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Abstract

Turingmachines build the traditional foundation of the theory of computation and
complexity. However, concrete Turing machines are often only sketched out. Even
if authors define the complete machine, they leave the invariants to figure out for
the reader. Moreover, it is common to employ the Church-Turing thesis, to (infor-
mally) conclude that a function is Turing-computable. Reasons for that are mani-
fold. Turingmachines are very low-level, because the operations on tapes are prim-
itive. They are also non-compositional; control-flow operators like sequential com-
position and loops are not available. Reasoning about invariants and concrete ma-
chine states is tedious, because the execution of the machine could proceed from
one state of the machine to any other state; the set of states may also be huge for
complex machines.

In this thesis, we fill these gaps. We present a framework developed in the theo-
rem prover Coq, in that we can define, specify, and formally verify multi-tape Tur-
ing machines. The framework eases programming and verification of Turing ma-
chines, because it provides abstractions like values and control-flow operators. We
showcase the power of this framework by programming and verifying a multi-tape
Turingmachine that simulates a two-stackmachine for the call-by-value λ-calculus.
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Chapter 1

Introduction

Although Turing machines are a simple (but not quite simplistic) model of compu-
tation, there are not many rigorous proofs about Turing machines in the literature.
We think that the following points are reasons for that. First, their semantics is un-
structured: from each state of the machine, the execution can proceed in every other
state, similar to the infamous goto statement [7]. But even worse, Turing machines
are not compositional. Sequential composition or loops of Turing machines are not
per se available. Even the formal specification of machines is a burden, because
complex machines may have a huge number of internal states. Last but not least,
they are low-level, because the operation on tapes are primitive: read a symbol from
the tape, write a symbol to the tape, or move the (read/write) head in a direction.

For the above reasons, textbooks like Boolos et al. [4] leave out detailed proofs of
correctness. They also often only give an informal description of machines, which
obviously makes formal reasoning impossible. Even if they define the whole ma-
chine, they leave out formal specifications of invariants to figure out for the reader.
To establish that a function is Turing computable, authors often give an informal
description of the algorithm and conclude, using the Church-Turing thesis, that the
function is Turing-computable. Or they switch to another abstract machine model,
but define the compilation function between the models of computation only infor-
mally.

In this thesis, we aim to define, specify, and formally verify Turing machines in a
framework built in the theorem prover Coq [16]. First of all, we address the prob-
lems above. Instead of defining machines in terms of transition tables, we com-
pose machines using functions of Coq’s dependent type theory – the Calculus of
(Co)Inductive Constructions (also known as CIC). For example, we define a function
that builds the sequential composition of two machines. To eliminate the need to
reason about concrete machine states, we give all states a label (e.g. true or false)
and only have to reason about these labels. The number of labels is always reason-
able small, compared to the potential huge amount of states. We address the prob-
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lem that machines are low-level, by introducing abstractions, so that we can define
Turingmachines that directly manipulate values of arbitrary encodable types. This
gives the advantages of register machines, but we are not restricted to natural num-
bers.

There are many variants of Turing machines. All variants can be shown to be com-
putationally equivalent. In this thesis, we choose multi-tape Turing machines with
arbitrary finite alphabets. Our plan is that each tape should contain a value. We
choose a finite model of tapes. This means that each tape has only finitely (but
arbitrarily) many symbols.

1.1 Contributions

We formalise a variant of deterministic multi-tape Turing machines in the interac-
tive theorem prover Coq. We build a framework for programming and formally
verifying correctness and time complexity of Turing machines. Our framework ex-
tends the framework by Asperti and Ricciotti [2] in the interactive theorem prover
Matita [3]. Compared to their framework, we eliminate the need to reason about
concrete machine states and introduce more general control-flow operators. We in-
crease the level of programming abstraction and make it possible that Turing ma-
chines can directly manipulate values of arbitrary encodable types. We show that
our framework is strong enough to implement and verify a Turing machine that
simulates a two-stack machine for a variant of the λ-calculus. We formally prove
that the halting problem of this abstract machine reduces to the halting problem of
multi-tape Turing machines. Thereby, this work is the last step to formally prove
that multi-tape Turing machines can simulate the λ-calculus.

1.2 Related Work

Asperti and Ricciotti [1] formalise single-tape Turing machines over arbitrary fi-
nite alphabets in the interactive theorem prover Matita. Matita uses the same con-
structive type theoretic foundation as Coq. In [2], they formalise multi-tape Tur-
ing machines in Matita. They introduce the notion of realisation for specifying the
semantics of concrete Turing machines. They define and verify a universal Tur-
ing machine and also formalise the reduction from multi-tape Turing machines to
single-tape Turing machines. Furthermore, they propose the formalisation of Tur-
ing machines as a benchmark for comparing proof assistants.

Xu, Zhang, and Urban [17] formalise single-tape Turing machines over a binary
alphabet in Isabelle/HOL. They follow the textbook of Boolos et al. [4] and use
Hoare-logic to specify the semantics of concrete Turing machines. They implement
formally verified translation functions from abacus programs and partial recursive
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functions to Turing machines and prove the undecidability of the halting problem
of Turing machines.

Ciaffaglione et al. [6] define tapes of Turing machines as infinite streams. They
verify Turing machines using induction and co-induction and also show the unde-
cidability of the halting problem in Coq.

Forster, Heiter, and Smolka [12] formally reduce the halting problem of single-tape
Turingmachines to the Post correspondence problem (PCP) in Coq. They use the same
definition of Turing machines as we use, but restricted to one tape. This definition
of single-tape Turing machines was originally presented in [1].

There are other mechanisations of abstract machine models. For example, Forster
and Smolka [10] formalise the theory of computation in Coq, based on the lan-
guage L, which is also known as the (weak) call-by-value λ-calculus. Norrish [15]
formalises computability theory in HOL4. He considers a variant of the λ-calculus
and recursive functions, and show that both models of computation are computa-
tionally equivalent. Kunze et al. [13] formalise reductions from the programming
language L to several stack-machines. The stack-machine for that we build a simu-
lator is a variant of a machine of this paper.

1.3 Outline

In Chapter 2, we define the notion of multi-tape Turing machines. We also intro-
duce means to specify the semantics of concrete machines. In Chapter 3, we define
primitive machines, on which all our machines are based. In Chapter 4, we define
control-flow operators. In Chapter 5, we show how to combine machines with dif-
ferent alphabets and numbers of tapes. We build simple machines in Chapter 6. In
Chapter 7, we introduce abstractions that enable the programmer to directly ma-
nipulate values, and we show complex case-studies. In Chapter 8, we develop our
final case-study where we implement and verify a Turing machine that simulates a
two-stackmachine for L and show that the halting problem of this machine reduces
to the halting problem of multi-tape Turing machines. We conclude and discuss
possible future work in Chapter 9. In the appendix, we present pearls of the Coq
development of this thesis.

Throughout the thesis, we use mathematical notation, the reader is not required
to be expert in type theory. In the PDF version of this thesis, all definitions and
lemmas are hyperlinked to the documented online source code of the Coq imple-
mentation. The source code is tested to compile with Coq versions 8.7 and 8.8.
The home page of this thesis contains the PDF version, the source code, and online
documentation:

https://www.ps.uni-saarland.de/~wuttke/bachelor/

https://www.ps.uni-saarland.de/~wuttke/bachelor/


Chapter 2

Definitions

In this chapter, we formally define multi-tape Turing machines. We take the defini-
tion of multi-tape Turing machines and their tapes from Asperti and Ricciotti [2].
We introduce notions for specifying correctness and time complexity of machines,
where the former is also based on [2].

2.1 Preliminary Definitions

2.1.1 Notational Conventions

The symbols 1, B, N, X×Y, X+Y, O(X), and L(X) stand for the well-known standard
types. T stands for the type of types and P for the type of propositions. The unit
element () is the only element of 1.

∑
a:A B(a) denotes sigma types, i.e. dependent

pairs, with the projections π1 and π2. We write (a, b) for elements of sigma types.
For (named) tuples A = (a : X, b : Y, c : Z), we use subscripts, i.e. aA, for the
projections. We use the symbols ∅ and bxc as elements of the type O(X). Fn :={
0, . . . , n − 1

}
is the type with n elements. We use indices i : Fn for vector-access

x[i] with x : Xn, where Xn denotes the type of vectors over X of size n. We usually
leave subscripts out if they are clear from the context.

2.1.2 Relations

We define the semantics of concrete Turing machines in terms of relations. We
write R ⊆ A × B as a notation for R : A → B → P. We call relations of the form
R ⊆ A × (B × A) labelled relations (labelled over B) and write R ⊆ A × B × A. We
identify unit-labelled relations R ⊆ A× 1×A with binary relations R ⊆ A×A. We
use λ-notation to define relations.

We use the following standard relational operators:
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Definition 2.1 (Relational operators) Let R, S ⊆ A× B and T ⊆ B× C.

R ∩ S := λx y. R x y∧ S x y

R ∪ S := λx y. R x y∨ S x y

R ◦ T := λx z. ∃y. R x y∧ T y z

Note that if we compose a binary relation R ⊆ A × A with a labelled relation S ⊆
A× B×A, we get a labelled relation R ◦ S ⊆ A× B×A.

We use
⋃
c:C R(c) as a notation for λa b. ∃c. R(c) a b. We also define the reflexive

transitive closure of binary relations, also known as relational Kleene star:

Definition 2.2 (Kleene star) Let R ⊆ A×A. The relation R∗ is defined inductively:

R∗ x x

R x y R∗ y z

R∗ x z

The relational power operator composes a relation k times.

Definition 2.3 (Relational power) Let R ⊆ A × A. The relation Rk is defined induc-
tively:

R0 x x

R x y Rk y z

R(S k) x z

We have an operator that restricts the label B of a labelled relation and yields a
binary relation:

Definition 2.4 (Relational restriction) Let R ⊆ A× B×A and y : B.

R|y := λx z. R x (y, z)

Similarly, we can define an operator that takes a binary relation and yields a labelled
relation where we fix the label.

Definition 2.5 (Relational fix) Let R ⊆ A×A and y : B.

R||y := λx (y ′, z). R x z∧ y ′ = y

Definition 2.6 (Relational inclusion and equivalence) Let R, S ⊆ A×A.

R ⊆ S := ∀x y. R x y→ S x y

R ≡ S := R ⊆ S ∧ S ⊆ R

https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Relations.html#rintersection
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Relations.html#runion
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Relations.html#rcomp
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Relations.html#rUnion
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Relations.html#star
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Relations.html#pow
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Relations.html#restrict
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Relations.html#rfix
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Relations.html#subrel
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Relations.html#eqrel
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2.1.3 Retractions

Retractions are a natural way to formalise injections f together with their partial
inversion function f−1.

Definition 2.7 (Retraction) Let A,B : T. A pair of functions f : A → B, f−1 : B →
O(A) is called a retraction from A to B, if ∀x y. f−1(y) = bxc ↔ y = f(x).

The direction from right to left of Definition 2.7 means that f−1 inverses f. It is
equivalent to the following commutative diagram:

A B

O(A)

f

b·c
f−1

The direction from left to right of Definition 2.7 means that f−1 only maps values
back that are in the image of f. This property is called tightness.

We write f : A ↪→ B when we assume that the pair (f, f−1) is a retraction. Note that
this notation introduces two names for functions (f : A → B and f−1 : B → O(A)),
but mostly we use the name f for the pair of both functions.

Lemma 2.8 (Basic properties of retractions) Let f : A ↪→ B.

1. ∀(x : A). f−1(f(x)) = bxc

2. ∀(y : B). f−1(y) = ∅ → ∀(x : A). f(x) 6= y

3. f : A→ B is injective, i.e. ∀x y. f(x) = f(y)→ x = y

4. ∀(x y : A). f−1(f(x)) = byc → x = y

Proof Claim 1 and 2 are direct consequences of Definition 2.7. Claim 4 follows by
Claim 3.

Proof of Claim 3. Let x, y : A and f(x) = f(y). We have to show x = y. It is enough
to show bxc = byc. By Claim 1, we know bxc = f−1(f(x)) and byc = f−1(f(y)).
Therefore, it is enough to show that f−1(f(x)) = f−1(f(y)). This is trivial because
we assumed f(x) = f(y). �

Definition 2.9 (Basic retractions) Let A and B be types. We define the retractions
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RetrId : A ↪→ A, RetrLft : A ↪→ A+ B, and RetrRgt : B ↪→ A+ B:

RetrId(x) := x RetrId−1(x) := bxc

RetrLft(x) := inl x RetrLft−1(z) :=

{
bxc z = inl x

∅ z = inr y

RetrRgt(y) := inr y RetrRgt−1(z) :=

{
∅ z = inl x
byc z = inr y

Definition 2.10 (Composition of retractions) Let f : A ↪→ B and g : B ↪→ C. Then
g ◦ f : A ↪→ C is defined as the following retraction:

(g ◦ f) (a) := g(f(a))

(g ◦ f)−1 (c) :=

{
f−1(b) g−1(c) = bbc
∅ g−1(c) = ∅

2.2 Machines and Tapes

We use the definition of multi-tape Turing machines, their tapes, and semantics
from Asperti and Ricciotti [2].1

Definition 2.11 (Multi-tape Turing machine) An n-tape Turing machine over a finite
alphabet Σ is a tupleM = (Q, δ, start, halt) where

• Q is a finite type

• δ : Q× (O(Σ))n → Q× (O(Σ)×Move)n

• start : Q

• halt : Q→ B

There are three possible movements: Move ::= L | R | N.

We write TMnΣ for the type of n-tape Turing machines over the alphabet Σ.

While we parametrise Definition 2.11 over the alphabet Σ and the number of tapes
n, we abstract the finite type Q of states inside the type of Turing machines. The
transition function δ yields for every state and vector of n read symbols the new
state and for every tape an optional symbols to write and a direction to move. The
read symbols are also optional, since it can be the case that there is no symbol under
the head of a tape. start is the start state of the machine and halt represents the

1Asperti and Ricciotti [2] restrict machines to have n > 0 tapes. We do not have this restriction.
We actually define a 0-tape machine Null, see Section 3.1.

https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.TM.html#mTM
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.TM.html#move
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subset of halting states. Tuples of the type O(Σ) × Move are called actions. They
are referred to with the symbol ActΣ or Act if Σ is clear. Our machines behave
deterministically, because δ is a function.

Whenwewant to verify complexmachines, we do not want to reason about concrete
machine states, because the number of states of a machine could be huge. Reason-
ing about all states of a machine is thus unfeasible. We still need to reason about
states, but we do not need to distinct most of the states. We introduce the notion
of labelled machines, where we assign a label to every state. A label type could be,
for example, the type B. Then we only distinct between two kinds of states. If L is
a finite type, thenM = (M ′, lab) is a labelled machine, whereM ′ is an unlabelled
machine and lab : QM ′ → L is called the labelling function ofM. The value of lab
is irrelevant for non-terminating states. The function lab partitions the terminat-
ing states. This means that all terminating states with the same label can be seen
semantically equivalent. We write TMnΣ(L) for the type of labelled machines over
L.2 We identify unit-labelled machines TMnΣ(1) with unlabelled machines TMnΣ.
We use the symbol M for both labelled and unlabelled machines TMnΣ. It should
however be always clear from the context, whether M is a labelled or unlabelled
machine.

On a tape, arbitrarily much memory can be allocated. However, every tape has
only finitely many symbols, i.e. there is a left-most and a right-most symbol. A
tape essentially is a triple (ls,m, rs), where the symbolm is the symbol underwhich
the (read/write) head of tape is. It is essential that the symbol lists (ls and rs) are
ordered such that the head of the list is the symbol next to the symbolm. When we
think of tapes as a finite sequence of symbols from left to right, this means that ls
is stored in reversed order.

There are three cases where there is no current symbol: the tape can be completely
empty, or the head can be to the left (or right) outermost of a non-empty tape. For-
mally, tapes are defined inductively:

Definition 2.12 (Tape) Let Σ : T. Then TapeΣ is defined as the inductive type:

TapeΣ ::= niltape

| leftof (r : Σ) (rs : L(Σ))

| midtape (ls : L(Σ)) (m : Σ) (rs : L(Σ))

| rightof (l : Σ) (ls : L(Σ))

Recall that we leave the subscript Σ out, if it is clear from the context.
2Formally, the type is defined as a sigma type: TMn

Σ(L) :=
∑
M′ :TMnΣ

(
QM′ → L

)
. We use the

projection π1 implicitly and write labM for π2(M).

https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.TM.html#tape
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Nowwe can define the configuration of amulti-tape Turingmachine. It is captured
by the current state and the vector of the n tapes:

Definition 2.13 (Configuration) A configuration of M : TMnΣ is a tuple c = (q, t),
where q : QM and t : TapenΣ. We write ConfM := QM × TapenΣ for the type of configura-
tions ofM.

The function mv : Move→ TapeΣ → TapeΣ moves a tape in a direction.

Definition 2.14 (Tape movement)
mv L (leftof r rs) := leftof r rs mv R (leftof r rs) := midtape nil r rs

mv L (midtape nilm rs) := leftof m rs mv R (midtape ls m nil) := rightof m ls

mv L (midtape (l :: ls)m rs) := midtape ls l (m :: rs)mv R (midtape ls m (r :: rs)) := midtape (m :: ls) r rs

mv L (rightof l ls) := midtape ls l nil mv R (rightof l ls) := rightof l ls

mv _ (niltape) := niltape mv N t := t

Note that moving further right (or left) when that tape already is to the right (or
left) of the symbols, does not change the tape.

The functions left, right : Tape→ L(Σ) return the symbols to the left (or right) side
of the head:

Definition 2.15 (left and right)

left (niltape) := nil right (niltape) := nil

left (leftof r rs) := nil right (leftof r rs) := r :: rs

left (midtape ls m rs) := ls right (midtape ls m rs) := rs

left (rightof l ls) := l :: ls right (rightof l ls) := nil

Nowwe can define the functionwr : TapeΣ → O(Σ)→ TapeΣ, thatwrites an optional
symbol to a tape. When we write bac, we get a midtape, where the left and right
symbols remain unchanged and a is now in the middle. For ∅, the tape remains
unchanged. Note that there is no way to decrease the number of symbols on a tape
or to write “blank” symbols.

Definition 2.16 (wr)

wr t ∅ := t

wr t bac := midtape (left t) a (right t)

To define the function step : Conf → Conf, we need to know the symbols on the
tapes. Therefore, we define a function current : TapeΣ → O(Σ). It returns ∅ if the
head is not under a symbol, and bmc if the head is under the symbolm.

https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.TM.html#mconfig
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.TM.html#tape_move
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.TM.html#left
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.TM.html#tape_write
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Definition 2.17 (current) The function current : TapeΣ → O(Σ) is defined by

current (midtape ls m rs) := bmc
current _ := ∅

We can state a correctness lemma of the function wr:

Fact 2.18 (Correctness of wr) For all tapes t and symbols a : Σ:

1. right(wr t bac) = right(t)

2. left(wr t bac) = left(t)

3. current(wr t bac) = bac

We can now define the function step : Conf → Conf. First, the machine reads all the
current symbols from the tapes. We apply this vector and the machine state to the
transition function δ. Then, each tape writes the symbol and moves its head into
the direction that δ yielded for it. The machine ends up in a new state q ′.

Definition 2.19 (step)

doAct t (s, d) := mv d (wr t s)

step (q, t) := let (q ′, act) := δ(q,map current t) in

(q ′,map2 doAct t act)

To define the execution of a machine, we first define an abstract recursive function
loop : (A→ A)→ (A→ B)→ A→ N→ O(A) (for every A : T):

Definition 2.20 (loop)

loop f h a k :=


bac h(a)

∅ ¬h(a)∧ k = 0

loop f h (f a) (k− 1) ¬h(a)∧ k > 0

We can show basic facts about loop.

Lemma 2.21 (Basic facts about loop) Let k, l : N and a, b, c : A.

1. If k 6 l and loop f h a k = bbc, then loop f h a l = bbc.

2. If loop f h a k = bbc and loop f h a l = bcc, then b = c.

3. If loop f h a k = bbc, then h(b) = true.

https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.TM.html#current
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.TM.html#step
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Prelim.html#loop
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Prelim.html#loop_monotone
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Prelim.html#loop_injective
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Prelim.html#loop_fulfills
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4. If h a = true, then loop f h a k = bac.

5. If h a = true and loop f h a k = bbc, then a = b.

Proof Claims 1, 2, and 3 follow by induction on k : N. Claim 4 follows byDefinition.
Claim 5 is a direct consequence of claim 4. �

We instantiate the abstract loop function and get a function loopM : Conf → N →
O(Conf) that executes k steps of the machine:

Definition 2.22 (Machine execution)

initConf t := (t, start)

haltConf (t, q) := halt(q)

loopM c k := loop step haltConf c k

We writeM(c) .k c ′ for loopM c k = bc ′c andM(t) .k c forM(initConf t) .k c.

All definitions, except labelled machines, are from Asperti and Ricciotti [2], with
similar names. However, the loop function was slightly changed for convenience,
so that it needs zero steps when the (abstract) starting state is a halting state.

