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ABSTRACT—The rise and diversification of the dinosaurs in the Late Triassic, from 230-200 

Ma, is a classic example of an evolutionary radiation with supposed competitive replacement. 

Comparison of evolutionary rates and morphological disparity of basal dinosaurs and their chief 

“competitors,” the crurotarsan archosaurs, shows that dinosaurs exhibited lower disparity and an 

indistinguishable rate of character evolution. The radiation of Triassic archosaurs as a whole is 

characterized by declining evolutionary rates and increasing disparity, suggesting a decoupling 

of character evolution from body plan variety. The results strongly suggest that historical 

contingency, rather than prolonged competition or general “superiority,” was the primary factor 

in the rise of dinosaurs. 

 

The rise of the dinosaurs in the Late Triassic and Early Jurassic (230-190 Ma) is a classic 

example of an evolutionary radiation. During that time, the clade Dinosauria expanded from a 

single lineage to many dozens of lineages, and from one ecological and morphological type to 

many, and the range of body sizes expanded to include truly gigantic forms (1, 2). Through this 

expansion in diversity and disparity, dinosaurs became the pre-eminent vertebrates on land, 

occupying many ecological roles in terrestrial ecosystems worldwide, especially those at 

medium to large size. 



 The expansion of Dinosauria has long been seen as an example of a ‘competitive 

adaptive radiation’ in which one group supplants another (3, 4). The dinosaurs were said to have 

out-competed other terrestrial tetrapods (notably basal archosaurs, rhynchosaurs, and non-

mammalian synapsids) by virtue of their upright or erect posture, which gave them advantages of 

speed and manoeuvrability (5), or because they were endothermic (possessing fully warm-

blooded physiology) (6). The alternative, opportunistic model (3) proposes that dinosaurs 

diversified in the Norian, following a Carnian-Norian extinction event 228 Ma (CNEE) that saw 

the demise of rhynchosaurs, dicynodonts, and chiniquodontids, and dinosaurian clades were 

added through the Late Triassic and Early Jurassic until they reached their full diversity. 

Most previous studies have treated the rise of the dinosaurs as a single event, whether 

competitive or opportunistic (3, 5, 6, 7, 8). However, phylogenies and diversity trends suggest it 

was a two-step process, with the diversification of herbivorous sauropodomorphs in the Norian, 

following the CNEE, and then larger theropods and armored herbivore groups in the Early 

Jurassic, following extinction of carnivorous crurotarsans at or near the Triassic-Jurassic 

boundary (TJEE). This two-step model has been supported by recent study of theropods, which 

became larger and more common after the TJEE (7), and ornithischians, which are now known 

to have been rare in the Late Triassic after the reassignment of many supposed ornithischian 

fossils to nondinosaurian groups (9). 

The critical interval to consider is the Late Triassic, especially the Norian and Rhaetian 

(Fig. 1), a 28-myr span between the CNEE and TJEE. The key “competitors” of the early 

dinosaurs were the crurotarsans, the “crocodile-line” archosaurs, which show a range of 

morphologies and adaptations during this time: long-snouted fish-and-flesh-eating phytosaurs, 

armored herbivorous aetosaurs, and large to giant carnivorous “rauisuchians”. The crurotarsans 



even replicated many dinosaurian body plans (large terrestrial predators; small swift predators; 

mid-to-large-bodied low-browsing herbivores; agile bipedal herbivores). Several new 

discoveries show striking convergences between crurotarsans and dinosaurs (10), and many 

Triassic crurotarsans were previously erroneously identified either as dinosaur ancestors (11) or 

even true dinosaurs (12). Such morphological convergence suggests that dinosaurs and 

crurotarsans were exploiting similar resources in the Late Triassic. In some Norian faunas, 

crurotarsans were even numerically more abundant than dinosaurs (3), and seem to have 

exploited a wider range of body plans. However, by the end of the Triassic all crurotarsans were 

extinct, save a few lineages of crocodylomorphs. 

The key question is why the major dinosaur lineages survived the TJEE, ushering in the 

135-million-year “Age of Dinosaurs,” while most crurotarsan groups went extinct. One common 

explanation is that dinosaurs “outcompeted” crurotarsans in the Late Triassic, and notions of 

general dinosaurian “superiority” have long pervaded the literature (5, 6). Hypotheses of 

competition between major clades are often vague, difficult to test conclusively, and prone to 

oversimplification (4). Rather than focusing on such imprecise terms, it is illuminating to 

examine macroevolutionary patterns. Here, we compare evolutionary rates and relative 

morphospace occupation in dinosaurs and crurotarsans, which may shed light on their 

evolutionary dynamics and help assess long-standing perceptions such as “superiority.”    

