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Abstract 
 
This paper describes and analyzes the history of the fundamental equation of 

modern financial economics: the Black-Scholes (or Black-Scholes-Merton) option 

pricing equation.  In that history, several themes of potentially general importance 

are revealed.  First, the key mathematical work was not rule-following but bricolage, 

creative tinkering.  Second, it was, however, bricolage guided by the goal of finding a 

solution to the problem of option pricing analogous to existing exemplary solutions, 

notably the Capital Asset Pricing Model, which had successfully been applied to 

stock prices.  Third, the central strands of work on option pricing, although all 

recognisably ‘orthodox’ economics, were not unitary.  There was significant 

theoretical disagreement amongst the pioneers of option pricing theory; this 

disagreement, paradoxically, turns out to be a strength of the theory.  Fourth, option 

pricing theory has been performative.  Rather than simply describing a pre-existing 

empirical state of affairs, it altered the world, in general in a way that made itself 

more true. 
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Economics and economies are becoming a major focus for social studies of science.  

Historians of economics such as Philip Mirowski and the small number of 

sociologists of economics such as Yuval Yonay have been applying ideas from 

science studies with increasing frequency in the last decade or so.i  Established 

science-studies scholars such as Knorr Cetina and newcomers to the field such as 

Izquierdo, Lépinay, Millo and Muniesa have begun detailed, often ethnographic, 

work on economic processes, with a particular focus on financial markets.ii  Actor-

network theorist Michel Callon has conjoined the two concerns by arguing that an 

intrinsic link exists between studies of economics and of economies.  The economy is 

not an independent object that economics observes, argues Callon (1998).  Rather, 

the economy is performed by economic practices.  Accountancy and marketing are 

among the more obvious such practices, but, claims Callon, economics in the 

academic sense plays a vital role in constituting and shaping modern economies. 

 

 This article contributes to the emergent science-studies literature on 

economics and economies by way of a historical case study of option† pricing theory 

(terms marked † are defined in the glossary in table 1).  The theory is a ‘crown jewel’ 

of modern economics: ‘when judged by its ability to explain the empirical data, 

option pricing theory is the most successful theory not only in finance, but in all of 

economics’ (Ross, 1987: 332).  Over the last three decades, option theory has become 

a vitally important part of financial practice.  As recently as 1970, the market in 
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derivatives† such as options was tiny; indeed, many modern derivatives were illegal.  

By December 2002, derivatives contracts totaling $165.6 trillion were outstanding 

worldwide, a sum equivalent to around $27,000 for every human being on earth.iii  

Because of its centrality to this huge market, the equation that is my focus here, the 

Black-Scholes option pricing equation, may be ‘the most widely used formula, with 

embedded probabilities, in human history’ (Rubinstein, 1994: 772). 

 

 The development of option pricing theory is part of a larger transformation of 

academic finance.  Until the 1960s, the study of finance was a marginal, low status 

activity: largely descriptive in nature, taught in business schools not in economics 

departments, and with only weak intellectual linkages to economic theory.  Since  

the 1960s, finance has become analytical,  theoretical and highly quantitative.  

Although most academic finance theorists’ posts are still in business schools, much 

of what they teach is now unequivocally part of economics.  Five finance theorists – 

including two of the central figures discussed here, Robert C. Merton and Myron 

Scholes – have won Nobel prizes in economics. 

 

 This intellectual transformation was interwoven with the rapid expansion of 

business schools in the U.S.  In the mid-1950s, U.S. business schools produced 

around 3,000 MBAs annually.  By the late 1990s, that  figure had risen to over 

100,000 (Skapiner, 2002).  As business schools grew, they also became more 
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professional and ‘academic’, especially after the influential Ford Foundation report, 

Higher Education for Business (Gordon and Howell, 1959).  At the same time, the 

importance of the finance sector in the U.S. economy grew dramatically, and 

increasing proportions of financial assets were held not directly by individuals but 

by organizations such as mutual funds and pension funds.  These organizations 

formed a ready job market for the growing cohorts of students trained in finance. 

 

 The transformation of the academic study of finance is the subject of a fine 

history by Bernstein (1992), and the interactions between this transformation, the 

evolution of U.S. business schools, and changing capital markets have been analyzed 

ably by Whitley (1986a & b).  However, what the existing literature has not done 

fully is to ‘open the black box’ of mathematical finance theory.  That – at least for the 

theory of option pricing – is this article’s goal.iv 

 

 Limitation of space mean that the focus of this paper is on the mathematics of 

option pricing theory and on its intellectual context.  The interaction between theory 

and practice – the processes of the adoption by practitioners of option pricing 

theory, and the consequences of its adoption – is the subject of a ‘sister’ paper 

(MacKenzie and Millo, forthcoming), although  the issue of performativity means 

that the subject-matter of that paper will be revisited briefly below. 
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 In this article, four themes will emerge.  I would not describe them as 

‘findings’, because of the limitations on what can be inferred from a single historical 

case-study, but they may be of general significance.  The first theme is bricolage.  

Creative scientific practice is typically not the following of set rules of method: it is 

‘particular courses of action with materials to hand’ (Lynch, 1985: 5).  While this has 

been documented in overwhelming detail by ethnographic studies of laboratory 

science, this case-study suggests it may also be the case in a deductive, mathematical 

science.  Economists – at least the particular economists focused on here – are also 

bricoleurs.v 

 

 They are not, however, random bricoleurs, and the role of existing exemplary 

solutions is the second issue to emerge.  Ultimately, of course, this is a Kuhnian 

theme.  As is well known, at least two quite distinct meanings of the key term 

‘paradigm’ can be found in Kuhn’s work.  One – by far the dominant one in how 

Kuhn’s work was taken up by others – is the ‘entire constellation of beliefs, values, 

techniques, and so on shared by the members of a given [scientific] community’ 

(Kuhn, 1970: 175).  The second – rightly described by Kuhn as ‘philosophically ... 

deeper’ – is the exemplar, the problem-solution that is accepted as successful and 

that is creatively drawn upon to solve further problems (Kuhn, 1970: 175; see also 

Barnes, 1982).  
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The role of the exemplar will become apparent here in the contrast between 

the work of Black and Scholes and that of mathematician and arbitrageur† Edward 

O. Thorp.  Amongst those who worked on option pricing prior to Black and Scholes, 

Thorp’s work is closest to theirs.  However, while Thorp was seeking market 

inefficiencies to exploit, Black and Scholes were seeking a solution to the problem of 

option pricing analogous to an existing exemplary solution, the Capital Asset Pricing 

Model.  This was not just a general inspiration: in his detailed mathematical work, 

Black drew directly on a previous mathematical analysis on which he had worked 

with the Capital Asset Pricing Model’s co-developer, Jack Treynor. 

 

As Peter Galison and others have pointed out, the key shortcoming in the 

view of the ‘paradigm’ as ‘constellation of beliefs, values, techniques, and so on’ is 

that it overstates the unity and coherence of scientific fields (Galison and Stump, 

1996; Galison 1997).  Nowhere is this more true than when outsiders discuss 

‘orthodox’ neoclassical economics, and the nature of economic orthodoxy is the third 

theme explored here.  Black, Scholes, Merton, several of their predecessors, and most 

of those who in the 1970s subsequently worked on option pricing were all (with 

some provisos in the case of Black, to be discussed below) recognizably ‘orthodox’ 

economists.  As others studying different areas of economics have found, however, 

orthodoxy seems not to be a single unitary doctrine, substantive or methodological 

(see Yonay and Breslau, 2001; Mirowski and Hands, 1998).  For example, Robert C. 
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Merton, the economist whose name is most closely yoked to those of Black and 

Scholes, did not accept the original version of the Capital Asset Pricing Model, the 

apparent pivot of their derivation, and Merton reached the Black-Scholes equation 

by drawing on different intellectual resources.  Black, in turn, never found Merton’s 

derivation entirely compelling, and continued to champion the derivation based on 

the Capital Asset Pricing Model.  So no entirely unitary ‘constellation of beliefs, 

values, techniques, and so on’ can be found.  Economic ‘orthodoxy’ is a reality – 

attend conferences of economists who feel excluded by it, and one is left in no doubt 

on that – but it is a reality that should perhaps be construed as a cluster of family 

resemblances, a cluster that arises from imaginative bricolage drawing on an only 

partially overlapping set of existing exemplary solutions.  ‘Orthodox’ economics is 

an ‘epistemic culture’ (Knorr Cetina, 1999), not a catechism. 

 

 A major aspect of Galison’s critique of the Kuhnian paradigm (conceived as 

all-embracing ‘constellation’) is his argument that diversity is a source of robustness, 

not a weakness.  Though Galison’s topic is physics, his conclusion also appears to 

hold true in economics.  Philip Mirowski and Wade Hands, describing the 

emergence of modern economic orthodoxy in the postwar U.S., put the point as 

follows: 
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Rather than saying it [neoclassicism] simply chased out the competition – 

which it did, if by ‘competition’ one means the institutionalists, Marxists, 

and Austrians – and replaced diversity with a single monolithic 

homogeneous neoclassical strain, we say it transformed itself into a more 

robust ensemble.  Neoclassical demand theory gained hegemony by going 

from patches of monoculture in the interwar period to an interlocking 

competitive ecosystem after World War II.  Rather than presenting itself as 

a single, brittle, theoretical strand, neoclassicism offered a more flexible, 

and thus resilient skein (Mirowski and Hands, 1998: 289; see also Sent, 

forthcoming). 

 

As we shall see, that general characterization appears to hold for the particular case 

of option pricing theory. 

  

The final theme explored here, and in the sister paper referred to above 

(MacKenzie and Millo, forthcoming), is performativity.  As we shall see, there is at 

least qualified support here for Callon’s conjecture, albeit in a case that is favourable 

to the conjecture, since option pricing theory was chosen for examination in part 

because it seemed a plausible case of performativity.  Option pricing theory seems to 

have been performative in a strong sense: it did not simply describe a pre-existing 

world, but helped create a world of which the theory was a truer reflection.  
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It is of course not surprising that a social science like finance theory has the 

potential to alter its objects of study: the more difficult issue, which fortunately does 

not need breached here, is to specify accurately the non-trivial ways in which natural 

sciences are performative (see Hacking, 1992, and from a different viewpoint, Bloor, 

2003).  That a social science like psychology, for example, has a ‘necessarily reflexive 

character’ and that psychologists influence as well as describe ‘the psychological 

lives of their host societies’ has been argued by Richards (1997: xii), and Ian 

Hacking’s work (such as Hacking, 1992 and 1995) also demonstrates the point.  As I 

have argued elsewhere (MacKenzie, 2001), finance is a domain of what Barnes (1983) 

calls ‘social-kind’ terms or what Hacking (1995b) calls ‘human kinds’, with their two-

way ‘looping effects’ between knowledge and its objects. 