2.3 Specification of Semantics

Wehave defined semantics formulti-tape Turingmachines. Nowwewant to define
predicates to specify the semantics of a concrete machine M : TMnΣ(L). There are
two parts of the semantics: correctness and time complexity.

The correctness part is captured by realisation of a (labelled) relation R:

Definition 2.23 (Realisation) LetM : TMnΣ(L) and R ⊆ TapenΣ × L× TapenΣ.

M � R := ∀t k q t ′. M(t) .k (q, t ′)→ R t (labM q, t ′)

Where labM : QM → L is the labelling function ofM.

If M � R, we say that M realises the relation R. Informally, this means that the
output of the machine is correct w.r.t. the relation, if the machine terminates.

To show realisation, e.g.M � R, it suffices to find a (smaller) relation R ′ and show
that it implies the (target) relation R:

Lemma 2.24 (Monotonicity ofM � R) IfM � R ′ and R ′ ⊆ R, thenM � R.

https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Prelim.html#loop_0
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Prelim.html#loop_eq_0
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.TM.html#loopM
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.TM.html#Realise
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.TM.html#Realise_monotone
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The running time part of the semantics implies termination of the machine on cer-
tain inputs. It relates the input t : TapenΣ to the number of steps that the machine
needs for the computation.

Definition 2.25 (Termination in a running time relation) Let T ⊆ TapenΣ × N.

M ↓ T := ∀t k. T t k→ ∃c. M(t) .k c.

Termination is anti-monotone. This means that it suffices for showingM ↓ T to find
a (bigger) relation T ′ and show T ⊆ T ′.

Lemma 2.26 (Anti-monotonicity ofM ↓ T ) IfM ↓ T ′ and T ⊆ T ′, thenM ↓ T .

For machines that always terminate in a constant number of steps, it is useful to
combine both predicates:

Definition 2.27 (Realisation in constant time)

M �k R := ∀t ′. ∃q t ′. M(t) .k (q, t ′)∧ R t (labM q, t ′)

Lemma 2.28 M �k R ↔ M � R ∧ M ↓ (λ_ k ′. k 6 k ′)

Lemma 2.29 (Monotonicity ofM �k R) IfM �k ′ R ′, k ′ 6 k, and R ′ ⊆ R, then
M �k R.

Asperti and Ricciotti [2] make a distinction between weak and strong realisation,
where the strong version implies termination for every input, however, in an un-
certain number of steps. We use a variant of their weak realisation. They have no
notion of time complexity. Because we do not want to reason about concrete ma-
chine states, we introduced the notion of labelled machines. The idea to label the
states of machines with elements of a finite type is due to Y. Forster and F. Kunze.
They also invented the realisation of labelled relations and the notion for time com-
plexity.

https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.TM.html#TerminatesIn
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.TM.html#TerminatesIn_monotone
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https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.TM.html#RealiseIn_monotone


Chapter 3

Primitive Machines

In this chapter, we define several classes of primitivemachines.1 Thesemachines are
defined on an arbitrary finite alphabet Σ, but they have at most one tape, and they
terminate after at most one transition. Primitive machines are the only concrete
machines for that we give transition functions δ explicitly. They are also the only
concrete machines, for that we fully specify the type of machine states Q. In the
following two chapters, we will show how to combine these machines and build
(and verify) complex machines without mentioning Q or δ again. All states and
transition functions will be derived from these machines.

3.1 Null

The machine NullΣ is parametrised over the alphabet Σ. Because Σ is always clear
from the context, we leave the index out. We fix an alphabet Σ. Null has zero tapes
and terminates immediately, i.e. after 0 steps.

Definition 3.1 (Null) Null : TM0
Σ is defined as follows:

Q := 1

start := ()

δ _ := ((), nil)

halt _ := true

Note that if we have an unlabelledmachineM : TMnΣ, we implicitly label their states
over 1 with the labelling function labM(q) := ().

The correctness relation is the universal relation, because empty vectors do not have
information. However, the correctness lemma also states that the machine termi-
nates in 0 steps.

1Asperti and Ricciotti [2] call these machines basic machines.

https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Basic.Null.html#Null
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Lemma 3.2 (Correctness of Null) Null �0 NullRel with NullRel := λ t t ′. >.

Proof By execution. The machine terminates after zero steps in the state (). �

3.2 DoAct

Machines of the next class, DoAct a : TM1Σ(L), do only one action a : Act (i.e. they
optionally write a symbol and move the head of the tape) and terminate.

Definition 3.3 (DoAct a) Let a : ActΣ. Then DoAct a : TM1Σ is defined as follows:

Q := B
start := false

δ _ := (true, [a])

halt b := b

The semantics of DoAct is easily expressed using the function doAct (see Defini-
tion 2.19). The machine terminates after one transition:

Lemma 3.4 (Correctness of DoAct) DoAct a �1 DoActRel a with

DoActRel a := λt t ′. t ′[0] = doAct t[0] a.

We define some abbreviations:

Definition 3.5 (Machine classes derived from DoAct)

Move d := DoAct(∅, d)
Write s := DoAct(bsc ,N)

WriteMove s d := DoAct(bsc , d)

3.3 Read

Read : TM1Σ(O(Σ)) is an interesting class of labelled one-tape machines. The ma-
chines of this class have one terminating state for each symbol of the alphabet Σ.
They read the current symbol from the tape and terminate in the state that corre-
sponds to that symbol. For the case that there is no current symbol, they also have
a distinct terminating state. The labelling function maps the terminating state for
the symbol s to the label bsc.

https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Basic.Null.html#Null_Sem
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Basic.Mono.html#DoAct
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Basic.Mono.html#DoAct_Sem
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Basic.Mono.html#DoAct_Derived
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Definition 3.6 (Read) The machine Read : TM1Σ(O(Σ)) is defined as follows:

Q := B+ Σ

start := inl false

δ(_, s) :=
{
(inl true, [(∅, N)]) s[0] = ∅
(inr c, [(∅, N)]) s[0] = bcc

halt (inlb) := b

halt (inr _) := true

lab (inl _) := ∅
lab (inr s) := bsc

The correctness lemma of Read states that the machine terminates after one step,
leaves the tape unchanged, and that the label of the terminating state corresponds
to the current symbol on the tape.

Lemma 3.7 (Correctness of Read) Read �1 ReadRel with

ReadRel := λ t (l, t ′). l = current t[0]∧ t ′ = t

Proof Case distinction over current t[0]. Both cases follow by executing themachine
one step. �

https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Basic.Mono.html#ReadChar
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Chapter 4

Combining Turing Machines

Recall that Turing machines are unstructured – the execution of a machine could
continue from one state to any other state of the machine. There is also no triv-
ial way how to sequentially compose two machines. We fix these problems and
introduce control-flow operators, like “if then else”, “sequential composition”, and
“while”. Thus, we do not need to define transition functions δ or even states Q for
complex machines, because we only combine machines using these operators. The
transition function of the sequential composition ofM1 andM2 is derived from the
transition functions ofM1 andM2. But maybe more importantly, this also makes
correctness of machines compositional: From the correctness of M1 and M2, we
can conclude the correctness of the sequential composition of M1 and M2. Also
note that the number of machine states can be huge for complex machines, so it is
important to not refer to any concrete machine state, either in the definition or in
the verification of a machine.1

We define control-flow operators as first-class citizen in Coq’s type theory. As a
result, we get a shallow-embedded language for programmingmulti-tape Turing ma-
chines in an imperative way. The primitive machines defined in Chapter 3 serve
as the “primitive instructions” of our language. Another possible approach, called
deep embedding, is to define a fixed syntax of a language as an inductive data type.
Wewould need a compiler from syntax trees of Turing machine programs to actual
Turing machines. This compiler would have to be extended, whenever we add a
new feature to our language. In our approach, we can just “extend” our language
by defining a function, and we use the same verification techniques (i.e. realisation
and termination) on each stage of the development.

1Using this framework, we define and verify a machine with 11537 states.
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4.1 Switch

Asperti and Ricciotti [2] define the control-flow operators sequential composition,
conditional, andwhile. Their conditional operator takes a concretemachine state as
a parameter. We noticed that this is not acceptable. We now introduce a generalised
operator on labelled machines, called Switch, and derive sequential composition
and conditional from this operator.

Definition 4.1 (SwitchM f) Let M : TMnΣ(L) and f : L → TMnΣ(L ′). We define the
machine SwitchM f : TMnΣ(L ′) with the following components:

Q := QM +
∑
l:L

Qf(l)

start := inl startM

δ (inlq, s) :=

{(
inr(labM q, startf(labM q)), (∅, N)n

)
haltM(q)

let (q ′, act) := δM(q, s) in (inlq ′, act) ¬haltM(q)

δ (inrq, s) := let (q ′, act) := δf(π1q)(π2q, s) in
(
inr(π1q, q ′), act

)
halt (inlq) := false

halt (inrq) := haltf(π1 q)(π2 q)

lab (inlq) := _
lab (inrq) := labf(π1 q)(π2 q)

In Definition 4.1, the lab value for inl is unimportant, because the lifted states ofM
are not terminating states for SwitchM f. We just use a canonical value.

Switch M f first executes a copy ofM. When it reaches a final state q ofM, it does
a “nop” action (i.e. (∅, N)n) and changes to the injection of the start state of the
machine f(labM q). When Switch M f reaches a state that is the injection of a final
state of a machine f l, it terminates. The correctness part of the semantics can be
expressed using the following lemma:

Lemma 4.2 (Correctness of SwitchM f) Let R ⊆ TapenΣ × L × TapenΣ and R ′ l ⊆
TapenΣ × L ′ × TapenΣ for all l : L. IfM � R and f l � R ′ l for all l : L, then

SwitchM f � SwitchRel R R ′

with
SwitchRel R R ′ :=

⋃
l:L

(
R|l ◦ R ′ l

)
Note that in the correctness relation, we compose the unlabelled relation R|l ⊆
TapenΣ × TapenΣ with the labelled relation R ′ l ⊆ TapenΣ × L ′ × TapenΣ. This means
that SwitchM f terminates in a state with a label of f l, which has type L ′.

https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Combinators.Switch.html#Switch
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Figure 4.1: Example of a Switch. The left box stands for the first machine M1 :

TMnΣ(B). The final states q1 and q2 are mapped to true and q3 to false. After Switch
reaches one of the injections of the terminal states q1, q2, q3 ofM1, it continues its
execution either in the top case-machine M2 or in the bottom case-machine M3.
The halting states of Switch are exactly the injections of the halting states of the
case-machines.

To specify the running time of SwitchM f, we need to know the running time rela-
tion in thatM terminates, and for each l : L the running time relation of f l. We also
need to know the correctness relation ofM, because the running time of f l depends
on the output ofM, which is the input of f l. Also, the choice of the case-machine
depends on the label of the terminating state ofM.

Lemma 4.3 (Running Time of SwitchM f) Let R ⊆ TapenΣ×L×TapenΣ, T ⊆ TapenΣ×
N, and T ′ l ⊆ TapenΣ × N for all l : L. IfM � R,M ↓ T , and f l ↓ T ′ l for all l : L, then
SwitchM f ↓ SwitchT R T T ′, where

SwitchT R T T ′ := λ t k. ∃ k1 k2. T t k1∧1+k1+k2 6 k∧∀ l t ′. R t (l, t ′)→ T ′(l) t ′ k2

We can combine the correctness and running time lemma, in caseM and every f l
terminates in constant time.

Lemma 4.4 (Correctness of SwitchM f in constant time) Let k1, k2 : N. IfM �k1 R
and f l �k2 R ′ l for every l : L, then

SwitchM f �1+k1+k2 SwitchRel R R ′

Proof Follows with the Lemmas 2.28, 4.2, and 4.3. �

https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Combinators.Switch.html#Switch_TerminatesIn
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4.1.1 Derived Operators

As mentioned above, conditional and sequential composition can be defined as
instances of the Switch operator. For the sequential compositionM1; M2 withM1 :

TMnΣ(L) andM2 : TMnΣ(L ′), the function f : L → TMnΣ(L ′), maps all labels ofM1 to
the machineM2.

Definition 4.5 (Sequential composition) LetM1 : TMnΣ(L) andM2 : TMnΣ(L ′) .

M1; M2 := SwitchM1

(
λ _. M2

)
This means that regardless in which state the machineM1 terminates, the sequen-
tial compositionM1; M2 continues its execution in the start state ofM2. The fol-
lowing lemma is the correctness lemmaof sequential composition for constant-time
termination. The version without constant-time termination, i.e. the lemma we get
notationally by removing the step numbers, holds as well.

Lemma 4.6 (Correctness of sequential composition) IfM1 �k1 R1 andM2 �k2 R2,
thenM1; M2 �1+k1+k2

⋃
l:L (R1|l ◦ R2).

Weoften have the case that the firstmachineM1 is labelled over the unit-type L = 1.
In this case, the relation is (

⋃
l:L R1|l) ◦ R2 ≡ R1|() ◦ R2 = R1 ◦ R2 by the convention

that we identify unit-labelled relations with unlabelled relations. This means that
sequential composition of two machines amounts to composing their correctness
relations.

In case eitherM1 orM2 do not have constant running time, we need the running
time lemma, which can be derived from Lemma 4.3.

Lemma 4.7 (Running Time of sequential composition) IfM1 � R1,M1 ↓ T1, and
M2 ↓ T2, then

M1; M2 ↓
(
λt k. ∃k1 k2. T1 t k1 ∧ 1+ k1 + k2 6 k ∧ ∀t ′ l. R1 t (l, t ′)→ T2 t

′ k2
)

For the conditional IfM1 ThenM2 ElseM3withM1 : TMnΣ(B),M2,M3 : TMnΣ(L), the
function f : B → TMnΣ(L) simply maps true toM2 and false toM3. The conditional,
as defined below, first executes M1. If M1 terminates in a state with label true, it
continues the execution inM2, else inM3.

Definition 4.8 (Conditional) LetM1 : TMnΣ(B),M2,M3 : TMnΣ(L).

If M1 ThenM2 ElseM3 := SwitchM1 (λb. if b thenM2 elseM3)

Lemma 4.9 (Correctness of conditional) IfM1 �k1 R1,M2 �k2 R2, andM3 �k3 R3,
then If M1 ThenM2 ElseM3 �1+k1+max(k2+k3) (R1|true ◦ R2) ∪ (R1|false ◦ R3).

https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Combinators.SequentialComposition.html#Seq
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The correctness relation (R1|true ◦R2)∪ (R1|false ◦R3) captures the idea of the follow-
ing case-distinction: If the conditional machine terminates, than the copy of M1

either terminates in a state with label true or false. In the first case, the conditional
proceeds inM2, else inM3.

The running time lemma of the conditional can also be derived from Lemma 4.3.

Lemma 4.10 (Running Time of the conditional) If M1 � R1, M1 ↓ T1, M2 ↓ T2,
andM3 ↓ T3, then

If M1 ThenM2 ElseM3 ↓(
λt k. ∃k1 k2. T1 t k1 ∧ 1+ k1 + k2 6 k ∧

∀b t ′. R1 t (b, t ′)→ if b then T2 t ′ k2 else T3 t ′ k2
)

Asperti and Ricciotti [2] also define sequential composition and a conditional oper-
ator. However, they have two fundamental differences. First, they define and verify
each operator separately. Secondly, they do not consider state labelling. Their con-
ditional operator takes one concrete “negative” state, i.e. the machine M3 is only
executed if M1 terminates in this particular state. This makes programming and
reasoning about concrete machines tedious, because complex machines also have
many states. They also have to introduce a separate notion for correctness, because
they do not have states in their original one. By introducing state-labelledmachines
and by implementing the more general Switch operator, we solve both problems.
We no longer have to specify concrete machine states in the definition and veri-
fication of machines. Moreover, we often exploit the convenient generality of the
Switch operator. For example, it can be used to implement a machine that copies
a symbol from one tape to another tape, as demonstrated in Chapter 4. Also note,
that Asperti and Ricciotti [2] have no notion of time complexity; their strong notion
of realisation only implies termination in an uncertain number of steps. The idea
of state-labelling and Switch is due to Y. Forster and F. Kunze.

4.1.2 Proof of Switch

The idea of the proofs of Lemma 4.2 and Lemma 4.3 is to abstract two features of
themachine: lifting of configurations fromone abstractmachine to another abstract
machines, and sequencing of two executions. We formalise these two concepts for
abstract machines, i.e. we argue on the abstract loop function.

For the first feature, lifting, we assume two types A, B for abstract configurations,
a function lift : A → B, two step functions f : A → A, f ′ : B → B, and two halting
functions h : A → B, h ′ : B → B. We assume that the step functions f and f ′ are
compatible with lift in non-halting states of A. Formally, this means:

∀a : A. h(x) = false→ f ′(lift x) = lift(f x) (4.1)

https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Combinators.If.html#If_TerminatesIn
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Figure 4.2: Instances of Lemma 4.11 (left) and Lemma 4.12 (right) for k = 2 as
commuting diagrams. Dotted lines denote existentials. Note that the rectangles
correspond to condition (4.1). Only the top “states” are terminating states.

The second assumption is that h ′ and h are compatible w.r.t. lift; formally:

∀a : A. h ′(lift x) = h(x) (4.2)

Under these two assumptions we can show two lemmas that essentially say that
the second abstract machine B simulates the first machine A.

Lemma 4.11 (Loop lifting) Under the assumptions (4.1) and (4.2):

∀(k : N) (a a ′ : A).
loop f h a k =

⌊
a ′
⌋
→

loop f ′ h ′ (lift a) k =
⌊
lift a ′

⌋
Proof By induction on k : N. �

Lemma 4.12 (Loop unlifting) Under the assumptions (4.1) and (4.2):

∀(k : N) (a : A) (b ′ : B).

loop f ′ h ′ (lift a) k =
⌊
b ′
⌋
→

∃(a ′ : A). loop f h a k =
⌊
a ′
⌋
∧ b ′ = lift a ′

Proof By induction on k : N. �

The Lemmas 4.11 and 4.12 are visualised in Figure 4.2.

For the second feature, sequential execution, we assume another type A with a step
function f : A→ A and two halting functions h, h ′ : A→ B. We assume, that if a is
a non-halting state w.r.t. h, then a also is a non-halting state w.r.t. h ′:

∀(a : A). h a = false→ h ′ a = false (4.3)

https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Prelim.html#loop_lift
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Lemma 4.13 (Loop merging) Under assumption (4.3):

∀(k1 k2 : N) (a1 a2 a3 : A).
loop f h a1 k1 = ba2c →
loop f h ′ a2 k2 = ba3c →
loop f h ′ a1 (k1 + k2) = ba3c

Proof By induction on k1 : N, using Lemma 2.21 (1). �

Lemma 4.14 (Loop splitting) Under assumption (4.3):

∀(k : N) (a1 a3 : A).
loop f h ′ a1 k = ba3c →
∃(k1 k2 : N) (a2 : A).

loop f h a1 k1 = ba2c∧
loop f h ′ a2 k2 = ba3c∧
k1 + k2 6 k

Proof By complete induction on k : N. �

Back to the verification of SwitchM f. In the following, we simply write Switch. For
a configuration ck, we write qk and tk for the state and tapes component of ck.

The execution steps of Switch are essentially a sequence of first, the lifted steps of
an execution of M, second, a “nop” transition, and third, the lifted steps of the
execution of f l. We give the concrete lifting functions fromM to Switch and from
f l to Switch:

Definition 4.15 (Liftings of Switch) We define the functions
liftL : ConfM → ConfSwitch and liftRl : Conff(l) → ConfSwitch for all l : L:

liftL (q, t) := (inlq, t)

liftRl(q, t) := (inr(l, q), t)

For the sequential lab, we also have to define the lifted halting function of
haltConfL : ConfSwitch → B:

Definition 4.16 (Lifted halting function)

haltConfL (inl q, t) := haltM(q)

haltConfL(inr q, t) := true

https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Prelim.html#loop_merge
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Prelim.html#loop_split
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Combinators.Switch.html#lift_confL
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Using Lemma 4.13 and 4.11, we can show the lemma we need for running time:

Lemma 4.17 (Merging parts of executions of Switch) Let t : TapenΣ, k1, k2 : N, c1 :

ConfM and c2 : Conff(labM q1).

M(t) .k1 c1 →(
f (labM q1)

)
(t1) .

k2 c2 →
Switch(t) .1+k1+k2 liftR(c2)

Proof We apply Lemma 4.13 and have to show:

1. ∀a : ConfSwitch. haltConfL a = false → haltConf a = false. This holds trivially
by case-analysis over a.

2. loop stepSwitch haltConfL (initConfSwitch t) k1 = bliftL c1c. By definition, we
have initConfSwitch t = liftL(initConfM t). The claim follows with Lemma 4.11.

3. loop stepSwitch haltConfSwitch (liftL c1) (1 + k2) = bliftR(c2)c. By definition,
we know that the first step must be a “nop” transition from liftL c1 to
liftR

(
initConff(labM q1) t1

)
. It remains to show that:

loop stepSwitch haltConfSwitch liftR
(
initConff(labM q1) t1

)
k2 = bliftR(c2)c

This follows with Lemma 4.13. �

The running time Lemma 4.3 follows directly from Lemma 4.17.

