coefficient, and lets the programmer choose the
appropriate working precision.

In the case of software (which may well support unlimited precision), this lets the programmer
set the precision and hence limit computation costs. For example, if a daily interest rate
multiplier R is 1.000171 (0.0171%, or roughly 6.4% per annum), then the exact calculation of
the yearly rate in a non-leap year is R**365.

Calculating this to give an exact result requires 2191 digits, but a much shorter result that is
correct to within one unit in the last place (ulp) will almost always be sufficient and could be
calculated much faster.

In the case of hardware, precision control has little effect on performance, but it does allow
the hardware to be used for calculations of a different precision from the available “natural”
register size. For example, one proposal for a concrete representation suggests a maximum
coefficient length of 33 digits; this would be unsuitable for implementing the new COBOL
standard (which specifies 32-digit intermediate results) if precision control in some form were
not available. Note that to conform to IEEE 854 §3.1 the working precision should not be set
to less than 6.

16.3.5 XL C/C++ support for decimal floating point data types

260

Decimal floating point data types are provided by XL C/C++ of z/OS V1R9 under the form of
_Decimal32, _Decimal64 and _Decimal128 for single, double and quad precision
respectively. New suffixes for Decimal Floating Point literal values are df, dd, dl, or DF, DD,
and DL.

Hardware decimal floating point instructions are generated to carry out decimal floating point
operations. A set of built-in functions is provided to allow specific hardware decimal floating

z/OS Version 1 Release 9 Implementation

point instructions to be generated. Debug support for the new Decimal Floating Point data
types is also provided.

Overall, C/C++ applications can utilize the new decimal floating point data types, which allows
users to avoid the rounding problems associated with the typical binary representation of
fractional data.

16.3.6 XL C/C++ run-time library

The C/C++ run-time library (RTL) is enhanced to provide:

» New functions and macros for getting and setting the rounding mode for decimal floating
point operations.

» New macros for defining decimal floating point limits and evaluation formats.

» Updated floating point environment functions for manipulating the decimal floating point
environment.

» New and updated decimal floating point math functions and macros.

» New functions for converting character strings, and wide character strings, to decimal
floating point types.

» New functions for casting floating point numbers between binary, hexadecimal, and
decimal floating point.

» New optional prefixes for indicating the size of decimal floating point arguments for printf()
and scanf() families of functions, with the following warning:

16.3.7 UNIX System Services dbx debugger

Debugger dbx, part of UNIX System Services, supports decimal floating point data types so
that customers can debug decimal floating point data types and register representations in
their applications. Expression® handling and the assignment and display of decimal floating
point data types in program data and registers are provided by dbx.

Support for debugging of _Decimal32, _Decimal64, _Decimal128 data types and new register
representations, such as new register symbols, as follows:

$frdX with X = 0..15

print $frd5

assign $frdg8=2.2
Value formatting is handled the same way as other primary data types
> “print” subcommand (formats value)

— print mydec64

— 2.2003
» “whatis” subcommand (formats definition)

— whatis mydec64

— _Decimal64 mydec64;

» dbx expressions such as ‘mydec64+2.3" are promoted internally to long double binary,
same as other floating point data.

» Evaluated DFP register precision is set by $fl_precision (4, 8 or 16); the default is 8.

Chapter 16. z/OS XL C/C++ Metal option 261

16.4 dbx support of WebSphere remote debuggers

dbx supports the IBM WebSphere Developer for System z (WDz), and the IBM WebSphere
Developer Debugger for System z (WDDz), both at V7.0.
Both graphical user interfaces run on user workstations under Windows.

» The WDz or WDDz remote debuggers user interface runs on the user’s workstation (under
Windows) and communicates with the dbx engine through a TCP/IP socket running on
z/OS that is debugging the z/OS application or dump.

The program being debugged or dump, source files and debug information resides on the
z/OS server running the dbx engine. The socket shell is the dbx shell that will
communicate with a user interface over TCP/IP sockets, as depicted in Figure 16-4 on
page 262, where:

— To the left of the “dbx Engine” block is the current Command Line Shell that gives the
user a line/page interface to their terminal.

— To the right of the “dbx Engine” block is the new socket shell that communicates over a
TCP/IP link to the Remote Debugger Ul (WDz or WDDz) that is running on their
workstation.

— The dbx engine at the core remains the same for both shells.

» Start up WDz/WDDz Ul on a specific port, then use the —p option to tell dbx the machine
name or IP address and the port to connect to.

— Any further user interactions to the dbx engine will be done from the user interface.
— If no port is specified, the default port of 8001 will be used.