 

It is clearly possible in principle, in other words, for finance theory to be 

performative rather than simply descriptive.  However, that does not remove the 

need for empirical examination.  That the theory can be performative does not imply 

that it has been performative.  Indeed, as we shall see, the performativity of classic 

option pricing theory is incomplete and historically specific – it did not make itself 

wholly or permanently true – and exploring the limits and the contingency of its 

performativity is of some interest.   
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‘Too much on finance!’ 

 Options are old instruments, but until the 1970s age had not brought them 

respectability.  Puts† and calls† on the stock of the Dutch East India Company were 

being bought and sold in Amsterdam when de la Vega discussed its stock market in 

1688 (de la Vega, 1957), and subsequently options were widely traded in Paris, London, 

New York and other financial centres.  They frequently came under suspicion, 

however, as vehicles for speculation.  Because the cost of an option was typically much 

less than that of the underlying stock, a speculator who correctly anticipated price rises 

could profit considerably by buying calls, or benefit from falls by buying puts, and 

such speculation was often regarded as manipulative and/or destabilizing.  Buying 

options was often seen simply as gambling, as betting on stock price movements.  In 

Britain, options were banned from 1734 and again from 1834, and in France from 1806, 

although these bans were widely flouted (Michie, 1999: 22 and 49; Preda, 2001: 214).  

Several American states, beginning with Illinois in 1874, also outlawed options 

(Kruizenga, 1956).  Although the main target in the U.S. was options on agricultural 

commodities, options on securities were often banned as well. 

 

 Options’ dubious reputation did not prevent serious interest in them.  In 1877, 

for example, the London broker Charles Castelli, who had been ‘repeatedly called 

upon to explain the various processes’ involved in buying and selling options, 

published a booklet explaining them, directed apparently at his fellow market 
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professionals rather than popular investors.  He concentrated primarily on the profits 

that could be made by the purchaser, and discussed only in passing how options were 

priced, noting that prices tended to rise in periods of what we would now call high 

volatility.†  His booklet ended – in a nice corrective for those who believe the late 

twentieth century’s financial globalization to be a novelty – with an example of how 

options had been used in bond arbitrage† between the London Stock Exchange and the 

Constantinople Bourse to capture the high contangovi rate prevailing in Constantinople 

in 1874 (Castelli, 1877: 2, 7-8, 74-77). 

 

 Castelli’s ‘how to’ guide employed only simple arithmetic.  Far more 

sophisticated mathematically was the thesis submitted to the Sorbonne in March 1900 

by Louis Bachelier, a student of the leading French mathematician and mathematical 

physicist, Henri Poincaré.  Bachelier sought ‘to establish the law of probability of price 

changes consistent with the market’ in French bonds.  He assumed that the price of a 

bond, x, followed what we would now call a stochastic process in continuous time: in 

any time interval, however short, the value of x changed probabilistically.  Bachelier 

constructed an integral equation that a continuous-time stochastic process had to 

satisfy.  Denoting by px,tdx the probability that the price of the bond at time t would be 

between x and x + dx, Bachelier showed that the integral equation was satisfied by: 

px,t =  exp – (H2x2/t)  
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where H was a constant.  (For the reader’s convenience, notation used throughout this 

article is gathered together in table 2).  For a given value of t, the expression reduces to 

the normal or Gaussian distribution, the familiar ‘bell-shaped’ curve of statistical 

theory.  Although Bachelier had not demonstrated that the expression was the only 

solution of the integral equation (and we now know it is not), he claimed that 

‘[e]vidently the probability is governed by the Gaussian law, already famous in the 

calculus of probabilities’.  He went on to apply this stochastic process model – which 

we would now call a ‘Brownian motion’ because the same process was later used by 

physicists as a model of the path followed by a minute particle subject to random 

collisions – to various problems in the determination of the strike† price of options, the 

probability of their exercise and the probability of their profitability, showing a 

reasonable fit between predicted and observed values.vii 

 

 When Bachelier’s work was ‘rediscovered’ by Anglo-Saxon authors in the 1950s, 

it was regarded as a stunning anticipation both of the modern theory of continuous-

time stochastic processes and of late twentieth-century finance theory.  For example, 

the translator of his thesis, option theorist A. James Boness, noted that Bachelier’s 

model anticipated Einstein’s stochastic analysis of Brownian motion (Bachelier, 1964: 

77).  Bachelier’s contemporaries, however, were less impressed.  While modern 

accounts of the neglect of his work are overstated (Jovanovic, 2003), the modesty of 

Bachelier’s career in mathematics – he was 57 before he achieved a full professorship, at 
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Besançon rather than in Paris – seems due in part to his peers’ doubts about his rigour 

and their lack of interest in his subject matter, the financial markets.  ‘Too much on 

finance!’ was the private comment on Bachelier’s thesis by the leading French 

probability theorist, Paul Lévy (quoted in Courtault et al., 2000: 346).  

 

Option and Warrant Pricing in the 1950s and 1960s 

 The continuous-time random walk, or Brownian motion, model of stock market 

prices became prominent in economics only from the late 1950s onwards, and did so, 

furthermore, with an important technical modification, introduced to finance by Paul 

Samuelson, MIT’s renowned mathematical economist, and independently by statistical 

astronomer M.F.M. Osborne (1959).  On Bachelier’s model, there was a non-zero 

probability of prices becoming negative.  When Samuelson, for example, learned of 

Bachelier’s model, ‘I knew immediately that couldn’t be right for finance because it 

didn’t respect limited liability’ [Samuelson interview]:viii a stock price could not 

become negative.  So Samuelson and Osborne assumed not Bachelier’s ‘arithmetic’ 

Brownian motion, but a ‘geometric’ Brownian motion, or log-normal† random walk, in 

which prices could not become negative. 

 

 In the late 1950s’ and 1960s’ U.S. the random-walk model became a key aspect of 

what became known as the ‘efficient market hypothesis’ (Fama 1970).  Though it 

initially struck many non-academic practitioners as bizarre to posit that stock price 



 16 

movements were random, the growing number of financial economists argued that all 

today’s information is already incorporated in today’s prices: if it is knowable that the 

price of a stock will rise tomorrow, it would already have risen today.  Stock price 

changes are influenced only by new information, which, by virtue of being new, is 

unpredictable or ‘random’.ix  Like Bachelier, a number of these financial economists 

saw the possibility of drawing on the random walk model to study option pricing.  

Typically, they studied not the prices of options in general but those of warrants.†  

Options had nearly been banned in the U.S. after the Great Crash of 1929 (Filer 1959), 

and were traded only in a small, illiquid, ad hoc market based in New York.  

Researchers could in general obtain only brokers’ price quotations from that market, 

not the actual prices at which options were bought and sold, and the absence of robust 

price data made options unattractive as an object of study.  Warrants, on the other 

hand, were traded in more liquid, organized markets,  particularly the American 

Exchange, and their market prices were available. 

 

 To Case Sprenkle, a graduate student in economics at Yale University in the late 

1950s, warrant prices were interesting because of what they might reveal about 

investors’ attitudes to and expectations about risk levels (Sprenkle, 1961).  Let x* be the 

price of a stock on the expiration† date of a warrant.  A warrant is a form of call option: 

it gives the right to purchase the underlying stock at strike price, c.  At expiration, the 

warrant will therefore be worthless if x* is below c, since exercising the warrant would 
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be more expensive than simply buying the stock on the market.  If x* is higher than c, 

the warrant will be worth the difference.  So its value will be: 

 0       if      x*<c 

 x* - c  if      x*≥c 

Of course, the stock price x* is not known in advance, so to calculate the expected value 

of the warrant at expiration Sprenkle had to ‘weight’ these final values by f(x*), the 

probability distribution of x*.  He used the standard integral formula for the expected 

value of a continuous random variable, obtaining the following expression for the 

warrant’s expected value at expiration: 

(x* - c) f(x*) dx* 

To evaluate this integral, Sprenkle assumed that f(x*) was log-normal (by the late 1950s, 

that assumption was ‘in the air’, he recalls [Sprenkle interview]), and that the value of x* 

expected by an investor was the current stock price x multiplied by a constant, k.  The 

above integral expression for the warrant’s expected value then became: 

kxN [  - cN [ ]        (1) 

where ln is the abbreviation for natural logarithm, s2 is the variance of the distribution 

of lnx*, and N is the (cumulative) Gaussian or normal distribution function, the values 

of which could be found in tables used by any statistics undergraduate.x 
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 Sprenkle then argued that the expected value of a warrant would be the price an 

investor would be prepared to pay for it only if the investor was indifferent to risk or 

‘risk neutral’.  (To get a sense of what this means, imagine being offered a fair bet with a 

50% chance of winning $1,000 and a 50% chance of losing $1,000, and thus an expected 

value of zero.  If you would require to be paid to take on such a bet you are ‘risk averse’; 

if you would pay to take it on you are ‘risk seeking’; if you would take it on without 

inducement, but without being prepared to pay to do so, you are ‘risk neutral’.)  

Warrants are riskier than the underlying stock because of their leverage – ‘a given 

percentage change in the price of the stock will result in a larger percentage change in 

the price of the option’ – so an investor’s attitude to risk could be conceptualized, 

Sprenkle suggested, as the price Pe he or she was prepared to pay for leverage.  A risk-

seeking investor would pay a positive price, and a risk-averse investor a negative one: 

that is, a levered asset would have to offer an expected rate of return sufficiently higher 

than an unlevered one before a risk-averse investor would buy it.  V, the value of a 

warrant to an investor was then given, Sprenkle showed, by: 

V = kxN [  - (1-Pe)cN [ ]            (2) 

(The right hand side of this equation reduces to expression 1 in the case of a risk neutral 

investor for whom Pe=0.)  The values of k, s, and Pe were posited by Sprenkle as specific 

to each investor, representing his or her subjective expectations and attitude to risk.  

Values of V would thus vary between investors, and ‘Actual prices of the warrant then 

reflect the consensus of marginal investors’ opinions – the marginal investors’ 
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expectations and preferences are the same as the market’s expectations and preferences’ 

(Sprenkle, 1961: 199-201). 

 

 Sprenkle examined warrant and stock prices for the ‘classic boom and bust 

period’ of 1923-32 and for the relative stability of 1953-59, hoping to estimate from those 

prices ‘the market’s expectations and preferences’, in other words the values of k, s, and 

Pe implied by warrant prices.  His econometric work, however, hit considerable 

difficulties: ‘it was found impossible to obtain these estimates’.  Only by arbitrarily 

assuming k = 1 and testing out a range of arbitrary values of Pe could Sprenkle make 

partial progress.  His theoretically-derived formula for the value of a warrant depended 

on parameters whose empirical values were extremely problematic to determine 

(Sprenkle, 1961: 204, 212-13). 

