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Abstract

A Machine Learning based System (MLS) is a software system including one or more components that learn
how to perform a task from a given data set. The increasing adoption of MLSs in safety critical domains
such as autonomous driving, healthcare, and finance has fostered much attention towards the quality as-
surance of such systems. Despite the advances in software testing, MLSs bring novel and unprecedented
challenges, since their behaviour is defined jointly by the code that implements them and the data used for
training them.
To identify the existing solutions for functional testing of MLSs, and classify them from three different per-
spectives: (1) the context of the problem they address, (2) their features, and (3) their empirical evaluation.
To report demographic information about the ongoing research. To identify open challenges for future
research.
We conducted a systematic mapping study about testing techniques for MLSs driven by 33 research ques-
tions. We followed existing guidelines when defining our research protocol so as to increase the repeatabil-
ity and reliability of our results.
We identified 70 relevant primary studies, mostly published in the last years. We identified 11 prob-
lems addressed in the literature. We investigated multiple aspects of the testing approaches, such as the
used/proposed adequacy criteria, the algorithms for test input generation, and the test oracles.
The most active research areas in MLS testing address automated scenario/input generation and test oracle
creation. MLS testing is a rapidly growing and developing research area, with many open challenges, such
as the generation of realistic inputs and the definition of reliable evaluation metrics and benchmarks.
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1 Introduction

Humanity long dreamed about reproducing intelligence within artificial machines. Back in 1872, the nov-
elist S. Butler was the first to describe machines developing consciousness in his work entitled “Erewhon”.
Scientists did not wait long to investigate in this direction: in 1950 Alan Turing proposed his famous op-
erational test to verify a machine’s ability to exhibit intelligent behaviour indistinguishable from that of a
human [129].
The advent of Machine Learning (ML) along with recent technological advancements allowed giant steps
towards the realisation of this dream. Unlike traditional software systems, in which developers explic-
itly program the systems’ behaviour, ML entails techniques that mimic the human ability to automatically
learn how to perform tasks through training examples [114]. Instances of such tasks include image pro-
cessing, speech, audio recognition, and natural language processing. The huge availability of sample data,
united with the increasing computing capacity of graphical processing units, has allowed training complex
ML architectures which are able to outperform traditional software systems and sometimes even humans.
Nowadays, it is quite common to integrate one or multiple ML components within a software system. In
this paper, we refer to a system of this kind as Machine Learning based System (MLS).
MLSs are utilised in safety/business critical domains such as automotive, healthcare and finance. In these
domains, it is essential to check for the reliability of an MLS, i.e., to understand to what extent they can be
trusted in response to previously unseen scenarios that might be not sufficiently represented in the data
from which the system has learned. To this aim, software testing techniques are being used to check the
functionality of MLSs and ensure their dependability. However, the effectiveness of traditional testing
approaches for MLSs is quite limited. First, part of the program logic of an MLS is determined by the data
used for training, thus code coverage metrics are not effective to determine whether this logic has been
adequately exercised. Second, learning processes used in MLSs are stochastic in nature, which makes it
challenging to define deterministic oracles for them, since repetitions of the training phase may lead to
different behaviours.
The software engineering (SE) research community is striving to tackle the problem of adequately testing
the functionalities of MLSs, with the number of approaches proposed in the literature growing exponen-
tially in recent years. Such proliferation of novel ML testing techniques demands for secondary studies,
i.e., studies that review primary studies with the aim of integrating or synthesising knowledge related to
this research area [106]. Systematic mapping studies (or scoping studies) are secondary studies designed
to structure a research area driven by specific research questions. These studies involve a classification of
the primary studies over a number of dimensions and counting contributions in relation to the categories
of that classification [118]. The outcome of a mapping study is a set of papers relevant to the research ques-
tions, mapped to a classification [118, 130]. In this way, a mapping study allows to discover research gaps
and trends in a research area [117].
In this paper, we present the results of a systematic mapping study we conducted about functional testing
techniques for MLSs. The scope of this work is to help structure, curate, and unify the literature in this
research area, and to analyse it in detail in order to help shed light on the potential of these techniques, and
make them more visible and accessible [106].
We formulated 33 research questions to fulfill the goal of the study; then we proceeded by systematically
collecting an initial pool of publications, and applied a number of inclusion and exclusion criteria to se-
lect the relevant primary studies. Then, we analysed the retained 70 papers in terms of the problem they
address, the approach they propose and their empirical evaluation. In order to increase the validity, re-
peatability and reliability of our results, we designed a systematic protocol for the identification and clas-
sification of papers following the guidelines by Kitchenham et al. [108] and Petersen et al. [118]. We report
all details of the research process, including also the actions taken to mitigate possible threats to validity,
and we make all data collected and analyses performed during our study available [119].
The paper is structured as illustrated in Figure 1. section 2 gives an overview about relevant ML concepts.
section 3 specifies the goal of this mapping and the research questions it aims to answer. section 4 describes
the process we followed to retrieve the relevant literature and to extract the information to answer the
research questions. section 5 synthesises and classifies the information we obtained from the literature.
section 6 summarises the weaknesses of the approaches presented in the literature and provides possible
directions for future research. section 7 provides an overview of the related work. Finally, section 8 reports
conclusions and future work.

TECHNICAL REPORT 1



TR-Precrime-2020-03 — Testing Machine Learning based Systems

Goal and 
Research Questions

(Section 3)

Background
(Section 2)

Methodology
(Section 4)

Results
(Section 5)

Context (Sect. 5.1)

Proposed Approach (Sect. 5.2)

Evaluation (Sect. 5.3)

Demographics (Sect. 5.4)

Related Work
(Section 7)

Discussion
(Section 6)

Conclusions and 
Future Work
(Section 8)

addressed problem, testing levels, 
domains, algorithms

artefacts, adequacy, input generation,
oracle, access, context model, etc.

type, method, models, datasets, 
metrics, hw & sw setup, etc.

year, venues, authors, organizations,
countries, citations

Context
(RQs 1.x)

Proposed Approach 
(RQs 2.x)

Evaluation 
(RQs 3.x)

Demographics 
(RQs 4.x) List of Selected 

Primary Studies 
& References

Figure 1: Organization of the Systematic Mapping

2 Background

In this Section, we give an overview about the relevant ML techniques as well as the challenges of applying
classical testing approaches in the machine learning domain.

2.1 Machine Learning Based Systems

Generally speaking, Machine Learning (ML) offers statistical techniques to learn complex functions (pat-
terns) from a provided training data set, allowing to apply the learned functions on new, previously unseen
data points. This ability to generalize is often used to make predictions about unknown properties of ob-
served data. Once trained, ML functions can be represented and stored as a set of hyper-parameters and
variables learned from the training data – a model, which typically includes weights.

Definition 1 (Model) A machine learning model (short: model) is a trained instance of a specific machine learning
algorithm.

In real world applications, such models are typically part of a larger Machine Learning Based System (MLS).
Besides one or more machine learning models, an MLS may contain also other software components, re-
sponsible e.g., for input transformation, corner-case handling, user interaction or functional logic which is
not directly inferred from the training data.

Definition 2 (Machine Learning Based System) A system in which at least one of the components relies on ma-
chine learning techniques.

Figure 2 shows a simplified architecture of a self-driving car, which we use as an example of MLS. In the
figure, the ML models (pedestrian protection and lane keeping assistant) are trained using offline training
data (Dataset). When the whole system is in operation, the MLS takes as input online data, which can
be either simulated or in-field input data. In our example, a data processing component is responsible of
formatting and scaling the raw input data, so that they can be processed correctly by the ML models. A
decision making component aggregates the outputs of various components, including the ML models, to
produce the final values of the car’s actuators (e.g., steering angle, brake, throttle).
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Figure 2: Self-driving cars are representative examples of modern MLSs.

2.2 Machine Learning Algorithms

Machine Learning has been the subject of research for decades. Foundations for the now very popular tech-
nique called deep learning were laid already in the 1940s [123]. Both research and industry are increasingly
using ML techiques also thanks to the recent availability of powerful graphics processing units (GPU) at
moderate prices and large amounts of labeled sample data. Researchers have investigated a wide range of
algorithms, with different strengths and weaknesses. In this Section, we give a quick overview of some of
the most relevant types of ML algorithms, with no claim of completeness. For a more complete introduction
to ML, we refer the reader to the relevant literature [75, 102, 128].

Classification vs. Regression: Considering predictive ML problems, we often distinguish between classi-
fication problems in which the ML algorithm has to assign a class to a given input, from regression problems
in which the prediction takes the form of one or more continuous values. Examples of well known algo-
rithms for classification problems are Decision Trees [121], k-Nearest Neighbors [72], and Support Vector
Machines (SVM) [83], while Linear Regression [126] and Multilayer Perceptron [94] are basic, yet very fre-
quently used algorithms for regression problems. Note that some algorithms, such as Multilayer Perceptron
or k-Nearest Neighbors, can be used for both regression and classification with slight adaptations. Classi-
fication and regression algorithms are said supervised learning algorithms, because they require a training
data set with labeled data, where the label is the class or the continuous value to be predicted.

Clustering: Another important class of ML algorithms consists of unsupervised learning algorithms and
among them clustering algorithms are the most widely adopted. Cluster analysis aims at grouping ob-
jects into clusters so that the similarity between two objects is maximal if they belong to the same cluster
and minimal otherwise [105]. Popular clustering algorithms include Hierarchical Agglomerative cluster-
ing [105], K-means++ [74], K-medoids [104], and Gaussian Mixture Models [116].

Neural Networks: The one type of ML algorithm that gained most attention recently is Neural Networks
(NN) and the associated learning techniques are named Deep Learning (DL). NN are inspired by the neu-
rons in the brains of animals and consist of artificial (simulated) neurons for which an output activation is
calculated based on a weighted, often non-linear aggregation of the inputs. There are various types of NN.
In Feedforward Neural Networks neuron connections are acyclic and values are propagated in one direction,
from input to output. They are useful in non-sequential predictions. Two important types of Feedforward
NN are Multilayer Perceptrons, which consist exclusively of fully connected neural network layers, and Con-
volutional Neural Networks (CNN), which are particularly useful in image processing as their neurons can
efficiently handle small subsets of related, close proximity pixels, acting as feature extractors for image
portions. Differently, Recurrent Neural Networks (RNN) make use of stateful neurons, which can memorize
the internal state reached after observing a sequence of input data. Thus, they are particularly suitable for
processing of sequential data, such as natural language sentences or speech.

2.3 Measuring ML Model Effectiveness

After training an ML model, its performance is evaluated as follows:

Effectiveness Evaluation: The data available when creating the model is divided into a training and a
test set, two mutually exclusive splits of the available data. Then, the training set is used to make choices
about the model architecture and to train it. Lastly, the test set, which was ignored during training, is
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used to calculate and report the performance of the finalised model. To allow tuning of hyper-parameters
and to detect problems like overfitting to the training set, a part of the training set is often defined as
validation set. It is not used directly for training, but instead it is used to evaluate the performance of models
with different hyper-parameters or to decide when to stop training (i.e., to fix the hyper-parameter named
epochs). Training terminates when effectiveness does no longer increase if measured on the validation set.
After the optimal hyper-parameters have been chosen, a final model is trained on the complete training set,
including validation set.
In supervised learning, effectiveness is measured differently for classifiers and for regressors. For classifiers,
accuracy is one of the most widely used metrics. It measures the proportion of correct classifications over
all samples to be classified. For regressors, mean squared error is the most preferred metric, computed as
the average squared difference between predicted and correct values. Unsupervised learning makes use of
different effectiveness metrics, as it cannot rely on any ground truth labeling of the data. For instance, in
the case of clustering algorithms, the Silhouette metric is used to get insights about the potential number
and the quality of clusters within a dataset [122].

Confidence: For any non trivial problem, ML performance on the test set cannot reach the upper bound
(1 for accuracy; 0 for mean squared error). In fact, perfect generalisation from training data to test data
is generally impossible [89]. Moreover, both training and test data can be noisy. The probability of mis-
prediction due to these reasons is named uncertainty and its complement is confidence.