 We use a new phylogeny of Triassic archosaurs (Fig. 1) and a dataset consisting of 64 

taxa and 437 discrete skeletal characters (13) to calculate numerical measures of evolutionary 

rates (patristic dissimilarity per branch and patristic dissimilarity divided by branch duration, 17) 

and disparity (morphospace occupation) (13). It is important to note that rates analysis 

approximates the amount of morphologic evolution separating species, whereas disparity 



approximates the amount of morphologic difference between species (15, 17). These are related 

but separate measures of morphological evolution that together give insights into patterns of 

macroevolutionary change within and between clades. Disparity analysis does not depend on a 

specific phylogenetic hypothesis, but evolutionary rates analysis does. 

 There is no clear evidence for differences in overall evolutionary rates between dinosaurs 

and crurotarsans during the Triassic as a whole. Dinosaurs exhibit higher mean rates than 

crurotarsans for all measures (Fig. 2A-B, S2A-B)—as does the entire dinosaur “total group”, 

Ornithodira (sister taxon to Crurotarsi)—but these differences are generally not significant (table 

S1, S28). A pruned analysis of equal sample sizes for the two clades returns the same result 

(table S2), as does an analysis restricted to Norian taxa (table S3). There is limited evidence for 

significantly higher rates in Carnian dinosaurs, but this may be due to small sample size (table 

S3). Temporal trends do not show a coupled increase in dinosaur rates and decrease in 

crurotarsan rates, as might be expected under some models of “competition” (Fig. 2E-F, S2E-F). 

Dinosaurs exhibit a significantly higher rate of evolution of the appendicular skeleton than 

crurotarsans, but not of the cranial or axial skeleton (table S9). However, there are no significant 

differences between rates for different regions of the dinosaur skeleton (tables S16-17). 

 Perhaps counterintuitively, the disparity study shows that crurotarsans occupied a larger 

amount of morphospace than dinosaurs and ornithodirans as a whole (Fig. 3A-B, S3 A-B; table 

S21, S29). Rarefaction curves show that these results are not biased by sample size (fig. S4). The 

same pattern holds within the Carnian and Norian (table S22), and there are no coupled temporal 

trends (Fig. 3E-F, S3E-F). Dinosaurs and crurotarsans occupy adjacent areas of morphospace 

(Fig. 1), which is expected because the analysis is based on cladistic characters. Importantly, 

crurotarsans convergent with dinosaurs (poposauroids, “rauisuchids,” basal crocodylomorphs) 



occupy an intermediate area between the majority of crurotarsans and dinosaurs. Higher 

disparity of crurotarsans is borne out by visual examination of Figure 1, which shows a much 

larger morphospace than that for dinosaurs. Unexpectedly, this larger crurotarsan morphospace 

is associated with significantly higher rates of homoplasy (table S18), suggesting that character 

oscillation is an important factor in body plan evolution. 

 Archosaurs radiated during the Triassic in the aftermath of the end-Permian mass 

extinction. Our analysis shows that this radiation was associated with declining evolutionary 

rates per lineage and increasing morphological disparity throughout the Triassic. One rate 

metric, dissimilarity calibrated by time interval duration, shows a general decrease through the 

Triassic, with significantly high rates in the Anisian and low rates in the Norian (Fig. 2D, S2D; 

tables S4-S5). Patterns within Crurotarsi and Dinosauria mirror those of Archosauria as a whole, 

as both subclades are characterized by decreasing rates (Fig. 2F, S2F; tables S6-S8). Similarly, 

decreasing rates are also seen in cranial, axial, and appendicular character partitions (tables S10-

S15). The significantly high rates of character evolution in early archosaur history are consistent 

with the hypothesis of elevated rates during major morphological radiations (17, 18, 20, 21). 

In contrast, archosaurs show increasing disparity throughout the Triassic, with a 

significant high peak in the Norian (Fig. 3C-D; tables S23-24). Both crurotarsans and dinosaurs 

show a general increase in disparity across the Triassic, except for a Ladinian drop for 

crurotarsans that may be due to small sample size, but the differences between time bins are not 

significant. (tables S25-26). This pattern differs from several paleontological studies, which have 

shown that disparity often peaks early in the history of major clades (14, 15, 16, 21). 