 

 The same difficulty hit the most sophisticated theoretical analysis of warrants 

from this period, by Paul Samuelson in collaboration with the MIT mathematician 

Henry P. McKean, Jr.  McKean was a world-class specialist in stochastic calculus, the 

theory of stochastic processes in continuous time, which in the years after Bachelier’s 

work had burgeoned into a key domain of modern probability theory.  Even with 

McKean’s help, however, Samuelson’s model (which space constraints prevent me 

describing in detail) also depended, like Sprenkle’s, on parameters that seemed to have 

no straightforward empirical referents: r, the expected rate of return on the underlying 
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stock, and r, the expected return on the warrant (Samuelson, 1965; McKean, 1965). A 

similar problem was encountered in the somewhat simpler work of University of 

Chicago PhD student, A. James Boness.  He made the simplifying assumption that 

option traders are risk-neutral, but his formula also involved r, which he could 

estimate only indirectly by finding the value that minimized the difference between 

predicted and observed option prices (Boness, 1964). 

 

‘The greatest gambling game on earth’ 

Theoretical analysis of warrant and option prices thus seemed always to lead 

to formulae involving parameters that were difficult or impossible to estimate.  An 

alternative approach was to eschew a priori models and to study the relationship 

between warrant and stock prices empirically.  The most influential work of this 

kind was conducted by Sheen Kassouf.  After a mathematics degree from Columbia 

University, Kassouf set up a successful technical illustration firm.  He was fascinated 

by the stock market and a keen, if not always successful, investor.  In 1961, he 

wanted to invest in the defence company Textron, but could not decide between 

buying its stock or its warrants [Kassouf interview].  He started to examine the 

relationship between stock and warrant prices,  finding empirically that a simple 

hyperbolic formula 

w = - c 
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seemed roughly to fit observed curvilinear relationships between warrant price, 

stock price and strike price (Kassouf, 1962: 26). 

 

 In 1962, Kassouf returned to Columbia to study warrant pricing for a PhD in 

economics.  His earlier simple curve fitting was replaced by econometric techniques, 

especially regression analysis, and he posited a more complex relationship 

determining warrant prices: 

w/c = [(x/c)z + 1]1/z – 1         (3) 

where z was an empirically-determined function of the stock price, exercise price, 

stock price ‘trend’,xi time to expiration, stock dividend, and the extent of the dilution 

of existing shares that would occur if all warrants were exercised (Kassouf, 1965). 

 

Kassouf’s interest in warrants was not simply academic: he wanted ‘to make 

money’ trading them [Kassouf interview]. He had rediscovered, even before starting 

his PhD, an old form of securities arbitrage† (see Weinstein, 1931: 84, 142-45).  

Warrants and the corresponding stock tended to move together: if the stock price 

rose, then so did the warrant price; if the stock fell, so did the warrant.  So one could 

be used to offset the risk of the other.  If, for example, warrants seemed overpriced 

relative to the corresponding stock, one could short sell† them, hedging the risk by 

buying some of the stock.  Trading of this sort, conducted by Kassouf in parallel 
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with his PhD research, enabled him ‘to more than double $100,000 in just four years’ 

(Thorp and Kassouf, 1967: 32). 

 

In 1965, fresh from his PhD, Kassouf was appointed to the faculty of the 

newly established Irvine campus of the University of California.  There, he was 

introduced to mathematician Edward O. Thorp.  Alongside research in functional 

analysis and probability theory, Thorp had a long-standing interest in casino games.  

While at MIT in 1959-61 he had collaborated with the celebrated information theorist 

Claude Shannon on a tiny, wearable, analog computer system to predict where the 

ball would be deposited on a roulette wheel [Thorp interview].  Thorp went on to 

devise the first effective methods for beating the casino at blackjack, by keeping 

track of cards that had already been dealt and thus identifying situations favourable 

to the player (Thorp, 1961; Tudball, 2002). 

 

Thorp and Shannon’s use of their wearable roulette computer was limited by 

frequently broken wires, but card-counting was highly profitable.  In the MIT spring 

recess in 1961, Thorp travelled to Nevada equipped with a hundred $100 bills 

provided by two millionaires with an interest in gambling.  After thirty hours of 

blackjack, Thorp’s $10,000 had become $21,000.  He went on to devise, with 

computer scientist William E. Walden of the nuclear weapons laboratory at Los 

Alamos, a method for identifying favourable side bets in the version of baccarat 
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played in Nevada.  Thorp found, however, that beating the casino had 

disadvantages as a way of making money.  At a time when U.S. casinos were 

controlled largely by organized criminals, there were physical risks: while Thorp 

was playing baccarat in 1964, he was rendered almost unconscious by knock-out 

drops added to his coffee.  The need to travel to places where gambling was legal 

was a further disadvantage to an academic with a family [Thorp interview].  

 

Increasingly, Thorp’s attention switched to the financial markets.  ‘The 

greatest gambling game on earth is the one played daily through the brokerage 

houses across the country’, Thorp told the readers of the hugely successful book 

describing his card-counting methods (Thorp, 1966: 182).  But could the biggest of 

casinos succumb to Thorp’s mathematical skills?  Predicting stock prices seemed too 

daunting: ‘there is an extremely large number of variables, many of which I can’t get 

any fix on’.  However, he realized that ‘I can eliminate most of the variables if I think 

about warrants versus common stock’ [Thorp interview].  Thorp began to sketch 

graphs of the observed relationships between stock and warrant prices, and meeting 

Kassouf provided him with a formula (equation 3 above) for these curves. 

 

 Their book, Beat the Market, (Thorp and Kassouf, 1967) explained graphically 

the relationship between the price of a warrant, w, and of the underlying common 

stock, x (see figure 1).  No warrant should ever cost more than the underlying stock, 
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since it is simply an option to buy the latter, and this constraint yielded a ‘maximum 

value line’.  At expiration, as Sprenkle had noted, a warrant would be worthless if 

the stock price, x, was less than the strike price, c; otherwise it would be worth the 

difference (x – c).  If, at any time, w < x – c, an instant arbitrage profit could be made 

by buying the warrant and exercising it (at a cost of w + c) and selling the stock thus 

acquired for x.  So the warrant’s value at expiration was also a minimum value for it 

at any time.  As expiration approached, the ‘normal price curves’ expressing the 

value of a warrant dropped closer to its value at expiration. 

 

 These ‘normal price curves’ could then be used to identify overpriced and 

underpriced warrants.xii  The former could be sold short, and the latter bought, with 

the resultant risks hedged by taking a position in the stock (buying stock if warrants 

had been sold short; selling stock short if warrants had been bought).  The 

appropriate size of hedge, Thorp and Kassouf explained (1967: 82), was determined 

by ‘the slope of the normal price curve at our starting position’.  If that slope were, 

say, 1:3, as it roughly is at point (A,B) in figure 1, the appropriate hedge ratio was to 

buy one unit of stock for every three warrants sold short.  Any movements along the 

normal price curve caused by small stock price fluctuations would then have little 

effect on the value of the overall position, because the loss or gain on the warrants 

would be balanced by a nearly equivalent gain or loss on the stock.  Larger stock 

price movements could of course lead to a shift to a region of the curve in which the 
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slope differed from 1:3, and in their investment practice both Thorp and Kassouf 

adjusted their hedges when that happened (Thorp, 2002; Kassouf interview). 

 

 Initially, Thorp relied upon Kassouf’s empirical formula for warrant prices 

(equation 3 above): as he says, ‘it produced ... curves qualitatively like the actual 

warrant curves’.  Yet he was not entirely satisfied with it: ‘quantitatively, I think we 

both knew that there was something more that had to happen’ [Thorp interview].  

He began his investigation of that ‘something’ in the same way as Sprenkle – 

applying the log-normal distribution to work out the expected value of a warrant at 

expiration – reaching a formula equivalent to Sprenkle’s (equation 1 above). 

 

 Like Sprenkle’s, Thorp’s formula (Thorp, 1969: 281) for the expected value of 

a warrant involved the expected increase in the stock price, which there was no 

straightforward way to estimate.  He decided to approximate it by assuming that the 

expected value of the stock rose at the riskless† rate of interest: he had no better 

estimate, and he ‘didn’t think that enormous errors would necessarily be introduced’ 

by the approximation.  Thorp found that the resultant formula was plausible – ‘I 

couldn’t find anything wrong with its qualitative behavior and with the actual 

forecast it was making’ – and in 1967 he started to use it to identify grossly 

overpriced options to sell [Thorp interview].  It was formally equivalent to the Black-

Scholes formula for a call option (equation 5 below), except for one feature: unlike 
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Black and Scholes, Thorp did not discount† the expected value of the option at 

expiration back to the present.  In the warrant markets he was used to, the proceeds 

of the short sale of a warrant were retained in their entirety by the broker, and were 

not available immediately to the seller as Black and Scholes assumed.xiii  It was a 

relatively minor difference: when Thorp read Black and Scholes, he was able quickly 

to see why the two formulae differed and to add to his formula the necessary 

discount factor to make them identical (Thorp, 2002). In the background, however, 

lay more profound differences of approach. 

 

Black and Scholes 

In 1965, Fischer Black, with a Harvard PhD (Black, 1964) in what was in effect 

artificial intelligence, joined the operations research group of the consultancy firm, 

Arthur D. Little, Inc.  There, Black met Jack Treynor, a financial specialist at Little 

[Treynor interview].  Treynor had developed, though had not published, what later 

became known as the Capital Asset Pricing Model (also developed, independently, by 

academics William Sharpe, John Lintner, and Jan Mossin).xiv  It was Black’s (and also 

Scholes’s) use of this model that decisively differentiated their work from the earlier 

research on option pricing. 

 

 The Capital Asset Pricing Model provided a systematic account of the ‘risk 

premium’: the additional return that investors demand for holding risky assets.  
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That premium, Treynor pointed out, could not depend simply on the ‘sheer 

magnitude of the risk’, because some risks were ‘insurable’: they could be minimized 

by diversification, by spreading one’s investments over a broad range of companies 

(Treynor, 1962: 13-14; Treynor, 1999: 20). What could not be diversified away, 

however, was the risk of general market fluctuations.  By reasoning of this kind, 

Treynor showed – and the other developers of the model also demonstrated – that a 

capital asset’s risk premium should be proportional to its  (its covariance with the 

general level of the market, divided by the variance of the market).  An asset whose 

 was zero, in other words an asset the price of which was uncorrelated with the 

overall level of the market, had no risk premium (any specific risks involved in 

holding it could be diversified away), and investors in it should earn only r, the 

riskless rate of interest.  As the asset’s  increased, so should its risk premium. 