2.4 Testing MLSs vs Programmed Software Systems

Testing software systems is a complex task aiming to detect and prevent unintended behavior of the soft-
ware. Besides the well known challenges of classical (i.e., non-ML based) software systems, testing MLSs
poses additional challenges. First, the behavior of an MLS is largely impacted by factors such as the avail-
able training data sets, the choice of hyper-parameters, the model architecture, algorithm and optimiser.
On the other hand, the source code is usually very succinct and less prone to errors, because it consists of
a plain sequence of API function invocations, and the decision-making policy (i.e., the actual algorithm)
is inferred from the training data. Additionally, the exhibited behaviour, encoded by the learned weights
within the model, is very difficult to interpret and debug for humans. Classical testing techniques are not
easily applicable to any of the above mentioned artefacts, except for the source code. In this section, we
describe the main differences between testing classical software systems vs MLS.

2.4.1 Fault and Failure

When considering unintended behavior in software systems, we distinguish between faults and failures.
According to their definitions in the IEEE Standard Glossary [98]:

Definition 3 (Fault) [. . . ] An incorrect step, process, or data definition in a computer program.

A typical example of a fault in a classical software system is a wrong instruction in a line of code.

Definition 4 (Failure) The inability of a system or component to perform its required functions within specified
performance requirements.

To prevent failures, testing of classical software systems attempts to identify and eliminate faults. Since un-
certainty is unavoidable when using ML techniques and mis-predictions are hopefully rare, but definitely
possible, a robust MLS should capture such uncertainty and take suitable countermeasures to prevent fail-
ures even when an internal ML model fails to make a correct prediction. The inability of an MLS to do so
can be considered as a data sensitive fault, according to the IEEE Standard Glossary definition [98]:

Definition 5 (Data Sensitive Fault) A fault that causes a failure in response to some particular pattern of data.

Exposing all data sensitive faults is a difficult task in ML applications, given their intangibly big input
space. It is the main goal of MLS testing to find ML mis-predictions that give raise to MLS failures.
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2.4.2 Test Input Generation

The large input space is the main root cause for faults in MLS. Thus, generating test data that represent the
input space properly is an important, yet difficult task. The generated data has to fulfill various criteria,
such as diversity and realism, and must be equipped with a suitable oracle.
The generation should also scale well, allowing for the creation of sufficient testing data to reliably analyse
the robustness of the MLS. Depending on the domain, in practice, this may be a major challenge [80] (con-
sider, e.g., crashing a self-driving car for testing purposes [81]). Therefore, tests are conducted within simu-
lated environments, which enable the detection of failures in a scalable and reproducible manner [81, 127].
The generation of input data for MLS is particularly challenging since the validity domain (i.e., the subset of
the input space that is considered a valid input) is often ambiguous and has blurred borders.

2.4.3 Adequacy Criteria

Test Adequacy Criteria aim to evaluate whether the suite of implemented tests is comprehensive enough
to test the software thoroughly. Classical metrics such as code coverage are severely limited with respect to
ML components, primarily as they saturate with any test suite, since the ML code is usually just a sequence
of library function invocations that is fully covered when at least one test input is processed. Mutation
Adequacy offers an interesting alternative and is more adequate to MLSs. It is measured as the proportion
of mutations—artificial faults injected into the code—that the test suite detects (i.e., kills), provided ML-
specific mutation operators are defined and implemented. Hence, for MLS new ML-specific adequacy
criteria must be introduced, which typically either analyse the used test data or the internal states of the
ML component.

2.4.4 Oracle

The effectiveness of a set of tests depends strongly on their oracle, i.e., on a way to determine whether the
tested behavior is correct or a problem is observed. In the absence of oracles, tests can only detect crashes
(smoke testing).
While conceptually oracles are the same for both classical software systems as well as MLSs (i.e., they en-
code the intended system behavior), for complex domains the correct behavior of an MLS can be challeng-
ing to define even for humans. Moreover, the nondeterministic behaviour of MLSs (i.e., repeated training
on the same data may result in different behaviours) require novel notions of statistical correctness. In the
context of MLS, Metamorphic Oracles have emerged as a viable approach to infer oracle information from
data. Metamorphic oracles take advantage of metamorphic relations between input values: if a metamorphic
relation holds between the inputs, the corresponding MLS outputs must necessarily satisfy a known rela-
tion (usually equality or equivalence). For instance, an image representing a handwritten digit classified as
a “5” should remain in such class upon minimal addition of noise to a small number of pixels.

2.5 MLS Testing Levels

Test levels define the granularity of the tested entity, e.g., whether the tested entity is a small unit or the
system as a whole. Typical test levels in classical software engineering include unit, integration, and system
level testing. All such testing levels can also be used for MLS, but they may require further specialisation.
In this paper, we distinguish between input testing, model testing, integration testing and system testing, as
defined below. Please note that while the definition of integration testing and system testing are taken from
the IEEE Standard Glossary [98], input testing and model testing are new test levels we introduce to better
capture the specific properties of MLS testing.

Definition 6 (Input Testing) Input level tests analyse the training data used to train the ML components as well
as the input data used at prediction time.

Input level tests do not attempt to find faults in an MLS directly, but rather identify potential reasons for
unsuccessful training in the used data, thus minimising the risk of faults due to prediction uncertainty.
Referring to our example of self-driving MLS in Figure 2, input level testing could either be performed
offline or online. In the former case, it allows e.g. the detection of unbalanced training data, a common
issue detrimental to the ML training process. In the latter case, online input validation can be used to
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Figure 3: Access Levels during MLS Testing

identify out-of-distribution inputs, i.e., input images of driving conditions that are underrepresented in the
initial training set (e.g., being taken in extreme weather conditions). The latter is a form of input validation.

Definition 7 (Model Testing) Model level tests consider an ML model in isolation, e.g., without taking any of the
other components of the MLS into account.

Model level tests aim at finding faults due to, e.g., suboptimal model architectures, training process or
model hyper-parameters. Typical metrics used when performing model level testing include the classical
measures of accuracy (for classifiers) or mean squared error (for regressors) given a labelled test dataset.

Model level testing can be considered as the equivalent of unit testing for units that rely on training
(i.e., models). In our self-driving car example, model testing can be used to identify inputs for which
the lane keeping assistant model produces wrong steering angle predictions, i.e., predictions that deviate
substantially from the given ground truth.

Definition 8 (Integration Testing) Testing in which software components (including ML models), hardware com-
ponents, or both are combined and tested to evaluate the interaction between them.

Integration testing focuses on issues that emerge when multiple models and components are integrated,
although each of them behaves correctly in isolation (i.e., for which input or model level tests pass). For
example, in our self-driving car, a critical integration scenario would be the case in which the decision mak-
ing component must decide between possibly hitting a pedestrian suddenly crossing the road (resulting in
a failure of the pedestrian protection component), or swerving and possibly crashing the car (i.e., a failure
of the lane keeping assistant component).

Definition 9 (System Testing) Testing conducted on a complete, integrated ML based system to evaluate the sys-
tem’s compliance with its specified requirements.

System level testing aims to test the MLS as a whole in the environment in which it is supposed to operate.
For our self-driving car example, system testing would involve running the car in realistic conditions, for
instance by finding tracks and environmental conditions that are critical to handle, or by checking the
behaviour in relation to other vehicles and obstacles.
System testing can be either simulated, in which synthetic input data and MLS outputs are processed in a
simulation environment, or performed in-field, where the system is tested in the same runtime conditions
experienced by the end-users.

2.5.1 Access to the Tested Component

Tests that rely only on the system’s inputs and outputs are called black-box tests. They usually generalise
well when the software architecture changes from classical software to MLS, but are limited as they cannot
rely on coverage of the internal system states. Techniques that instead directly observe the program exe-
cution and the execution states are called white-box tests. Traditional white-box techniques relying on code
coverage are quite ineffective on MLS, as coverage of the code is often trivially achieved by any test suite,
regardless of its quality, because the behaviour is not encoded in the code’s conditional logic (usually, the
code for an ML component is just a plain sequence of instructions).
For the aim of this systematic mapping, we found it useful to introduce a new class of tests called data-box
tests, which can be regarded as intermediate between black-box and white-box tests. The relation between
black-box, data-box, and white-box testing levels is illustrated in Figure 3. More precisely, we adopt the
following definitions of testing accesses:
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Definition 10 (Black-Box Testing) A black-box test has only access to the MLS inputs and outputs.

This definition is conceptually equivalent to black-box testing in traditional software testing, as black-box
tests do not rely on the internal architecture or state of the system under test. Of course, in their execution
the tested systems may use an ML model to make predictions, which are then reflected in the tested output.
Inputs for black-box tests can be selected e.g. by equivalence class partitioning, boundary value analysis,
or diversity.
In MLS testing, the data used to train the model (training set) and to assess its performance after training
(test set) determine the behaviour exhibited by the MLS at runtime. Correspondingly, several ML testing
techniques are based on the training/test data, rather than the code implementing the ML model. This
introduces a new access level to the system under test that fits neither the definitions of classical black-box
nor white-box testing. Therefore, in this paper, we introduce a novel testing access for MLS called data-box
testing.

Definition 11 (Data-Box Testing) A data-box test has access to everything a black-box test has access to. In addi-
tion, a data-box test makes use of the training/test data that was originally used to train/assess the ML component.

Data-box testing is more permissive than black-box testing, even though they both do not rely on the inter-
nal architecture or state of the system under test.
Typical use-cases of data-box tests include the modification of the training set followed by a re-training of
the model, in order to observe its change in prediction capability. Training sets may also be considered in
isolation, to check the heterogeneity of the data and its representativeness of the complete input space. The
test set can be also checked for representativeness and completeness.
Referring to Figure 2, data-box testing could for instance identify underrepresented weather conditions in
the training set in order to exercise more extensively the self-driving car when running in such conditions.
Our definition of white-box testing for MLS is consistent with the classical testing literature, where the test
method has access to everything within the tested component.

Definition 12 (White-Box Testing) A white-box test has access to the internals of the tested component. This
includes the ML model, its code, its hyper-parameters, its training/test data and its runtime state (e.g., neuron acti-
vations).

Typical use-cases of ML specific white-box testing include the analysis of the diversity of the states of a
model under test given some inputs (e.g., the analysis of the neuron activations in an NN when presented
with the validation or test set) as well as mutation testing, achieved through ML specific mutation opera-
tors, such as changes of the model’s architecture, weights, hyper-parameters, or training data.
As shown in Figure 3, black-box testing is subsumed by data-box testing, which in turn is subsumed by
white-box testing, because black-box testing has access only to inputs and outputs; data-box testing has ac-
cess to the training/test data in addition to inputs and outputs; white-box testing has access to the model’s
architecture, hyper-parameters, runtime state, in addition to the features accessible to data-box testing.

3 Goal and Research Questions

The goal of our mapping is:

To analyse the existing proposals for functional testing of machine learning based systems, when engi-
neering a software system that includes one or more machine learning components.

To reach this goal, we have analysed the approaches proposed in the literature from three different perspec-
tives: (1) the context of the problem they address; (2) the features of the different proposed approaches; and
(3) their empirical evaluation. Moreover, we report demographic information about the ongoing research. The
research questions used to answer our goal are discussed in the following sections.

3.1 Context

Table 1 reports four research questions about the context of the considered studies. We want to identify the
common problems in testing MLS and how they have been addressed. The answer to RQ 1.1 will provide
an overview of the problems addressed, possibly pointing to gaps in the existing literature.
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Table 1: Research Questions about the Context

ID Research Question Data Item Values

1.1 What problems in testing MLSs are
tackled?

Addressed problems Textual description of the addressed
problems

1.2 What are the testing levels addressed
by the proposed solutions?

Testing levels Input, model, integration, system

1.3 What domains can the considered
MLSs be applied to?

Domains Autonomous systems, image classifica-
tion, etc.

1.4 Which kind of ML algorithm can the
proposed solutions be applied to?

ML Algorithm NN, clustering, classification, etc.

With RQ 1.2, we want to characterise the proposed solutions by considering the testing levels to which they
can be applied. We classify the MLS testing levels as input, model, integration or system as described in
subsection 2.5.
In RQ 1.3, we investigate the domains to which solutions can be applied, e.g., autonomous systems, image
classification. It is important to highlight that the domains considered in the experimental evaluation of
a testing solution can be a subset of all the possible ones. In this research question, we are interested in
the potential applicability scope in a broader sense. Indeed, some techniques may be domain-agnostic,
even though in the empirical evaluation they have been applied only to a specific domain. The evaluation
domain is analysed in detail in the research questions about the evaluation (subsection 3.3).
Finally, RQ 1.4 characterises the ML algorithms to which the proposed solutions can be applied. An
overview of the most important ML algorithms has been provided in subsection 2.2.