Lemma 4.18 (Splitting execution of Switch) Let t : TapenΣ, k : N, c : ConfSwitch.

Switch(t) .k c→
∃(k1 k2 : N) (c1 : ConfM) (c2 : Conff(labM q1)).

M(t) .k1 c1 ∧(
f(labM q1)

)
(t1) .

k2 c2 ∧

c = liftR(c2)

Proof Analogous to the proof of Lemma 4.17, using Lemmas 4.14 and 4.12. �

The correctness Lemma 4.2 follows directly from Lemma 4.18.

Asperti and Ricciotti [2] have a version of Lemma 4.11 and Lemma 4.13.

https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Combinators.Switch.html#Switch_merge
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q0

q1

q2

q3

(∅, N)n

Figure 4.3: Example forWhileMwithM : TMnΣ(O(B)). WhenM reaches the state q1,
the loop is continued, because q1 is in assumed to have label ∅. The other halting
states q2 and q3 have the labels btruec and bfalsec. Therefore WhileM terminates in
a state with label true or false, whenM terminates in q2 or q3, respectively.

4.2 While

The machine WhileM essentially behaves like a “do-while” loop in imperative lan-
guages like C. At the end of the execution of the loop bodyM,M decides either to
continue or break out of the loop. IfM terminates in a state with label ∅, then the
loop is continued, and ifM terminates in blc, the loop breaks and While M termi-
nates in a state with label l.

Definition 4.19 (WhileM) Let M : TMnΣ(O(L)) and def : L. We define While M :

TMnΣ(L) with the following components.

Q := QM

start := startM

δ (q, s) :=

{
(startM, (∅, N)n) haltM(q)

δM(q, s) ¬haltM(q)

halt q := haltM(q)∧ labM(q) 6= ∅

lab q :=

{
l labM(q) = blc
def labM(q) = ∅

In Definition 4.19, we have to assume that L is inhabited. However, the choice
of def : L is semantically irrelevant, because While M only halts in states where
labM(q) 6= ∅.

The correctness of While can be expressed using the following lemma:

https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Combinators.While.html#While
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Lemma 4.20 (Correctness of While) Let R ⊆ TapenΣ × O(L) × TapenΣ. IfM � R, then
WhileM �WhileRel R, whereWhileRel R ⊆ TapenΣ × L× TapenΣ is inductively defined
by the following two rules:

R t (blc , t ′)
WhileRel R t (l, t ′)

R t (∅, t ′) WhileRel R t ′ (l, t ′′)

WhileRel R t (l, t ′′)

We can also express the correctness relation of While using the Kleene star:

Fact 4.21 (Alternative correctness relation for WhileM)

WhileRel R ≡ (R|∅)
∗ ◦
(⋃
l:L

(
R|blc

)
||l

)

Both definitions ofWhileRel should make clear what While M does: It repeats the
execution ofM as long as it terminates in ∅, and afterM terminates in blc, WhileM
terminates in a state with label l. This is visualised in Figure 4.3.

When we want to prove WhileM � R for somemachineM : TMnΣ(O(L)) and relation
R ⊆ TapenΣ×L×TapenΣ, wemust of course have already proven thatM � R ′ for some
relation R ′ ⊆ TapenΣ × O(L)× TapenΣ. Then we apply the monotonicity Lemma 2.24
and the above correctness Lemma 4.20, and have to showWhileRel R ′ ⊆ R. We can
prove this by induction on the inductive predicate, which is equivalent to applying
the following lemma:

Lemma 4.22 (Induction forWhileRel)(
∀t t ′ l. R ′ t (blc , t ′)→ R t (l, t ′)

)
→(

∀t t ′ t ′′ l. R ′ t (∅, t ′)→ R t ′ (l, t ′′)→ R t (l, t ′′)
)
→

WhileRel R ′ ⊆ R

The running time lemma of While is dual. We define a co-inductive termination
relation WhileT R T , where R is the relation that M realises and T is the running
time relation in thatM terminates.

Lemma 4.23 (Running Time of WhileM) If M � R and M ↓ T . Then While M ↓
WhileT R T , where WhileT R T ⊆ TapenΣ × N is defined as the following co-inductive
running time relation:

T t k1 ∀t ′ l. R t (blc , t ′)→ k1 6 k
∀t ′. R t (∅, t ′)→ ∃k2. WhileT R T t ′ k2 ∧ 1+ k1 + k2 6 k

WhileT R T t k

https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Combinators.While.html#While_Realise
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When we want to show WhileM ↓ T , this is dual to showing WhileM � R. We apply
the anti-monotonicity Lemma 2.26 and the above running time lemma (where T ′ is
the running time relation in thatM terminates), and have to show T ⊆WhileT R T ′.
For that, we use the co-induction lemma ofWhileT :

Lemma 4.24 (WhileT co-induction) To show T ⊆WhileT R T ′, it suffices to show:

∀t k. T t k→
∃k1. T ′ t k1 ∧(
∀l t ′. R t (blc , t ′)→ k1 6 k

)
∧(

∀t ′. R t (∅, t ′)→ ∃k2. T t ′ k2 ∧ 1+ k1 + k2 6 k
)
.

The number k1 is the number of steps needed for the first iteration of the loop. We
have to consider all possible outputs of the first loop. IfM terminates in label blc in
k1 steps, then WhileM also only needs k1 steps. However, ifM terminates in ∅, and
WhileM needs k2 steps for all other loops, then WhileM needs 1+ k1 + k2 steps in
total. The one additional step comes from the “nop”-transition back to the starting
state.

4.2.1 Proof of While

The running time and correctness proofs are similar to the proofs of Switch, as ex-
plained in Section 4.1.2. The configurations of While are exactly the configurations
of M, so the lifting function is the identity function. However, the fundamental
difference between Switch and While is that While can execute M arbitrarily often;
it could also diverge. As a consequence, we also need complete induction on step-
numbers, in addition to the loop-splitting and loop-merging lemmas. We present
the key lemmas here and the most important parts of the proofs.

We simply write While instead of While M in this section. Since we have ConfM =

ConfWhile, we also only write Conf.

The first lemma says that an execution of While consists of an execution ofM and a
(possibly empty) continuation of While:

Lemma 4.25 (Splitting the execution of While) Let c1, c3 : Conf and k : N. Then

While(c1) .k c3 →
∃(k1 k2 : N) c2.
M(c1) .

k1 c2 ∧

While(c2) .k2 c3 ∧

k1 + k2 6 k

https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Combinators.While.html#WhileCoInduction
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Proof Follows with Lemma 4.14 and Lemma 4.11. �

We have two more splitting lemmas, one for the case that While terminates imme-
diately, and one for the case that While continues the loop.

Lemma 4.26 (Splitting, break case) Let c1, c2 : Conf, k : N, and l : L.

While(c1) .k c2 →
haltConfM c1 →
labM(q1) = blc →
c1 = c2

Proof By Lemma 2.21 (5), because c1 is a halting state of While. �

Lemma 4.27 (Splitting, continue case) Let c1, c2 : Conf, k : N.

While(c1) .k c2 →
haltConfM c1 →
labM(q1) = ∅ →

∃k ′. k = 1+ k ′ ∧ While(t1) .k
′
c2

Proof While must have taken the “nop”-transition from c1 to initConf t1, because
c1 is a halting configuration ofM but not of While. �

We now can prove the correctness Lemma 4.20 of While.

Proof We assume While(t1) .k c3 and have to show WhileRel t1 (labWhile q3, t3).
We use complete induction on k : N. By Lemma 4.25, we haveM(t1) .

k1 c2 and
While(c2) .k2 c3, for k1 + k2 6 k. Case analysis.

1. labM(q2) = blc. Then we know by Lemma 4.26, that c2 = c3. It remains
to showWhileRel t1 (l, t2). By applying the first constructor, it is enough to
show R t1 (blc , t2). This follows from the realisation ofM.

2. labM(q2) = ∅. By Lemma 4.27, we know that While(t2) .k
′
2 c3 for k2 = 1+ k ′2.

The inductive hypothesis givesWhileRel t2 (labWhile q3, t3). The goal follows
by applying the second constructor and the realisation ofM. �

For the running time proofs, we again have lemmas that “merge” executions to-
gether.
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Lemma 4.28 (Merging, break case) Let k : N, c1, c2 : Conf, and l : L.

M(c1) .
k c2 →

labM(q2) = blc →
While(c1) .k c2

Lemma 4.29 (Merging, continue case) Let k1, k2 : N, c1, c2, c3 : Conf.

M(c1) .
k1 c2 →

labM(q2) = ∅ →
While(t2) .k2 c3 →
While(c1) .1+k1+k2 c3

The running time Lemma 4.23 follows similarly, by complete induction on k : N.

4.3 Mirror

We can define amachine operator that “mirrors” amachineM. WheneverMmakes
a transition with a move to L, Mirror M moves the head to the right instead. For
example, we define a machine MoveToSymbol below, that moves the head of the
tape right, until it reads a certain symbol. Using this operator, we get a machine
“for free” that moves the head to the left instead. However, we still have to copy or
parametrise the correctness and running time relations.

Using the proof techniques developed in the previous sections, verifying the Mirror
operator is very easy. The function mirror : TapeΣ → TapeΣ swaps the left and
right part of a tape. Furthermore, we define an injective and involutive function
swap : Move→ Move that simply swaps the movements L and R.

Definition 4.30 (MirrorM) LetM : TMnΣ(L). The machine Mirror M : TMnΣ(L) has the
same components asM, except:

δ(q, s) := let (q ′, a) := δM(q, s) in
(
q ′,map (λ(w,m). (w, swapm)) a

)
The correctness and termination proofs are similar to the proofs of Switch andWhile.
The “lifting” between configurations ofM and Mirror is the injective and involutive
functionmirrorConf : Conf → Conf that simply mirrors the tapes.

Definition 4.31 (Mirror configuration) mirrorConf(q, t) := (q,map mirror t).

Lemma 4.32 (Mirroring steps) Let c1 : Conf. Then

stepM (mirrorConf c1) = mirrorConf (stepMirror c1)
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Lemma 4.33 (Mirroring executions) Let c1, c2 : Conf.

1. Mirror(c1) .k c2 →M(mirrorConf c1) .
k (mirrorConf c2)

2. M(mirrorConf c1) .
k (mirrorConf c2)→ Mirror(c1) .k c2

Proof Claim 1 follows with Lemma 4.11 and Lemma 4.32. Claim 2 follows with
Lemma 4.12 and Lemma 4.32. �

Lemma 4.34 (Correctness of Mirror) LetM � R. Then Mirror M �MirrorRel R with

MirrorRel R := λt (l, t ′). R (map mirror t) (l,map mirror t ′)

Proof Follows from Lemma 4.33 (1). �

Lemma 4.35 (Running Time of Mirror) LetM ↓ T . Then MirrorM ↓MirrorT T with

MirrorT T := λt k. T (map mirror t) k

Proof Follows from Lemma 4.33 (2). �

4.4 Relabelling Operators

The operators of the above sections of this Chapter modify the behaviour of the
machine. We can also define simple operators that modify the labelling function
lab : QM → L. This is for example useful if we want a machine to terminate in one
particular label.

Definition 4.36 (Relabel) LetM : TMnΣ(L) and g : L→ L ′.

RelabelM g := (M,g ◦ labM)

Definition 4.37 (Return) LetM : TMnΣ(L) and l ′ : L ′.

Return M l ′ := RelabelM (λ_. l ′)

The correctness for these simple operators is obvious. Note that we do not need
lemmas for running time, because Definition 2.25 of running time is defined over
the bare machine without labelling function. So the running time lemmas for M
also apply for Relabel and Return.

Lemma 4.38 (Correctness of Relabel and Return) IfM � R, then

RelabelM g �
⋃
l:L

(
(R|l) ||g(l)

)
ReturnM l ′ �

(⋃
l:L

R|l

)
||l ′
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Chapter 5

Lifting Machines

We observe that whenever we want to combine machines, the number of tapes and
alphabets of all sub-machines have to agree. For example, we have the following
typing rule for the sequential composition of labelled Turing machines:

M1 : TMnΣ(L1) M2 : TMnΣ(L2)

M1; M2 : TMnΣ(L2)

Assume that we have a one-tape machineMaux : TM1Σ that moves the head to the
right of the tape. If we need a two-tape machine M that moves both tapes to the
right, we would like to use sequential composition and move one tape after the
other tape to the right. But according to the typing rule above, we would need two
auxiliary two-tapemachinesM1 andM2, whereM1moves the first tape to the right
andM2 the second.

There are multiple ways to solve this problem. Maybe the most obvious solution
is to define a class of n-tape machinesMi : TMnΣ parametrised over the number of
tapes and the tape-index i of the tape to move. The machineMi moves the ith tape
to the right. All other tapes are “inactive” and remain unchanged. This approach of
parametrising machines over the tape-indices of “active” tapes, however, becomes
unhandy for machines with a lot of active tapes.

We choose another approach, because it is in general easier to define and verify
machines with a fixed number of tapes. We lift the one-tape machine Maux to n
different n-tape machines, for every n > 1. Asperti and Ricciotti [2] implement
such an operator that translates a one-tape machine into n-tape machines. We im-
plement a generalised operator that takes anm-tape machine and a mapping from
Fm to Fn, and yields an n-tape machine, form 6 n.

The second part of this problem is how to combine machines with different al-
phabets. For example, if we have a machine Add that adds (encodings of) natural
numbers, we could want to build a machine Sum that computes the sum of a list
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of numbers. Consider an alphabet ΣN where we could encode natural numbers
on and an alphabet ΣL(N) to encode lists of natural numbers. If the alphabet ΣN is
included in ΣL(N), we would like to lift Add to the alphabet ΣL(N), to define Sum.

Asperti and Ricciotti [2] avoid the problem of agreement of alphabets. They con-
sider a fixed alphabet to encode all needed data on and implement a universal Tur-
ingmachine. However, this approach does not scale whenwe need to encodemany
different data types. Whenever the alphabet has to be changed, they also must
change the definitions of all auxiliary machines. That is why we introduce another
operator that lifts a machine to a bigger alphabet.

Both lifting operators are easy to define and verify using the lemmas of the previous
chapter (see Section 4.1.2).

5.1 Tape-Lift

The tape-lift takes a machineM : TMmΣ (L) and a duplicate-free vector I : Fmn , and
yields a machine ⇑IM : TMnΣ(L). The tape of ⇑IM with the index i = I[j] (with
i : Fn, j : Fm) behaves exactly as the tape j ofM. All other tapes of ⇑IM that are not
in I are inactive and do not change.

The transition function of ⇑IM gets the n read symbols and selects them relevant
symbols. Then it applies the transition function δM with the selected symbols and
the current state q. δM yields anm-vector act : Actm and the continuation state q ′.
It fills “nop”-actions into act, to get an action vector act ′ : Actn.

Definition 5.1 (Vector selecting) Let X : T, m,n : N, I : Fmn , and V : Xm. Then
select I V : Xn is defined by select I V := map

(
λ(j : Fm). V[j]

)
I

Lemma 5.2 (Correctness of select) By definition, for j : Fm, we have

(select I V)[j] = V
[
I[j]
]

Definition 5.3 (Vector filling) Let X : T,m,n : N, I : Fmn , init : Xn, and V : Xm. Then
fill I init V : Xn is defined per recursion:

fill (nil) init V := init

fill (i :: I ′) init V := replace (fill I ′ (tlV)) i (hdV)

Where replace : Xn → Fn → X→ Xn replaces the ith element of a vector.

Lemma 5.4 (Correctness of fill) If I is duplicate-free, then:

1. If I[j] = i, then (fill I init V)[i] = V[j].

2. If i /∈ I, then (fill I init V)[i] = init[i].
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Proof By induction on I : Fmn . �

Definition 5.5 (⇑IM) Let M : TMmΣ (L) and I : Fmn . We define ⇑IM : TMnΣ(L). All
components are the same as inM, except:

δ(q, s) := let (q ′, act) := δM(q, select I s) in

(q ′, fill I (∅, N)n act)

Lemma 5.6 (Correctness of ⇑IM) LetM : TMmΣ (L) and I : Fmn duplicate-free. IfM �
R, then ⇑IM � ⇑I R with

⇑I R := λt (l, t ′). R (select I t) (l, select I t ′)∧ ∀i : Fn. i /∈ I→ t ′[i] = t[i]

Lemma 5.7 (Running time of ⇑IM) Let M : TMmΣ (L) and I : Fmn duplicate-free. If
M ↓ T , then ⇑RM ↓ ⇑I T with ⇑I T := λt k. T (select I t) k.

The proofs are similar to the former proofs, i.e. using Lemma 4.11 and Lemma 4.12
with the following configuration lifting function:

selectConf(q, t) := (q, select I t)

However, for the second part of the correctness, i.e. tapes that are not in I do not
change, we need another lemma about loop:

Lemma 5.8 (Mapping loops) Let A : T, f : A → A, h : A → B. Let B : T and
g : A→ B. If g(f a) = g(a) for all a : A, then

∀(k : N) (a1 a2 : A).
loop f h k a1 = ba2c →
g(a1) = g(a2)

Proof By induction on k : N. �

We apply this lemma in the proof of Lemma 5.6 with g := λ((q, t) : Conf). t[i].

5.2 Alphabet-Lift

Let M : TMnΣ(L) be a machine over the alphabet Σ, and f : Σ ↪→ Γ a retraction on
another alphabet Γ . Note that then Γ has at least as many symbols as Σ. We need a
default symbol def : Σ. In contrast to the default label we needed in the definition
of While, the choice of def is semantically relevant. This means that def should be a
symbol thatM does not expect to read. The alphabet-lift ⇑(f,def)M : TMnΓ (L) is a
machine over the bigger alphabet Γ .
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The transition function of the lifted machine ⇑(f,def)M reads the n optional sym-
bols s : O(Γ)n and tries to translate them to s ′ : O(Σ)n using the partial inversion
function f−1 : Γ → O(Σ). If the symbol τ : Γ has no corresponding symbol in Σ, it
must be translated to def. The transition function δM ofM yields the successor state
q ′ and a vector of actions act : (O(Σ)×Move)n, which is translated using f : Σ → Γ

to act ′ : (O(Γ)×Move)n.

Definition 5.9 (⇑(f,def)M) Let f : Σ ↪→ Γ , def : Σ, and M : TMnΣ(L). We define the
machine ⇑(f,def)M : TMnΓ (L) with the same components asM, except:

δ(q, s) := let (q ′, act) := δM(q,map (mapOpt (surject f def)) s) in

(q ′,map (mapAct f) act)

With surject f def : Γ → Σ:

surject f def τ :=

{
σ f−1(τ) = bσc
def f−1(τ) = ∅

and with the canonical functions mapOpt : ∀(X Y : T). (X → Y) → O(X) → O(Y) and
mapAct : ∀(Σ Γ : T). (Σ→ Γ)→ ActΣ → ActΓ .

For the correctness and running time lemmas, we also need the canonical function

mapTape : ∀(Γ Σ : T). (Γ → Σ)→ TapeΓ → TapeΣ

that maps every symbol on a tape. We write mapTapes for the respective tape-
vector function.

Lemma 5.10 (Correctness of ⇑(f,def)M) IfM � R, then ⇑(f,def)M � ⇑(f,def) R with

⇑(f,def) R := λt (l, t ′). R (mapTapes (surject f def) t) (l,mapTapes (surject f def) t ′)

Lemma 5.11 (Running time of ⇑(f,def)M) If M ↓ T , then ⇑(f,def)M ↓ ⇑(f,def) T
with

⇑(f,def) T := λt k. T (mapTapes (surject f def) t) k

The proofs are analogous to the former proofs. The configuration lifting is:

surjectConf(q, t) := (q,mapTapes (surject f def) t)
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Chapter 6

Simple Machines

In this chapter, we build and verify simple machines using the primitive machines
fromChapter 3, the operators developed inChapter 4, and the tapes-lift fromChap-
ter 5. The machines in this chapter will be useful in the next chapter. We do not
use the alphabet-lift yet. First we show how we prove correctness and termination
of machines from now on.

When we proveM � R for a machineM and its correctness relation R, we first find
a relation R ′ that M realises. We derive this relation by applying the correctness
lemmas of the control-flow operators, lifts, and concrete machines. This process is
mechanical and does in general not depend on arbitrary choices (with a few excep-
tions). The derived relation respects the “structure” of the machine. For example,
the relation of a sequential composition is the relational composition of two rela-
tions. Using the monotonicity Lemma 2.24, it remains to show R ′ ⊆ R. Because the
structure of R ′ respects the structure ofM, the proof of the inclusion also follows its
structure. For example, the relation for a conditional is (R1|true ◦ R2)∪ (R1|false ◦ R3).
From that it follows that we do a case-distinction for both branches in the proof.
Note that we do not have to reason about machine states at all, because the correct-
ness relations are only relations between tapes and labels.

WhenM always terminates in constant time k, we showM �k R instead. Using the
monotonicity Lemma 2.29, we can prove correctness and constant time at once. For
non-constant running time, we showM ↓ T for a running time relation T . For that,
we use the dual approach and apply the anti-monotonicity Lemma 2.26.