 

 The Capital Asset Pricing Model was an elegant piece of theoretical 

reasoning.  Its co-developer Treynor became Black’s mentor in what was for Black 

the new field of finance, so it is not surprising that when Black began his own work 

in finance it was by trying to apply the model to a range of assets other than stock 

(which had been its main initial field of application).  Also important as a resource 

for Black’s research was a specific piece of joint work with Treynor on how 

companies should value cash flows in making their investment decisions.  This was 

the problem that had most directly inspired Treynor’s development of the Capital 
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Asset Pricing Model, and the aspect of it on which Black and Treynor collaborated 

had involved Treynor writing an expression for the change in the value of a cash 

flow in a short, finite time interval t; expanding the expression using the standard 

calculus technique of Taylor expansion; taking expected values; dropping the terms 

of order t2 and higher; dividing by t; and letting t tend to zero so that the finite 

difference equation became a differential equation.  Treynor’s original version of the 

latter was in error because he had left out a second derivative that did not vanish, 

but Black and he worked out how to correct the differential equation by adding the 

corresponding term.xv 

 

 Amongst the assets to which Black tried to apply the Capital Asset Pricing 

Model were warrants.  His starting point was directly modelled on his joint work 

with Treynor, with w, the value of the warrant, taking the place of cash flow, and x, 

the stock price, replacing the stochastically time-dependent ‘information variables’ 

of the earlier problem.  If w is the change in the value of the warrant in time 

interval (t, t + t), 

w = w(x + x, t + t) – w(x,t) 

where x is the change in stock price over the interval.  Black then expanded this 

expression in a Taylor series and took expected values: 
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where  designates ‘expected value’ and higher order terms are dropped. Black then 

assumed that the Capital Asset Pricing Model applied both to the stock and warrant, 

so that (x) and (w) would depend on, respectively, the  of the stock and the  

of the warrant.  He also assumed that the stock price followed a log-normal random 

walk and that it was permissible ‘to eliminate terms that are second order in t’.  

These assumptions, a little manipulation, and letting t tend to zero, yielded the 

differential equation: 

                                                            (4) 

where r is the riskless rate of interest and  the volatility† of the stock price.xvi 

 

 ‘I spent many, many days trying to find the solution to that equation’, Black 

later recalled: ‘I ... had never spent much time on differential equations, so I didn’t 

know the standard methods used to solve problems like that’.  He was ‘fascinated’ 

that in the differential equation apparently key features of the problem (notably the 

stock’s  and thus its expected return, a pervasive feature in earlier theoretical work 

on option pricing) no longer appeared.  ‘But I was still unable to come up with the 

formula.  So I put the problem aside and worked on other things’ (Black, 1989: 5-6). 
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 In the autumn of 1968, however, Black (still working for Arthur D. Little in 

Cambridge, Mass.) met Myron Scholes, a young researcher who had just joined the 

finance group in MIT’s Sloan School of Management.  The pair teamed up with 

finance scholar Michael Jensen to conduct an empirical test of the Capital Asset 

Pricing Model, which was still largely a theoretical postulate.  Scholes also became 

interested in warrant pricing, not, it seems, through Black’s influence but through 

supervising an MIT Master’s dissertation on the topic (Scholes, 1998).  Scholes’s PhD 

thesis (Scholes 1970) involved the analysis of securities as potential substitutes for 

each other, with the potential for arbitrage ensuring that securities whose risks are 

alike will offer similar expected returns.  Scholes’s PhD adviser, Merton H. Miller, 

had introduced this form of theoretical argument – ‘arbitrage proof’ – in what by 

1970 was already seen as classic work with Franco Modigliani (Modigliani and 

Miller, 1958). Scholes started to investigate whether similar reasoning could be 

applied to warrant pricing, and began to consider the hedged portfolio formed by 

buying warrants and short selling the underlying stock (Scholes, 1998: 480). 

 

 The hedged portfolio had been the central idea of Thorp and Kassouf’s Beat 

the Market (1967), though Scholes had not yet read the book [Scholes interview]. 

Scholes’s goal, in any case, was different.  Thorp and Kassouf’s hedged portfolio was 

designed to earn high returns with low risk in real markets.  Scholes’s was a desired 

theoretical artifact.  He wanted a portfolio with a  of zero: that is, with no 
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correlation with the overall level of the market.  If such a portfolio could be created, 

the Capital Asset Pricing Model implied that it would earn, not high returns, but 

only the riskless rate of interest, r.  It would thus not be an unduly enticing 

investment, but knowing the rate of return on the hedged portfolio might solve the 

problem of warrant pricing. 

 

 What Scholes could not work out, however, was how to construct a zero- 

portfolio.  He could see that the quantity of shares that had to be sold short must 

change with time and with changes in the stock price, but he could not see how to 

determine that quantity.  ‘[A]fter working on this concept, off and on, I still couldn’t 

figure out analytically how many shares of stock to sell short to create a zero-beta 

portfolio’ (Scholes, 1998: 480).  Like Black, Scholes was stymied.  Then, in ‘the 

summer or early fall of 1969’, Scholes told Black of his efforts, and Black described 

the different approach he had taken, in particular showing Scholes the Taylor series 

expansion of the warrant price (Scholes, 1998: 480).  The two men then found how to 

construct a zero- portfolio.  If the stock price changed by the small amount x, the 

option price would alter by x.  So the necessary hedge was to short sell a 

quantity  of stock for every warrant held.  This was the same conclusion Thorp 

and Kassouf had arrived at:  is their hedging ratio, the slope of the curve of w 

plotted against x as in figure 1. 
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 While the result was in that sense equivalent, it was embedded in quite a 

different chain of reasoning.  Although the precise way in which Black and Scholes 

argued the point evolved as they wrote successive versions of their paper,xvii the 

crux of their mathematical analysis was that the hedged portfolio must earn the 

riskless rate of interest.  The hedged portfolio was not entirely free from risk, they 

argued in August 1970, because the hedging would not be exact if the stock price 

altered significantly and because the value of an option altered as expiration became 

closer.  The change in value of the hedged portfolio resulting from stock price 

movements would, however, depend only on the magnitude of those movements 

not on their sign.  It was, therefore, the kind of risk that could be diversified away.  

So, according to the Capital Asset Pricing Model, the hedged portfolio could earn 

only the riskless rate of interest (Black and Scholes, 1970a: 6).  In other words, the 

expected return on the hedged portfolio in the short time interval (t, t+t) is just its 

price at time t multiplied by rt.  Simple manipulation of the Taylor expansion of 

w(x+x, t+t) led to a finite difference equation that could be transformed into a 

differential equation by letting t tend to zero, and to equation 4 above: the Black-

Scholes option pricing equation, as it was soon to be called. 

 

 As noted above, Black had been unable to solve equation 4, but he and 

Scholes now returned to the problem.  It was, however, still not obvious how to 
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proceed.  Like Black, Scholes was ‘amazed that the expected rate of return on the 

underlying stock did not appear in [equation 4]’ (Scholes, 1998: 481).  This prompted 

Black and Scholes to experiment, as Thorp had done, with setting the expected 

return on the stock as the riskless rate, r.  They substituted r for k in Sprenkle’s 

formula for the expected value of a warrant at expiration (equation 1 above).  To get 

the warrant price, they then had to discount† that terminal value back to the present.  

How could they do that?  ‘Rather suddenly, it came to us’, Black later recalled.  ‘If 

the stock had an expected return equal to the [riskless] interest rate, so would the 

option.  After all, if all the stock’s risk could be diversified away, so could all the 

option’s risk.  If the beta of the stock were zero, the beta of the option would have to 

be zero too. ... [T]he discount rate that would take us from the option’s expected 

future value to its present value would always be the [riskless] interest rate’ (Black 

1989: 6).  These modifications to Sprenkle’s formula led to the following formula for 

the value of a warrant or call option:  

 (5) 

where c is the strike price,  the volatility of the stock, t* the expiration of the option, 

and N the Gaussian distribution function.  Instead of facing the difficult task of 

directly solving equation 4, all Black and Scholes had now to do show by 

differentiating equation 5 that it (the Black-Scholes call option or warrant formula) 

was a solution of equation 4.   
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Merton 

 Black and Scholes’s tinkering with Sprenkle’s expected value formula 

(equation 1 above) was in one sense no different from Boness’s or Thorp’s.  

However, Boness’s justification for his choice of expected rate of return was 

empirical – he chose ‘the rate of appreciation most consistent with market prices of 

puts and calls’ (Boness, 1964: 170) – and Thorp freely admits he ‘guessed’ that the 

right thing to do was to set the stock’s rate of return equal to the riskless rate: it was 

‘guesswork not proof’ [Thorp interview].  Black and Scholes, on the other hand, 

could prove mathematically that their call option formula (equation 5) was a 

solution to their differential equation (equation 4), and the latter had a clear 

theoretical justification. 

 

 It was a justification apparently intimately bound up with the Capital Asset 

Pricing Model.  Not only was the model drawn on explicitly in both the equation’s 

derivations, but it also made Black’s and Scholes’s entire mathematical approach 

seem permissible.  Like all others working on the problem in the 1950s and 1960s 

(with the exception of Samuelson, McKean, and Merton), Black and Scholes used 

ordinary calculus – Taylor series expansion, and so on – but in a context in which x, 

the stock price, was known to vary stochastically.  Neither Black nor Scholes knew 

the mathematical theory needed to do calculus rigorously in a stochastic 

environment, but the Capital Asset Pricing Model provided an economic 



 35 

justification for what might otherwise have seemed dangerously unrigorous 

mathematics.  ‘We did not know whether our formulation was exact’, says Scholes, 

‘but intuitively we thought investors could diversify away any residual risk that was 

left’ (Scholes, 1998: 483). 