Figure 16-4 on page 262 illustrates the dbx remote debuggers support.

dbx Shells
dbx
z/0S UNIX _ Command dbx dbx - Remote
Terminal Line Engine Socket Debugger Ul
Shell Shell

TCP/IP
socket

stdin
stdout
stderr

Figure 16-4 dbx remote debuggers support

262 z/OS Version 1 Release 9 Implementation

dbx debugging example
Figure 16-5 on page 263 and Figure 16-6 on page 264 are examples of using WDDz as the
user interface to the dbx engine.

» A typical debugging session is in progress for a source level view of a program.

» The Debug window shows one thread, the program being debugged, and that main()
called function f1(), then f2(), then f3(), and that dbx is the target engine on a z/OS system.

» The Source window (with title tsimple.c) shows the entry breakpoint in f3(), which is the
current source line and a line breakpoint at 22.

» The Breakpoint window shows that an entry breakpoint and a line breakpoint have been
set.

» The Modules window show there is currently one .c file in this simple program with four
functions.

» The Variable window shows there are three local variables in f3(). Variables that have
children (struct/union/class/array) will have a plus [+] sign next to the name to indicate it
can be expanded.

» The Monitors window shows we set various expression monitors with their current values.

» Right-clicking most items will bring up an action menu. For example, right-clicking a line in
the Source window will allow line breakpoint to be set.

» Right-clicking a variable value will allow the value to be changed.

» Various execution options are supported such as step into, step over, step return and
resume.

% IBM Debugger

File Run EBreakpoints Modules Monitors Yarisbles ‘Window Help

%5 Debug 52 = B |[EF Monitors 32 X KHLEQD HEETO
(b= EM| 22 R T @& f& $pctd = 550370624
5@
=1 E4 tsimple [Compiled Application] zryﬁ .
=58 Platform: db For 2/0S with 64-bit support Connection: 9.56.214,17:3405 arry S

=-gd® s i ® arryd[1]="¢e'

o Thread:$tl (active) - C

= 1:Fa0) : tsimple.c : 16 ; 0x2157517c 3 6"3‘3[2]*]‘

= 3:F20) : tsimple.c : 44 0x215752%: = arryB[3] = .I !
= 4 main() : tsimple.c : 66 : 0x2157538 < arrye[d] = '
= 0 CELGINITO) : CELGLIE : 0 : Dx2157F010 . armye(s] = 10

B Process: 33620187 Program: tsimple arry8[&] = "0
® (7] =0

g Breakpoints i3 ® % = ® SRl 8 € F2p =0x110E00060
& Enkry [void F3{int a, ink b)]

. e
.2 Line [tsimple.c:22] i Modes 51 E =R =a =
= & tsimple
= F.j tsimple
+ D stdia.h
= D tsimple.c
@ Fifink FL_arg) « int
= m] § F2{unsigned char fZ_arq) : unsigned char
Line 25 Column 50 Insert Erowse @ fant a, ink 1) : void
1 z 5 4 E @ main(int arge, unsigned char **argy) : int
15 B
1: \{10151 f3(int &, int k) = Variables 51 4 G ==l
18 static int £3_int=33; Marne: ‘Value ‘
19 char aa; - ® . s
20 ® 333
z1 £3_int=55; =1 ® Faint 0x00000021
el 22 printf ("in £3 () %d %p %s %d 3d'n",bool,cprl
23 £1(333):
4)
25 |
26 int fliint £1 arg)
27 ¢ -
28 int f£1 i[20]:
23 £1_i[0]=2; 33 E
30 return Z2; -
. ~ L of

Figure 16-5 dbx remote debugger example

Chapter 16. z/OS XL C/C++ Metal option 263

264

dbx remote debugging example

Figure 16-6 on page 264 shows a typical debugging session in progress for a machine level
view of a program.

» The Debug window shows one thread, the program being debugged, and that main()
called function f1(), then f2(), then f3(), and that dbx is the target engine on a z/OS system.

» The Source window (with title tsimple_f3_320.dsm) shows the disassembly view with an
address breakpoint.

» The Breakpoint window shows an address breakpoint.
» The Memory window shows a hex and EBCDIC representation of the storage.

» The Registers window shows the PSW group and the GPR register group expanded. Nine
other register groups are for the floating point registers to show HFP, BFP, and DFP
representations of the floating point registers in float, double, and long double sizes.

» Right-clicking most items will bring up an action menu. For example, right-clicking a line in
the Disassembly window will allow an address breakpoint to be set.

3 IBM Debugger
File Run Breakpoints Memory Registers Window Help
O Hl2e e F| & -7 700 Memory 2 It -""0
=1 L tsimple [Compiled Applcation] Manitars - % %K
] uf:? Platform: dbx For 2005 with 64-bit support Connection: 2,56,214,17:3405 % 0x2i575140
=g Thread:$tl {active)
= () : tsimple.c £ Renderings u
FiF20) mple.c : 4