3.2 Proposed Approach

Table 2 reports seven research questions that characterise the testing approaches proposed in the literature
and assess their availability either as open source or closed-source. In RQ 2.1, we report the test artefacts
generated by the approaches proposed in the literature, such as test inputs, or oracles.
RQ 2.2, RQ 2.3 and RQ 2.4 address three fundamental aspects of the testing solutions, i.e., the test adequacy
criteria, the test input generation approach, and the test oracle. In section 2, we have described the intrin-
sic challenges faced when adapting these traditional testing concepts to MLS. The answers to these three
questions will provide an overview of the existing solutions to the adequacy, input generation and oracle
problems tackled when testing MLS.
With RQ 2.5, we want to characterise the proposed approaches by the access they have to the tested com-
ponent. We will classify the MLS access type as black-box, data-box and white-box as described in subsub-
section 2.5.1.
RQ 2.6 aims to investigate whether and how the testing approaches proposed in the literature leverage a
model of the execution context in which an MLS operates (e.g., a model of the environment in which a
self-driving vehicle drives). RQ 2.7 concerns the availability of the proposed solutions, in order to assess
the reproducibility of the research on MLS testing.

3.3 Evaluation

The research questions in Table 3 analyse the empirical evaluations reported in the papers. RQ 3.1 aims
to describe the types of evaluations carried out by the considered studies. We pre-defined three types of
research, i.e., academic, industrial and no evaluation. We consider an evaluation as academic if it is per-
formed on open-source systems and in a lab setting. Differently, we deem it as industrial if the evaluation
was conducted on proprietary systems within a company. It is possible that a solution is evaluated in both
contexts, i.e., the evaluation type may be both academic and industrial. There is also the chance that a
solution is proposed, but it is not empirically evaluated on any test subject.
RQ 3.2 enumerates the evaluation methods used to assess ML testing approaches, whereas RQ 3.3, RQ 3.4,
RQ 3.5 and RQ 3.6 concern the ML models used by the MLS under test. In particular, RQ 3.3 aims at finding
which ML models have been used, while RQ 3.4 investigates their public availability. RQ 3.5 enquires
whether the ML models were pre-trained, or were trained by the authors of the study. RQ 3.6 describes the
datasets that are used to train the ML models.
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Table 2: Research Questions about the Proposed Approach

ID Research Question Data Item Values

2.1 What are the generated test arte-
facts?

Test artefacts Test inputs, oracle, etc.

2.2 Which test adequacy criteria have
been adopted or proposed?

Test adequacy criterion Coverage, combinatorial, diver-
sity, etc.

2.3 What approaches are adopted to
generate test input data?

Test input generation approach Random, search-based, manual,
adversarial, etc.

2.4 Which test oracles are used? Test oracle Misclassification, mutation
killing, metamorphic, etc.

2.5 What is the access to the tested
component?

Access type Black-box, data-box, white-box

2.6 Is the context of the MLS mod-
elled?

Presence of the context model Yes, No. If Yes a brief description is
provided

2.7 Are the proposed solutions avail-
able?

Availability of the solution Yes and open-source, Yes and closed-
source, No

RQ 3.7 and RQ 3.8 investigate which MLSs were considered as test objects in the evaluation and if they
are publicly available. These questions are restricted to systems that include but do not coincide with an
ML model, i.e., the model has been tested as part of a larger system, not in isolation (see Definition 7 in
subsection 2.5). In the latter case information about the model is already available from RQ 3.3 and RQ 3.4.
Since simulation engines are extremely useful for testing safety-critical systems, RQ 3.9 provides an overview
of the simulators used in the literature. RQ 3.10 reports the types of failures that the proposed approaches
detect when exercising the objects of the experimental evaluation. RQ 3.11 aims to describe the metrics
adopted to evaluate the proposed approaches. RQ 3.12 and RQ 3.13 investigate the generalisability and
repeatability of the evaluations, by considering the presence of comparative studies and the availability of
experimental data, respectively. RQ 3.14 gives an overview of the time budget allocated for the evalua-
tion. RQ 3.15 and RQ 3.16 deal with the software and hardware configurations used in the experimental
evaluation.

3.4 Demographics

The six research questions reported in Table 4 aim at providing some descriptive statistics about the ongoing
research in MLS testing. With RQ 4.1, we look at the number of published studies per year.
In RQ 4.2, we identify the fora in which most of the research on MLS testing is published. We are interested
in the venue type, including also studies that are not already published but whose preprint is available in
open-source repositories. In the answer to this question we consider also the specific publication venues,
not just the publication type.
Questions RQ 4.3, RQ 4.4 and RQ 4.5 are intended to draw a picture of the most active authors, organisations
and countries in this research area. RQ 4.6 is aimed at identifying the most influential studies. We adopt
the citation count as a measure of their influence on the research community.

4 Methodology

This section describes the process we carried out to obtain the relevant literature and to extract the infor-
mation needed to answer the RQs introduced in section 3. The process has been designed according to the
guidelines proposed by Kitchenham et al. [106, 108] and Petersen et al. [118].
Figure 4 graphically illustrates the overall process, which consists of four main activities: (1) database
search, (2) study selection, (3) citation-based search, and (4) data extraction. In the following, we refer
to the authors of this paper as the assessors, in order to avoid confusion with the authors of the analysed
primary studies.
For the database search, the assessors crafted a search string based on the goal and RQs of this mapping.
They used it to query the relevant scientific databases. They also leveraged the advanced search feature
usually available in these databases to automatically apply further selection criteria to the retrieved papers.
The output of this step is a set of candidate relevant studies.
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Table 3: Research Questions about the Evaluation

ID Research Question Data Item Values

3.1 What type of research has been
conducted?

Evaluation type Academic, industrial, academic and
industrial, no evaluation

3.2 What kind of research method
has been adopted?

Evaluation method Experiment, experiment with
humans, proof of concept, etc.

3.3 Which ML models have been
considered?

ML model Model name, e.g., ResNet50,
VGG-16, Dave-2

3.4 Are the considered ML models
available?

ML model availability Yes, No, NA

3.5 Are the ML models already
trained?

Pre-trained model Yes, No, NA

3.6 What datasets have been used to
train the ML models?

Dataset Dataset Name, e.g., MNIST,
Udacity challenge, ImageNet

3.7 Which systems have been con-
sidered?

System System name

3.8 Are the systems available? System availability Yes, No
3.9 Which simulators have been

used?
Simulator Simulator name

3.10 What type of failures have been
considered?

Failure Failure type

3.11 What metrics have been
adopted?

Metric Metric name

3.12 Are there comparative studies? Presence of a comparative study Yes, No
3.13 Is the experimental data avail-

able?
Experimental data availability Yes, No

3.14 What time budget has been
used?

Time budget Time budget length

3.15 What is the software setup? Software setup Software setup description (OS,
ML framework, etc.)

3.16 What is the hardware setup? Hardware setup Hardware setup description
(GPU, processor, memory)

In the selection step, the studies obtained from the database search were assessed manually and only those
studies that provide direct evidence about the RQs were retained.
Since database search and study selection could miss relevant studies, in the citation-based search step the
assessors complemented the obtained pool of studies with those reached via snowballing [131] (i.e., by
adding papers that cite those already included and that satisfy the selection criteria).
In the data extraction step, the assessors read and analysed in detail the relevant studies, filling out an
extraction form with the information gathered from each paper.

4.1 Database Search

The database search step is aimed at finding candidate primary studies using search strings on scientific
databases. In the following, we describe the databases, the search string and the selection criteria adopted
by the assessors to perform the advanced search.

4.1.1 Scientific Databases

The scientific databases considered for the database search step are Scopus1 and arXiv.2 Scopus is a large
database of abstracts and citations, containing papers published in peer-reviewed venues by multiple pub-
lishers (e.g., Elsevier, IEEE, ACM, Springer, Wiley). It offers a rich advanced search feature and is one of the
suggested scientific databases to perform systematic studies in Software Engineering [106, 118].
Additionally, we considered the arXiv database to retrieve relevant papers that were not already published.

1https://www.scopus.com/search/
2https://arxiv.org
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Table 4: Research Questions about the Demographics

ID Research Question Data Item Values

4.1 What is the number of published stud-
ies per year?

Publication Year Four-digit year (yyyy)

4.2 In which fora is research on MLS test-
ing published?

Venue and venue type Venue name (acronym) and type (jour-
nal, conference, workshop, preprint)

4.3 Who are the most active researchers in
this area?

List of authors Authors’ names

4.4 Which are the author affiliations? Organisations Organisations’ names
4.5 Which countries have produced more

studies?
Countries Country ISO3 codes

4.6 Which are the most influential studies
in terms of citation count?

Citation count Number of citing papers

1'175 Studies

arXiv

Database
Search

Start
Study

Selection

Citation-based
Search

End
Data

Extraction +

Scopus

47 Studies

Literature
Mapping

23 Studies70 Studies

Figure 4: Overview of the mapping process

This database offers an advanced search feature3 and has been used in similar studies [76, 133] as source of
grey literature. We believe that it is worth to consider grey literature since the research about testing MLS
is in great ferment, with new approaches and results reported each month as preprints for early dissem-
ination [90]. Our assumption was confirmed by the fact that out of 30 grey literature papers included in
this mapping that were available only on arXiv at the time of the database search, 18 have been recently
published on peer-reviewed venues.

4.1.2 Search String

The assessors adopted the following iterative process to define the search string: (1) define/refine the string,
(2) perform the database search, (3) validate the results against a list of already known relevant primary
studies, and (4) discuss the search results.
To formulate the string for the database search, the assessors identified an initial set of keywords starting
from the goal and the research questions reported in section 3. Each tentative search string was then val-
idated against a list of relevant primary studies, as suggested in the guidelines [106]. This list includes
papers which we were already aware of and which are expected to be included into the search results. The
process terminated when the assessors were satisfied by the search results, i.e., the number of retrieved
papers was manageable, all relevant primary studies known in advance were included, and no keyword
relevant for our RQs was missing in the search string.
The final search string is:

3https://arxiv.org/search/advanced
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55'596 studies
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Figure 5: Database search results

((“testing” OR “quality assurance” OR “quality assessment” OR “oracle” OR “mutation” OR
“fuzzing” OR “symbolic execution”)
AND
(“artificial intelligence” OR “machine learning” OR “deep learning” OR “neural network” OR “in-
telligent system” OR “intelligent agent” OR “autonomous”)
AND
(“technique” OR “approach” OR “method” OR “methodology” OR “solution” OR “tool” OR
“framework”))

The first group of terms represents the testing phase in the software lifecycle, with terms such as “testing”,
“quality assurance”, “quality assessment”, along with keywords that characterise common approaches
(“mutation”, “fuzzing”, “symbolic execution”) as well as the keyword “oracle”, due to its relevance in
software testing.
The second group of terms defines the MLSs that are targeted by the testing approaches. Therefore, we in-
cluded keywords that define ML algorithms (“artificial intelligence”, “machine learning”, “deep learning”,
“neural network”) and systems (“intelligent system”, “intelligent agent”, “autonomous”).
Since we are interested in papers that propose and implement ML testing approaches, the third group
of terms is composed by the following keywords: “technique”, “approach”, “method”, “methodology”,
“solution”, “tool”, and “framework”.
Keywords within the same group are alternative (OR operator), but a relevant paper should present all
features represented by each group. Thus, groups are connected with the boolean AND operator.
The search string was then adapted to the syntax of the considered search engines [106,107]. In Scopus, the
assessors performed this search on the metadata of the articles, i.e., the title, the abstract and the keyword
list. In arXiv, they performed the search on the full text, since search on metadata is not available.

4.1.3 Database Search Advanced Selection Criteria

In the database search, the assessors applied also a set of advanced inclusion and exclusion criteria. Here-
after, we refer to them as Database search Inclusion Criteria (DIC) and Database search Exclusion Criteria
(DEC), respectively.