 

 As noted above, Black had been a close colleague of the Capital Asset Pricing 

Model’s co-developer, Treynor, while Scholes had done his graduate work at the 

University of Chicago, one of the two leading sites of financial economics, where the 

model was seen as an exemplary contribution to the field.  However, at the other 

main site, MIT, the original version of the Capital Asset Pricing Model was regarded 

much less positively.  The model rested upon the ‘mean-variance’ view of portfolio 

selection: that investors could be modelled as guided only by their expectations of 

the returns on investments and their risks as measured by the expected standard 

deviation or variance of returns.  Unless returns followed a joint normal distribution 

(which was regarded as ruled out, because it would imply, as noted above, a non-

zero probability of negative prices), mean-variance analysis seemed to rest upon a 

specific form of ‘utility function’ (the function that characterizes the relationship 

between the return on an investor’s portfolio, y, and his or her preferences).  Mean-

variance analysis seemed to imply that investors’ utility functions were quadratic: 

that is, they contained only terms in y and y2. 
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 For MIT’s Paul Samuelson, the assumption of quadratic utility was over-

specific – one of his earliest contributions to economics (Samuelson, 1938) had been 

his ‘revealed preference’ theory, designed to eliminate the non-empirical aspects of 

utility analysis – and a ‘bad ... representation of human behaviour’ [Samuelson 

interview].xviii  Seen from Chicago, Samuelson’s objections were ‘quibbles’ [Fama 

interview] when set against the virtues of the Capital Asset Pricing Model: ‘he’s got 

to remember what Milton Friedman said – “Never mind about assumptions.  What 

counts is, how good are the predictions?”’ [Miller interview; see Friedman 1953]. 

Nevertheless, they were objections that weighed heavily with Robert C. Merton.  Son 

of the social theorist and sociologist of science Robert K. Merton, he switched in 

autumn 1967 from graduate work in applied mathematics at the California Institute 

of Technology to study economics at MIT.  He had been an amateur investor since 

aged 10 or 11, had graduated from stocks to options and warrants, and came to 

realize ‘that I had a much better intuition and “feel” into economic matters than 

physical ones’.  In spring 1968, Samuelson appointed the mathematically-talented 

young Merton as his research assistant, even allocating him a desk inside his MIT 

office (Merton interview; Merton, 1998: 15-16). 

 

 It was not simply a matter of Merton finding the assumptions underpinning 

the standard Capital Asset Pricing Model ‘objectionable’ (Merton, 1970: 2).  At the 

centre of Merton’s work was the effort to replace simple ‘one-period’ models of that 
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kind with more sophisticated ‘continuous-time’ models.  In the latter, not only did 

the returns on assets vary in a continuous stochastic fashion, but individuals took 

decisions about portfolio selection (and also consumption) continuously, not just at 

discrete points in time.  In any time interval, however short, individuals could 

change the composition of their investment portfolios.  Compared with ‘discrete-

time’ models, ‘the continuous-time models are mathematically more complex’, says 

Merton.  He quickly became convinced, however, that ‘the derived results of the 

continuous-time models were often more precise and easier to interpret than their 

discrete-time counterparts’ (Merton, 1998: 18-19).  His ‘intertemporal’ capital asset 

pricing model (Merton, 1973), for example, did not necessitate the ‘quadratic utility’ 

assumption of the original. 

 

 With continuous-time stochastic processes at the centre of his work, Merton 

felt the need not just to make ad hoc adjustments to standard calculus but to learn 

stochastic calculus.  It was not yet part of economists’ mathematical repertoire (it 

was above all Merton who introduced it), but by the late 1960s a number of textbook 

treatments by mathematicians (such as Cox and Miller, 1965 and Kushner, 1967) had 

been published, and Merton used these to teach himself the subject [Merton 

interview].  He rejected as unsuitable the ‘symmetrized’ formulation of stochastic 

integration by R.L. Stratonovich (1966): it was easier to use for those with experience 

only of ordinary calculus, but when applied to prices it in effect allowed investors an 
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illegitimate peek into the future.  Merton chose instead the original 1940s’ definition 

of the stochastic integral by the Japanese mathematician, Kiyosi Itô, and Itô’s 

associated apparatus for handling stochastic differential equations (Stroock and 

Varadhan, 1987). 

 

 Amongst the problems on which Merton worked, both with Samuelson and 

independently, was warrant pricing, and the resultant work formed two of the five 

chapters of his September 1970 PhD thesis (Samuelson and Merton, 1969; Merton, 

1970: chapters 4 and 5). Black and Scholes read the 1969 paper in which Samuelson 

and Merton described their joint work, but did not immediately tell them of the 

progress they had made: there was ‘friendly rivalry between the two teams’, says 

Scholes (1998: 483).  In the early autumn of 1970, however, Scholes did discuss with 

Merton his work with Black.  Merton immediately appreciated that this work was a 

‘significant “break-through”’ (Merton, 1973: 142), and it was Merton, for example, 

who christened equation 4 the ‘Black-Scholes’ equation.  Given Merton’s critical 

attitude to the Capital Asset Pricing Model, however, it is also not surprising that he 

also believed that ‘such an important result deserves a rigorous derivation’, not just 

the ‘intuitively appealing’ one Black and Scholes had provided (Merton, 1973: 161-

62).  ‘What I sort of argued with them [Black and Scholes]’, says Merton, ‘was, if it 

depended on the [Capital] Asset Pricing Model, why is it when you look at the final 
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formula [equation 4] nothing about risk appears at all?  In fact, it’s perfectly 

consistent with a risk-neutral world’ [Merton interview]. 

 

 So Merton set to work applying his continuous-time model and Itô calculus to 

the Black-Scholes hedged portfolio.  ‘I looked at this thing’, says Merton, ‘and I 

realized that if you did ... dynamic trading ... if you actually [traded] literally 

continuously, then in fact, yeah, you could get rid of the risk, but not just the 

systematic risk, all the risk’.  Not only did the hedged portfolio have zero  in the 

continuous-time limit (Merton’s initial doubts on this point were assuaged),xix ‘but 

you actually get a zero sigma’: that is, no variance of return on the hedged portfolio.  

So the hedged portfolio can earn only the riskless rate of interest, ‘not for the reason 

of [the Capital] Asset Pricing Model but ... to avoid arbitrage, or money machine’: a 

way of generating certain profits with no net investment [Merton interview].  For 

Merton, then, the ‘key to the Black-Scholes analysis’ was an assumption Black and 

Scholes did not initially make: continuous trading, the capacity to adjust a portfolio 

at all times and instantaneously.  ‘[O]nly in the instantaneous limit are the warrant 

price and stock price perfectly correlated, which is what is required to form the 

“perfect” hedge’ (Merton, 1972: 38). 

 

 Black and Scholes were not initially convinced of the correctness of Merton’s 

approach.  Merton’s additional assumption – his world of continuous-time trading – 
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was a radical abstraction, and in a January 1971 draft of their paper on option 

pricing Black and Scholes even claimed that equilibrium prices in capital markets 

could not have characteristics assumed by Merton’s analysis (Black and Scholes, 

1971: 20).  Merton, in turn, told Fischer Black in a 1972 letter that ‘I ... do not 

understand your reluctance to accept that the standard form of CAPM [Capital Asset 

Pricing Model] just does not work’ (Merton, 1972).  Despite this disagreement, Black 

and Scholes used what was essentially Merton’s revised form of their derivation in 

the final, published version of their paper (Black and Scholes, 1973), though they also 

presented Black’s original derivation, which drew directly on the Capital Asset 

Pricing Model.  Black, however, remained ambivalent about Merton’s derivation, 

telling a 1989 interviewer that ‘I’m still more fond’ of the Capital Asset Pricing 

Model derivation: ‘[T]here may be reasons why arbitrage is not practical, for 

example trading costs’.  (If trading incurs even tiny transaction costs, continuous 

adjustment of a portfolio is infeasible).  Merton’s derivation ‘is more intellectual[ly] 

elegant but it relies on stricter assumptions, so I don’t think it’s really as robust’.xx   

 

Black, indeed, came to express doubts even about the central intuition of 

orthodox financial economics, that modern capital markets were efficient (in other 

words that prices in them incorporate all known information).  Efficiency held, he 

suggested, only in a diluted sense: ‘we might define an efficient market as one in 

which price is within a factor of 2 of value’.  Black noted that this position was 
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intermediate between that of Merton, who defended the efficient market hypothesis, 

and that of ‘behavioural’ finance theorist Robert Shiller: ‘Deviations from efficiency 

seem more significant in my world than in Merton’s, but much less significant in my 

world than in Shiller’s’ (Black, 1986: 533; see Merton, 1987 and Shiller, 1989). 

 

The Equation and the World 

 

 It was not immediately obvious to all that what Black, Scholes and Merton 

had done was a fundamental breakthrough.  The Journal of Political Economy 

originally rejected Black and Scholes’s paper because, its editor told Black, option 

pricing was too specialized a topic to merit publication in a general economic journal 

(Gordon, 1970), and the paper was also rejected by the Review of Economics and 

Statistics (Scholes, 1997: 484).  True, the emerging new breed of financial economists 

quickly saw the elegance of the Black-Scholes solution.  All the parameters in 

equations 4 and 5 seemed readily observable empirically: there were none of the 

intractable estimation problems of earlier theoretical solutions.  That alone, however, 

does not account for the wider impact of the Black-Scholes-Merton work.  It does not 

explain, for example, how a paper originally rejected by an economic journal as too 

specialized should win a Nobel prize in economics (Scholes and Merton were 

awarded the prize in 1997; Black died in 1995). 
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 That the world came to embrace the Black-Scholes equation was in part 

because the world was changing – see the remarks at the start of the paper on the 

transformation of academic finance and the professionalization of U.S. business 

schools – and in part because the equation (unlike, for example, Bachelier’s work) 

changed the world.xxi  The latter was the case in four senses.  First, the Black-Scholes 

equation seems to have altered patterns of option prices.  After constructing their 

call-option pricing formula (equation 5 above), Black and Scholes tested its empirical 

validity for the ad hoc New York options market, using a broker’s diaries in which 

were ‘recorded all option contracts written for his customers’.  They found only an 

approximate fit: ‘in general writers [the sellers of options] obtain favorable prices, 

and ... there tends to be a systematic mispricing of options as a function of the 

variance of returns of the stock’ (Black and Scholes, 1972: 403, 413).  A more 

organized, continuous options exchange was established in Chicago in 1973, but 

Scholes’s student Dan Galai also found that prices there initially differed from the 

Black-Scholes model, indeed to a greater extent than in the New York market (Galai, 

1977). 

 

 By the second half of the 1970s, however, discrepancies between patterns of 

option pricing in Chicago and the Black-Scholes model diminished to the point of 

economic insignificance (the ad hoc New York market quickly withered after Chicago 

and other organized options exchanges opened).  The reasons are various, but they 
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include the use of the Black-Scholes model as a guide to arbitrage.  Black set up a 

service selling sheets of theoretical option prices to market participants (see figure 2).  

Options market makers† used those sheets and other material exemplifications of the 

Black-Scholes model to identify relatively over-priced and under-priced options on 

the same stock, sold the former and hedged their risk by buying the latter.  In so 

doing, they altered patterns of pricing in a way that increased the validity of the 

model’s predictions, in particular helping the model to pass its key econometric test: 

that the implied† volatility of all options on the same stock with the same expiration 

should be identical (MacKenzie and Millo, forthcoming). 