6.1 Nop

Using the tapes-lift (Definition 5.5) and Null (Definition 3.1), it is easy to define an
n-tape machine Nop : TMnΣ that does nothing. Asperti and Ricciotti [2] define this
machine directly:

Definition 6.1 (Nop) Nop :=⇑nil Null.
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Note that because Null is a 0-tape machine, and Nop is supposed to be an n-tape
machine, the index-vector must be the vector nil : F0n.

Lemma 6.2 (Correctness of Nop) Nop �0 NopRel with NopRel := λt t ′. t ′ = t.

Proof We apply the monotonicity Lemma 2.29 of �·, the correctness Lemma 3.2 of
Null, and the correctness Lemma 5.6 of the tapes-lift. It remains to show:(

λt t ′. NullRel t t ′ ∧
(
∀i : Fn. i /∈ nil→ t ′[i] = t[i]

))
⊆ NopRel

Let t, t ′ : TapenΣ. To show the equality t ′ = t we show t ′[i] = t[i] for all i : Fn. This
follows with the equality part of the relation ⇑nilNullRel, since i /∈ nil. �

Note that the correctness relation of Nop can also be expressed using the identity
relation Id:

NopRel ≡ Id.

We have the convention to define relations of concrete machines in λ-notation, i.e.
not using relational operators. Also note that the tape t ′ is, per convention, always
on the left side of the equality. These conventions make rewriting of tapes uniform;
therefore, rewriting of tapes can be automated in Coq.

6.2 WriteString

The machine WriteString d strwrites a fixed string str : L(Σ) in the direction d. It is
defined by recursion over the string:

Definition 6.3 (WriteString)

WriteString d (nil) := Nop

WriteString d (s :: nil) := Write s

WriteString d (s :: str ′) := WriteMove s d; WriteString d str ′.

Note that this is our only machine we define per recursion. The way we prove
correctness in constant time (depending on the length of str) is still the same.

The machine writes all symbols of the string str to the tape and moves in the tape
in direction d after each (but the last) symbol. When it terminates, the head of the
tape is under the last written symbol, which is the last symbol of str. It terminates
in constant time, after 2 · |str|− 1 steps.

The derived relation for WriteString is also defined per recursion over the string:
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Lemma 6.4 WriteString d str �2·|str|−1 R ′ d str with

R ′ d (nil) := NopRel

R ′ d (s :: nil) := DoActRel(bsc ,N)

R ′ d (s :: str ′) := DoActRel(bsc , d) ◦ R ′ d str ′.

Proof By induction on str : L(Σ), using the monotonicity Lemma 2.29, the correct-
ness ofNop (Lemma 6.2), the correctness ofWrite andWriteMove (which are defined
using DoAct; Lemma 3.4), and correctness of sequential composition for constant
time (Lemma 4.6). �

We define the actual relation of WriteString in terms of a function on tapes that is
also defined by recursion over str:

Lemma 6.5 (Correctness of WriteString) Let d : Move and str : L(Σ).

WriteString d str �2·|str|−1 WriteStringRel d str

withWriteStringRel d str := λt t ′. t ′ = writeStringFun d t str and

writeStringFun d t (nil) := t

writeStringFun d t (s :: nil) := wr t (bsc)
writeStringFun d t (s :: str ′) := writeStringFun d

(
doAct t (bsc , d)

)
str ′

Proof We apply the monotonicity Lemma 2.29 and have to show:

R ′ d str ⊆WriteStringRel d str

This can be shown by induction on str. �

Note that we could as well use the Mirror operator instead of parametrising the ma-
chine WritingString over the direction. In this particular example the parametrising
approach seems to be easier.

6.3 MovePar

The two-tape machine MovePar d0 d1 combines two Move machines. It first moves
the 0th tape in direction d0 and after that the 1st tape in direction d1.1

Definition 6.6 (MovePar) MovePar d0 d1 :=⇑[0](Move d0); ⇑[1](Move d1).
1To avoid confusion with zero-based indices used throughout this thesis, we write “the 0th or 1st

tape”, instead of “the first or second tape.”
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Lemma 6.7 (Correctness of MovePar) MovePar d0 d1 �3 MoveParRel d0 d1 with

MoveParRel d0 d1 := λt t
′. t ′[0] = mv d0 t[0] ∧ t ′[1] = mv d1 t[1]

Proof We have to show:

⇑[0](DoActRel(∅, d0)) ◦ ⇑[1](DoActRel(∅, d1)) ⊆MovePairRel d0 d1

We assume tape vectors t, t ′, t ′′ : Tape2Σ, such that (⇑[0](DoActRel(∅, d0))) t t ′ and
(⇑[1](DoActRel(∅, d1))) t ′ t ′′. We have to show t ′′[0] = mv d0 t[0] and t ′′[1] =

mv d1 t[1]. By definition, we know t ′[0] = mv d0 t[0] and t ′[1] = t[1] (because 1 /∈ [0]).
We also know t ′′[1] = mv d1 t ′[1] and t ′′[0] = t ′[0] (because 0 /∈ [1]). The goal follows
trivially. �

Note that this kind of proof is verymechanical: We only need to unfold the relations
and rewrite tapes. Indeed, these steps are automated in Coq. Thus, we also do not
present more proofs of this kind on paper.

6.4 CopySymbols

The machine CopySymbols h : TM2Σ, where h : Σ → B, is a compound machine
involving a While-loop. It reads a symbol on tape 0, writes it to tape 1, and moves
both tapes to right, until the read symbol satisfies h. If there was no current symbol
on tape 0, it also terminates.

We first define the machine for the step. Since we want to apply the While operator
on the step machine, it must be labelled over O(1). b()c means to break out of the
loop and ∅means to repeat the loop.

Definition 6.8 (CopySymbolsStep) CopySymbolsStep h :=

Switch (⇑[0] Read)
(λ(s : O(Σ)).

match s
[ bxc⇒

if h(x)
then Return

(
⇑[1](Write x)

)
b()c

else Return
(
⇑[1](Write x); MovePar R R

)
∅

| ∅ ⇒ Return Nop b()c
])

Note that “match [ · · · ]” denotes pattern matching our type theory.
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Lemma 6.9 (Correctness of CopySymbolsStep)

CopySymbolsStep �7 CopySymbolsStepRel

with

CopySymbolsStepRel := λt (l, t ′).
t ′[0] = t[0]∧ t ′[1] = wr t[1] bxc∧ l = b()c current t[0] = bxc∧ h(x)
t ′[0] = mv R t[0]∧ t ′[1] = doAct t[1] (bxc ,R)∧ l = ∅ current t[0] = bxc∧ ¬h(x)

t ′ = t∧ l = b()c else

Proof Mechanical, with case-analysis over current t[0]. �

We define CopySymbol by applying the While operator to CopySymbolsStep:

Definition 6.10 (CopySymbols) CopySymbols h := While(CopySymbolsStep h).

The correctness of CopySymbols can be expressed using a recursive function on
tapes:

Lemma 6.11 (Correctness of CopySymbols) CopySymbols h � CopySymbolsRel h
with CopySymbolsRel h := λt t ′. t ′ = copySymbolsFun h t and

copySymbolsFun h t :=
[t[0]; wr t[1] bxc] current t[0] = bxc∧ h(x)
copySymbolsFun h [mv R t[0]; doAct t[1] (bxc ,R)] current t[0] = bxc∧ ¬h(x)

t current t[0] = ∅

Note that the function copySymbolsFun is not structural recursive. It terminates because
tapes have only finitely many symbols.

Proof To show: WhileRel CopySymbolsStepRel ⊆ CopySymbolsRel. By While-
induction (Lemma 4.22). �

We observe that the running time of CopySymbols only depends on the 0th tape.
Therefore, we define a function copySymbolsSteps : TapeΣ → N that overestimates
the number of steps needed for the loop, depending on the 0th tape. Note that
While requires one additional step for each repeat of the loop.

Lemma 6.12 (Running time of CopySymbols) CopySymbols ↓ CopySymbolsT with
CopySymbolsT := λt k. copySymbolsSteps(t) 6 k and

copySymbolsSteps(t) :={
8+ copySymbolsSteps(mv R t) current t = bxc∧ ¬h(x)

8 otherwise
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Proof We have to show CopySymbolsT ⊆WhileT CopySymbolsStepRel (λ_ k. 7 6
k), using the co-induction Lemma 4.24. Let copySymbolsSteps t[0] 6 k. We choose
k1 := 7. We have two cases.

1. We assume CopySymbolsStepRel t (b()c , t ′). Therefore, we know that either
current t[0] = bxc with h(x) = true, or current t[0] = ∅. In both cases, we have
copySymbolsSteps t[0] = 8. Thus, we have:

k1 6 copySymbolsSteps t[0] = 8 6 k

2. We assume CopySymbolsStepRel t (∅, t ′). Therefore, we have current t[0] =
bxcwith h(x) = false, and t ′[0] = mv R t[0]. Then, we have:

1+ k1 + copySymbolsSteps t
′[0] = copySymbolsSteps t[0] 6 k �

Using the Mirror operator, we can define a machine CopySymbolsL that copies and
goes to the left instead. We also have to “mirror” the correctness relations and their
respective functions. We do not repeat the definitions here.

Definition 6.13 (CopySymbolsL) CopySymbolsL h := Mirror(CopySymbols h).

6.5 MoveToSymbol

We can define a machine MoveToSymbol h f : TM1Σ, where h : Σ → B and f : Σ →
Σ. This machine behaves similar as CopySymbols h. Instead of copying the sym-
bols from one tape to another tape, it “translates” the symbols it reads, until it
reads a symbol that satisfies the boolean predicate h. We leave out the correctness
and running time statements, as they can be derived from the statements about
CopySymbols above.

Definition 6.14 (MoveToSymbol)

MoveToSymbolStep h f :=
Switch (Read)

(λ(s : O(Σ)). match s
[ bxc⇒

if h(x)
then Return

(
Write (f x)

)
b()c

else Return
(
WriteMove (f x) R

)
∅

| ∅ ⇒ Return Nop b()c
])

MoveToSymbol h f := While(MoveToSymbolStep h f)

MoveToSymbolL h f := Mirror(MoveToSymbol h f)
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Chapter 7

Generalised Register Machines

We can define Turing machines by combining sub-machines in an imperative style,
wherewe use primitivemachines likeDoAct as the primitive instructions of our lan-
guage for Turingmachines. Furthermore, we can reusemachines in bigger contexts
(w.r.t. number of tapes and symbols). Recall that we do not reason about internal
states of machines anymore.

At this point, we want to abstract from concrete tapes. We think of tapes as registers
that may either contain a value of an arbitrary encodable type, or may be resetted.
Note that this notion of a “general register machine” is more general than usual
register machines, because registers usually can only contain numbers.

Whenwe speak of “programming” Turingmachines, this means that instead of us-
ing primitive machines (like DoAct) we only use machines that directly change the
value of a tape (like ConstrS, which increases a number). Using the definition of
value-containment, we can also formalise a “callee-saving” convention for compu-
tation of functions. Furthermore, we show a general pattern how to program and
verify Turing machines, and present more complex case studies in this chapter.

7.1 Value-Containment

We first want to define what it means that a tape t contains a value x, written as
t ' x. Tapes, as defined in Definition 2.12, are essentially a list of symbols, so we
have to linearise values to strings.

Definition 7.1 (Encodable types) We say that a type X is encodable on a finite alphabet
ΣX, if there is a function encode : X→ L(ΣX).

Morally, the encoding function should be injective. There should also be a decoding
function, such that the pair (encode, decode) is a retraction on L(Σ). As we do not
need any of these facts, we leave them out of this definition.
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We can map encodings with retractions:

Definition 7.2 (Map encodings) Let X be encodable on Σ and f : Σ ↪→ Γ be a retraction.
Then X is also encodable on Γ with the following encoding function:

encodeMap encodeΣ f (x) := map f (encodeΣ(x)).

Mapping of encodings are compatible with composition of retractions. This means
that if we map the encoding twice, this is the same as mapping the encoding with
the composition of both retractions:

Lemma 7.3 (Composition and encoding mapping) Let X be encodable on Σ with the
function encodeΣ : X → L(Σ). Let f : Σ ↪→ Γ and g : Γ ↪→ ∆ be retractions. Then there is
(extensionally) only one canonical way how X can be encoded on ∆, i.e.:

encodeMap (encodeMap f encodeΣ) g x = encodeMap encodeΣ (g ◦ f) x

For every following type Xwe define an alphabet ΣX to encode X on. If X is an type
constructor and Y is encoded on ΣY , we define ΣX(Y) as the alphabet for X(Y):

Definition 7.4 (Basic encodings)

1. We encode 1 on the empty alphabet Σ1 := ⊥ with encode () := nil.

2. The type B is encoded on itself, i.e. ΣB := B and encode(b) := [b].

3. Let X be encodable on ΣX. Then O(X) is encodable on

ΣO(X) ::= NONE | SOME | (x : ΣX)

With the retraction RetrOpt : ΣX ↪→ ΣO(X) and

encode ∅ := [NONE]

encode bxc := SOME :: encode(x)

4. Let X be encodable on ΣX and Y on ΣY . Then X+ Y is encodable on

ΣX+Y ::= INL | INR | (x : ΣX) | (y : ΣY)

With the retractions RetrInl : ΣX ↪→ ΣX+Y , RetInr : ΣY ↪→ ΣX+Y and

encode (inl x) := INL :: encode(x)

encode (inr y) := INR :: encode(y)
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5. Let X be encodable on ΣX and Y on ΣY . Then X× Y is encodable on

ΣX×Y ::= (x : ΣX) | (y : ΣY)

With the retractions RetrFst : ΣX ↪→ ΣX×Y , RetrSnd : ΣY ↪→ ΣX×Y and

encode(x, y) := encode(x) ++ encode(y)

6. Let X be encodable on ΣX. Then L(X) is encodable on

ΣL(X) ::= NIL | CONS | (x : ΣX)

With the retraction RetrList : ΣX ↪→ ΣL(X) and

encode (nil) := [NIL]

encode (x :: ls) := CONS :: encode(x) ++ encode(ls)

7. Natural numbers N are encodable on ΣN ::= S | 0 with

encode (0) := [O]

encode (S n) := S :: encode(n)

Note that we implicitlymap the encoding functions in this definition. Also note thatRetrLft :
X ↪→ X+ Y is similar to RetrInl : ΣX ↪→ ΣX+Y .

This are all encodings we need in this thesis. We say that X is minimally encodable
on ΣX, if X is encodable on ΣX according to Definition 7.4. Mapping of encodings
introduces ambiguity: It is not only possible to encode multiple types on the same
alphabet, but there may also be several ways how to encode the same type on the
same alphabet. For example, the minimal alphabet of the type X + X is ΣX+X. Al-
though there is only one way to encode X + X on ΣX+X, there are two possibilities
how to encode X: using the retraction RetrInl or RetrInr. We must deal with this
problem, when we program and verify Turing machines, by explicitly specifying
the right retractions.

If X is encodable on Σ, we encode values of X on tapes with an extended alphabet
Σ+ that has an additional start and stop symbol.

Definition 7.5 (Σ+) Let Σ : T. Then Σ+ ::= START | STOP | UNKNOWN | (s : Σ).
Also, we define the retraction RetrPlus : Σ ↪→ Σ+.

The UNKNOWN symbol is important later. We define what t ' xmeans:
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Definition 7.6 (t ' x) Let X be encodable on Σ and t : TapeΣ+ .

t ' x := ∃ ls. t = midtape ls START (encode(x) ++ [STOP])

In case the encoding is not clear, we write t 'f x with t : TapeΓ+ and x : X, when X is
minimally encodable on ΣX and f : ΣX ↪→ Γ .

Note that in Definition 7.6, we have to map the encoding of x to the extended al-
phabet Σ+ using RetrPlus. If t ' x, the head of t stands on the start symbol. To the
right, there is the encoding, which is terminated by one stop-symbol. To the left of
the head, there may be arbitrarily many “rest” symbols.

We find the convention useful that there are no further symbols beyond the stop
symbol. In future work we also want to reason about space usage of machines. If
a tape contains a value, the size of the tape (i.e. the number of symbols on it), only
depends on the length of the encoding and the number of rest symbols ls to the left.
To avoid data leaks, we have the convention to only add symbols on the left side.
We also only write on tapes, if the head of the tape is on the right-most symbol.

Definition 7.7 (Right tape) isRight(t) := ∃m rs. t = midtape ls m nil. With other
words, a tape t is right, if and only if current(t) 6= ∅∧ right(t) = nil.

7.2 Alphabet-Lifting

In Section 5.2, we defined the alphabet-lift operator. We noted that we need a se-
mantically relevant default symbol in the smaller alphabet Σ. All “programmed”
Turing machines are defined on an extended alphabet Σ+. It seems therefore use-
ful to introduce a uniform default symbol UNKNOWN to Σ+. Intuitively, nothing
can go wrong, because, by definition, UNKNOWN is not part of any encoding. This
intuition is confirmed by the following lemma:

Lemma 7.8 (surject and value-containment) Let f : Σ ↪→ Γ be a retraction. Let x : X,
where X is encodable on Σ, and t : TapeΓ+ :

mapTape (surject (RetrPlus ◦ f) UNKNOWN) t ' x ↔ t 'f x

Note that the encoding on the right side is mapped with the retraction f.

We write ⇑fM for ⇑(RetrPlus◦f,UNKNOWN)M. Note that we also use the ⇑ notation
for the tapes-lift, but it is always clear whether we mean the tape-lift or alphabet-
lift. We use the notation ⇑f; IM := ⇑I(⇑fM), for first applying the alphabet-lift, and
after that the tapes-lift.
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7.3 Value-Manipulating Machines

We have definedwhat it means that a tape contains a value. Nowwewant to define
machines that manipulate values, e.g. increase or decrease a number. Another very
useful operation is to copy a value from one tape to another tape.

7.3.1 Write Value

Wedefine awrapper around themachineWriteString fromSection 6.2. Weparametrise
WriteValue over the encoding str : L(ΣX) of a value x : X.1

Definition 7.9 (WriteValue) Let str : L(Σ)

WriteValue(str) := WriteString L (rev (START :: map RetrPlus str++ [STOP]))

The machine writes the stop symbol, the encoding str, and the start symbol in re-
versed order from right to left. After the execution of themachine, the tape contains
the value xwith the encoding str, under the precondition that the tape was initially
right.

Lemma 7.10 (Correctness of WriteValue) Let X be encodable over ΣX and str : L(Σ).

WriteValue(str) �3+2·|str| WriteValueRel(str)

WriteValueRel(str) := λt t ′. ∀(x : X). encode(x) = str→ isRight t[0]→ t ′[0] ' x.

7.3.2 Constructor and Deconstructor Machines

For each encodable type X, there is a set of machines: constructor machines and
one deconstructor machine. These machines are defined on the minimal alpha-
bet Σ+

X . Constructor machines, informally, “apply” a constructor of the inductive
type X to the value on the tape t[0]. In general, we have one constructor machine for
each constructor of the inductive type. If the constructor has additional arguments,
these are encoded on more input tapes t[1], t[2], · · · . There is only one deconstruc-
tor machine for each type. The deconstructor machine for X has one label for every
constructor of X. It makes a case-distinction over the value of the tape, and it ter-
minates in the label that corresponds to the constructor. Deconstructor machines
may have additional tapes for storing additional arguments of constructors.

1The reason why WriteValue is not parametrised over values x : X is, that we would also need to
parametrise the machine over the encoding function of X. With this approach, only the correctness
Lemma 7.10 and the correctness relation are parametrised over the encoding.

https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Code.WriteValue.html#WriteValue
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Code.WriteValue.html#WriteValue_Sem


7.3. Value-Manipulating Machines 45

Natural numbers

We consider the inductive type N, that has two constructors: S and 0. The construc-
tor machine ConstrO writes the number 0 on a right tape. The constructor machine
ConstrS assumes that t[0] contains a number n, and increases that number.

We define the 0-constructor with WriteValue:

Definition 7.11 (ConstrO) ConstrO := WriteValue [O].

Lemma 7.12 (Correctness of ConstrO) ConstrO �5 ConstrORel with

ConstrORel := λt t ′. isRight t[0]→ t ′[0] ' 0

Proof With Lemma 2.29 and 7.10. �

The S constructor overwrites the current symbol (which is the start symbol) with S
and writes a new start symbol one step left.

Definition 7.13 (ConstrS) ConstrS := WriteMove S L; Write START

Lemma 7.14 (Correctness of ConstrS) ConstrS �3 ConstrSRel with

ConstrSRel := λt t ′. ∀n. t[0] ' n→ t ′[0] ' S n.

CaseNat is the deconstructor machine for N. It reads a number from tape t[0]. If it
is 0, CaseNat leaves the number unchanged and terminates in the label false. Else,
it decreases the number and terminates in true.

Initially, the tape t[0] contains some number n. Thus, the head of t[0] must be on
the start symbol. The machine moves one step right and reads the first symbol of
the encoding. This symbol either is S or O. If the machine read the symbol O, this
means that the number n is 0, so the machine moves back to the start symbol and
terminates in the label false, indicating that the number was 0. On the other side, if
the machine read S, this means the number n is the successor of some number n ′.
To decrement n, it overwrites the current S with a new start symbol and terminates
on this symbol in the label true.