DIC1 (Published in peer-reviewed journals or conference proceedings): this criterion was applied to
Scopus by adding the following condition to the search string:

DOCTYPE (ar OR cp)

DIC2 (Unpublished but preprint available in open access repositories): this criterion was satisfied by
performing the search on arXiv.

DIC3 (Subject area is computer science): in arXiv, the assessors searched for papers in the subject area
identified as cs. In Scopus, they applied the following condition:
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LIMIT-TO(SUBJAREA,‘‘COMP’’)

DIC4 (English language): it was not possible to set this criterion in the arXiv search engine. In the Scopus
search, the assessors included only articles whose language is English by adding the following condition:

LIMIT-TO(LANGUAGE, ‘‘English’’)

DIC5 (In the Software Engineering field): in arXiv, the assessors selected the subcategory identified as
SE. In Scopus, they searched for papers whose venue name contains the term “software” as follows:

(SRCTITLE(‘‘software’’) OR (CONFNAME(‘‘software’’))

DEC1 (Published first): published versions are chosen over unpublished ones. The assessors compared
the papers based on their name and list of authors. In case of papers that were present in both databases,
they retained only the one retrieved from Scopus. A further, more accurate manual filtering was carried out
in the Study Selection step, since it is possible that the same paper is made available with different metadata
on Scopus and arXiv.

4.1.4 Database Search Result

Both searches were performed on February 27th 2019. Figure 5 shows the results of the database search.
Application of the search string reported in subsubsection 4.1.2 retrieved 55’596 results from the Scopus
database. Application of the selection criteria DIC1, DIC3, DIC4 and DIC5 narrowed down the number
of primary studies to 1’035. In arXiv, we found 353 studies through the search string, which were reduced
to 159 by applying DIC3 and DIC5.
The assessors merged the results in a shared Google sheet, obtaining 1’194 studies. They removed 18 studies
by applying the exclusion criterion DEC1 on the duplicate entries. The final number of candidate primary
studies resulting from database search was 1’175.

4.2 Study Selection

Study selection was carried out by four assessors, i.e., the first three authors along with the last author.
In the following, we describe the inclusion and exclusion criteria that were manually applied to the 1’175
studies resulting from the Database Search. These criteria were designed to identify primary studies that
are relevant to answer our research questions [106]. Moreover, we report how the selection criteria have
been applied, how many assessors evaluated each primary study, and how disagreements among assessors
have been resolved.

4.2.1 Study Selection Criteria

In the study selection step, the assessors manually applied a set of selection criteria to refine the pool of
papers resulting from the database search step. Hereafter, we refer to them as Manual Inclusion Criteria
(MIC) and Manual Exclusion Criteria (MEC), respectively.

MIC1 (About MLS testing): only studies that propose a technique to test or help testing MLS were in-
cluded. The search string may have included false positives since it can retrieve studies that propose testing
solutions that exploit ML techniques but their target is not an MLS.

MEC1 (No secondary studies): the assessors included only primary studies, therefore they excluded
mappings, literature reviews and surveys.

MEC2 (Remove duplicates): the assessors kept only one copy of each study that is present in the results
multiple times. This means that published versions are chosen over unpublished ones. This is similar to
criteria DEC1 applied in the database search step, but it was needed because there is a chance that the same
paper is made available with different metadata on Scopus and arXiv.
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Table 5: Study Selection Process

Iteration Analysed Studies Relevant Studies

Pilot 100 10
1 200 13
2 200 15
3 200 15
4 200 11
5 275 14

Total 1’175 78

Final Check 78 47

MEC3 (Extensions first): the assessors compared the studies and chose extensions over the original ver-
sions. This criterion is applied if the two versions are either both published or both unpublished.

4.2.2 Study Selection Process

Study selection started with a meeting in which the selection criteria have been reviewed by the asses-
sors [118]. As suggested by Ali and Petersen [71], we used a think-aloud protocol in which each assessor
speaks out the thought process of inclusion/exclusion when applying the criteria to a study.
The whole process was performed in six subsequent iterations, as summarised in Table 5. The first itera-
tion was intended as a pilot, to possibly refine the selection criteria and to ensure that they were reliably
interpreted by all the assessors [106].
At each iteration, a set of studies was randomly drawn without replacement from the result of the database
search. Such set was divided into two equal parts and each subset was assigned to a pair of assessors. The
pairs were changed at each iteration so that, at the end of the study selection process, each study in the set
was assigned to two assessors and each assessor was paired twice with all the other assessors.
The task of the assessors was to apply the study selection criteria to each study assigned to them and decide
whether the study is relevant for the considered RQs. There was no single way to apply the selection
criteria since it strongly depended on the analysed study. Some studies were filtered out based on titles
and abstracts, while others required a full-text inspection. A careful reading was needed to determine if
the systems targeted by the study were actually based on ML. In other cases, the authors had to analyse the
full text to understand whether a study proposed an original testing approach rather than summarising or
evaluating existing ones. There were cases in which a deeper analysis was needed to decide if the proposed
approach was intended to test the MLS functionality, rather than other aspects such as security.
Each iteration was concluded with a consensus meeting in which the assessors compared their decisions.
The studies for which there were conflicting opinions were discussed by the two designed assessors. In the
cases in which an agreement was not found, another assessor resolved the dispute by acting as a referee.
After the last iteration, the list of relevant studies consisted of 78 papers. The four assessors checked in-
dependently these studies in a final, deeper iteration. They re-applied inclusion and exclusion criteria in a
stricter way, considering the content of the candidate papers in more detail. They discussed the outcome
of such further check and agreed on removing 31 papers. As a result, 47 relevant studies were selected
through the described process.
The relatively low ratio between relevant and analysed studies (78 out of 1’175, or 6%) may indicate subop-
timal criteria within the database search. We identified the main reason for this in selection criterion MIC1

(About MLS testing): the database search string cannot distinguish between studies that use ML for testing
and studies on testing of MLS. For such a distinction, we had to resort to manual analysis.
The final check was also quite selective, with a ratio of relevant over analysed studies around 60%. The
reasons for excluding such studies were mainly: (1) a stricter application of the selection criteria, to make
sure that no irrelevant paper is read and analysed in the data extraction phase; and (2) a deeper analysis
of the paper content, which was not carried out in the previous phase, when a large number of papers
had to be evaluated and filtered. In particular, eight studies were included in the previous stages since they
propose a technique to test autonomous systems, but they were excluded in the final check because a deeper
analysis of their content revealed that their target systems are not MLSs but programmed systems. Whereas,
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six studies that were included because they address the quality assessment of autonomous systems, were
then excluded since they propose a verification technique instead of a testing one. The reasons for the
exclusion of each paper during the final check are reported in the replication package accompanying this
paper [119].

4.3 Citation-based Search

In this step, the first three authors and the last author complemented the results of the database search to
reduce the risk of missing relevant studies. Citation-based search is a practice often referred to as snow-
balling [131], which consists of adding studies mentioned in the references of the already included papers
(backward snowballing) or studies that cite them (forward snowballing). Our initial set of 47 studies identified
in the study selection step was divided into four subsets, each of which assigned to one assessor. In back-
ward snowballing, the assessors examined the papers cited by the studies assigned to them, whereas in
forward snowballing, they used Google Scholar4 to retrieve the papers citing them.
The assessors applied the selection criteria described in subsubsection 4.1.3 and subsubsection 4.2.1 to the
snowballed papers. Relevance of the analysed papers for software engineering was taken for granted,
given their presence in the citations or references of the starting set. Therefore, the assessors did not apply
criterion DIC5.
At the end of the citation-based search step, 23 papers were added and the pool of relevant primary studies
grew up to 70 papers. The relatively high number of papers added by the snowballing procedure can be
explained by the fragmentation of the research area. In fact, studies on ML testing are not necessarily pub-
lished on software engineering venues, which delimit the scope of our database search. Other neighbouring
disciplines, including machine learning itself, host papers that deal with testing issues and are relevant for
our RQs. In fact, out of the 23 newly added papers, none of them belongs to the output of database search.
So, while all of these papers were missed in the database search, they are indeed relevant for this mapping.
This shows the importance of snowballing, especially for transversal and cross-discipline fields such as ML
testing.

4.4 Data Extraction

In the data extraction step, all authors of this manuscript acted as assessors and extracted the data items
needed to answer the RQs from the selected relevant studies [106].
A tabular data extraction form was used by the assessors to record the information they extracted from
primary studies. In particular, each row of such form reports a study and each column corresponds to a
research question. The tables in section 3 show the data item corresponding to each research question in the
third column and the values it can assume in the fourth column. It can be noticed that for some data items,
values are chosen from a closed set of values, whereas others can be filled with open answers. To highlight
this, we show the values that answer closed-ended questions in italics. The form includes three additional
columns to collect general comments, strengths and weaknesses of each study, which we used to elaborate
the discussion in section 6.
A pilot study was performed to refine the form and gain confidence in the data extraction process. The six
assessors were divided into three pairs and each pair received four papers to analyse. Data extraction was
performed independently by each member of the pair on the assigned papers. The pilot was concluded with
a meeting in which, for each paper, the information from the two assigned assessors was compared and
disagreements were resolved either by consensus among them or arbitration by the others. Moreover, the
assessors exploited the experience gained through the pilot to solve minor issues about the completeness
and usability of the form. At the end of the pilot, data was extracted from the first 12 papers and the final
data extraction form was available.
The rest of the papers was assigned to each of the assessors through a bidding procedure. Each assessor
selected 15 papers out of the remaining 58 ones, choosing papers they felt confident about or they were
willing to read. Then, papers were assigned based on the bidding and trying to balance the overall work-
load, measured as the sum of the lengths of the assigned papers (there was substantial length variability,
especially between conference and journal papers). We also conducted a post-extraction meeting [118], in
which ambiguous answers were clarified.

4https://scholar.google.com
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4.5 Threats to Validity

Descriptive Validity: Descriptive validity is the extent to which observations are described accurately and
objectively [118]. To reduce this threat, a data collection form has been designed to support the recording
of data. However, a poorly designed data extraction form may have a detrimental effect on the quality
of the results. To mitigate this threat, the data extraction form has been carefully designed in the data
extraction step. We evaluated it through a pilot that involved all the assessors and revised it by addressing
the encountered issues. Another threat to descriptive validity concerns a poor recording of information in
the data extraction form. We mitigated it by conducting a pilot and evaluating the information reported in
the form in a post-extraction meeting, as suggested by guidelines [118].

Theoretical Validity: The choice of the scientific database to search might hinder the validity of the study,
since the chosen database could miss relevant studies. We selected Scopus since it is a large database that
contains papers published by multiple publishers. Moreover, to mitigate the risk of publication bias, i.e., the
omission of relevant but unpublished studies, we included the grey literature by performing a search on the
arXiv database, which is the reference repository for unpublished works in computer science. To further
mitigate the risk of missing relevant studies, we complemented database search with snowballing. The
reliability of the conclusions drawn could have been hindered by a bias of the researchers involved in the
mapping process. For this reason, we made an extensive use of piloting and consensus meetings during the
whole process. As an example, there is a potential researcher bias in the study selection step. We mitigated
it by assigning a pair of assessors to each potentially relevant study and by conducting a consensus meeting
to solve any conflict between them.

Repeatability: To ensure the repeatability of the results, we provide a detailed description of the followed
process, including also the actions taken to reduce possible threats to validity. Repeatability is supported
by the adoption of existing guidelines, such as the ones proposed by Kitchenham et al. [108] and Petersen et
al. [118]. All data collected during our study is publicly available in the replication package accompanying
this paper [119].

5 Results

In this section, we present a synthesis of the data extracted from the primary studies, in order to provide
detailed answers to the research questions.

5.1 Context

5.1.1 Addressed Problem (RQ 1.1)

Figure 6 presents the paper distribution across the different addressed problems. Overall, 11 main problems
were identified:

Realism of test input data: Input generation should be targeted towards creating input data that can
expose faults in the considered system, yet being representative of real-world scenarios [53, 57]. Indeed, a
fault exposed by a test input that cannot occur in practice is not a real fault. Udeshi et al. [57] propose
a test input generation approach that mutates inputs in a way that makes the result conform to a given
grammar, which characterises the validity domain. Tian et al. [53] produce artificial inputs that represent
real driving scenes in different conditions.
A further challenge is assessing whether the results obtained in a simulated environment would also scale
to the real world [12, 25, 61]. Two works propose to generate realistic test scenarios from in-field data [12],
or by mining test-cases from real-world traffic situations or traffic simulators [61].