 Unexpectedly, these results indicate a decoupling of character evolution and 

morphological disparity in Triassic archosaurs (22, 23). The inverse relationship indicates that, 



apparently, the burst of character evolution in early archosaur history did not translate into a 

wide range of body plans. Only later, when evolutionary rates decreased and homoplasy 

increased (tables S19-20), did a slower rate of character change result in the development of 

several new body plans (phytosaurs, aetosaurs, crocodylomorphs, pterosaurs, dinosaurs), all of 

which are first known from the Carnian or Norian. Decoupling of lineage diversification and 

disparity has been noted before, but only in the context of within-subclade disparity among 

extant lizards (24). Further work is needed to determine what, if any, broad generalizations 

characterize evolutionary radiations across a wide range of organisms, timescales, and clade 

dimensions. 

 For the first 30 million years of their history dinosaurs lived alongside and shared niches 

with another major clade (Crurotarsi) that occupied more morphospace and evolved at 

indistinguishable rates. These patterns seriously contrast with general notions of dinosaurian 

“superiority” and the long-standing view that dinosaurs were preordained for success (5, 6). It is 

difficult to explain why crurotarsans and not dinosaurs went extinct at the TJEE, which may 

have been a catastrophic event (7) or an ecologically drawn-out affair triggered by eruption and 

elevated CO2 levels (25). Either way, as in most mass extinction events, the death of species is 

often more random than ecologically selective (26), and so the relative proportions or success of 

two groups during normal times may reverse during a sudden crisis. Nonetheless, the results of 

our rates and disparity study are consistent with at least two explanations: i) crurotarsans died 

out by chance, despite their larger range of morphospace and similar evolutionary rates to 

dinosaurs; ii) dinosaurs prevailed because of one or several key adaptations. The second 

suggestion is difficult to entertain because dinosaurs and crurotarsans lived side by side for 30 

million years, and crurotarsans occupied more morphospace and were often more abundant and 



diverse than dinosaurs. It is likely that dinosaurs were the beneficiaries of two mass extinction 

events, and some good luck. 
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Figure Captions 

 

Fig. 1. Phylogenetic relationships and morphospace occupation for Triassic archosaurs. 

A: Framework phylogeny for Triassic crurotarsans (13) scaled to the Triassic time scale 

(13). Numbers on the time scale refer to millions of years before present; gray bars 

represent the observed durations of major lineages; vertical dotted lines denote two 

hypothesized extinction events (CNEE, TJEE); arrowheads indicate lineages that 

survived the TJEE. B: Empirical morphospace for Triassic archosaurs, based on the first 

two principal coordinates (see SOM). Symbols: large open circles=dinosaurs; 

ovals=pterosaurs; squares=poposauroids; hexagons=phytosaurs; stars=aetosaurs; 

x=crocodylomorphs; small circles= “rauisuchids”; large closed circles=non-dinosaurian 

dinosauromorphs, Scleromochlus. 

 

Fig. 2. Plots of rate of morphological character evolution for archosaurs based on two metrics 

(patristic dissimilarity per branch, dissimilarity/time, see SOM). Rates are based on 

ACCTRAN character optimization, but DELTRAN gives nearly identical results (fig. S2). 

Boxes represent the distribution of real data, with boxes encompassing 25-75 percentiles and 

the whiskers representing 5-95 percentiles. Plots A-B express the evolutionary rates of 

crurotarsans and dinosaurs (All C=all Triassic crurotarsans; All D=all Triassic dinosaurs; 

CC, CD, NC, ND=crurotarsans and dinosaurs subdivided into Carnian and Norian taxa). 

Plots C-D show disparity against time for all crown group archosaurs, and plots E-F show 

disparity against time for both crurotarsans and dinosaurs. Dinosaurs exhibit higher 



evolutionary rates than crurotarsans, but these are not significant (table S1). Rates for all 

archosaurs are either approximately constant (dissimilarity metric) or decrease from an 

Anisian high to a Norian low (dissimilarity/time metric, table S4-S5). Patterns within 

Crurotarsi and Dinosauria mirror the general pattern (table S6-S9). 

 

Fig 3. Plots of archosaur morphological disparity based on two metrics (sums of ranges 

and variances, see SOM). Squares represent mean values and error bars denote 95% 

confidence intervals based on bootstrapping. Plots A-B express disparity of crurotarsans 

and dinosaurs (abbreviations as in Fig. 2). Plots C-D show disparity against time for all 

crown group archosaurs, and plots E-F show disparity against time for both crurotarsans 

and dinosaurs. Crurotarsans exhibit a significantly higher disparity than dinosaurs when 

all Triassic taxa (NPMANOVA: F=29.89, p<0.0001) and Carnian (F=13.36, p=0.0003) 

and Norian (F=20.59, p<0.0001) subdivisions are analyzed. Archosaur disparity increases 

over time and reaches a statistically-significant peak in the Norian (tables S23-24). 

Crurotarsan and dinosaur disparity generally increase over time but differences between 

individual time bins are not significant (tables S25-26). 

 