Definition 7.15 (CaseNat)

CaseNat :=
Move R ;
Switch Read

(λ(s : O(Σ+
N )). match s

[ bSc⇒Return (Write START) true
| bOc⇒Return (Move L) false
| _⇒ _
])
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Note, that the placeholder “_” stands for some unspecifiedmachine, e.g. in this case
Return Nop bwhere b : B can be chosen arbitrarily. Wedo not give this part explicitly
here, because the premise of the correctness relation of CaseNat guaranties that
there must be a symbol under the head that is either S or O, so this part of the
machine must never execute.

Lemma 7.16 (Correctness of CaseNat) CaseNat �5 CaseNatRel with

CaseNatRel :=

λt (l, t ′). ∀(n : N). t[0] ' n→
match l, n
[ false, 0⇒ t ′[0] ' 0
| true, S n ′⇒ t ′[0] ' n ′
| _ , _⇒⊥
]

Proof We know that t[0] ' n. This means t[0] = midtape ls START (Sn++O ::STOP)
for some ls. The proof is mechanical, like the above correctness proofs. It makes a
case-distinction over n. �

Note that for the case that n is 0, we could also write t ′ = t in the correctness
relation. But we have the following convention: When some tape does not change,
we use the weaker postcondition that the tape t ′ still contains the same values (and
that the same tapes are right). This convention has the advantage that when we
apply the alphabet-lift with a retraction f, we would otherwise get assumptions in
correctness proofs like:

mapTapes (surject (RetrPlus ◦ f) UNKNOWN) t =

mapTapes (surject (RetrPlus ◦ f) UNKNOWN) t ′

To show that t ′[i] contains the same value as t[i], we would have to apply a lemma.
Using this convention we get this for free.

Sum Types

Let X be encodable on ΣX and Y on ΣY . CaseSum : TM1Σ+
X+Y

(B) reads a value s : X+Y.
If it is inl x (or inr l), it replaces the INL (or INR) symbol with a new start symbol and
terminates in true (or false).

Definition 7.17 (CaseSum)
CaseSum :=

Move R;
Switch Read
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(λ(s : O(Σ+
X+Y)). match s

[ bINLc⇒Return (Write START) true
| bINRc⇒Return (Write START) false
| _⇒ _
])

Lemma 7.18 (Correctness of CaseSum) CaseSum �5 CaseSumRel with

CaseSumRel :=

λt (l, t ′). ∀(s : X+ Y). t[0] ' s→ match l, s
[ false , inl x⇒ t ′[0] ' x
| true , inr y⇒ t ′[0] ' y
| _ , _⇒⊥
]

We have one constructor machine for inl and inr, respectively. They are both analo-
gous. They overwrite the start symbolwith INL or INR andwrite a new start symbol
one step further left.

Definition 7.19 (ConstrInl) ConstrInl := WriteMove INL L; Write START.

Lemma 7.20 (Correctness of ConstrInl) ConstrInl �3 ConstrInlRel with

ConstrInlRel := λt t ′. ∀(x : X). t[0] ' x→ t ′[0] ' inl x

Option Types

The types O(X) and X + 1 are isomorphic. Furthermore, the alphabets to encode
these types on, ΣO(X) and ΣX+1, are also isomorphic. We can use this fact to derive a
deconstructor machine and constructor machines for the type O(X). Let f : ΣX+1 ↪→
ΣO(X) be the canonical retraction. Then, we can define CaseOption as ⇑f CaseSum.
However, in the case that o = ∅, the output tape t ′ contains (). Thus, the tape
has form t ′ = midtape ls START [STOP] (for some ls). However, we want that the
tape is right in this case. That is, because O(X) is not a recursive data type and
the information that o = ∅ is already encoded in the label of the state in which
CaseOption terminates. So in this case, the tape moves one step to the right:

Definition 7.21 (CaseOption)

CaseOption := If (⇑f CaseSum) Then (Return Nop true) Else (Return (Move R) false)

Lemma 7.22 (Correctness of CaseOption) CaseOption �7 CaseOptionRel with
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CaseOptionRel :=

λt (l, t ′). ∀(o : O(X)). t[0] ' o→ match l, o
[ false , ∅ ⇒ isRight(t ′[0])
| true , bxc⇒ t ′[0] ' x
| _ , _⇒⊥
]

Note that we have to add 2 extra steps: one for the conditional and one for the Move
in the ∅-case.

We can also derive the b·c constructor of O(X) from the inl constructor of X+ 1.

Definition 7.23 (ConstrSome) ConstrSome := ⇑f ConstrInl.

Lemma 7.24 (Correctness of ConstrSome) ConstrSome �3 ConstrSomeRel with

ConstrSomeRel := λt t ′. ∀(x : X). t[0] ' x→ t ′[0] ' bxc

For the ∅ constructor, we simply use WriteValue.

Definition 7.25 (ConstrNone) ConstrNone := WriteValue [NONE].

Lemma 7.26 (Correctness of ConstrNone) ConstrNone �3 ConstrNoneRel with

ConstrNoneRel := λt t ′. isRight t[0]→ t ′[0] ' ∅

Product Types

The deconstructor and constructor machines for product types have to explicitly
copy parts of values. Thus, their running time depends on the value. We use the
machines MoveToSymbol and CopySymbols.

LetX and Y be encodable onΣX andΣY . The deconstructorCasePair : TM2Σ+
X×Y

copies
the first component of the pair (x, y) : X×Y to tape 1, the second component remains
on tape 0. The machine works as follows: first it writes the stop symbol on tape 1.
Then, it seeks the last character of the encoding of x on tape 0, copies the encoding
of x from right to left to tape 1, including the start symbol. At this point, tape 0
contains (x, y) and tape 1 contains x. Then it again moves tape 0 to last symbol of
the encoding of x on tape 0 and overwrites it with a new start symbol.

Definition 7.27 (CasePair)

CasePair := ⇑[1](WriteMove STOP L);
⇑[0](MoveToSymbol f id; Move L);
CopySymbolsL g;
⇑[0](MoveToSymbol f id; Move L; Write START)
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Where f : Σ+
X×Y → B is true for symbols that are mapped from the alphabet ΣY . g(s) is true

if and only if s = START.

The correctness and termination proofs of CasePair are quite technical. We have
lemmas about the tape-functions of CopyValueL, MoveToSymbol, and the respective
running time functions. However, it is interesting to note that we have to do a case-
distinction, whether y is empty. If it is empty, then the first MoveToSymbol f id
moves to the stop symbol. If it is not empty, it moves to the first symbol of the
encoding of y. In both cases, Move L moves to the last symbol of x (or to the start
symbol, if x is empty).

Lemma 7.28 (Correctness of CasePair) CasePair � CasePairRel with

CasePairRel := λt t ′. ∀(p : X× Y). t[0] ' p→ isRight t[1]→ t ′[0] ' π2(p)∧ t ′[1] ' π1(p)

Lemma 7.29 (Running time of CasePair) CasePair ↓ CasePairT with

CasePairT := λt k. ∃(p : X× Y). t[0] ' p∧ 34+ 16 · |encode(π1(p))| 6 k

The constructor copies the first component x from tape 0 to tape 1, which initially
contains the second component y, from right to left. By that, it overwrites the start
symbol on tape 1 with the last symbol of the encoding of x.

Definition 7.30 (ConstrPair)

ConstrPair := ⇑[0](MoveToSymbol h id); CopySymbolsL g

Where g is the same function as in Definition 7.27. h(s) is true if and only if s = STOP.

Lemma 7.31 (Correctness of ConstrPair) ConstrPair � ConstrPairRel with

ConstrPairRel := λt t ′. ∀(x : X) (y : Y). t[0] ' x→ t[1] ' y→ t ′[0] ' x∧ t ′[1] ' (x, y)

Lemma 7.32 (Running time of ConstrPair) ConstrPair ↓ ConstrPairT with

ConstrPairT := λt k. ∃(x : X). t[0] ' x∧ 19+ 12 · |encode(x)| 6 k

List Types

The definition of CaseList is quite complex. For brevity we only state the correct-
ness statements of the match-machine here. The machine CaseList : TM2Σ+

L(X)
(B)

expects a list on tape 0. If it is nil, it terminates in the label false and leaves the tapes
unchanged. If the list is x :: xs, it moves x to tape 1 and terminates in the label true.

Lemma 7.33 (Correctness of CaseList) CaseList � CaseListRel with
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CaseListRel :=

λt (l, t ′). ∀(xs : L(X)). t[0] ' xs→ isRight t[1]→ match l, xs
[ false, nil ⇒ t ′[0] ' nil ∧ isRight t ′[1]
| true, x :: xs ′ ⇒ t ′[0] ' xs ′ ∧ t ′[1] ' x
| _ , _ ⇒ ⊥
] .

The nil constructor is defined using WriteValue.

Definition 7.34 (ConstrNil) ConstrNil := WriteValue [NIL].

Lemma 7.35 (Correctness of ConstrNil) ConstrNil �5 ConstrNilRel with

ConstrNilRel := λt t. isRight t[0]→ t ′[0] ' nil

The “::” constructor machine ConstrCons expects a list on tape 0 and a value x : X

on tape 1. It moves the head of tape 1 to the last symbol of the encoding of x and
copies them on tape 0 from right to left. Thereby, it overwrites the current start
symbol on tape 1, but also copies the start symbol from tape 1 to tape 0. After that,
the machine overwrites this start symbol with CONS andwrites a new start symbol
on tape 0.

Definition 7.36 (ConstrCons)

ConstrCons := ⇑[1](MoveToSymbol h id; Move L);
⇑[1;0](CopySymbolsL h ′);
⇑[0](WriteMove CONS L; Write START)

With h, h ′ : Σ+
List(X) → B such that h(s) = true if and only if s = STOP, and h ′(s) = false

if and only if s is mapped from the alphabet ΣX.

Lemma 7.37 (Correctness of ConstrCons) ConstrCons � ConstrConsRel with

ConstrConRel :=

λt t ′. ∀(xs : L(X)) (x : X). t[0] ' xs→ t[1] ' x→ t ′[0] ' x :: xs∧ t ′[1] ' x.

Finite Types

All finite types Σ can be encoded on themself, i.e. encode(x) = [x] for x : Σ. The
deconstructor machine for finite types moves the head from the starting symbol to
the symbol and reads it. After that, it moves the head one further so that the tape
is right and terminates in the label corresponding to the read symbol.
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Definition 7.38 (CaseFin) Let def : Σ.
CaseFin :=

Move R; Switch Read (λs. match s [ bxc ⇒ Return (Move R) x | _⇒ Return Nop def ])

Lemma 7.39 (Correctness of CaseFin) CaseFin �5 CaseFinRel with

CaseFinRel := λt (l, t ′). ∀(x : Σ). t[0] ' x→ isRight t ′[0] ∧ l = x

7.3.3 Copy Values

In Section 6.4, wedefined amachine that copies symbols until a certain symbol from
one tape to another tape. In Section 6.5, we also defined a machine that moves the
head to a certain symbol. We want to use these machines to define a machine that
copies a value from tape t[0] on tape t[1]. By the convention we set up in Section 7.1,
if we write new symbols on a tape, this tape must be right. With other words,
the machine CopySymbols can assume that the “target” tape is right. Formally, the
correctness relation is defined as:

Definition 7.40 (Correctness relation of CopyValue)

CopyValueRel := λt t ′. ∀(x : X). t[0] ' x→ isRight t[1]→ t ′[0] ' x∧ t ′[1] ' x

The algorithm of CopyValue works as follows. First, the machine moves the head of
tape 0 right, from the start symbol to the stop symbol. Then it copies the symbols,
from the stop symbol to the start symbol, to tape 1.

Definition 7.41 (CopyValue)

CopyValue := ⇑[0](MoveToSymbol (λx. x = STOP) id); CopySymbolsL (λx. x = START)

Note that the second parameter ofMoveToSymbol is the translation function. In this
case, the machine should simply move the head and leave the symbols unchanged,
so we choose the identity function for the parameter.

Lemma 7.42 (Correctness of CopyValue) CopyValue � CopyValueRel.

The running time of CopyValue is linear in the size of the encoding of x.

Lemma 7.43 (Running time of CopyValue)

CopyValue ↓ (λt k. ∃(x : X). t[0] ' x∧ 25+ 12 · |encode(x)| 6 k)

Although CopyValue terminates for all tapes, we restricted running time relations
to reasonable tapes, i.e. in this case tape vectors t that actually have a symbol on
t[0]. The reason for that is that we want to relate the value to the number of steps.

https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Code.CaseFin.html#CaseFin
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Code.CaseFin.html#CaseFin_Sem
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Code.Copy.html#CopyValue_Rel
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Code.Copy.html#CopyValue
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Code.Copy.html#CopyValue_Realise
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Code.Copy.html#CopyValue_Terminates
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7.3.4 Translate Values

In Section 7.1, we observed that the containment relation is ambiguous: if X is mini-
mally encodable on ΣX, theremay be two retractions f1, f2 : ΣX ↪→ Γ on the alphabet
Γ . In Section 6.5, we gave the MoveToSymbol machine the feature to translate the
symbols it reads. Using this feature, we define a machine that translates between
the two possibilities of the encoding of X on Γ . For that, we have to define a function
tanslate f1 f2 : Γ

+ → Γ+.

Definition 7.44 (Translation between two encodings) Let f1, f2 : Σ ↪→ Γ be two re-
tractions on Γ .

translate f1 f2 (τ) := τ (if τ ∈ {UNKNOWN,START,STOP})

translate f1 f2 (τ) :=

{
f2(σ) f−11 (τ) = bσc
UNKNOWN f−11 (τ) = ∅

This function translates a symbol of Γ to Σ, using the partial inversion function f−11
and afterwards applies the injection f2 from Σ to Γ and the (implicit) injection from
Γ to Γ+.

Definition 7.45 (Translate)

Translate f1 f2 := MoveToSymbol (λx. x = STOP) (translate f1 f2);
MoveToSymbolL (λx. x = START) id

Lemma 7.46 (Correctness of Translate) Translate f1 f2 � TranslateRel f1 f2 with

TranslateRel f1 f2 := λt t
′. ∀(x : X). t[0] 'f1 x→ t[0] 'f2 x

7.3.5 Reset Tapes

The aforementioned machine MoveToSymbol (λx. x = STOP) id can also be used to
“reset” a tape. This means that if the tape contains some value, after the execution
of this machine the tape is right. This is especially important to prevent memory
leaks in loops, where we may want to write on a tape multiple times. We must
always reset every “used” tape before writing on it again.

Definition 7.47 (ResetTape) ResetTape := MoveToSymbol (λx. x = STOP) id

Lemma 7.48 (Correctness of ResetTape) ResetTape � ResetTapeRel with

ResetTapeRel := λt t ′. ∀(x : X). t[0] ' x→ isRight(t ′[0])

https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Code.Copy.html#translate
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Code.Copy.html#Translate
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Code.Copy.html#Translate_Realise
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Code.Copy.html#Reset
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Code.Copy.html#Reset_Realise
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7.4 Extending Alphabets

Consider that we have machinesM1 : TMnΣ+
X
andM2 : TMnΣ+

Y
that operate on values

of type X and Y, where X is encodable on ΣX and Y on ΣY . We could combine these
machines using the alphabet-lift, to get a machine M : TMnΣ+ . The choice of Σ is
relevant. For example, we could choose Σ := ΣX+ΣY . Then, if we want to useM for
another machineM ′ : TMnΓ+ , we have to give a retraction f : ΣX+ΣY ↪→ Γ . However,
there is a problem of generality:

Fact 7.49 There exist types X, Y, Z with retractions f1 : X ↪→ Z and f2 : Y ↪→ Z, such that
there is no retraction (f1 + f2) : X+ Y ↪→ Z.

Proof There is no injective function 1 + 1→ 1. �

That means that we would have to show a precondition to combine two retractions
f1 : ΣX ↪→ Γ and f2 : ΣY ↪→ Γ and get a retraction (f1 + f2) : ΣX + ΣY ↪→ Γ :

Fact 7.50 If the retractions f1 : X ↪→ Z and f2 : Y ↪→ Z have disjoint images in Z, then
we can define a retraction (f1 + f2) : X+ Y ↪→ Z.

We could live with the restriction that we have to show that the retractions have
disjoint images. However, this approach does not scale good when we have to add
more alphabets and retractions, we would have to show that all retractions have
mutually disjoint images. It is easier andmore general, to parametrise the machine
M over the alphabet Σ and the two retractions f1 and f2. In the definition ofM, we
apply the tapes-lift onM1 andM2.

7.5 Designing Machines

As noted above, whenwe speak of “programming” Turingmachines, wemean that
we use tapes as registers, and use the control-flow operators and lifting operators
to compose machines. Moreover, we only use machines that directly change the
values of registers (tapes). We have machines that do a case-distinction on values,
and machines that apply constructors to the value that a tape contains.

OurWhile operator corresponds to “do-while” in imperative languages, i.e. thema-
chineM has to decide at the end of its executionwhether to continue or break out of
the loop. Tail-recursive functions can easily be transformed into “do-while” loops.
Thus, when we translate functions to Turing machines, we first have to implement
the function as a tail-recursive function, which is then translated to a Turing ma-
chine in “programming style”.

We make an informal distinction between three roles of tapes: input tapes, output
tapes, and internal tapes. Each kind of tape has an invariant, which is encoded in
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the correctness relation of the machine. For input tapes, we have the invariant that
the value on the tape is not changed by the computation. Output tapes are initially
right, and contain a value after the execution. Internal tapes are right before and
after the execution.

The deconstructor machines do case-distinctions over the value on a tape, andmay
alter the value on the tape thereby. Each deconstruction is reversible using the
corresponding constructor machine. However, if we use deconstructors inside a
loop, we can not restore the value that the tape contained before the loop. We have
to copy the value to an internal tape, use the copy for the computation, and leave
the “original” value unchanged. After the loop, the internal tape for the copy is
resetted.

With this distinction of input, output, and internal tapes, we can formalise a con-
vention for functional computation of binary functions: The tapes t[0] and t[1] are
the input tapes for x and y, t[2] is the output tape for f x y, and all other tapes are
internal tapes.

Definition 7.51 (Functional computation correctness relation) Let f : X→ Y → Z,
where X and Y are encodable on Σ. Then FunRel(f) ⊆ Tape3+nΣ+ × Tape3+nΣ+ is defined as:

FunRel(f) := λt t ′. ∀(x : X) (y : Y).

t[0] ' x→ t[1] ' y→
isRight t[2]→
(∀(i : Fn). isRight t[3+ i])→
t ′[0] ' x ∧ t ′[1] ' y ∧

t ′[2] ' f x y ∧(
∀(i : Fn). isRight t ′[3+ i]

)
.

We say that a machineM computes the function f, ifM � FunRel f.

Similarly, we can define the running time function of such a machine.

Definition 7.52 (Functional computation running time relation) Let steps : X →
Y → N , whereX and Y are encodable onΣ. Then FunT(steps) ⊆ Tape3+nΣ+ ×N is defined as:

FunT(steps) := λt k. ∃(x : X) (y : Y).

t[0] ' x ∧ t[1] ' y ∧

isRight t[2] ∧

(∀(i : Fn). isRight t[3+ i]) ∧

steps x y 6 k

https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Code.CodeTM.html#Computes2_Rel
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Code.CodeTM.html#Computes2_T
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Note that these definitions can be generalised to unary functions or functions with
higher arity.

Internal tapes may be used to copy input-values on, if their value changes in the
loop. The general design for implementing a machine M that computes a binary
function f, is the following:

M :=⇑[0;3] CopyValue; ⇑[1;4] CopyValue;
⇑[···] WriteValue · · · ;
⇑[3;4;2;5;6;7;···] Loop;
⇑[3] Reset; ⇑[4] Reset; ⇑[5] Reset; · · ·

with Loop := While(Step). Step is labelled over O(1), where b()cmeans to break out
of the loop and ∅ to continue. Note that Step and Loop have only “access” to the
copies of x and l, but not to the “original” on t[0] and t[1] of M. This also means
that Step has two tapes less thanM. The copy of x and y is on the 0st and 1st tape
of Step, the output is on tape 2, all further tapes are internal tapes. Before the loop,
some tapesmay be initialisedwith values (using eitherWriteValue, or constructors).
After the loop, all tapes that Step did not reset, including the tapes that contain the
modified copies of x and y and additional internal tapes, are resetted byM.

Before we can define the machineM, we first have to decide on which alphabetM
is defined. If the machine operates on only one data type, then we defineM over
the smallest alphabet to encode this type on. On the other hand, ifM operates on
more alphabets, we use the technique from Section 7.4.

For the verification of M, we first have to give the correctness relation of Step. It
should encode the loop invariant as general as possible. Then we can define the
correctness relation LoopRel of Loop and prove Loop � LoopRel. After that, we
define running time relations StepT and LoopT , and show Step ↓ StepT , and after
that Loop ↓ LoopT . Finally, we prove M � FunRel f and M ↓ FunT steps, where
f : X→ Y → Z is the function thatM computes and steps : X→ Y → N the running
time function.