Test Adequacy Criteria: Twelve papers define metrics to measure how a test suite is adequate for assess-
ing the quality of an MLS. They often exploit them to drive test input generation. Since classical adequacy
criteria based on the code’s control flow graph are ineffective with NNs, as typically 100% control flow
coverage of the code of an NN can be easily reached with a few inputs, researchers have defined novel test
adequacy criteria specifically targeted to neural networks [20, 22, 26, 27, 42, 46, 47, 51, 52, 62].
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Figure 6: Addressed Problems

Behavioural Boundaries Identification: Similar inputs may unexpectedly trigger different behaviours of
MLSs. A major challenge is identifying the boundaries between different behaviours in the input space [31,
54], which is related to boundary-value analysis in software testing [132]. For instance, Tuncali et al. [54]
investigate similar scenarios that trigger different behaviours of autonomous vehicles in safety critical set-
tings, e.g., nearly avoidable vehicle collisions.

Scenario Specification and Design: For scenario-based test cases, one fundamental challenge is related
to the specification and design of the environment in which the MLS operates. In fact, only a high fidelity
simulation of the environment can produce realistic and meaningful synthetic data [17, 23, 30].

Oracle: Overall, we found 13 papers in our pool that tackle the oracle problem for MLSs [10, 13, 18, 32,
34, 37–39, 43, 45, 63, 64, 70]. The challenge is to assess the correctness of MLSs’ behaviour, which is possibly
stochastic, due to the non-deterministic nature of training (e.g., because of the random initialisation of
weights or the use of stochastic optimisers) and which depends on the choice of the training set.
The vast majority of the proposed oracles leverages metamorphic relations among input data as a way to
decide if the execution with new inputs is a pass or a fail, under the assumption that such new inputs share
similarities with inputs having known labels [10, 13, 45, 63].

Faults and Debugging: Eight works considered in our mapping are related to faults in MLSs. Six of
them address the problems of studying and defining the spectrum of bugs in MLSs, and automating the
debugging of MLSs [11,15,16,29,40,68]. Concerning the former, two studies in our pool present an empirical
study on the bugs affecting MLS [11,68]. Indeed, the very notion of a fault for an MLS is more complex than
in traditional software. The code that builds the MLS may be bug-free, but it might still deviate from the
expected behaviour due to faults introduced in the training phase, such as the misconfiguration of some
learning parameters or the use of an unbalanced/non-representative training set [97, 100].
Regarding debugging automation, four studies address the problem of debugging an MLS [29,40], or local-
ising the faults within an MLS [15, 16]. The challenge in this case is to unroll the hidden decision-making
policy of the ML model, which is driven by the data it is fed with. Other two papers [24, 44] investigate
how to inject faults in MLSs in order to obtain faulty versions of the system under test.

Regression Testing: Five papers deal with the regression testing problem in the context of MLS [9, 19, 48,
60, 66], i.e., the problem of selecting a small set of test scenarios that ensure the absence of mis-behaviours
on inputs that were managed correctly by the previous version of the MLS. The works by Byun et al. [9] and
by Shi et al. [48] both propose a test prioritisation technique to reduce the effort of labelling new instances of
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data. Groce et al. [19] deal with test selection for MLS, whereas Wolschke et al. [60] perform test minimisation
by identifying nearly-similar (likely redundant) behavioural scenarios in the training set.

Online Monitoring and Validation: Eight works address the problem of online monitoring for validating
the input at runtime. Since during development/training it is impossible to foresee all potential execution
contexts/inputs that the MLS may be exposed to, it is likewise essential to keep monitoring the effective-
ness of the systems after they are deployed “in the field”, possibly preventing mis-behaviours when an
anomalous/invalid input is being processed by the MLS.
Six of them leverage anomaly detection techniques to identify unexpected execution contexts during the
operation of the MLSs [5, 7, 21, 41, 59, 67], whereas two papers are related to online risk assessment and
failure probability estimation for MLS [50, 58].

Cost of Testing: The cost of performing MLS testing is particularly challenging, especially in resource-
constrained settings (e.g., during system or in-field testing) and in the presence of high dimensional data.
Eight papers tackle this problem in the automotive domain [1, 2, 4, 6, 8, 36, 55, 69]. In this domain, com-
prehensive in-field testing is prohibitively expensive in terms of required time and resources. Therefore,
simulation platforms are typically used to test MLSs since they allow re-testing new system releases on a
large number of conditions, as well as in challenging and dangerous circumstances (e.g., adverse weather,
or adversarial pedestrians suddenly crossing the road) [127].

Integration of ML models: Two papers in our pool test the interplay of different ML components within
the same system [3, 65]. Abdessalem et al. [3] address the functional correctness of multiple ML compo-
nents interacting within autonomous vehicles. Differently, Zhang et al. [65] focus on different levels of
metamorphic testing applied to two different computer vision components within a pipeline.

Data Quality Assessment: MLS may exhibit inadequate behaviours due to poor training data, i.e., inputs
that are not representative of the entire input space. At the same time, low quality test data may produce
misleading information about the quality of the MLS under test. Hence, the key step towards improving
the MLS quality is by achieving high training/test data quality [28, 56].

5.1.2 Testing Levels (RQ 1.2)

Figure 7 illustrates graphically the paper distribution across testing levels. Five works (7%) manipulate only
the input data, i.e., they perform input level testing [7,9,21,59,61]. The majority of the papers (64%) operate
at the ML model level (model level testing) [11, 13–16, 18–20, 22, 24, 26–29, 32–43, 45–53, 56–58, 62–64, 66–69],
whereas 27% operate at the system level [1, 2, 4–6, 8, 10, 12, 17, 23, 25, 30, 31, 44, 54, 55, 60, 65, 70]. Only one
work consider multiple interacting ML components at the integration level [3]. This result indicates that ML
components are mostly tested “in isolation”, whereas it would be also important to investigate how failures
of these components affect the behaviour of the whole MLS (i.e., whether model level faults propagate to
the system level).
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5.1.3 Domains (RQ 1.3)

Figure 8 illustrates graphically the paper distribution across the MLS domains. Nearly half of the analysed
papers (56%) propose and evaluate a technique which is domain-agnostic, i.e., in principle it may be appli-
cable to any MLS [5,9–11,14,16,20–22,24,26–29,32–40,42,45–48,51–53,57,58,62–64,66,68,69]. Around 30%
proposed approaches are designed for autonomous systems [4,6,8,12,17,23,25,31,41,50,60], among which
self-driving cars [7, 30, 44, 61, 67] or ADAS [1–3, 54, 55].
The prevalence of autonomous systems and in particular autonomous driving cars indicate that safety crit-
ical domains are those in highest demand of techniques to ensure the dependability and reliability of such
systems, with testing approaches specifically designed for their peculiar features.

5.1.4 Algorithms (RQ 1.4)

Figure 9 illustrates the paper distribution across the ML algorithms to which the proposed testing solutions
are applied. In some papers, the proposed technique has been applied to more than one algorithm. The
majority of techniques are generically applicable to NNs (25 papers), i.e., regardless of the purpose for
which the NN is used [9, 13, 14, 16, 18, 20, 22, 24, 26–29, 40, 42, 46, 47, 49, 51–53, 58, 59, 63, 65, 67]. Only one
paper [14] specifically targets Recurrent Neural Networks (RNNs), which indicates that SE literature has
only barely considered testing NNs related to sequential data. The second most prevalent category (17
papers) concerns autonomous driving algorithms [4, 5, 7, 12, 17, 23, 25, 30, 31, 41, 44, 50, 54, 55, 60, 61, 69]. The
prevalence of NNs matches the growing popularity and success of this approach to machine learning. Since
NNs are general function approximators, they can be applied to a wide range of problems. Hence, testing
techniques that prove to be effective on NNs will exhibit an incredibly wide range of application scenarios.

5.2 Proposed Approach

In the following, we present an overview of the approaches proposed in the analysed papers. We provide
information on general properties of these approaches such as their generated artefacts, context model and
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Figure 11: Test Adequacy

public availability. Moreover, we focus on the specific attributes of the testing process such as the input
generation method, test adequacy criteria and the oracle mechanism adopted in each of the papers.

5.2.1 Test Artefacts (RQ 2.1)

Overall, 55 out of 70 papers generate some artefact as a part of their approach. Figure 10 reports the types
of artefacts that have been produced by two or more works. Nearly 60% (33 out of 55) of the papers present
various methods to generate test inputs for the MLS under test [1–4,6,8,12,14,16,17,20,23,25,26,29,30,32,33,
40,42,46,51–57,60–62,67,70]. However, what a test input represents differs across the proposed approaches
and highly depends on the domain of the tested system. As per our analysis, the most popular forms of
test input are images and test scenario configurations. The inputs in form of images are generally used
with classification systems or lane keeping assistance systems of self-driving cars, which aim to predict the
steering angle from an image of a road taken by the camera sensor. In case the MLS under test handles
scenarios with two or more interacting objects, the input for such a system is a test scenario configuration.
For example, in the paper by Abdessalem et al. [3], the input of the self-driving car simulation is a vector of
configurations for each of the objects involved, such as the initial position of the car, the initial position of
the pedestrians, the positions of the traffic signs, and the degree of fog.
In 12 out of 55 (22%) papers the produced artefact is an oracle [13, 15, 34, 36–39, 43, 45, 63–65]. The main
focus of 11 papers from this list is a set of metamorphic relationships (MRs), which are then used to generate
a metamorphic oracle. Only one work [43] proposes a differential oracle based on program mirroring.
Compared to input generation, the oracle problem in MLS testing has received substantially less attention,
indicating the need for further approaches to produce effective MLS oracles. System level oracles are partic-
ularly difficult to define, being extremely domain specific (e.g., in the self-driving car domain, they require
the definition of safe driving conditions and thresholds). Moreover, they often take the form of continuous
quality functions (e.g., quality of driving metrics) rather than binary ones (e.g., the car crashing or not).
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5.2.2 Test Adequacy (RQ 2.2)

Test adequacy criteria have been used in 24 papers out of 70 [4,12,14–16,24–27,31,32,36–38,40,42,43,46,56–
58, 63, 64, 66]. Overall, 28 test adequacy criteria were used or proposed in such papers. The work by Pei et
al. [42] is the first one that proposed to use neuron activations as part of an adequacy criterion. The neuron
is considered activated if its output value is higher than a predefined threshold. Neuron coverage (NC) of a
set of test inputs is defined as the proportion of activated neurons over all neurons when all available test
inputs are supplied to an NN. The authors suggest that at a high level, this metric is similar to test coverage
of traditional systems, as it measures the parts of NN’s logic exercised by the input data.
Ma et al. [27] propose a set of five fine-grained adequacy criteria that they classify into neuron-level and
layer-level. They use activation values of a neuron obtained from the training data and divide the range
of values for each neuron into k buckets. The ratio of the number of buckets covered by the test inputs to
the overall number of buckets (k multiplied by the number of neurons) defines the k-multi-section neuron
coverage (KMNC). In case the activation value of a neuron is not in the range found in the training data, it is
said to fall into a corner-case region. If the activation value is higher than the maximum in the range, then
it is in the upper corner case region. Similarly, if it is lower than the minimum value in the range, then it
belongs to the lower corner case region. Strong neuron activation coverage (SNAC) is defined as the ratio of
the number of neurons for which upper corner cases are covered to the overall number of neurons. Neuron
boundary coverage is defined as the ratio of the number neurons for which both upper and lower corner cases
are covered to the total number of corner cases (the number of neurons multiplied by two).
Kim et al. [22] note that neuron coverage and k-multi-section neuron coverage are not practically useful,
as they carry little information about individual inputs. They argue that it is not self-evident that a higher
NC indicates a better input, as some inputs naturally activate more neurons. They also note that KMNC
does not capture how far the neuron activations go beyond the observed range, making it hard to assess the
value of each input. To overcome these limitations they propose a new metric, Surprise Adequacy (SA), which
aims to quantify the degree of surprise (i.e., novelty with respect to the training set) of the neuron activation
vector. Surprise adequacy has two variations: likelihood-based and distance-based. The Distance-based
Surprise Adequacy (DSA) is calculated using the Euclidean distance between the activation traces of a
given input and the activation traces observed during training. The Likelihood-based Surprise Adequacy
(LSA) uses kernel density estimation to approximate the probability density of each activation value, and
obtains the surprise of the input as its (log-inverse) probability, computed using the estimated density.
Neuron Coverage, KMNC and Surprise Adequacy are all metrics that target feed-forward DL systems. The
only work that addresses coverage criteria for Recurrent Neural Networks (RNNs) is the one by Du et
al. [14]. In this work, authors model RNN as an abstract state transition system to characterise its inter-
nal behaviours. Based on the abstract model, they propose five coverage criteria, two of which address
coverage of states and three the coverage of transitions.
Figure 11 shows how often each adequacy criterion was used. Overall, the data indicate a relatively wide
adoption of the proposed adequacy criteria. Indeed, availability of ML-specific ways to measure the ad-
equacy of the test data is crucial for MLS testing. Only a few papers adopted adequacy criteria for
black box testing, e.g., scenario coverage, that is useful when we do not have white box access and we are
interested in the behaviour of the whole system.
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5.2.3 Test Input Generation (RQ 2.3)