 

 The second world-changing, performative aspect of the Black-Scholes-Merton 

work was deeper than its use in arbitrage.  In its mathematical assumptions, the 

equation embodied a world, so to speak.  (From this viewpoint, the differences 

between the Black-Scholes world and Merton’s world are less important than their 

commonalities.)  In the final published version of their option pricing paper in 1973, 

Black and Scholes spelled out these assumptions, which included not just the basic 

assumption that the ‘stock price follows a [lognormal] random walk in continuous 

time’, but also assumptions about market conditions: that there are ‘no transaction 

costs in buying or selling the stock or the option’; that it is ‘possible to borrow any 

fraction of the price of a security to buy it or to hold it’, at the riskless rate of interest; 

and that these are ‘no penalties to short selling’ (Black and Scholes, 1973: 640). 
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 In 1973, these assumptions about market conditions were wildly unrealistic.  

Commissions (a key transaction cost) were high everywhere.  Investors could not 

purchase stock entirely on credit – in the U.S. this was banned by the Federal 

Reserve’s famous ‘Regulation T’ – and such loans would be at a rate of interest in 

excess of the riskless rate.  Short selling was legally constrained and financially 

penalized: stock lenders retained the proceeds of a short sale as collateral for the 

loan, and refused to pass on all (or sometimes any) of the interest earned on those 

proceeds [Thorp interview].  

 

Since 1973, however, the Black-Scholes-Merton assumptions have become, 

while still not completely realistic, a great deal more so (see MacKenzie and Millo, 

forthcoming).  In listing these assumptions, Black and Scholes wrote: ‘we will 

assume “ideal conditions” in the market for the stock and for the option’ (Black and 

Scholes, 1973: 640).  Of course, ‘ideal’ here means simplified and thus 

mathematically tractable, like the physicist’s frictionless surface: non-zero 

transaction costs and constraints on borrowing and short selling hugely complicate 

the option pricing problem.  ‘Ideal’, however, also connotes the way things ought to 

be.  This was not Black and Scholes’s intended implication: neither was an activist in 

relation to the politics of markets.  From the early 1970s onwards, however, an 
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increasingly influential number of economists and others were activists for the ‘free 

market’ ideal. 

 

 Their activities (along with other factors, such as the role of technological 

change in reducing transaction costs) helped make the world embodied in the Black-

Scholes-Merton assumptions about market conditions more real. The Black-Scholes-

Merton analysis itself assisted this process by helping to legitimize options trading 

and thus helping to create the efficient, liquid markets posited by the model.  The 

Chicago Board Options Exchange’s counsel recalls:  

 

Black-Scholes was really what enabled the exchange to thrive. ... [I]t gave a 

lot of legitimacy to the whole notions of hedging and efficient pricing, 

whereas we were faced, in the late 60s-early 70s with the issue of 

gambling.  That issue fell away, and I think Black-Scholes made it fall 

away.  It wasn’t speculation or gambling, it was efficient pricing.  I think 

the SEC [Securities and Exchange Commission] very quickly thought of 

options as a useful mechanism in the securities markets and it’s probably – 

that’s my judgement – the effects of Black-Scholes.  I never heard the word 

‘gambling’ again in relation to options [Rissman interview]. 
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The Black-Scholes-Merton model also had more specific impacts on the nature of the 

markets it analyzed.  Earlier upsurges of options trading had typically been 

reversed, arguably because option prices had usually been ‘too high’ in the sense 

that they made options a poor purchase: options could too seldom be exercised 

profitably (Kairys and Valerio, 1997).  The availability of the Black-Scholes formula, 

and its associated hedging techniques, gave participants the confidence to write 

options at lower prices, again helping options exchanges to grow and to prosper, 

becoming more like the markets posited by the theory.  The Black-Scholes analysis 

was also used to free hedging by options market makers† from the constraints of 

Regulation T.  So long as their stock positions were close to the theoretical hedging 

ratio ( ), they were allowed to construct such hedges using entirely borrowed 

funds (Millo, forthcoming).  It was a delightfully direct loop of performativity: the 

model being used to make one of its key assumptions a reality. 

 

 Third, the Black-Scholes-Merton solution to the problem of option pricing 

became paradigmatic in the deeper Kuhnian sense of  ‘exemplary solution’ (Kuhn, 

1970: 175), indeed more deeply so than the Capital Asset Pricing Model.  The Black-

Scholes-Merton analysis provided a range of intellectual resources for those tackling 

problems of pricing derivatives† of all kinds.  Amongst those resources were the idea 

of perfect hedging (or of a ‘replicating portfolio’, a portfolio whose returns would 

exactly match those of the derivative in all states of the world); no-arbitrage pricing 
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(deriving prices from the argument that the only patterns of pricing that can be stable 

are those that give rise to no arbitrage opportunities); and a striking example of the 

use in economics of Itô’s stochastic calculus, especially of the basic result known as 

‘Itô’s lemma’, the stochastic equivalent of Taylor expansion, which serves inter alia as 

a ‘bridging result’, allowing those trained only in ordinary calculus to perform at 

least some manipulations in Itô calculus.  Open any textbook of modern 

mathematical finance (for example, Hull, 2000), and one finds multiple uses of these 

ideas.  These uses are creative solutions to problems of sometimes great difficulty, 

not rote applications of these ideas – a paradigm is a resource, not a rule – but the 

family resemblance to the Black-Scholes-Merton solution is clear.  In the words of 

option trader and theorist Nassim Taleb, far from an uncritical admirer of the Black-

Scholes-Merton work, ‘most everything that has been developed in modern finance 

since 1973 is but a footnote on the BSM [Black-Scholes-Merton] equation’ (Taleb, 

1998: 35). 

 

 The capacity to generate theoretical prices – not just for what soon came to be 

called the ‘vanilla’ options analyzed by Black, Scholes, and Merton but for a wide 

range of often exotic derivatives – played a vital role in the emergence of the modern 

derivatives markets, especially when, as was the case with the original Black-Scholes-

Merton analysis, the theoretical argument that generated prices also generated rules 

for hedging the risk of involvement in such derivatives.  I have already touched on 
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the role played by theory in supporting the emergence and success of organized 

options exchanges, but it was at least equally important in the growth of what is 

known as the ‘over-the-counter’ (direct, institution-to-institution) derivatives market, 

the overall volume of which is now larger.  (In December 2002, the over-the-counter 

market accounted for 85.6% of total notional value of derivatives contracts 

outstanding globally.xxii)  Many of the instruments traded in this market are highly 

specialized, and sometimes no liquid market, or easily observable market price, 

exists for them.  However, both the vendors of them (most usually investment banks) 

and at least the more sophisticated purchasers of them can often calculate theoretical 

prices, and thus have a benchmark ‘fair’ price.  The Black-Scholes-Merton analysis 

and subsequent developments of it are also central to the capacity of an investment 

bank to operate at large scale in this market.  They enable the risks involved in 

derivatives portfolios to be decomposed mathematically.  Many of these risks are 

mutually offsetting, so the residual risk that requires hedged is often quite small in 

relation to the overall portfolio.  Major investment banks can thus ‘operate on such a 

scale that they can provide liquidity as if they had no transaction costs’ (Taleb 1998: 

36).xxiii  So the Black-Scholes-Merton assumption of zero transaction costs is now 

close to true for major investment banks – in part because the use of that theory and 

its developments by those banks allows them to manage their portfolios in a way 

which minimizes transaction costs. 
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 Fourth, option pricing theory allowed a reconceptualization of risk that is only 

beginning to be recognized in the burgeoning literature on ‘risk society’.xxiv  Since 

1973, a wide range of situations involving uncertainty have been reconceptualized as 

involving implicit options.  Closest to traditional finance is the application of option 

theory to corporate liabilities such as bonds.  Black and Scholes (1973: 649-652) 

pointed out that when a corporation’s bonds mature its shareholders can either repay 

the principal (and own the corporation free of bond liabilities) or default (and thus 

pass the corporation’s assets to the bond holders).  A corporation’s bond holders 

have thus in effect sold a call option to its shareholders.  This kind of reasoning 

allows, for example, calculation of implicit probabilities of bankruptcy.  More 

generally, many insurance contracts have at least some of the structure of put 

options, and this way of thinking has facilitated the growing integration of insurance 

and derivatives trading (such as the sale of ‘hurricane bonds’ as a marketized form of 

reinsurance).  Even areas that at first sight seem unlikely candidates for rethinking as 

involving implicit options have been conceptualized in this way: for example, 

professorial tenure, pharmaceuticals innovation, and decisions about the production 

of film sequels (Merton, 1998).  In the case of film sequels, for instance, it is cheaper to 

make a sequel at the same time as the original, but postponing the sequel grants a 

valuable option not to make it: option theory can be used to calculate which is better.  

Option pricing theory has altered how risk is conceptualized, by practitioners as well 

as by theorists. 
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Conclusion: Bricolage, Exemplars, Disunity and Performativity 

 

 The importance of bricolage in the history of option pricing theory, especially 

in Black’s and Scholes’s work, is clear.  They followed no rules, no set methodology, 

but worked in a creatively ad hoc fashion.  Their mathematical work can indeed be 

seen as Lynch’s ‘particular courses of action with materials to hand’ (Lynch, 1985: 5) 

– in this case, conceptual materials.  Consider, for example, Black and Scholes’s use of 

Sprenkle’s work. The latter would rate scarcely a mention in a ‘Whig’ history of 

option pricing: his model is, for example, dismissed in a footnote in Sullivan and 

Weithers’ history as possessing ‘serious drawbacks’ (Sullivan and Weithers, 1994: 41).  

True, central to Sprenkle’s work was the hope that analyzing option pricing would 

reveal investors’ attitudes to risk, a goal that in the Black-Scholes-Merton analysis 

(which implies that options are priced as if all investors are entirely risk-neutral) is 

not achievable.  Yet, as we have seen, Black and Scholes’s tinkering with Sprenkle’s 

equation was the key step in their finding a solution to their differential equation, 

and ‘tinkering’ is indeed the right word.xxv 

 

 It was, however, tinkering inspired by an exemplar, the Capital Asset Pricing 

Model.  Here, the contrast with Thorp is revealing.  He was far better-trained 

mathematically than Black and Scholes were, and had extensive experience of 
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trading options (especially warrants), when they had next to none.  He and Kassouf 

also conceived of a hedged portfolio of stock and options (with the same hedging 

ratio, ), and they, unlike Black and Scholes, had implemented approximations to 

such hedged portfolios in their investment practice.  Thorp had even tinkered in 

essentially the same way as Black and Scholes with an equation equivalent to 

Sprenkle’s (equation 1 above).  But while Black and Scholes were trying to solve the 

option pricing problem by applying the Capital Asset Pricing Model, Thorp had little 

interest in the latter: he was aware of it, but not ‘at the expert level’.xxvi  Indeed, for 

him the proposition (central to the mathematics of Black and Scholes, and in a 

different way to Merton’s analysis as well) that a properly hedged portfolio could 

earn only the riskless rate would have stood in direct contradiction to his empirical 

experience.  He and Kassouf were regularly earning far more than that from their 

hedged portfolios. 