7.6 Case Studies

This is the end of the framework for verified programming of Turing machines.
As a benchmark for it, and to test the above general design pattern for function-
computing machines, we implement a few machines that compute functions.2

2Note that we amend the design pattern a bit for convenience in Chapter 8.
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7.6.1 Addition

We want to implement the functions add,mult : N → N → N, according to Defini-
tion 7.51. First, we define themachineAdd that computes the addition function. We
reuse this machine to implement a machine Mult that computes the multiplication
function.

The algorithm that our machine implements can be described with the following
pseudocode:

a ← n
b ← m
While ( b−−) {

a++
}
Reset b

The output tape is the tape that is represented by the variable a. First, we copy the
input n to this tape, and the number m to an internal tape. In the loop, as long as
we can decrease the copy ofm, we increment a. After the loop, we reset the copy b
and themachine terminates. The first step in the design of themachine is to specify,
which tape contains which variable. This is visualised in Table 7.1.

Tape of Add Variable Role Tape in AddStep
0 m Input –
1 n Input –
2 a Output 0

3 b Internal 1

Table 7.1: Tape assignment for Add and AddStep

Because the machine only operates on natural numbers, we choose Σ+
N as the al-

phabet of Add and all its sub-machines.

The next step is to implement the step machine. AddStep has only access to the
variables a and b, that are stored on tape 0 and 1, as also visualised in Table 7.1.
The decrement operation and test whether b was 0 is implemented using the de-
constructor machine CaseNat. In the case that b is 0, the step machine terminates
in b()c, so that the loop brakes. In case b is greater than 0, CaseNat decreases b and
the step machine increases a. Then it terminates in ∅, so that the loop continues.

Definition 7.53 (AddStep)

AddStep := If (⇑[1] CaseNat) Then (Return (⇑[0] ConstrS) ∅) Else (Return Nop b()c)

https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Code.NatTM.html#Add_Step
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Because all parts ofAddStep terminate in constant time, we get the constant running
time part of the semantics of AddStep for free.

Lemma 7.54 (Correctness of AddStep) AddStep �9 AddStepRel with

AddStepRel :=
λ t (l, t ′). ∀(a b : N).
t[0] ' a→ t[1] ' b→
match l, b
[ b()c , O⇒ t ′[0] ' a ∧ t ′[1] ' b
| ∅, S b ′⇒ t ′[0] ' S a ∧ t ′[1] ' b ′
| _ , _⇒⊥
] .

According to the general design plan, we define AddLoop := While AddStep. The
correctness relation of AddLoop now says, that after the execution of the loop, t ′[0]
contains a+ b and t ′[1] contains 0:

Lemma 7.55 (Correctness of AddLoop) AddLoop � AddLoopRel with

AddLoopRel := λt t ′. ∀(a b : N). t[0] ' a→ t[1] ' b→ t ′[0] ' a+ b∧ t ′[1] ' 0.

Proof Using the While-induction Lemma 4.22. In case the loop terminates, b is 0
and t ′[0] ' a, therefore t ′[0] contains a = a + 0 = a + b. In the induction/loop
case, we know that b = S b ′ and that t ′[0] ' S a and t ′[1] ' b ′. By the inductive
hypothesis, we know that t ′′[0] contains b ′ + S a = a+ b and t ′′[1] ' 0. �

The running time of AddLoop must be shown separately. We know that the loop
is executed b + 1 times, and each iteration takes 9 steps. We have to add 1 step for
each re-iteration of the loop. Thus, the total step number is 9+ 10 · b.

Lemma 7.56 (Running time of AddLoop) AddLoop ↓ AddLoopT with

AddLoopT := λt k. ∃(a b : N). t[0] ' a∧ t[1] ' b∧ 9+ 10 · b 6 k

Now we can define the full machine Add:

Definition 7.57 (Add)

Add := ⇑[1;2] CopyValue; ⇑[0;3] CopyValue; ⇑[2;3] AddLoop; ⇑[3] Reset.

At this point, we introduce a graphical notation of execution protocols, that show
the value of each tape after the execution of each sub-machine. In the left column,

https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Code.NatTM.html#Add_Step_Sem
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Code.NatTM.html#Add_Loop_Realise
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Code.NatTM.html#Add_Loop_Terminates
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Code.NatTM.html#Add
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we have the input values for each tape, or a if the tape is initially right. Each further
column denotes the (lifted) sub-machines. We write entries j : x in each cell that
is in the index-vector of the sub-machine, where j is the tape-index of the lifted
machine and x is the value after the execution of the sub-machine on this tape. We
write j : a when the tape j is right after the execution of the sub-machine. If a cell
of the table is empty, the tape has not changed, then read further left in the same
row. In Table 7.2, we have an example of an execution protocol for Add.

Input CopyValue CopyValue AddLoop Reset
0 : m 0 : m

1 : n 0 : n

2 : a 1 : n 0 : m+ n

3 : a 1 : m 1 : 0 0 : a

Table 7.2: Execution protocol of Add

From the execution protocol in Table 7.2, we can see that after the execution of
all four sub-machines, the tapes 0 and 1 still contain the values m and n, tape 2
contains m + n, and tape 3 is right. Execution protocols serve as outlines of the
formal correctness proofs. We conclude the correctness of Add.

Lemma 7.58 (Correctness of Add) Add � FunRel add.

For the running time function ofAdd, we have to add linear components for copying
m and n, a constant for Reset, and 1 step for each sequential composition operator.

Lemma 7.59 (Running time of Add) Add ↓ FunT stepsAdd with

stepsAdd m n := 98+ 22 ·m+ 12 · n

Sub-Machine Running time Accumulated running time
⇑[1;2] CopyValue 37+ 12 · n 98+ 22 ·m+ 12 · n
⇑[0;3] CopyValue 37+ 12 ·m 60+ 22 ·m
⇑[2;3] AddLoop 9+ 10 ·m 22+ 10 ·m
⇑[3] Reset 12 12

Table 7.3: Accumulated sub-running times of Add

When we prove the running time of sequences of multiple machines, we have to
give running time functions for all suffixes of the sequence in terms of the sequence
operator. We accumulate the running times from down to top and have to add one
additional step for each sequence operator. This is visualised in Table 7.3.

https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Code.NatTM.html#Add_Computes
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Code.NatTM.html#Add_Terminates
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Tape of Mult Variable Role Tape in MultStep Tape in Add
0 m Input – –
1 n Input 1 0 (input)
2 c Output 2 1 (input)
3 c ′ Internal 3 2 (output)
4 – Internal 4 3 (internal)
5 m ′ Internal 0 –

Table 7.4: Tape assignment for Mult

Input CaseNat Add Reset CopyValue Reset
0 : m 0 : m ′

1 : n 0 : n

2 : c 1 : c 0 : a 1 : n+ c

3 : a 2 : n+ c 0 : n+ c 0 : a
4 : a 3 : a

Table 7.5: Execution protocol of MultStep form = S m ′

7.6.2 Multiplication

We use the machine Add to implement a machine Mult that computes the multi-
plication function mult : N → N → N. The machine Mult “calls” the machine Add
m-times to add n to a counter c that is initialisedwith 0. The following pseudo code
presents the algorithm that we implement:

c ← 0

m ′ ←m
While (m ′−−) {
c ′ ←Add (n , c )
Reset c
c ← c ′

Reset c ′
}
Reset m ′

Note that we do not have to copy n, since we do not write on n and the machine
Add does not change n. Also note that we can not simply add n to c, since input
and output tapes are distinct. Therefore, we have to store the result of the addition
to an intermediate variable (i.e. internal tape), which has to be resetted afterwards.

The tape-assignment is visualised in Table 7.4. The stepmachine,MultStep, has only
access to the copy of m, which is mapped to tape 0 of MultStep. In the following,
we use also use the namem for its copy in the context of MultStep.
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Definition 7.60 (MultStep)

MultStep := If ⇑[0] CaseNat

Then Return
(
⇑[1;2;3;4] Add; ⇑[2] Reset; ⇑[3;2] CopyValue; ⇑[3] Reset

)
∅

Else Return Nop b()c .

An execution protocol of MultStep for the case m = S m ′ (where m is the copy) is
shown in Table 7.5. The correctness relation of MultStep is analogous to AddStep.
Lemma 7.61 (Correctness of MultStep) MultStep �9 MultStepRel with
MultStepRel :=
λ t (l, t ′). ∀(c m n : N).
t[0] ' m→ t[1] ' n→ t[2] ' c→ isRight t[3]→ isRight t[4]→
match l,m
[ b()c , O⇒ t ′[0] ' 0 ∧ t ′[1] ' n ∧ t ′[2] ' c ∧ isRight t ′[3] ∧ isRight t ′[4]

| ∅, S m ′ ⇒ t ′[0] ' m ′ ∧ t ′[1] ' n ∧ t ′[2] ' n+ c ∧ isRight t ′[3] ∧ isRight t ′[4]

| _ , _ ⇒ ⊥
] .

Note that in the correctness Lemma 7.54 of AddStep, we also prove termination in
constant running time. This is not true for MultStep, because it calls Add, which has
not constant running time.

As usual, we define MultLoop := While MultStep. The correctness statement of
MultLoop says that if the first three tapes contain m, n, c, and all other tapes are
right, then after the execution of the loop, the tapes contain 0, n, andm · n+ c and
the other tapes are right. Thus, when we instantiate the c-tape with the value 0, the
output tape containsm · n.
Lemma 7.62 (Correctness of MultLoop) MultLoop �MultLoopRel with

MultLoopRel :=λt t ′. ∀(c m n : N).
t[0] ' m→ t[1] '→ t[2] ' c→ isRigth t[3]→ isRight t[4]→
t ′[0] ' 0∧ t ′[1] ' n∧ t ′[2] ' m · n+ c∧ isRight t ′[3]∧ isRight t ′[4]

It is now easy to define the rest of Mult.
Definition 7.63 (Mult)

Mult := ⇑[0;5] CopyValue; ⇑[2] ConstrO; ⇑5;1;2;3;4MultLoop; ⇑[5] Reset

It follows that Mult computes the functionmult, w.r.t. Definition 7.51.
Lemma 7.64 (Correctness of Mult) Mult � FunRel mult.

For brevity, we omit the concrete running time function here.
Lemma 7.65 (Running time of Mult) There is a function multSteps : N → N → N,
such thatmultSteps ∈ O(m · n2) and Mult ↓ FunT multSteps.

https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Code.NatTM.html#Mult_Step
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7.6.3 Mapping of Sum Functions

Let f : X → Z and g : Y → Z. Then we can define the canonical function (f + g) :

X + Y → Z by (f + g)(inl x) := f(x) and (f + g)(inr l) := g(l). We want to define an
operator that takes machines M1,M2 that compute the unary functions f and g,
and yields a machine MapSum that computes the function (f+ g).

First we have to define precisely, which machine has which alphabet. Let X, Y be
encodable over ΣX, ΣY . We assume M1,M2 : TM2+n

Σ+
M

, i.e. both machines have the
same alphabet, and they have at least two tapes (i.e. an input and output tape).
We assume that ΣM includes ΣX, ΣY , and ΣZ. Formally, this means that we assume
retractions fX, fY , fZ between ΣX, ΣY , ΣZ and ΣM. Let Σ be the alphabet forMapSum,
with a retraction fM : ΣM ↪→ Σ. Furthermore, it should be possible to encode X+ Y

on Σ, so we assume a retraction fX+Y : ΣX+Y ↪→ Σ. We notice that there are now
two possibilities how to encode X (and dually Y) on Σ: via the retractions fM ◦ fX
and fX+Y ◦ RetrInl, see Figure 7.1. These retractions might be extensionally equal
for concrete choices of alphabets, but we want to be as general as possible. As a
consequence, we need to translate between these representations, using Translate
of Section 7.3.4. Note that there is only oneway to encodeZ onΣ, namely via fM◦fZ.

The machine MapSum first makes a case-distinction on the value s : X + Y on the
input tape 0. If it is x (on the alphabet ΣX+Y), it is translated to the alphabet ofM1.
Then we execute the alphabet-lifted machineM1. This writes the output f1(x) on
the output tape 1 and leaves x unchanged. After that, MapSum translates x back to
the alphabet ΣX+Y and applies the constructor inl, so the input tape contains inl x
again. The case when the input was s = inly is symmetric.
Definition 7.66 (MapSum)

MapSum :=

If ⇑fX+Y ; [0] CaseSum

Then ⇑[0](Translate (fX+Y ◦ RetrInl) (fM ◦ fX));
⇑fMM1;
⇑[0](Translate (fM ◦ fX) (fX+Y ◦ RetrInl));
⇑fX+Y ; [0] ConstrInl

Else ⇑[0](Translate (fX+Y ◦ RetrInr) (fM ◦ fY));
⇑fMM2;
⇑[0](Translate (fM ◦ fY) (fX+Y ◦ RetrInr));
⇑fX+Y ; [0] ConstrInr

Lemma 7.67 (Correctness of MapSum) If M1 � FunRel(f1) and M2 � FunRel(f2),
then MapSum � FunRel(f1 + f2).

https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Code.SumTM.html#MapSum
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ΣX ΣM Σ

ΣX+Y

fX

RetrInl

fM

fX+Y

Figure 7.1: Non-commutative diagram of the retractions involved in the definition
of MapSum

ΣL(X)

ΣX Σ

ΣO(X) ΣN

fL(X)RetrList

RetrOpt

fO(X)
fN

Figure 7.2: Retractions involved in the definition of Nth

7.6.4 List Access

In this section, we show how to implement machines that compute the function
nth : L(X)→ N→ O(X).

Let X be encodable on ΣX. We implement a machine Nth : TM4Σ+ that computes
the function nth : L(X) → N → O(X). We assume retractions fL(X) : ΣL(X) ↪→ Σ,
fO(X) : ΣO(X) ↪→ Σ, and fN : ΣN ↪→ Σ. Now there are two ways to encode X on Σ: via
fO(X) ◦ RetrOpt and fL(X) ◦ RetrList, see Figure 7.2.

The tape assignment is visualised in Table 7.6.

Tape of Nth Variable Role Tape in NthStep
0 xs Input –
1 n Input –
2 x Output 2

2 xs (copy) Internal 0

3 n (copy) Internal 1

Table 7.6: Tape assignment for Nth and NthStep

The step machine first destructs n. If it was 0 and the list is empty, it writes ∅ to the
output tape. Else, it applies the b·c constructor to the head. Note that before we can
apply the constructor, x has to be translated to the ΣO(X) alphabet. In case n was
non-zero, if the list is empty, the machine applies the ∅ constructor to the output
tape. Else, it deletes the head (whichwas temporary stored on the output tape) and
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continues the loop.

Definition 7.68 (NthStep)

MapSum :=

If ⇑fN; [1] CaseNat

Then If ⇑fL(X); [0;2] CaseList

Then Return (⇑[2] Reset) ∅
Else Return (⇑fO(X); [2] ConstrNone) b()c

Else If ⇑fL(X); [0;2] CaseList

Then Return (⇑[2](Translate (fL(X) ◦ RetrList) (fO(X) ◦ RetrOpt);
⇑fO(X)

ContrSome)) b()c

Else Return (⇑fO(X); [2] ConstrNone) b()c

The correctness relation of NthStep has to capture all four cases.

Lemma 7.69 (Correctness of NthStep) NthStep � NthStepRel with
NthStepRel :=

λt (l, t ′).

∀(xs : L(X)) (n : N).
t[0] ' xs→ t[1] ' n→ isRight t[2] →
match l, n, xs
[ ∅, S n ′, x :: xs ′ ⇒ t ′[0] ' xs ′ ∧ t ′[1] ' n ′ ∧ isRight t ′[2]

| b()c , S n ′, nil⇒ t ′[0] ' l ∧ t ′[1] ' n ′ ∧ t ′[2] ' ∅
| b()c , 0, x :: xs ′ ⇒ t ′[0] ' xs ′ ∧ t ′[1] ' 0∧ t ′[2] ' bxc
| b()c , 0, nil⇒ t ′[0] ' l∧ t ′[1] ' n∧ t ′[2] ' ∅
| _ , _ , _⇒⊥
] .

Now, we can prove the correctness of the loop, NthLoop := While NthStep. When
the loop terminates, the value of the variable n is n− (S |xs|) and the new value of
xs is skipn (S n) xs, where skipn : N→ L(X)→ L(X) applies tl n-times. Note that if
n < |xs|, the new value of nwill be 0 and the machine returns a b·c value.

Lemma 7.70 (Correctness of NthLoop) NthLoop � NthLoopRel with

NthLoopRel := λt t ′. ∀(xs : L(X)) (n : N). t[0] ' xs→ t[1] ' n→ isRight t[2]→
t ′[0] ' skipn (S n) l∧ t ′[1] ' n− (1+ |xs|)∧ t ′[2] ' nth xs n.

The full machine Nth makes copies of n and xs and runs NthLoop on the copies.
After that, it resets the internal tapes 2 and 3with the copies of n and xs. Note that
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for the correctness of Reset it is only important that there is a value on the tape.
Only the running time (which we omit here) does depend on the actual value.

Definition 7.71 (Nth)

Nth := ⇑[0;3] CopyValue; ⇑[1;4] CopyValue; ⇑[3;4;2] NthLoop; ⇑[3] Reset; ⇑[4] Reset

Note that we copy and reset values of different types. We have to insert this se-
mantic information in correctness proofs when we apply the respective correctness
lemmas of Copy and Reset in the relation-derivation phase of correctness proofs.

It follows that Nth computes the function nth.

Lemma 7.72 (Correctness of Nth) Nth � FunRel nth.
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Chapter 8

Simulating a Call-By-Value λ-Calculus Machine

In this chapter, we present a large benchmark for our framework. We implement a
multi-tape Turing machine that simulates another abstract machine. First, we de-
fine and motivate the semantics of this machine. After that, we implement and
verify the simulator Turing machine. We show that the halting problem of the ab-
stract machine reduces to the halting problem of multi-tape Turing machines.

8.1 Heap Machine

The abstract machine we present here is a variant of the heap machine in Kunze
et al. [13]. They formally show in Coq that their variant of the machine can sim-
ulate the language L, which implements the call-by-value subset of the λ-calculus.
Thus, we implement a simulator that also simulates L. Here we define the lan-
guage L only briefly. For more a more thorough treatment of this language, we
refer to [10] and [13]. The concrete definition of the machine we are considering is
due to F. Kunze.

Call-By-Value λ-Calculus

Terms of this language are De Bruijn terms, and are inductively defined by:

s, t, u, v : Ter ::= (n : N) | s t | λs

The language L uses simple substitution:

kku := u

nku := n if n 6= k
(st)ku := (sku)(t

k
u)

(λs)ku := λ(sSku )
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The reduction relation s � t is inductively defined on terms:

(λs)(λt) � s0λt

s � s ′

st � s ′t
t � t ′

(λs)t � (λs)t ′

Heap Machine

Instead of substituting expressions, the heap machine works with closures. A clo-
sure is a program together with an environment. Variable bindings are imple-
mented as pointers to a linked list of closures, called heap. Programs are lists of
commands:
Definition 8.1 (Program)

n : Var := N
c : Com ::= VAR(n : Var) | APP | LAM | RET

P,Q : Pro := L(Com)

Programs essentially are linearised expressions of L. The function γ translates
terms of L to programs of the heap machine:

γ n := [VAR n]

γ (s t) := γ s++ γ t++ [APP]

γ (λs) := LAM :: γ s++ [RET]

The heap is implemented as a list of heap entries. A heap entry may be empty or
contain a closure and a pointer to the next heap entry. Pointers are implemented as
list indices on the heap entry list.
Definition 8.2 (Closures and heaps)

a, b : Add := N
g : Clos := Add× Pro
e : Entr := O(Clos×Add)
H : Heap := L(Entr)

States of the abstract machine are triples of two closure lists and a heap:

(T, V,H) : L(Clos)× L(Clos)×Heap.

T is called the control stack. It contains the closures that themachine has to process.
The second stack V is called the argument stack. For example, the APP command
fetches the functions and arguments from that stack.

We first explain what each rule of the reduction predicate (T, V,H) � (T ′, V ′, H ′)

does, and then we define it formally.
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Application Rule When the first closure on the control stack is (a,APP :: P), the
machine fetches two closures g and (b,Q) from the argument stack. The closure
g corresponds to the argument of the application. The second closure (b,Q) cor-
responds to the called function, where b is the pointer to the environment in that
the argument is free. It binds the argument to g, by putting a new heap entry (g, b)

on the heap. The heap machine continues executing (c,Q) and the “rest closure”
(a, P), where c is the pointer to the new heap entry.

λ-Rule If the head control closure is (a,LAM ::P), the machine splits the linearised
program P into the body Q of the λ-expression and the rest program P ′. Then it
pushes the closure of the rest program (a, P ′) on the control stack, and the “body
closure” (a,Q) on the argument stack. The splitting is realised with the function
φ : Pro→ O(Pro× Pro). For example,

φ[VAR(0);LAM;APP;RET;RET;VAR(1)] = b([VAR(0);LAM;APP;RET], [VAR(1)])c .