Overall, 48 out of 70 papers describe how they generate inputs. As some papers use more than one input
generation technique, our final list contains 52 elements, as illustrated in Figure 12.
Our analysis (see Figure 12) shows that the most widely applied technique for input generation is input
mutation [12–15, 20, 34, 35, 37, 39, 40, 44, 45, 53, 62–64] (16 out of 52, 31%), which consists of the creation of
new inputs by applying semantic information-preserving transformation to existing inputs. The majority
of papers using input mutation are on metamorphic testing [12–15, 20, 34, 37, 39, 45, 62–64] (11 out of 16),
and the corresponding transformations are defined by a metamorphic relationship. Examples of such in-
put mutations are affine transformations [53], change of the pixel values [39], cropping [13] for the images
or alterations that mimic the environment interference for the audio files [14], designed so that they intro-
duce changes that are imperceptible to humans. In contrast, the approach by Rubaiyat et al. [44] changes
input images by simulating environmental conditions such as rain, fog, snow, and occlusion created by
mud/snow on the camera. The work by Tian et al. [53] also transforms input images by mimicking differ-
ent real-world phenomena like camera lens distortions, object movements, or different weather conditions.
Their goal is to automatically generate test inputs that maximise neuron coverage. Similarly, the work
by Guo et al. [20] has the optimisation objective of reaching higher neuron coverage, while also exposing
exceptional behaviours. To achieve this goal, they mutate input images and keep the mutated versions that
contribute to a certain increase of neuron coverage for subsequent fuzzing. The applied mutations have to
be imperceptible for humans while the prediction of the MLS for the original and mutated input should
differ (i.e., the MLS exhibits a misbehaviour).
Another widely used methodology to generate test inputs is the search-based approach [1–3, 6, 8, 16, 31, 42,
46, 54, 56, 57] (13 out of 52, 25%). In six papers the generation of inputs using a search-based approach
aims to detect collision scenarios for autonomous driving systems. Therefore, their fitness functions use
metrics such as distance to other static or dynamic objects [1–3, 8], time to collision [1, 6, 54], speed of the
vehicle [3, 54] or level of confidence in the detection of the object in front of the vehicle [1, 2]. In contrast,
Mullins et al. [31] aim to identify test inputs for an autonomous system that are located in its performance
boundaries, i.e., in the regions of the input space where small alterations to the input can cause transitions
in the behaviour, resulting in major performance changes.
The majority of the works that use adversarial input generation (5 papers out of 52, 10%) employ the
existing state-of-the-art attacking methods to generate such inputs [11, 22, 59, 66]. In contrast, the work by
Abeysirigoonawardena et al. [4] has a more targeted approach which aims to create adversarial self-driving
scenarios that expose poorly-engineered or poorly-trained self-driving policies, and therefore increase the
risk of collision with simulated pedestrians and vehicles. While adversarial inputs can successfully trigger
misbehaviours of the MLS under test, they are often very unlikely or impossible to occur in reality, unless
the system is under the attack of a malicious user. However, security verification and validation of MLS is
a different research area on its own and the present systematic mapping does not cover it.

5.2.4 Test Oracles (RQ 2.4)

Figure 13 provides an overview of the types of oracles that have been adopted with MLS. The most popular
type of oracle is the metamorphic oracle, used in 22 out of 50 (44%) papers [5, 13–15, 20, 34–39, 45, 51, 53–
56, 62–65, 67]. A central element of a metamorphic oracle is a set of metamorphic relationships that are
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derived from the innate characteristics of the system under test. The new test inputs are generated from the
existing ones using MRs so that the outputs for these inputs can be predicted. Out of 22 papers adopting a
metamorphic oracle, 11 focus on proposing and evaluating novel MRs for different kinds of MLS. However,
these papers mostly consider classical supervised learning algorithms, such as k-nearest neighbours, naive
bayes classifier, support vector machine, and ranking algorithms. The work by Xie et al. [64] proposes MRs
for unsupervised machine learning algorithms, such as clustering algorithms. The remaining papers (11
out of 22) use MRs that are already available in the literature or that encode well-known domain-specific
properties of the system.
In 10 out of 50 (20%) papers, domain-specific failure of the MLS under test was used as an oracle [1–4, 6, 8,
25, 40, 44, 58]. In general, failure is denoted as the weakest form of an oracle. However, only one of the
analysed papers [40] conforms to such definition, i.e., the crash of the system under test. In all remaining
cases, more complicated and domain-specific deviations from the expected behaviour are adopted, such as
collisions with pedestrians or other vehicles, not stopping at the stop sign, or exceeding the speed limit.
Differential or cross-referencing oracle is a type of “pseudo-oracle” [84] in which multiple implementations
of the same algorithm are compared against each other. If the results are not the same, then one or more of
the implementations may contain a defect. This type of oracle was used in six analysed papers (12%) [32,33,
42,43,46,57]. While the work by Qin et al. [43] proposes a program synthesis approach that constructs twin
“oracle-alike mirror programs”, the remaining papers find different implementations for the MLS under
test and use those to cross check the results. A drawback of this type of oracle is the attribution of the fault
when the considered implementations produce different results. This was the case in the work by Murphy
et al. [33] and the authors commented that “there was no way to know which output was correct”. On the
other hand, three papers from our pool [42, 46, 57] take advantage of such a situation, as getting different
outputs in each of the different implementations makes the inputs rather interesting and worth further
investigation by the developers. Pei et al. [42] and Sekhon and Fleming [46] use such differential behaviour
along with a coverage criterion as part of a joint optimisation problem aimed to generate erroneous corner
case scenarios for MLSs. Similarly, Udeshi and Chattopadhyay [57] propose an approach that, given a
pair of ML models and a grammar encoding their inputs, searches the input space for inputs that expose
differential behaviours.
Another commonly used oracle for classifiers (6 papers out of 50, 12%) is the misclassification of manually
labeled inputs [17, 18, 26, 29, 48, 66]. While using human labels as an oracle is a pretty straightforward
approach (especially for data-driven systems such as MLS), it may also require substantial effort. Another
type of oracle observed during our analysis is mutation killing, which is used in three different papers (6%)
that either propose [28, 47] or evaluate [11] mutation operators for MLS.

5.2.5 Access to the System (RQ 2.5)

The proposed testing approaches require different levels of access to the MLS under test. In 29 cases out of
70 (41%), it is enough to have a black-box access to the system [1, 2, 4–8, 12, 17, 23, 25, 30, 31, 34, 36, 38, 41, 43,
44, 54, 55, 57, 58, 60, 61, 64, 65, 69, 70]. In 11 cases (16%), along with the inputs and outputs of MLS, training
data should also be available: black-box access is not sufficient and data-box access to the system should be
provided [10,13,15,19,21,33,45,49,56,63,67]. This is mostly the case for the papers on metamorphic testing,
in which the authors propose metamorphic relationships that change the training data in some specific way
and then analyse the changes in the output of the retrained system. Another example of data-box access
is the work by Groce et al. [19], where the distance between the training data and a test input is used as
a metric to address the test selection problem. The remaining 30 cases (43%) require white-box access to
the system [3, 9, 11, 14, 16, 18, 20, 22, 24, 26–29, 32, 35, 37, 39, 40, 42, 46–48, 50–53, 59, 62, 66, 68], as they need
information on the internal state of the trained model. The most prevalent examples in this category are
the approaches that need the values of neuron activations to measure some adequacy criteria [27,42] or the
weights and biases of the model to apply mutation operators on them [28, 47].

5.2.6 Context Model (RQ 2.6)

As MLSs can be complex systems that have to operate in various environments and interact with different
dynamic objects, they need to be able to determine the context in which they are operating, and adapt
their behaviour to context-related norms and constraints. In our pool of papers, 17 works (24%) model
the context in which the MLS operates. All of them are in the autonomous driving domain [1–4, 6–8, 10,
12, 17, 23, 25, 31, 54, 55, 60, 69]. The context models presented in these papers vary in terms of simplicity
and number of considered actors. For example, the work by Bühler et al. [8] addresses the problem of
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autonomous parking and provides a context model in which the car is the only dynamic object and the
environment is represented just as a set of geometric points that define the parking space. Similarly, in
the work by Beglerovic et al. [6] the goal of the ADAS is to avoid collisions and the information about the
environment is provided in the form of the geometric coordinates of the static obstacles. In contrast, in the
work by Abdessalem et al. [2] the authors address more complicated scenarios and their context model is
much more detailed. In addition to the ADAS under test, they consider additional mobile objects such as
pedestrians and other cars. Moreover, they take into account roadside objects, such as trees, parked cars,
traffic signs, and describe the environment in terms of types of road, weather conditions and scene light.
Considering a complex context can increase the realism of, and thus the confidence on, the testing process,
but it is more expensive, especially because there is no standard context model that can be reused.

5.2.7 Availability (RQ 2.7)

Availability of the proposed solutions is important in the field of software testing, as new research contribu-
tions very often rely on existing tools and prototypes. The availability of the research artefacts (i.e., exper-
imental data, source code) of the papers on MLS testing is a strong indicator of how effectively the future
research will build on and compare with the currently existing work. Our results do not draw an optimistic
picture on this issue, as for 50 out of 70 (71%) papers there is no available artefact. For 20 papers (29%), the
proposed solutions are available in open-source format [1–4, 6–8, 10, 12, 17, 23, 25, 31, 41, 50, 54, 55, 58, 60, 69],
with the exception of one [70] where the tool is available, but the source code is not. It is worth to note that
all such papers were published between the years of 2017 and 2019, which may indicate a growing positive
trend toward open research in MLS testing.

5.3 Evaluation

In the following, we describe the empirical evaluations of the testing solutions proposed by the analysed
primary studies. We provide an overview of the evaluation types and methods, as well as information
about the objects and the experimental setup.

5.3.1 Evaluation Type (RQ 3.1)

We split the analysed studies based on the type of experimental evaluation: academic or industrial. As
shown in Figure 14, the vast majority of the studies (56) carry out an evaluation in an academic context.
Three studies [8,9,70] perform an evaluation on proprietary systems belonging to an industrial partner. Five
works [1–3, 32, 35] adopted a combined approach, featuring an evaluation in both academic and industrial
contexts, while six works [5, 38, 60, 61, 65, 69] contained no empirical evaluation of any sort. Taking into
account that ML is widely used in industry and its applications are growing exponentially, the collected
data suggest that industrial research should be given greater focus.