 

 For Thorp, then, to have put forward Black and Scholes’s or Merton’s central 

argument would have involved overriding what he knew of empirical reality.  For 

Scholes (trained as he was in Chicago economics), and even for Black (despite his 

doubts as to the precise extent to which markets were efficient), it was reasonable to 

postulate that markets would not allow money-making opportunities like a zero- 

(or, in Merton’s version, zero-risk) portfolio that earned more than the riskless rate.  

Thorp, however, was equally convinced that such opportunities could be found in the 
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capital markets.  The ‘conventional wisdom’ had been that ‘you couldn’t beat the 

casino’: in the terminology of economics, that ‘the casino markets were efficient’.  

Thorp had showed this was not true, ‘so why should I believe these people who are 

saying the financial markets are efficient?’ [Thorp interview]. 

 

 Theoretical commitment was thus important to the development of option 

pricing.  It was not, however, commitment to the literal truth of economics’s models.  

Black and Scholes, for example, knew (indeed, they showed: see Black, Jensen and 

Scholes, 1972) that the Capital Asset Pricing Model’s empirical accuracy was 

questionable.  That, however, did not stop them regarding the model as identifying 

an economic process of great importance.  Nor, crucially, did it deter them from 

using the model as a resource with which to solve the option pricing problem.  

Similarly, neither they, nor Merton, mistook their option model for a representation 

of reality.  Black, for example, delighted in pointing out ‘The Holes in Black-Scholes’ 

(Black, 1988): economically consequential ways in which the model’s assumptions 

were unrealistic.  For Black, Scholes, and Merton – like the economists studied by 

Yonay and Breslau (2001) – a model had to be simple enough to be mathematically 

tractable, yet rich enough to capture the economically most important aspects of the 

situations modelled.  Models were resources, not (in any simple sense) 

representations: ways of understanding and reasoning about economic processes, not 

putative descriptions of reality.  If the latter is the criterion of truth, all of the 
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financial economists discussed here would agree with their colleague Eugene Fama 

that any model is ‘surely false’ (Fama, 1991: 1590).  

 

Nor were the theoretical inspirations and commitments of option pricing 

theorists unitary.  Black-Scholes-Merton option pricing theory is central to the 

‘orthodox’ modern economic analysis of financial markets.  But that does not mean 

that Black, Scholes and Merton adhered to the same theoretical viewpoint.  They 

disagreed, for example, on the validity of the original form of the Capital Asset 

Pricing Model.  As we have seen, Merton considered the original derivations of the 

Black-Scholes equation unrigorous; Black remained to a degree a sceptic as to the 

virtues of Merton’s derivation.  Nor did this kind of disagreement end in 1973.  For 

example, to Michael Harrison, an operations researcher (and essentially an applied 

mathematician) at Stanford University, the entire body of work in option pricing 

theory prior to the mid-1970s was insufficiently rigorous.  Harrison and his colleague 

David Kreps asked themselves, ‘Is there a Black-Scholes theorem?’  From the 

viewpoint of the ‘theorem-proof culture ... I [Harrison] was immersed in’ [Harrison 

interview] there was not.  So they set to work to formulate and prove such a theorem, 

a process that eventually brought to bear modern ‘Strasbourg’ martingale theory (an 

advanced and previously a rather ‘pure’ area of probability theory).xxvii 
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Divergences of this kind might seem to be a source of weakness.  In the case of 

option pricing theory, however, they are a source of strength, even more directly so 

than in the more general case discussed by Mirowski and Hands (1998).  If the Black-

Scholes equation could be derived in only one way, it would be a fragile piece of 

reasoning.  But it can be derived in several: not just in the variety of ways described 

above, but also, for example, as a limit case of the later finite-time Cox-Ross-

Rubinstein model (Cox, Ross and Rubinstein, 1979).  Plug the lognormal random 

walk and the specific features of option contracts into Harrison and Kreps’s 

martingale model, and Black-Scholes again emerges.  Diversity indeed yields 

robustness.  For example, as Black pointed out, defending the virtues of the original 

derivation from the Capital Asset Pricing Model, that derivation ‘might still go 

through’ even if the assumptions of the arbitrage-based derivation failed.xxviii 

 

 This rich diversity of ways of deriving the Black-Scholes equation may prompt 

in the reader a profoundly unsociological thought: perhaps the equation is simply 

true?  This is where this article’s final theme, performativity, is relevant.  As an 

empirical description of patterns of option pricing, the equation started out as only a 

rough approximation, but then pricing patterns altered in a way that made it more 

true.  In part, this was because the equation was used in arbitrage.  In part, it was 

because the hypothetical world embedded in the equation (perhaps especially in 

Merton’s continuous-time derivation of it) has been becoming more real, at least in 
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the core markets of the Euro-American world.  As Robert C. Merton, in this context 

appropriately the son of Robert K. Merton (with his sensitivity to the dialectic of the 

social world and knowledge of that world), puts it, ‘reality will eventually imitate 

theory’ (Merton, 1992: 470; see Merton, 1936 and Merton, 1949). 

 

 Perhaps, though, the reader’s suspicion remains: that this talk of 

performativity is just a fancy way of saying that the Black-Scholes equation is the 

correct way to price options, but market practitioners only gradually learned that.  

Not so.  The phase of increasing empirical accuracy of the Black-Scholes equation has 

been followed by a phase, since 1987, in which the fit of the empirical prices to the 

model has again deteriorated (Rubinstein, 1994).  One way of expressing this partial 

breakdown after 1987 of the performativity of classic option theory is to note that 

while, as noted above, some of its assumptions have become more true (in part 

because of feedback loops from the theory), this has not been the case for the 

assumption of the log-normality of the price movements of stocks or other 

underlying assets.  The gigantic one-day fall of the U.S. stock market on 19 October 

1987 was a grotesquely unlikely event on the assumption of log-normality: for 

example, Jackwerth and Rubinstein (1996: 1612) calculate the probability on that 

assumption of the actual fall in S&P index futures as 10-160.  In addition, 19 October 

was far more than the disembodied rejection of the null hypothesis of log-normality.  

The fall in stock prices came close to setting off a chain of market-maker bankruptcies 
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that would have threatened the very existence of organized derivatives exchanges in 

the U.S.  The subsequent systematic departure from Black-Scholes option pricing – 

the so-called ‘volatility skew’xxix – is more than a mathematical adjustment to 

empirical departures from log-normality: it is too large fully to be accounted for in 

that way (Jackwerth, 2000).  It can in a sense be seen as the options market’s 

collective defence mechanism against systemic risk (MacKenzie and Millo, 

forthcoming). 

 

More generally, market practitioners’ adoption of financial economics has not 

rendered fully performative economics’s pervasive, often implicit, underlying 

assumption of rational egoism.  Pace Callon (1998), homo œconomicus has not in 

general been brought fully into being.  What has not to date been grasped in the 

debate over economics’s performativity (e.g. Miller, 2002) is that there exists a 

reasonably precise probe as to whether or not actors have been configured into 

homines œconomici: collective action, in other words action that advances the interests 

of an entire group but in regard to which the rational egoist will free-ride.  (A classic 

example of collective action is blood donation in a country such as the UK where 

such donation is unremunerated [Titmus, 1970].  Well-stocked blood banks are in the 

collective interest of the entire population of the UK, but a rational egoist would 

nonetheless be unlikely to donate blood because the minor inconvenience and 

discomfort involved would almost certainly outweigh the miniscule probability of 
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benefiting personally from his or her own donation.)  As the analysis by Olson (1980) 

famously shows, if all actors are homines œconomici they will all free-ride in such a 

situation, and collective action will therefore be impossible. 

 

 However, participants in financial markets have, at least to some extent, 

retained the capacity for collective action.  The very creation of the Chicago Board 

Options Exchange, which set in train the key processes that have rendered option 

theory performative, involved donations of unremunerated time that were 

structurally akin to blood donation (MacKenzie and Millo, forthcoming).  The classic 

social network analysis of option pricing by Baker (1984) can, likewise, be read as 

showing the persistence, at least in CBOE’s smaller trading crowds, of collective 

action, and, as noted above, the volatility skew can also be interpreted, at least 

tentatively, as collective action. 

 

 The analysis of economics’s performativity does not point, therefore, to the 

smoothly performed world feared by Callon’s critics such as Miller (2002).  It points 

to contested terrain.  When, in 1968, David Durand, a leading figure in the older 

form of the academic study of finance, inspected the mathematical models that were 

beginning to transform his field, he commented that ‘The new finance men ... have 

lost virtually all contact with terra firma’ (Durand, 1968: 848).  As we have seen, the 

decades since 1968 have seen the world of finance change in such a way that the 
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apparently ungrounded models that horrified Durand have gained verisimilitude as 

they have become incorporated into the structures and practices of markets.  

However, the financial markets remain, and I suspect will always remain, an only 

partially configured world.   The struggles to configure that world, and the forces 

opposing and undermining that configuring, are, and will remain, at the heart of the 

history of our times. 
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Notes 

I am extremely grateful to all the above interviewees.  Mrs. Catherine Black and the Institute 

Archives and Special Collections, MIT, kindly gave me access to the Fischer Black papers.  

Other unpublished material was generously provided by Perry Mehrling and Mark Rubinstein, 

and I am grateful to Edward Thorp, Sheen Kassouf, and Random House, Inc. for permission to 

reproduce figure 1.  Helpful comments on the first draft of this  article were received from 

Social Studies of Science’s referees, from Sheen Kassouf, William Margabe, Perry Mehrling, 

and Esther-Mirjam Sent, and from a workshop on social studies of finance held in Konstanz, 

15-18 May 2003.  The research was funded by DIRC, the Interdisciplinary Research 

Collaboration on the Dependability of Computer-Based Systems (UK Engineering and 

Physical Sciences Research Council grant GR/N13999) and by the Initiatives Fund of the 

University of Edinburgh’s Faculty Group of Social Sciences and Law.  It is being continued 

with the assistance of a professorial fellowship awarded by the U.K. Economic and Social 

Research Council. 
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Arbitrage; arbitrageur Trading that seeks to profit from price discrepancies; a 

trader who seeks to do so. 
Call See option. 
Derivative An asset, such as a future or option, the value of which 

depends on the price of another, “underlying,” asset. 
Discount To calculate the amount by which future payments must 

be reduced to give their present value. 
Expiration See option. 
Future A contract traded on an organized exchange in which 

one party undertakes to buy, and the other to sell, a set 
quantity of an asset at a set price on a given future date. 