The first RET matches to the LAM in the program above, so it is part of the first half.
φ is formally defined with a tail-recursive auxiliary function:

Definition 8.3 (φ) We define φ P := φ ′ 0 nil P with the auxiliary function φ ′ : N →
Pro→ Pro→ O(Pro× Pro) which is defined by recursion on P : Pro:

φ ′ 0 Q (RET :: P) :=
⌊
(Q,P ′)

⌋
φ ′ (S k) Q (RET :: P) := φ ′ k (Q++ [RET]) P

φ ′ k Q (LAM :: P) := φ ′ (S k) (Q++ [LAM]) P

φ ′ k Q (c :: P) := φ ′ k (Q++ [c]) P if c 6= RET 6= LAM

φ ′ k Q nil := ∅

Variable Rule If the first command on the first closure of the control stack is
VAR(n), the machine looks up the nth entry in the environment on the heap at
the address a. Then, it pushes this closure to the argument stack. The function
lookup : Heap → Add → Var → O(Clos) starts at the heap entry at the address a,
and gets the nth entry. We write H[a, n] for lookup H a n. The function is defined
by recursion on n:

Definition 8.4 (lookup) H[a, n] is defined by recursion on n:

H[a, n] :=


bgc H[a] = bb(g, b)cc∧ n = 0

H[b, n− 1] H[a] = bb(g, b)cc∧ n > 0
∅ else

where H[·] : O(Entr) is the standard list lookup function.
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We formally define the reduction rules. Note that there is no reduction rule for
the command RET, because the purpose of RET is solely to mark the end of the
encoding of the body of a λ-expression.

Definition 8.5 (Semantics of the heap machine)

((a, (APP :: P)) :: T, g :: (b,Q) :: V,H) � ((c,Q) :: (a, P) ::tr T, V,H
′) if put H b(g, b)c = (c,H ′)

((a, (LAM :: P)) :: T, V,H) � ((a, P ′) ::tr T, (a,Q) :: V,H) if φ P = b(Q,P ′)c
((a, (VAR(n) :: P)) :: T, V,H) � ((a, P) ::tr T, g :: V,H) if H[a, n] = bgc

with put H c := (|H| , H++ [c]).
The tail-recursion optimisation (g ::tr T) : L(Clos) is defined as follows:

(a, nil) ::tr T := T

(a, P) ::tr T := (a, P) :: T if P 6= nil

We write for �∗ for the reflexive transitive closure of � (cf. Definition 2.2) and �k for the
relational power (cf. Definition 2.3). Furthermore, we use the following notations:

halt(T, V,H) := ∀T ′ V ′ H ′. ¬
(
(T, V,H) � (T ′, V ′, H ′)

)
(T, V,H) .k (T ′, V ′, H ′) := (T, V,H) �k (T ′, V ′, H ′)∧ halt(T ′, V ′, H ′)

(T, V,H) .∗ (T ′, V ′, H ′) := (T, V,H) �∗ (T ′, V ′, H ′)∧ halt(T ′, V ′, H ′)

The tail-recursion optimisation (::tr) makes sure that no closures with empty pro-
grams are pushed on a closure stack. This optimises space usage for tail recursive
programs.

Lemma 8.6 (Basic properties about�)

1. The relation � is functional and computable, i.e. there is a function step : L(Clos)×
L(Clos)×Heap→ O (L(Clos)× L(Clos)×Heap), such that:

step(T, V,H) =
⌊
(T ′, V ′, H ′)

⌋
↔ (T, V,H) � (T ′, V ′, H ′)

2. halt(T, V,H) is decidable, i.e. there is a function isHalt : L(Clos) × L(Clos) ×
Heap→ B, such that:

isHalt(T, V,H) = true ↔ halt(T, V,H)

8.2 Implementation of a Simulator

First, we notice that all types in Definition 8.2, except commands (Com), are encod-
able on minimal alphabets, according to Definition 7.4:
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Definition 8.7 (Encoding of heaps) The typeCom is isomorphic to the sum ofVar and
ACom := APP | LAM | RET. ACom is encodable on itself (since it is finite), and Var = N
is encodable on ΣVar := ΣN. Then Com is encodable on ΣCom := ΣN+ACom. All other
types are encodable according to Definition 7.4. For completeness, the alphabets are:
ΣPro := ΣL(Com), ΣAdd := ΣN, ΣClos := ΣAdd×Pro, ΣEntr := ΣO(Clos×Add), and
ΣHeap := ΣL(Entr).

First, we derive constructor and deconstructor machines for commands. As the
type of commands essentially is the sum of two encodable types (ACom and N), we
can combine constructors and deconstructors from Section 7.3.2.

Definition 8.8 (CaseCom) CaseCom : TM1Σ+
Com

(O(ACom)) is defined by

CaseCom := If CaseSum

Then Return Nop ∅
Else Relabel (⇑RetrInl CaseFin) (b·c)

Note that RetrInl : ΣVar ↪→ ΣCom.

Lemma 8.9 (Correctness of CaseCom) CaseCom �11 CaseCom with

CaseComRel :=

λt (l, t ′). ∀(c : Com). t[0] ' c→ match l, c
[ bAPPc ,APP⇒ isRight t ′[0]

| bLAMc ,LAM⇒ isRight t ′[0]

| bRETc ,RET⇒ isRight t ′[0]

| ∅,VAR n⇒ t ′[0] ' n
| _ , _⇒⊥
] .

The VAR constructor is defined with ConstrInl and the constructor for ACom is de-
fined with WriteSymbol.

For the functions φ and lookup, we definemachines that compute these functions in
a lesser strict sense than Definition 7.51. The Turing machines only save the input-
values that a caller machine needs again. For example, we have a machine Nth ′

that saves the list, but not the index. The second change is that for functions with
optional outputs, like nth, we do not extend the alphabet with ΣO(X). Instead, we
encode whether the output value is b·c or ∅ with the label type B. In case that the
output is ∅, the machine terminates in false and the output tape stays right.

After we have defined and verifiedmachines that computeφ and lookup, we define
a machine Step that simulates a single step of the heap machine.
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ΣAdd
(1)

ΣClos ΣClos×Add ΣO(Clos×Add) ΣHeap

ΣVar
(2)

ΣCom ΣPro ΣAdd
(3)

ΣClos Σ

RetrFst RetrFst RetrOpt RetrList

fHeap

RetrInl RetrList

RetrSnd RetrSnd

fClos

Figure 8.1: The retractions of Lookup.

8.2.1 Lookup

The machine Lookup : TM5Σ+(B) realises the heap lookup function. It uses the ma-
chine Nth ′ : TM4Σ+(B)which is like Nth from Section 7.6.4, but with the two changes
mentioned above.

First we consider the alphabet of Lookup. We can encode closures on the heap al-
phabet ΣHeap. However, when Step calls H[a, n], a and n are encoded on an alpha-
bet for the closures on the closure stack. Thus, we define Lookup on an alphabet Σ,
with retractions fHeap : ΣHeap ↪→ Σ and fClos : ΣClos ↪→ Σ. The second retraction
correspond to the closure alphabet where a and n are encoded. The retraction

fClos ′ : ΣClos ↪→ Σ := fHeap ◦ RetrList ◦ RetrOpt ◦ RetrFst

is the canonical retraction of closures from the heap. In Figure 8.1, the three relevant
retractions ΣN ↪→ Σ are visualised:

1. a heap address of a closure on the stack alphabet:

fadd := fClos ′ ◦ RetrFst

2. a variable in a command of a closure on the stack alphabet:

fvar := fClos ′ ◦ RetrSnd ◦ RetrList ◦ RetrInl

3. a pointer to the next heap entry:

fnext := fHeap ◦ RetrList ◦ RetrOpt ◦ RetrSnd

Since the function lookup is tail-recursive, we define the stepmachinewith the type
LookupStep : TM5Σ+(O(B)). It first calls the list lookup machine (Nth ′). If it failed,
Lookup immediately terminates in false. Else, itmakes a case-distinction on the heap
entry e : O(Clos × Add). In case it is ∅, Lookup also terminates in false. If e = be ′c,
it destructs e ′ = (g, b) and makes a case-distinction over n. If n = 0, LookupStep
resets the tapes for b and n, translates g from fClos ′ to fClos and returns true. Else
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it translates b from fnext to fadd, moves it to the tape that contained a, and repeats
the loop. We visualise the execution in the latter two cases in Tables 8.1 and 8.2.

Input Nth ′ CaseOption CasePair CaseNat CopyValue Translate Reset Reset
0 :H 0 :H

1 : a 1 : a 1 : b 0 : b

2 : n 0 : n ′

3 : a 1 : g 0 : a
4 : a 2 : b(g,b)c 0 : (g,b) 0 : b 0 : b 0 : a

Table 8.1: Execution protocol of LookupStep in case H[a] = bb(g, b)cc and n = S n ′.
It terminates in the label ∅. The translation is from fnext to fadd.
Input Nth ′ CaseOption CasePair CaseNat Reset Reset Translate
0 :H 0 :H

1 : a 1 : a
2 : n 0 : 0 0 : a
3 : a 1 : g 0 : g

4 : a 2 : b(g,b)c 0 : (g,b) 0 : b 0 : a

Table 8.2: Execution protocol of LookupStep in case H[a] = bb(g, b)cc and n = 0. It
terminates in the label btruec. The translation is from fClos ′ to fClos.

Definition 8.10 (LookupStep) We define the machine LookupStep : TM5Σ+(O(B)).

LookupStep :=

If (Nth ′ fheap fadd)

Then If (⇑fheap◦RetrList; [4] CaseOption)

Then ⇑fheap◦RetrList◦RetrOpt; [4;3] CasePair;
If (⇑fvar; [2] CaseNat)

Then Return
(
⇑[4;1] CopyValue; ⇑[1] Translate fnext fadd;
⇑[4] Reset; ⇑[3] Reset

)
∅

Else Return
(
⇑[4] Reset; ⇑[2] Reset;
⇑[3] Translate fClos ′ fClos

)
btruec

Else Return Nop bfalsec
Else Return Nop bfalsec

The step machine terminates in bfalsec in two cases. Either the list lookup failed, or
it returned the empty heap entry H[a] = b∅c. In the successfully termination case
(cf. Table 8.2), LookupStep resets the afterwards unneeded tapes.

Because no initialisation or clean-up is needed before or after the loop, we can de-
fine Lookup := While LookupStep. The correctness relation of Lookup says that if it
terminated in the label true, we have H[a, n] = bgc for some closure g, and tape 3
contains g w.r.t. the retraction fClos. Furthermore, the input tape 0 still contains
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H and all other tapes are resetted. In case Lookup terminated in false, the postcon-
dition only commits that H[a, n] = ∅. Note that there are two possible reasons for
that: Either H[a] = ∅ or H[a] = b∅c, but we do not separate these two failure cases.
Lemma 8.11 (Correctness of Lookup) Lookup � LookupRel with
LookupRel :=

λt (l, t ′). ∀H a n. t[0] ' H→ t[1] 'fadd a→ t[2] 'fvar n→ isRight t[3]→ isRight t[4]→
if l then

(
∃g. H[a, n] = bgc∧

t ′[0] ' H∧ isRight t ′[1]∧ isRight t ′[2]∧ t ′[3] 'fClos g∧ isRight t[4]
)

else H[a, n] = ∅.

8.2.2 SplitBody

The machine SplitBody : TM5Σ+
Pro

(B) computes the function φ (cf. Definition 8.3).
The implementation of this machine is straight-forward, because φ ′ is defined tail-
recursively. The machine SplitBodyLoop := While SplitBodyStep computes φ ′, and
SplitBody initialises the accumulators before executing the loop.

The step machine SplitBodyStep : TM5Σ+
Pro

(O(B)) first makes a case-distinction over
the program on tape 0. In the nil case, it returns bfalsec so that the loop returns false.
In the cons-case, it makes a case-distinction over the command, using CaseCom. In
the case the head command is RET, it does another case-distinction over k. In the
case that the head command is VAR(n), the machine applies the VAR constructor to
n again and appends this command toQ. The case-machines use the parametrised
auxiliary machine AppACom t that appends a finite command (i.e. t is either APP,
LAM, or RET) to the command list, and the machine AppCom that appends a com-
mand on a tape to Q.

Definition 8.12 (SplitBodyStep) We define the canonical retraction fVar : Var ↪→ ΣPro
by fVar := RetrList ◦ RetrInl.

SplitBodyStep :=

If (⇑[0;3] CaseList)

Then Switch (⇑RetrList; [3] CaseCom)

(λ(c : O(ACom)). match c

[ bRETc ⇒ If (⇑fVar; [2] CaseNat)

Then Return (⇑[1;4] AppACom RET) ∅
Else Return (⇑[2] Reset) btruec

| bLAMc ⇒ Return (⇑fVar; [2] ConstrS; AppACom LAM) ∅
| bAPPc ⇒ Return (AppACom APP) ∅
| ∅ ⇒ Return (⇑fVar; [3] ConstrVar; ⇑1;3;4 AppCom) ∅
])

Else Return Nop bfalsec
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Input CaseList CaseCom CaseNat AppACom RET
0 : P 0 : P ′

1 : Q 0 : Q++ [RET]

2 : k 0 : k ′

3 : a 1 : RET 0 : a
4 : a 1 : a

Table 8.3: Execution protocol of SplitBodyStep for P = RET :: P ′ and k = S k ′. The
step machine terminates in the label ∅, thus the loop continues. Note that tape 4 is
only used as an internal tape for AppACom.
Input CaseList CaseCom ConstrVar AppCom
0 : P 0 : P ′

1 : Q 0 : Q++ [VAR(n)]
2 : k

3 : a 1 : VAR(n) 0 : n 0 : VAR(n) 1 : a
4 : a 2 : a

Table 8.4: Execution protocol of SplitBodyStep for P = VAR(n)::P ′. The stepmachine
terminates in the label ∅.

Execution protocols for the step machine are visualised in Table 8.3 and Table 8.4.

Note that the step machine resets the tape for k before it breaks out of the loop and
returns true. Thus, no resetting is needed after the loop. The loop machine halts
in true if and only if φ ′ k Q P is not ∅. If it is b(P ′, Q ′)c, then after the execution the
first two tapes contain P ′ and Q ′, and the other tapes are right. If φ ′ k Q P = ∅, the
correctness relation only commits that the machine terminates in the label false.

Lemma 8.13 (Correctness of SplitBodyLoop) SplitBodyLoop � SplitBodyLoopRel.

SplitBodyLoopRel :=

λt (l, t ′). ∀P Q k. t[0] ' P → t[1] ' Q→ t[2] ' k→ isRight t[3]→ isRight t[4]→
if l then ∃P ′ Q ′. φ ′ k Q P =

⌊
(Q ′, P ′)

⌋
∧

t ′[0] ' P ′ ∧ t ′[1] ' Q ′ ∧
(
∀(i : F3). isRigth t ′[2+ i]

)
else φ ′ k Q P = ∅

Before the loop, the tapes for Q and k are initialised to nil and 0:

Definition 8.14 (SplitBody) We define SplitBodyLoop := While SplitBodyStep and

SplitBody := ⇑[1] ConstrNil; ⇑fVar; [2] ConstrO; SplitBodyLoop

https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.LM.JumpTargetTM.html#JumpTarget_Loop_Realise
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.LM.JumpTargetTM.html#JumpTarget
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Lemma 8.15 (Correctness of SplitBody) SplitBody � SplitLoopRel with

SplitBodyRel :=

λt (l, t ′). ∀P. t[0] ' P → isRigth t[1]→ (∀(i : F3). isRigth t[2+ i])→
if l then ∃P ′ Q. φ P =

⌊
(Q,P ′)

⌋
∧

t ′[0] ' P ′ ∧ t ′[1] ' Q∧
(
∀(i : F3). isRigth t ′[2+ i]

)
else φ P = ∅.

8.2.3 Step

We define a machine Step11Σ : TM(O(1)) that simulates steps of the heap machine.
The tapes 0, 1, and 2 contain the control stack T , the argument stack V , and the
heap H, respectively. If the heap machine does a step (T, V,H) � (T ′, V ′, H ′), Step
terminates in ∅ and the resulting tapes contain T ′, V ′, H ′. Otherwise, if (T, V,H) is a
terminating state, Step terminates in the label b()c. Furthermore, if Step terminates
in ∅, there is a successor state (T ′, V ′, H ′).

We implement auxiliary machines for each of the three step rules. Step first de-
structs T . For example, in the case that T = (a, (APP :: P)) :: T ′, the auxiliary ma-
chine for APP destructs V further and then calls a machine App that realises list-
appending and a machine Lenght that computes the length of a list. After that, it
pushes the new closures to T and V . As another example, if T = (a, (VAR(n)::P))::T ′,
the auxiliary machine for VAR calls Lookup and pushes the output closure to the
argument stack and the reset closure to the control stack. If Lookup failed, Step
immediately terminates in b()c, indicating that the state was a halting state.

The machine Step : TM11Σ+(O(1)) is defined on an arbitrary finite alphabet Σ+ with
retractions fStack : ΣList(Clos) ↪→ Σ and fHeap : ΣHeap ↪→ Σ. We omit the definition
of Step here. Although it is quite complex, no new innovations are required, and
the designing of the machine was reasonable easy. The machine first matches on
the control stack. If it is empty, it immediately terminates in b()c.

Lemma 8.16 (Correctness of Step) Step � StepRel with

StepRel :=

λt (l, t ′). ∀T V H. t[0] ' T → t[1] ' V → t[2] ' H→ (∀(i : F8). isRight t[3+ i])→
if l = ∅ then ∃T ′ V ′ H ′. (T, V,H) � (T ′, H ′, V ′) ∧

t ′[0] ' T ′ ∧ t ′[1] ' V ′ ∧ t ′[2] ' H ′ ∧
(
∀(i : F8). isRight t ′[3+ i]

)
else halt(T, V,H) ∧ T = nil→

t ′[0] ' nil ∧ t ′[1] ' V ∧ t ′[2] ' H∧
(
∀(i : F8). isRight t ′[3+ i]

)

https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.LM.JumpTargetTM.html#JumpTarget_Realise
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.LM.StepTM.html#Step_Realise
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For each developedmachine, we also have running time proofs, but we omitted the
running time lemmas for shortness. We have a function

stepSteps : L(HClos)→ L(HClos)→ Heap→ N

such that Step terminates in stepSteps T V H stepswhen the first three tapes contain
T , V , H, and the internal tapes are right.

Lemma 8.17 (Running time of Step) Step ↓ StepT with

StepT := λt k. ∃T V H. t[0] ' V ∧ t[1] ' T ∧ t[2] ' H∧ (∀i : F8. isRight t[3+ i])∧
stepSteps T V H 6 k

8.2.4 Loop

We instantiate Σ := ΣL(Clos) + ΣHeap and define Loop := While Step. This machine
terminates if and only if the heap state that is encoded on the tapes is a terminating
state. Moreover, if the heap state terminateswith an empty control stack (nil, V ′, H ′),
the tapes contain (nil, V ′, H ′) after the execution.

Lemma 8.18 (Correctness of Loop) Loop � LoopRel with

LoopRel :=

λt t ′. ∀T V H. t[0] ' T → t[1] ' V → t[2] ' H→ (∀(i : F8). isRight t[3+ i])→
∃T ′ V ′ H ′. (T, V,H) .∗

(
T ′, V ′, H ′

)
∧

T ′ = nil→ t ′[0] ' nil→ t ′[1] ' V ′ → t ′[2] ' H ′ →
(
∀(i : F8). isRight t ′[3+ i]

)
For the running time function loopSteps, we need the functions step and isHalt
from Lemma 8.6. The running time-function of Loop is defined per recursion over
the number k ′ of reduction steps of the heap machine.

Lemma 8.19 (Running time of Loop) Loop ↓ LoopT with

LoopT := λt k. ∃T V H. ∃T ′ V ′ H ′ k ′. (T, V,H) .k ′
(
T ′, V ′, H ′

)
t[0] ' T ∧ t[1] ' V ∧ t[2] ' H∧ (∀i : F8. isRight t[3+ i])∧
loopSteps T V H k ′ 6 k

with
loopSteps T V H k :=

match k
[ 0 ⇒ stepSteps T V H

| S k ′ ⇒
match step(T, V,H)

https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.LM.StepTM.html#Step_Terminates
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.LM.HaltingProblem.html#Loop_Realise
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.LM.HaltingProblem.html#Loop_Terminates
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[ b(T ′, V ′, H ′)c ⇒
if isHalt(T ′, V ′, H ′)
then 1+ stepSteps T V H+ stepSteps T ′ V ′ H ′

else 1+ stepSteps T V H+ loopSteps T ′ V ′ H ′ k ′

| ∅ ⇒ stepSteps T V H

]

] .

Lemma 8.18 says that if Loop with tapes that encode (T, V,H) terminates, then heap
machine also terminates. Dually, Lemma 8.19 says that if heapmachine terminates,
so does Loop when we encode (T, V,H) on the tapes.

The last step of the reduction of the halting problem of the heap machine to the
halting problem of multi-tape Turing machines is to define a function

initTapes : L(Clos)× L(Clos)×Heap→ Tape11Σ

such that the first three tapes of initTape(T, V,H) contain T , V , or H, respectively,
and the rest tapes are right.