5.3.2 Evaluation Method (RQ 3.2)

We observed a number of different evaluation methods, including experiments with no human involved,
experiments with human evaluation and proof of concept studies. The category representing the experi-
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mental approach with no humans is the widest one and features 49 works, which is 70% of the total number
of papers. Eleven papers (16%) [7,10,17,23,25,30,35,37,46,54,55] provided small-scale exemplary proofs of
viability for the proposed approach and are united under the “proof of concept” category. An instance of
such an evaluation method is the work by Klueck et al. [23], where the authors provide an example of their
test case generation process focusing only on one selected ontology and its conversion into a combinatorial
testing input model. Four studies out of 70 (6%) [1–3, 19] included human evaluation in their empirical ap-
proach, while the remaining six (9%) [5,38,60,61,65,69] carried out no evaluation of any kind (see Figure 15).
Overall, the young discipline of ML testing seems to have already adopted a quite demanding evaluation
standard, targeting the empirical method of controlled experiments. When operating at the system level,
experiments with humans become critical to assess the validity and severity of the reported failures.

5.3.3 ML Models (RQ 3.3, RQ 3.4, RQ 3.5)

We have analysed the usage of existing ML models for the purpose of evaluating the proposed testing
approaches. We found that 43 out of 70 papers (61%) contain a mention of the adopted ML models. Most
of them are publicly available; only 26% of these papers used models that are not open-source.
Figure 16 depicts the most popular models (to keep the size of the picture small, we report only the models
that were used at least three times in the evaluation of the retrieved papers; the full list is available in our
replication package [119]). Our results show that authors tend to reuse widely adopted and open-source
models, such as LeNet [110] VGG [125], or ResNet [95]. In three studies [33, 34, 36], Murphy et al. used
Martirank [91], a ranking implementation of the Martingale Boosting algorithm [112].
Among the steering angle prediction models for self-driving cars, five papers [22, 30, 42, 53, 67] trained
their models using the datasets provided by Udacity.5 Udacity is a for-profit educational organisation that
helps students expand their machine learning skills and apply them to the area of autonomous driving.
Udacity contributed to an open-source self-driving car project by releasing a self-driving car simulation
platform, and by introducing a series of challenges related to various aspects of autonomous driving (e.g.,
lane keeping, object localisation and path planning). According to our results, the model by the team

5https://github.com/udacity/self-driving-car/tree/master/datasets
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Chauffeur6 is the most used (3 papers) [22, 53, 67].
In 58% of the cases, researchers did not use pre-trained models, but rather performed the training them-
selves. It can be noticed that the most widely used architectures are convolutional networks, which in turn
suggests that image recognition is a frequent subject for studies and scientific experiments.

5.3.4 Training Dataset (RQ 3.6)

We studied the datasets that were used to train the ML models considered in the evaluation of the proposed
approaches. Out of the 70 relevant studies, 28 (40%) did not use or did not mention the usage of any
specific dataset. The remaining 42 (60%) studies mention 48 datasets of different size and nature among
which 10 are custom ones. According to the content, these datasets can be classified into a number of
broad categories, illustrated in Figure 17. We report only categories that contain two or more instances.
We can notice that the digit recognition task is the most frequently tackled one, closely followed by the
general image classification problem. Among the remaining categories, the numbers of datasets used for
tasks related to autonomous driving indicate a growing interest for the training of NN-based autonomous
vehicles.
Concerning the datasets used, MNIST [111] (a labeled dataset of hand-written digits that has a training set
of 60,000 examples, and a test set of 10,000 examples) is the most popular (29%), which is not surprising
due to the frequent occurrence of digit recognition in our evaluations. CIFAR-10 [109] (a dataset of colour
images in 10 classes that has a training set of 50,000 images, and a test set of 10,000 images) is also quite
adopted (16%). In the autonomous driving and ADAS domains, the datasets of real world driving images
released by Udacity are the most used (7%). Among the seldom used datasets are the ones targeting more
specific domains of application, such as Drebin (Android malware) [73], Cityscapes (set of stereo video se-
quences recorded in street scenes) [82] or the UCI (University of California, Irvine) ML Repository: Survive
(medical) [87]. Moreover, we noticed that the creation of a custom and tailored dataset is also a relatively
frequent practice (21% of all datasets used).

6https://github.com/udacity/self-driving-car/tree/master/steering-models/community-models/
chauffeur
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Figure 19: Simulator

5.3.5 System & System Availability (RQ 3.7, RQ 3.8)

A relatively small subset (27%) of the papers study the behaviour of the whole MLS [1–4, 6, 8, 10, 12, 17,
25, 30, 31, 35, 44, 50, 54, 55, 58, 70]. From the data in Figure 18, we can notice that advanced driver-assistance
systems (ADAS) are the most widely evaluated MLSs, along with other types of autonomous vehicles (ROS)
and unmanned underwater vehicles (UUV). This confirms the high interest of the academic and industrial
communities towards autonomous systems.
For what concerns availability, 74% of the systems used in the relevant literature are closed-source. The
largest proportion of systems that are open source consists of advanced driver-assistance systems that are
contained in the ADAS category.

5.3.6 Simulator (RQ 3.9)

Nearly one fourth of the analysed studies (27%) [1–4,6,8–10,12,17,25,30,31,44,50,54,55,58,67] make use of a
simulator. In such cases, experiments are conducted in a computer simulation of the physical environment,
to avoid the costs and issues associated with experiments conducted in the field, as well as to reduce the
time necessary to run the experiments. Only one study [25] independently developed a custom simulator
that specifically suits the requirements of a study, while the others adopted and in some cases modified the
existing simulators.
From the adopted solutions (see Figure 19), the PreScan [99] and Matlab simulation platforms stand out in
terms of the number of mentions, each being used by three works [1–3], [6,8,54], followed by the Carla [86]
and Udacity7 simulators, used by two works [4, 10], [30, 67]. The latter simulators are designed specifically
for autonomous driving systems. Despite the prevalence of simulators tailored for ADAS and autonomous
driving systems, in the list we can see a flight simulator for unmanned aerial vehicles (X-Plane 11) [9] and
a robot simulator (V-REP, now discontinued and replaced by its successor CoppeliaSim) [50].

5.3.7 Failure Type (RQ 3.10)

An important aspect in the evaluation of any testing solution is the definition of failure. While for 18
(26%) [5, 7, 10, 12, 15, 18, 21, 23, 37–39, 49, 59–61, 65, 68, 69] papers this information is not applicable or not
available, 52 (74%) works provide a description of the failure types detected in the experimental evalu-
ation. In case the object of evaluation is an ML model, the failure type is defined based on the type of
prediction (e.g., misclassification for a classifier). As the focus is shifted from isolated ML components
to MLSs such as autonomous vehicles, the failure type frequently involves the choice of domain-specific
parameters (e.g., the amount of deviation from the center line for a lane keeping assistance system).
In line with the results about Training Dataset (subsubsection 5.3.4) and ML Models (subsubsection 5.3.3),
one of the most frequent failure types is misclassification. The second most popular category is domain-
specific failures defined for autonomous vehicles and driving assistance systems. This set of failures com-
bines several specific instances, the most frequent being deviation from the expected steering angle (five
papers [29, 41, 42, 53, 67]) and number of collisions (10 papers [3, 4, 6, 8, 25, 30, 44, 54, 55, 58]). The importance

7https://github.com/udacity/self-driving-car-sim
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Figure 21: Evaluation Metrics

of metamorphic and mutation testing for MLS is reflected in the relatively large number of mentions of the
associated types of failures: five papers [34, 36, 45, 63, 64] used the violation of metamorphic relationships,
whereas three papers [11,28,47] used the notion of mutation killing. The full picture is shown in Figure 20.

5.3.8 Metrics (RQ 3.11)

In this section we discuss the metrics most frequently adopted to evaluate the proposed approaches. The
exhaustive list, obtained from 60 papers (85%), covers a wide range, depending on the task considered in the
evaluation as well as the testing approach and can be divided into eight main categories: (1) Effectiveness,
(2) Coverage, (3) Similarity, (4) Failures, (5) Mutation Score, (6) Error Rate, (7) Time, (8) Domain Expert
Opinion. The categories are listed in descending order with regards to the number of papers that used such
a metric in the evaluation process and leave aside a number of metrics that were used only once or twice or
are too specific to be classified. The numbers for each category are presented in Figure 21.
In the Effectiveness category, metrics based on the loss and accuracy are the most often adopted ones (ten
papers [9, 13, 16, 22, 24, 29, 50, 57, 59, 62]), while precision, recall and F-measure appear in three works [17,
31, 70] and AUROC in only two papers [22, 59]. Coverage is the second most extensive class (14 pa-
pers [10, 12, 14, 20, 22, 26, 27, 31, 42, 46, 51–53, 62]), in which we can distinguish a relatively large family
of neuron coverage metrics [20, 22, 27, 42, 46, 53, 62]. The variety of metrics stemming from neuron cover-
age are reviewed in details in the subsubsection 5.2.2. Category Time includes execution time or time
spent to generate a desired number of inputs. It served as a metric for performance evaluation in four
papers [20, 48, 56, 66]. Three studies [1–3] use domain expert opinions as qualitative indicators to evalu-
ate the proposed approaches. The time performance of an MLS testing approach is particularly important
when dealing with complex MLSs, such as self-driving cars, because even in a simulation environment the
budget of available system executions is severely limited. Human feedback is also quite important, since
failure scenarios might be useless if falling outside the validity domain.
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Figure 22: Software setup

5.3.9 Comparative Study (RQ 3.12)

In general, comparative studies are important as they show the differences (e.g., pros and cons) between a
novel technique and the state of the art. They can guide researchers and practitioners in the choice of an
appropriate solution for their specific needs. In our list of relevant papers, 26 (37%) [4, 8, 9, 11, 13, 17, 19, 20,
22, 26, 27, 29, 31, 45, 46, 48, 49, 51, 52, 54–57, 63, 66, 70] include a comparative evaluation. Test input selection,
generation and prioritisation are the techniques most frequently involved in comparative evaluations. For
other MLS testing techniques, comparative studies are generally lacking, which may be related to the scarce
availability of baseline MLS testing solutions as open-source tools (see results for RQ 2.7).

5.3.10 Experimental Data Availability (RQ 3.13)

Availability of experimental data is crucial for replication studies and for projects that build on top of exist-
ing solutions. Unfortunately, only a fraction of authors of the considered studies made their experimental
data publicly available (despite we considered the cases when data is partially accessible as “available”).
This fraction comprises 13 papers out of 70 (19%) [3, 9, 16, 21, 22, 42, 48, 51–53, 56, 57, 68]. This is a rather
negative result, which may hinder the growth of the research in the field.

5.3.11 Time Budget (RQ 3.14)

Training and testing of MLSs is known to be a very expensive and time consuming process and getting
a rough estimate of the average time spent to conduct an experiment in the field is indeed quite useful.
However, only 8 (11%) [2,3,14,29,31,52,54,62] studies report information about time budget, ranging from
1/2h to 50h, with an average of 16.4h. This values give an order of magnitude of the time budget allocation
necessary when testing complex MLS.

5.3.12 Software Setup (RQ 3.15)

Concerning the software libraries and frameworks used for the implementation and evaluation of the pro-
posed approaches, only 22 (31%) papers [6,8,9,13,16,19,22,27,28,36,40,42,45,48,49,54–56,62–64,67] provide
such information. As illustrated in Figure 22, Keras and Tensorflow are the most used frameworks, fol-
lowed by Matlab. The Ubuntu operating system was explicitly mentioned in six papers [9,16,20,36,42,56].

5.3.13 Hardware Setup (RQ 3.16)

Only 19 (27%) papers [7, 9, 13, 16, 17, 20, 22, 27, 28, 36, 42, 43, 48, 49, 51, 52, 56, 62, 64] contain information on
the hardware setup used to conduct the experiments. In three works [27,28,49], experiments were run on a
cluster of computers, while nine mention the specific GPU model that was used [7,9,13,17,20,27,28,42,62].
Interestingly, all of the GPU models reported in the papers are NVIDIA products, with the GeForce series
being mentioned five times [7, 9, 17, 20, 42] and the Tesla series four times [13, 27, 28, 62]. We conjecture this
result is influenced by the adoption of CUDA as parallel computing platform and programming model
in the NVIDIA graphical processing units (GPUs), because Tensorflow supports NVIDIA GPU cards with
CUDA.
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Table 6: Venues represented in the mapping (number of papers shown within brackets)

Conferences (40) Workshops (10) Journals (8) Preprint (12)
ASE (6) APSEC (1) PRDC (1) ISSREW (3) TSE (2) arXiv (11)
ICSE (4) ATVA (1) SANER (1) QRS-C (2) JSS (2) CUCS report (1)
ISSTA (4) FASE (1) SEFAIS (1) FAACS SEFM-W (1) CVT (1)
ESEC/FSE (3) IROS (1) SOSP (1) ICSE-Nier (1) IJES (1)
AITest (2) ISSRE (1) MET (1) IV Transactions (1)
ICRA (2) ISSSR (1) RT (1) SAE Tech. Papers (1)
IV Symposium (2) ITSC (1) SOFL+MSVL (1)
QRS (2) PLDI (1)
SEKE (2) PMLR (1)

5.4 Demographics

In the following, we report and comment some statistics about the papers considered in this study, includ-
ing year of publication, venue, authors, affiliations and affiliation countries. Note that for preprint versions
that were later published at a conference, journal or workshop, we always refer to the latter version. The
reported data, as well as the number of citations, were collected from Google Scholar on May 11th, 2020.