Implied volatility The volatility of a stock or index consistent with the 
price of options on the stock or index. 

Log-normal A variable is log-normally distributed if its natural 
logarithm follows a normal distribution. 

Market maker In the options market, a market participant who trades 
on his/her own account, is obliged continuously to 
quote prices at which he/she will buy and sell options, 
and is not permitted to execute customer orders. 

Option A contract that gives the right, but not obligation, to buy 
(“call”) or sell (“put”) an asset at a given price (the 
“strike price”) on, or up to, a given future date (the 
“expiration”). 

Put See option. 
Riskless rate The rate of interest paid by a lender who creditors are 

certain will not default. 
Short selling The sale of a security one does not own, e.g. by 

borrowing it, selling it, and later repurchasing and 
returning it. 

Strike price See option. 
Swap A contract to exchange two income streams, e.g. fixed-

rate and floating-rate interest on the same notional 
principal sum. 

Volatility The extent of the fluctuations of the price of an asset, 
conventionally measured by the annualized standard 
deviation of continuously-compounded returns on the 
asset. 

Warrant A call option issued by a corporation on its own stock.  
Its exercise typically leads to the creation of new stock 
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rather than the transfer of ownership of existing stock. 

 
Table 1.  Terminology. 
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 the covariance of the price of an asset with the general level of the 
market, divided by the variance of the market 

c strike† price of option 

ln natural logarithm 
N the normal or Gaussian distribution function 
r riskless† rate of interest 

 the volatility† of the stock price 
t time 
w warrant or option price 
x stock price 
x* stock price at expiration† of option 
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Table 2.  Main notation 
 
For items marked† see the glossary in table 1. 
. 
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Figure 1.  ‘Normal price curves’ for a warrant.  From Edward O. Thorp and Sheen T. 

Kassouf, Beat the Market: A Scientific Stock Market System (New York: Random House, 

1967), 31.  S is their notation for the price of the common stock. 
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Figure 2.  One of Black’s sheets (courtesy Mark Rubinstein).  The numbers on the 
extreme left hand side of the table are stock prices, the next set of numbers are strike 
prices, and the large numbers in the body of the table are the Black-Scholes values 
for call options with given expiry dates (e.g. July 16, 1976) at particular points in 
time (e.g. June 4, 1976).  The smaller numbers in the body of the table are the option 

“deltas” ( multiplied by 100)  A delta of 96, for example, implies that the value of 

the option changes by $0.96 for a one dollar move in the stock price.  The data at the 
head of the table are interest rates, Black’s assumption about stock volatility, and 
details of the stock dividends. 
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iSee, for example, Mirowski (1989 and 2002), Klaes (2000), Sent (1998), Weintraub (1991), Yonay  

(1994), Yonay and Breslau (2001). 

ii Examples include Knorr Cetina and Bruegger (2002), Izquierdo (1998 and 2001), Lépinay (2000), 

Lépinay and Rousseau (2000), MacKenzie (2001), Millo (forthcoming), Muniesa (2000), Preda (2002).  

This  body of work interacts with a pre-existing tradition of the sociology and anthropology of 

financial markets, such as Abolafia (1996 and 1998), Baker (1984), Hertz (1998), Smith (1999). 

iii Data from Bank for International Settlement, www.bis.org.  These figures are adjusted for the most 

obvious forms of double-counting, but still arguably exaggerate the economic significance of 

derivatives markets.  Swaps, for example, are measured by notional principal, when this is not in fact 

exchanged.  See also note 22 below.  

iv Aside from the recollections of Black and Scholes themselves (Black, 1989; Scholes, 1998), the main 

existing history is Bernstein (1992: chapter 11), which eschews detailed mathematical exposition.  

More mathematical, but unfortunately somewhat Whiggish (see below), is Sullivan and Weithers 

(1994). 

v Bricoleur is French for odd-job person. Lévi-Strauss (1966) introduced the Anglo-Saxon social 

sciences to the metaphor. Its appropriateness to describe science is argued in Barnes (1974, chapter 3). 

vi ‘Contango’ was the premium paid by the buyer of a security to its seller in return for postponing 

payment from one settlement date to the next. 

http://www.bis.org/
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vii Bachelier (1900: 21, 35, 37); the quotations are from the English translation (Bachelier, 1964: 17, 28-

29, 31).  In the French market studied by Bachelier, option prices were fixed and strike prices variable 

(the reverse of the situation studied by the American authors discussed below), hence Bachelier’s 

interest in the determination of strike prices rather than option prices. 

viii Interviews by the author drawn on in this paper are listed as an appendix 

ix Readers of Galison (1997) will not be surprised to discover there are deep issues here as to the 

meaning of ‘random’, in particular as to the precise nature of the stochastic dynamics of stock prices.  

Unfortunately, these cannot be discussed here. 

x To avoid confusion, I have made minor alterations (e.g. interchanging letters) to the notation used by 

the authors whose work is described, and have sometimes slightly rearranged the terms in equations.  

More substantial differences between their mathematical approaches are preserved. 

xi Stock price ‘trend’ was measured by ‘the ratio of the present price to the average of the year’s high 

and low’ (Kassouf, 1965: 50). 

xii The curves are of course specific to an individual warrant, but as well as providing their readers 

with Kassouf’s formula for calculating them Thorp and Kassouf (1967: 78-79) provided standardized 

‘average’ curves based on the prices of 1964-66. 

xiii As Thorp explained (Thorp, 1973: 526) ‘to sell warrants short [and] buy stocks, and yet achieve the 

riskless rate of return r requires a higher warrant short sale price than for the corresponding call 

[option]’ under the Black-Scholes assumptions.  Thorp had also been selling options in the New York 

market, where the seller did receive the sale price immediately (minus ‘margin’ retained by the 

broker), but the price discrepancies he was exploiting were gross (so gross he felt able to proceed 

without hedging in stock), and thus the requisite discount factor was not a salient consideration. 

xiv See Treynor (1962).  The dating of this unpublished paper follows a private communication to the 

author from Jack Treynor, 4 March 2003.  See also Sharpe (1964), Lintner (1965), Mossin (1965).  

Treynor’s typescript draft was eventually published as Treynor (1999). 
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xv Treynor interview; Black (1989: 5).  Treynor and Black did not publish their work immediately: it 

eventually appeared in 1976.  The corrected differential equation is equation 2 of their paper (Treynor 

and Black 1976: 323). 

xvi Unfortunately, I have been unable to locate any contemporaneous documentary record of this 

initial phase of Black’s work on option pricing, and it may be that none survives.  The earliest extant 

version appears to date from August 1970 (Black and Scholes, 1970a), and is in the personal files of 

Prof. Stewart Myers at MIT (I am grateful to Perry Mehrling for a copy of this paper).  There is an 

October 1970 version in Fischer Black’s papers (Black and Scholes, 1970b).  Black’s own account of the 

history of option formula (Black, 1989: 5), contains only a verbal description of the initial phase of his 

work.  It seems clear, however, that what is being described is the ‘alternative derivation’ of the 

October paper (Black and Scholes, 1970b: 10-12): the main derivation in that paper and in Black and 

Scholes (1970a) is the hedged portfolio derivation described below, which was chronologically a later 

development. 

xvii Thus in Black and Scholes (1970b: 8-9) they show that the covariance of the hedged portfolio with 

the overall level of the market was zero, assuming that in small enough time intervals changes in 

stock price and in overall market level have a joint normal distribution. Using the Taylor expansion of 

w, Black and Scholes showed that the covariance of warrant price changes with market level changes 

is:  cov (x2, m), where “cov” indicates covariance and m is the change in market level.  If x 

and m are jointly normally distributed over small time periods, cov (x2, m) is the covariance of the 

square of a normal variable with a normal variable, which is always zero.  With a zero covariance 

with the market, the hedged portfolio must, according to the Capital Asset Pricing Model, earn the 

riskless rate of interest. 

xviii A quadratic utility function has the form U(y) = l + my + ny2, where l, m, and n are constant.  n 

must be negative if, as will in general be the case, ‘the investor prefers smaller standard deviation to 
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larger standard deviation (expected return remaining the same)’ (Markowitz, 1959: 288), and negative 

n implies that above a threshold value utility will diminish with increasing returns.  Markowitz’s 

position is that while quadratic utility cannot reasonably be assumed, a quadratic function centred on 

expect return is a good approximation to a wide range of utility functions: see Levy and Markowitz 

(1979). 

xix See note 17 above for how Black and Scholes demonstrated  = 0 in the October 1970 version of 

their paper. 

xx Fischer Black interviewed by Zvi Bodie, July 1989.  I’m grateful to Prof. Bodie for a copy of the 

transcript of this unpublished interview. 

xxi See Jarrow (1999), though Jarrow has in mind a sense of ‘changed the world’ weaker than 

performativity. 

xxii Data from Bank for International Settlements, www.bis.org.  Many over-the-counter derivatives 

positions are closed out by entering into offsetting derivatives contracts, so the comparison probably 

overstates the relative importance of the over-the-counter market, but it is nonetheless substantial. 

xxiii See also Hull (2000: 54) on the extent to which typical assumptions of finance theory are true of 

major investment banks. 

xxiv Beck (1992).  For one of the few treatments bringing financial risk (but not option theory) into the 

discussion, see Green (2000). 

xxv It is used in a one-sentence summary of Black’s own history (Black, 1989: 4), but the summary is 

probably an editorial addition, not Black’s own. 

xxvi Edward O. Thorp, email message to author, 19 October 2001. 

xxvii See Harrison and Kreps (1979) and Harrison and Pliska (1981).  The first derivation of the Black-

Scholes formula that Harrison and Kreps would allow as reasonably rigorous is in Merton (1977).  

This latter paper explicitly responds to queries that had been raised about the original derivation.  For 

http://www.bis.org/
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example, Smith (1976: 23) had noted that the option price, w, is, in the original work, assumed but not 

proved ‘to be twice differentiable everywhere’. 

xxviii Fischer Black interviewed by Zvi Bodie, July 1989. 

xxix In the Black-Scholes-Merton model, the relationship of implied† volatility to strike† price is a flat 

line.  Since October 1987, however, the relationship has become skewed, with options with low strike 

prices having higher implied volatilities than those with higher strike prices (Rubinstein 1994).  The 

option market has come to ‘expect’ crashes, in other words. 