Definition 8.20 (initTapes)

initTapes(T, V,H) := initValue(T) :: initValue(V) :: initValue(H) :: initRight8

With initValue(x) := midtape nil START (encode(x) ++ [STOP]) and initRight :=

midtape nil STOP nil.

Theorem 8.21 (Halting problem reduction) Let (T, V,H) be a heap state. Then(
∃T ′ V ′ H ′. (T, V,H) .∗ (T ′, V ′, H ′)

)
↔
(
∃c k. Loop(initTapes(T, V,H)) .k c)

)

https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.LM.HaltingProblem.html#initTapes
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Code.CodeTM.html#initValue
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.Code.CodeTM.html#initRight
https://www.ps.uni-saarland.de/~wuttke/bachelor/coqdoc/ProgrammingTuringMachines.TM.LM.HaltingProblem.html#HaltingProblem


Chapter 9

Conclusion

We have formalised multi-tape Turing machines in Coq. We developed a frame-
work for programming and proving correctness and time complexity of multi-tape
Turing machines. We have demonstrated the power of this framework by imple-
menting and verifying a multi-tape Turing machine that simulates an abstract ma-
chine. This machine is a variation of the heapmachine in Kunze et al. [13]. The two
variants differ in that programs in our version are linearised lists of commands.
In [13], the authors show that their heap machines can simulate terms of the pro-
gramming language L, which is a subset of the call-by-value λ-calculus. It should
be easy to formalise the reduction from the heap machine in [13] to our version. By
that, we would formalise the reduction from the halting problem of L to the halt-
ing problem of multi-tape Turing machines. This is, however, beyond the scope
of this thesis. It is an ongoing research project [9], to implement a Coq library of
undecidability reductions, and this thesis provides one step towards this goal. The
reduction from the halting problem of single-tape Turing machines to the Post cor-
respondence problem (PCP) has already been mechanised in Coq in [12].

Differences to other mechanisations of Turing machines We build on Asperti
and Ricciotti‘s framework from [2] inside the theorem prover Matita, and initially
ported their definitions of tapes and Turing machines to Coq. We find their in-
ductive definition of tapes appealing, because of its symmetric and finite nature.
Because of the symmetric nature of their definition of tapes, it was easy to define
an operator Mirror that mirrors the transition function of a machine. This is in con-
trast to the implementation of tapes in [17], where tapes are split into two halves,
and the right half contains the current symbol. The finite nature made it possible
to define an always terminating machine that moves the head to the right (or using
Mirror to the left) end of the tape. This is in contrast to [6], where tapes are im-
plemented as infinite streams of symbols. Our framework implements five major
improvements on [2]. (1) By introducing labelled machines we make it unneces-
sary to reason about concrete states of machines. The authors in [2] already note
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that reasoning about internal states is tedious and therefore do not include the ter-
minating state in their definition of realisation. However, they also need a separate
definition of realisation that includes the terminating state. (2) We have introduced
a notion of time complexity that relates the inputs to the number of steps needed
for the computation. (3) By introducing an operator Switch that generalises sequen-
tial composition and conditional, we simplified the verification of both operators
and also introduced a useful operator that was used throughout the thesis. (4) We
implemented general lifting operators that make it possible to compose small ma-
chines (w.r.t. the alphabet and number of tapes) to fairly complex machines. At this
point, composing compound machines is reasonably easy, but we (5) have intro-
duced another layer of abstraction. We havemade it possible to directlymanipulate
values of encodable types.

In [15], Norrish concludes that:

If registermachines are unappealing because of their general fiddliness,
Turing machines are an even more daunting prospect.

Certainly, Turing machines are not appealing. We have spent considerable efforts
(ca. one year) to make programming and verifying Turing machines feasible. In-
terestingly, we ended up at a point, where programming and verifying Turing ma-
chines can be (in some sense) easier than for register machines, because register
machines are restricted to natural numbers. The on-paper design, implementation
and verification of the simulator was finished in three weeks.

Duality of realisation and termination We noted that our concepts for correct-
ness and time complexity are dual in a sense. The (weak) notion of realisation says
that if the machine terminates, then the output is correct w.r.t. a correctness rela-
tion R. On the other side, a machine terminates in a termination relation T , if for all
pairs of input tapes t and step numbers k that are in T , the machine terminates in k
steps given the input t. Realisation is monotone (cf. Lemma 2.24), and termination
is anti-monotone (cf. Lemma 2.26). We find it remarkable that we use an inductive
correctness relation for While (cf. Lemma 4.20) and a co-inductive running time re-
lation (cf. Lemma 4.23).

Similarity of realisation and Hoare logic As already noted in [6], the notion of
realisation is similar to Hoare logic, that is widely used for program verification.
For example, consider the Hoare proof rule for sequential composition and the cor-
responding relational rule (for unlabelled machinesM1,M2 : TMnΣ):

{A} P1 {B} {B} P2 {C}

{A} P1; P2 {C}
M1 � R1 M2 � R2

M1; M2 � R1 ◦ R2
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Sequential composition of machines amounts to relational composition of correct-
ness relations (cf. Lemma 4.6). We encode preconditions and postconditions inside
correctness relations. This means that if the precondition does not hold for input
tapes t, this implies R t (l, t ′). We are not aware of a Hoare-style calculus for rea-
soning about termination in a concrete number of steps related to the input, that is
dual to Hoare logic, like in our duality between realisation and termination.

Problems of the framework The biggest problemof this framework is that encod-
ability of types can be ambiguous. For example, there are more than three ways
how to encode natural numbers on the alphabet of the heap machine simulator
(cf. Section 8.2.1). We had to mentally keep track of in which encoding a value
is encoded on a tape, and to translate values from one encoding to another. The
greatest part of the total compilation time (which is less then 5 minutes) consists of
rewriting tapes. This could probably be further optimised.

Comparison of proof assistants Asperti and Ricciotti [2] propose the formalisa-
tion of Turing machines as a benchmark for comparing proof assistants. We think
that the formalisation and usability of finite sets could be a benchmark for itself.
However, the task “formalise Turingmachines in proof assistant X” is rather broad.
There are many mathematical formalisations of Turing machines, and some might
be easier to implement in one or the other proof assistant. For example, Isabelle
does not support dependent types, so this concrete formalisation of Turing ma-
chines in this thesis would not be possible in Isabelle. Dependent types are quite
central in our formalisation of Turingmachines. For example, defining Switchwith-
out them would probably be considerable harder.

Future work When we defined the notion of value-containment (cf. Section 7.1),
we had futurework inmindwherewe formalise space-usage ofmachines. Wewere
careful to avoid memory-leaks in the machines, but have not yet formalised this as-
pect of correctness. We can strengthen the correctness relations with commitments
about the space-usage of each tape. Asperti and Ricciotti‘s inductive definition of
tapes is very helpful in this regard, because their tapes never decrease the num-
ber of symbols. This means that the total space usage of a tape is just the number
of symbols on the tape. Our idea is that we parametrise the definition of value-
containment over the length l of the “rest list” on the left, and write t 'l x. Note
that, by definition, there are no symbols beyond the stop symbol on the right side
of the tape, so the total size of the tape only depends on the length of the encoding
and the length of the left rest. For example, CaseNat does not change the amount of
totally allocated symbols, but decreases the length of the encoding and increases
the length of the rest by one. On the other side, ConstrS “consumes” one rest sym-
bol, i.e. it decreases the length of the rest by one and increases the length of the
encoding by one. Thus, if the rest is empty, ConstrS allocates one new symbol.
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Further future work could be to show that the running time function of the simu-
lator is polynomial w.r.t. the number of steps and the length of the encoding of
the initial heap machine state, see [11]. We could also formalise the reduction
frommulti-tape Turing machines to single-tape Turing machines, and from single-
tape Turing machines to single-tape Turing machines with a binary alphabet. The
framework can be used to program other simulator machines, for example, for the
“naive” substitution-based machine in [13]. We could implement a universal Tur-
ing machines as in [2], and formalise results of computationally and complexity
theory, for example the undecidability of the halting problem and Rice‘s theorem.
The opposite reduction from multi-tape Turing machines to L, i.e. programming
an L expression that simulates multi-tape Turing machines, is also open for future
work. This should be a “less daunting prospect”, because there is a framework for
verified extraction of Coq terms to expressions of L, see [8].



Appendix A

Implementation in Coq

We outline some pearls of the implementation of the framework of this thesis in the
theorem prover Coq. We do not assume additional axioms. The implementation
compiles with the Coq versions 8.7 and 8.8. We use proof scripts to derive proof
terms, using Coq’s standard tactic language ltac. The complete the source code can
be downloaded from the homepage of this thesis:

https://www.ps.uni-saarland.de/~wuttke/bachelor/

Used Libraries

Wemake use of the typeclassmechanism built into Coq. Typeclasses are first-citizen
objects in Coq, that may be parametrised over types and other typeclasses. Coq
uses proof-search to infer instances of typeclasses. For that, the user has to declare
definitions or lemmas as typeclass instances. We refer to Castéran and Sozeau [5],
for a more thorough description of this feature.

Base Library and Finite Types We use a modified version of the library for the
lecture Introduction to Computational Logic at Saarland University. This library ex-
tends the standard library of Coqwith additional functions and automation for lists
and decidable predicates. On top of this library, we use the library of finite types
that was developed by J. Menz in his bachelor’s thesis [14]. The following listing
outlines the definition of decidable predicates and finite types:

Definition dec (P : Prop ) := {P } + {¬ P } .
Definition eq_dec (X : Type ) := ∀ x l , dec ( x= l ) .
Structure eqType := EqType {

eqtype : > Type ;
decide_eq : eq_dec eqtype

} .
Canonical Structure eqType_CS X (A: eq_dec X) := EqType X .

https://www.ps.uni-saarland.de/~wuttke/bachelor/
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Class finTypeC ( type : eqType ) : Type := FinTypeC {
enum : l i s t type ;
enum_ok : ∀ x : type , count enum x = 1

} .
Structure finType : Type := FinType {

type : > eqType ;
c l a s s : finTypeC type

} .
Canonical Structure finType_CS (X : Type ) {p : eq_dec X} { c l a s s :

finTypeC (EqType X) } : f inType := FinType ( EqType X) .

The coercions (:>) make it possible to use finite types L:finType as types, i.e. we can
write x:L. The canonical structures enable automatic inference of the structure, for
example there is a function index : ∀ L:finType, L → nat, andwe canwrite index true.

Retraction Library We implemented a library for retractions. We use a typeclass
for the existence of retractions between two types.
Section Ret rac t .

Variable X Y : Type .
Definition r e t r a c t ( f : X→ Y) ( g : Y→ option X) :=
∀ x l , g l = Some x ↔ l = f x .

Class Ret rac t := {
Re t r_ f : X→ Y ;
Retr_g : Y→ option X ;
Re t r _ r e t r : r e t r a c t Re t r_ f Retr_g ;

} .
End Ret rac t .
Arguments Ret r_ f { _ _ _ } .
Arguments Retr_g { _ _ _ } .

The Vernacular command Arguments makes X, Y, and the instance contextual im-
plicit. This means that Retr_f : X→ Y, where X and Y are inferred from the context.
We define instances for the retractions in Section 2.1.3.

The retraction composition operator is not defined as an instance, to avoid diverg-
ing proof search during the typeclass inference, because it can be applied arbitrary
many times. Although it is not declared as instance, the retraction composition
function ComposeRetract can be manually applied:
ComposeRetract : ∀ A B C : Type , Re t rac t B C→ Ret rac t A B →

Ret rac t A C

We embed composition of retractions into retraction operators. For example, in-
stead of defining a retraction RetrLft : X ↪→ X + Y, we define (and declare as an
instance) an operator on retractions:
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Re t r a c t _ i n l : ∀ A B C : Type , Re t rac t A B → Ret rac t A (B + C)

Inhabited Types We also have a library for inhabited types. Whenever we need
a semantically irrelevant value, we can just write default and Coq infers and inserts
a value with the following typeclass:

Class inhabitedC (X : Type ) := {
de fau l t : X ;

} .

Vectors and Fk We use the type constructors Vector. t and Fin. t from Coq’s stan-
dard library. However, many basic lemmas and functions are missing for this type.
We have a small library that adds the missing functions and lemmas. It also pro-
vides some tactics, for example to make case distinctions over Fin. t (S n). We also
introduce notations for elements of Fk.

smpl We use Sigurd Schneider’s smpl plugin1. It lets the user add tactics to a
database (similar to HintDb) and provides a tactic that applies the first applicable
tactic from the database. We use this plugin for proof automation, more on that
below.

Mechanisation of encodable types

TheCoq implementation of the definition ofmulti-tape Turingmachines is straight-
forward. Therefore, we omit code-listings here. The interested reader of the PDF
version of this thesis may click on the definitions or lemmas, to get to the corre-
sponding Coq code.

We also use typeclasses to implement the notion of encodable types:2

Class codable ( s ig : Type ) (X : Type ) := {
encode : X→ l i s t s ig ;

} .
Arguments encode { s ig } {X} { _ } .
Coercion encode : codable � Funclass .

When cX : codable sig X, the above Coercion vernacular makes it possible to write
cX x. This applies the concrete encoding function given by the instance cX. We
prefer this notation over encode x, due to the fact that encodability is ambiguous,
as noted in Section 7.1. We define the alphabets in Definition 2.8 inductively, and
also declare their proofs of finiteness.

1https://github.com/sigurdschneider/smpl
2Note that for technical reasons we do not parametrise codable over sig :finType.

https://github.com/sigurdschneider/smpl
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We realise the type of the extended alphabet Σ+ := boundary+ Σ, where

boundary ::= START | STOP | UNKNOWN

is defined as an inductive type.

Automation

Our proof scripts make use of the feature of existential variables. An existential vari-
able ?X is a type (that may contain variables referring to more existential variables)
and the environment in which it should be typed. Existential variables are re-
fined during unification (e.g. using the tactic “apply”) and created with tactics like
“eapply”. Before the proof script can be finished and savedwith theQed command,
all existential variables must be bound to values.

Our tactic TMSimp destructs conjunctive assumptions in all hypotheses (i.e. logical
conjunctions and logical existentials). It also introduces and names tapes to tmid,
tmid0, etc. Furthermore, it instantiates and rewrites with hypotheses of the form
H : ∀j. j /∈ I→ tmid0[j] = tmid[j], that come from the correctness Lemma 5.6 of the
tapes-lift operator.

The tactic modpon H instantiates assumptions of the form H : ∀x · · · . P → · · · →
Q. For each premise that the tactic could not solve automatically, it creates a new
subgoal with existential variables for the quantified variables.

The tactic TM_Correct instantiates the existential variable for the relation ?R ′ and
provesM �?R ′. For that, it applies all correctness lemmas of the primitivemachines,
control-flow operators, lifts, constructors and deconstructors, and some other aux-
iliary machines. The user can declare more correctness and running time lemmas
to be used by TM_Correct. For that, we use the Coq plugin smpl. For example, the
following code declares the correctness and running time lemmas of LiftTapes:

Ltac smpl_TM_LiftN :=
lazymatch goal with
| [ ` Li f tTapes _ _ � _ ] ⇒

apply L i f tTapes_Rea l i s e ; [ smpl_dupfree | ]
| [ ` Li f tTapes _ _ �c ( _ ) _ ] ⇒

apply L i f tTapes_Rea l i s e In ; [ smpl_dupfree | ]
| [ ` projT1 ( L i f tTapes _ _ ) ↓ _ ] ⇒

apply Lif tTapes_Terminates ; [ smpl_dupfree | ]
end .

Smpl Add smpl_TM_LiftN : TM_Correct .

The tactic smpl_dupfree automatically proves that a vector is duplicate-free.
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Note thatwe do not register correctness lemmas to TM_Correct that require semanti-
cal information. For example, the correctness Lemmas 7.48 (Reset_Realise) and 7.42
(CopyValue) are parametrised over the encoding of X. The user has to applying the
lemmas with the correct encoding manually.

Example Correctness Proof in Coq

Weuse the general approach how to prove correctness (or running time) of a Turing
machine, as described in Chapter 6. For example, consider the following goal (we
use the user-defined Coq notation �c(k) to mean �k).

============================
Add_Step �c ( 9 ) Add_Step_Rel

The outline of the proof script is:

Proof .
eapply RealiseIn_monotone .
{ unfold Add_Step . TM_Correct . }
{ cbn . r e f l e x i v i t y . }
{ (∗ . . . ∗ ) }

Qed .

The tactic eapply RealiseIn_monoton applies Lemma2.24, and creates existential vari-
ables ?R ′ and ?k ′ and three subgoals:

3 focused subgoals
( shelved : 2 )

============================
Add_Step �c ( ? k ’ ) ?R’

subgoal 2 i s :
?k ’ 6 9

subgoal 3 i s :
?R’ ⊆ Add_Step_Rel

After focusing the first subgoal, we unfold the definition of Add_Step:

============================
I f ( L i f tTapes CaseNat [| Fin1 |] )

( Return ( L i f tTapes Constr_S [| Fin0 |] ) None)
( Return Nop (Some t t ) ) � ( ? k ’ ) ?R’

The tactic TM_Correct automatically applies the correctness lemmas of the condi-
tional, tape-lifting, etc. It instantiates ?R’ and k’:
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?R’ := ( L i f tTapes_Rel [| Fin1 |] CaseNat_Rel|_true ◦
(
⋃
f:1 Li f tTapes_Rel [| Fin0 |] S_Rel|_f )||_None )

∪
( L i f tTapes_Rel [| Fin1 |] CaseNat_Rel|_ f a l s e ◦
(
⋃
f:1 Nop_Rel|_f )||_ (Some t t ) )

?k ’ := 1 + CaseNat_steps + Nat .max Constr_S_steps 0

where CaseNat_steps is the constant number of steps required for CaseNat (i.e. 5)
and Constr_S_steps is 3. By simplification, the second goal reduces to 969, which is
solved by reflexivity of 6.

The main part of the proof is the third goal (with R’ substituted). We prove it with
the following proof script:
{

i n t r o s t i n ( yout , tout ) H. cbn . i n t r o s a b HEncA HEncB .
cbn in ∗ . de s t ruc t H; TMSimp .
− modpon H. des t ruc t b ; auto .
− modpon H. des t ruc t b ; auto .

}

After the introduction of the variables andhypothesesHEncA: tin[@Fin0] ' a,HEncB:
tin[@Fin1] ' b, and H: R’ tin (yout, tout), we make a case-distinction over H (note
that the head symbol in the definition of R’ is ∪, so H reduces to a disjunction).
This gives two sub-goals. In both subgoals, we use the automation tactic TMSimp.
The first subgoal is:
t in , tout , tmid : tapes ( boundary + sigNat ) 2
H : ∀ n : nat , t i n [ @Fin1 ] ' n →match n with

| 0 ⇒ Fa lse
| S n ’ ⇒ tmid [ @Fin1 ] ' n ’
end

H0 : ∀ n : nat , t i n [ @Fin0 ] ' n →tout [ @Fin0 ] ' S n
a , b : nat
HEncA : t i n [ @Fin0 ] ' a
HEncB : t i n [ @Fin1 ] ' b
H0_0 : tmid [ @Fin0 ] = t i n [ @Fin0 ]
H1_0 : tout [ @Fin1 ] = tmid [ @Fin1 ]
============================
match b with
| 0 ⇒ Fa lse
| S b ’ ⇒ tout [ @Fin0 ] ' S a ∧ tmid [ @Fin1 ] ' b ’
end

In this case, we know that a must be equal to S a’ for some a’. The assumption H
is automatically instantiated with a and the proof HEncA. We finish the goal by
case-distinction over a. The second goal is analogous.
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Even for complex machines, the correctness proofs in Coq follow this pattern. It is
important to note that the structure of the proof always follows the structure of the
machine. Running time proofs are analogous.

Lines of Code

In Table A.1, we summarise the numbers of Coq code. We used the tool coqwc to
count the lines. The case-studies are under the horizontal line in the middle.

Module Spec Proof
Preliminary (incl. loop and relations) 176 84
Definition of Turing machines 430 194
Primitive Machines 122 34
Control-flow operators 425 383
Lifting 362 193
Simple Machines 380 278
Value containment 394 119
Copying and writing values 411 288
Alphabet-Lift with values 133 147
Deconstructors and constructors 486 482
Notations and tactics for compound or
programmed machines

165 15

MapSum 47 110
Addition andMultiplication machines 181 298
List functions machines 326 456
Heap machine simulator 981 1040
Total 5019 4121

Table A.1: Lines of specification and proof code for the “modules” (with several
source files)

The total number of library lines is 153 spec and 2638 proof. The total compilation
time is circa 4:30 minutes.3

Using Coq‘s Extractmechanism, we compiled the Coq implementation toHaskell,
andwewere able to count the total number of states of the heapmachine simulator:
The alphabet of Loop consists of 30 symbols and it has 11537 states.

3Measured on the following hardware: Intel(R) Core(TM) i7-4710MQ CPU; 8 cores @ 2.50GHz;
compiled on GNU/Linux with make -j8 and Coq 8.8.1.
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