5.4.1 Year of Publication

When analysing the year of publication of the papers considered in this study, we distinguish between
papers that have been made available exclusively in preprint archives and papers that have been accepted
for publication in a peer-reviewed journal, conference or workshop. The aggregated publication years are
shown in Figure 23. The trend apparent from this figure is that the number of papers is rapidly increasing
in recent years, showing a growing interest and attention of the software engineering community towards
testing MLSs.

5.4.2 Venue and Venue Type

Table 6 shows the publication venues of the papers considered in this systematic mapping. More than half
of the papers (40 out of 70) were published at conferences; only a relatively small number at workshops
(10) or journals (8). The high number (30) of papers that we found only in arXiv at the time when we
downloaded all relevant works (February 27th, 2019), some of which (18/30) were published later in a
peer-reviewed venue, as well as the high number of papers published at conferences/workshops, indicate
the importance of fast knowledge transfer in a quickly evolving field like ML testing. It is common practice
for researchers working on ML testing to continuously check for new arXiv submissions relevant for their
research.

5.4.3 Authors

We aggregate statistics about the authors of the considered papers without taking the order of authors into
account. Overall, 241 distinct authors contributed to 70 analysed papers; the average number of authors
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Table 7: Countries (ISO3) of authors affiliations
(number of papers shown within brackets)

Asia (29) Europe (19) America (33)
CHN (20) DEU (6) USA (30)
JPN (9) GBR (5) CAN (3)
SGP (8) LUX (3) BRA (1)
IND (2) SWE (2)
TUR (1) AUT (1) Oceania (6)
KOR (1) NOR (1) AUS (6)
VNM (1) CHE (1)

per paper was 4.34. On average, an author contributed to 1.26 of the papers, where 205 authors contributed
to one paper, 18 to two papers and 11 to three papers. The following six authors contributed to more than
three (3) papers:

6 papers: Kaiser, G. (Columbia University) [32–36, 63]

6 papers: Murphy, C. (Columbia University) [32–36, 63]

5 papers: Liu, Y. (Nanyang Technological University) [26–28, 62, 64]

4 papers: Li, B. (University of Illinois at Urbana–Champaign) [26–28, 62]

4 papers: Ma, L. (Harbin Institute of Technology) [26–28, 62]

4 papers: Xue, M. (Nanyang Technological University) [26–28, 62]

5.4.4 Affiliations

Overall, the authors who contributed to the papers considered in this study work for 84 distinct organisa-
tions.8 On average, each of these organisations contributed to 1.68 papers and each paper was written by
authors from 2.0 different organisations. The six organisations which contributed to the most papers are:

8 papers: Columbia University [32–36, 42, 53, 63]

6 papers: Nanjing University [11, 43, 47, 48, 63, 64]

6 papers: Nanyang Technological University [14, 26–28, 62, 64]

5 papers: Carnegie Mellon University9 [18, 26–28, 62]

5 papers: Harbin Institute of Technology [14, 26–28, 62]

5 papers: Kyushu University [14, 26–28, 62]

5 papers: University of Illinois at Urbana-Champaign [26–28, 62, 70]

For-Profit Organisations: It is notable that besides universities, we also observed various contributions
from for-profit companies. This is particularly evident for papers in the automotive domain. For-profit
organisations that contributed to papers in this domain include: IEE S.A. Contern (Luxembourg) [1–3],
AVL List (Austria) [6,23] Volkswagen (Germany) [7] DaimlerChrysler (Germany) [8] and Toyota (USA) [55].
This finding is encouraging, but we argue that more industrial involvement should be actively promoted,
especially by non-profit organisations (e.g., through collaborations with the industrial sector), because of
the growing number of industrial products/services that embed some ML technology and demand for
dedicated ML testing techniques. Insights from the industry can help researchers steer their work towards
applicable and relevant topics that can be applied in practice. Moreover, industrial data sets are crucial to
evaluate the proposed techniques in realistic and relevant contexts.

5.4.5 Countries

We analysed the number of papers by country, considering the country of the affiliation indicated in each
paper. If a paper was written by multiple authors from different countries, we counted that paper for all
represented countries. As above, we did not take the author order into account. Table 7 shows the number

8For the analysis of authors’ affiliations, we only considered the affiliations mentioned in the papers.
9Including Carnegie Mellon University at Silicon Valley.
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Figure 24: Distribution of citations per paper

of papers by country. At least one author of 31 papers was affiliated to a research institution in the United
States of America (USA), more than any other country. USA is followed by China (20 papers), Japan (9
papers), Singapore (8 papers) and Australia (7 papers). Germany (6 papers) is the most active European
country. Table 7 reports the paper distribution by continent. The most active continent is America (33
papers), followed by Asia (29 papers) and Europe (19 papers).10

5.4.6 Citation Counts

We collected the citation counts from Google Scholar on May 11th, 2020. If multiple versions of a paper
were available, we aggregated the citation counts. On average, the considered papers were cited 37.62
times with a median of 13.5 citations. The most cited papers in our pool are the following:

377 citations: DeepXplore: Automated Whitebox Testing of Deep Learning Systems by Pei et. al. [42]

354 citations: DeepTest: Automated Testing of Deep-Neural-Network-driven Autonomous Cars by Tian et. al. [53]

159 citations: Testing and validating machine learning classifiers by metamorphic testing by Xie et. al. [63]

113 citations: Properties of machine learning applications for use in metamorphic testing by Murphy et. al. [34]

111 citations: DeepRoad: GAN-based metamorphic testing and input validation framework for autonomous driving sys-
tems by Zhang et. al. [67]

Figure 24 illustrates the distribution of the number of citations per paper. It is quite remarkable that the two
most cited papers were published in 2017 and 2018: in the two to three years since their first publication11

they were cited more than 350 times, once more indicating the rapid growth of and the increasing interest
in the area of MLS testing.

6 Discussion

In this section we first summarise the weaknesses of the presented approaches and we distill a set of open
challenges, pointing to directions for future research.

6.1 Weaknesses

MLS testing is a new research area that has not yet defined a clear and shared research methodology. As
a consequence, although existing works make important contributions to advance the state of the art, they
have at the same time weaknesses in aspects that are not yet consolidated, but will definitely play an im-
portant role in the future. Such weaknesses belong to various categories, including: (1) hyper-parameter
selection; (2) notions such as failure, fault, bug fixing; (3) realism and relevance of the test scenarios; (4)
empirical methodology and metrics; (5) nondeterminism and statistical assessment; (6) computational cost.

10As papers with authors from multiple countries of the same continent are only considered once in the per-continent aggregation,
the number of papers per continent does not necessarily equal the sum of the number of papers by countries of that continent.

11Their preprint versions were first available on May 18th, 2017 and August 28th, 2017, respectively.
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Hyper-parameter selection: the proposed techniques often involve the selection of thresholds (e.g., to dis-
tinguish different levels of activation of neurons) and other hyper-parameters of the algorithms. However,
such selection is often not systematic and the sensitivity of the approach to such choice is not evaluated. No
guidance is provided to the reader to determine the hyper-parameter values that fit the problem at hand,
and often the choice of hyper-parameters sounds quite arbitrary and is not explained in detail.

Failure, fault, bug fixing: the nature of failures and faults, as well as the process of bug fixing, change
substantially or require profound adaptations when considering MLSs. However, in the literature, no con-
solidated terminology has been introduced yet, which affects the evaluation of effectiveness of the proposed
approaches. For instance, in our surveyed papers, often a misclassification (for classifiers) or a high predic-
tion error (for regressors) are regarded as failures of the ML component. However, any ML component is
by construction expected to misclassify some inputs, or to produce a nonzero prediction error on some in-
puts. Indeed, in real world scenarios, it is quite unrealistic to achieve perfect classification (accuracy = 1.0)
or prediction scores (MSE = 0.0).
Moreover, MLS testing techniques should not solely expose misclassifications and prediction errors at the
ML component level, but rather look at the side-effects of such inaccuracies at the overall system level. Indi-
vidual misclassifications (or individual mis-predictions) are suboptimal definitions of failures if the whole
MLS is considered, because they may have no consequences, or, on the contrary, may lead the overall sys-
tem to deviate significantly from its requirements and result in a failure. For example, in the self-driving
car domain, a single mis-prediction of the steering angle component may be irrelevant to the overall driv-
ing experience, if done in a situation in which the overall system is able to compensate its effects with
appropriate mitigation strategies. On the other hand, there may be cases in which a single mis-prediction
is responsible for a chain of subsequent mis-predictions that ultimately leads to a crash. Thus, the usage
of the output produced by these approaches is sometimes unclear as the detection of misclassifications or
prediction errors does not necessarily indicate that the ML component is faulty and insufficient for the task
assigned to it. In other words, it is unclear if the discovered faults are real faults.
For what concerns the actions to be taken when a fault is detected, most approaches suggest re-training
and show that re-training is effective in handling the adversarial/corner-case inputs that caused the misbe-
haviours. However, re-training is the right corrective action only if the discovered fault is associated with
the training phase, but not all ML faults are necessarily due to inadequate training, as reported in existing
taxonomies of deep learning faults [68, 97, 100]. For instance, the model structure (not its training) may be
inadequate for the task being considered. In such a case, re-training is not the appropriate bug fixing action.
Additionally, while it is quite straightforward that re-training on adversarial inputs will allow such cases to
be handled properly by the re-trained system, this action may have detrimental effects on the effectiveness
of the system in real operating conditions if adversarial examples are not representative of realistic cases.
Thus, the response of the system to adversarial examples may become unclear or unpredictable, worsening
the reliability of the MLS with respect to the original system.

Realism: Artificial adversarial inputs are regarded as test cases that expose faults, regardless of their
likelihood of occurrence. Realism of generated inputs is not assessed. Transformations (e.g., image trans-
formations) that are supposed to preserve the semantics are not checked to respect such assumption, e.g.,
by means of a human study. In fact, small input perturbations do not necessarily ensure that the resulting
(adversarial) input is a relevant/realistic test case. For instance, if the starting point is already troublesome
to classify for humans (e.g., a handwritten digit “7” that looks already like a “1”), the transformation may
end up with an input that falls beyond the validity domain of the ML component [120]. Hence, a mis-
behaviour on such input cannot be regarded as a failure and does not point to any fault. Sometimes the
test inputs used to show the effectiveness of the proposed approach are artificial and unrealistic. Corre-
spondingly, it is quite expected that the ML component may misbehave when applied to them. The issue
of realism affects also the simulated environments where the ML based system operates during testing. In
fact, often over-simplified models of the environment are adopted, making the possibility to generalise the
results to the real operational environment at least questionable. The same issue affects existing proposals
of ML mutation operators, which do not mimic real faults and introduce unrealistic issues. For instance,
mutation operators that modify the weights of a neural network after it has been trained do not match any
ML fault reported in the existing taxonomies [68, 97, 100] and look quite unrealistic.

Empirical methodology and metrics: Metrics have been proposed (e.g., to prioritise test cases, to mea-
sure adequacy of test data) without any form of theoretical foundation, or empirical validation [78, 79].
Only their capability to react to adversarial examples is demonstrated, i.e., (accuracy) metrics improve if
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the test suite is augmented with adversarial examples. However, their usefulness in practice, to improve the
thoroughness of MLS testing, is still to be demonstrated. Overall, empirical validation of MLS testing tech-
niques lacks a shared, well defined methodology. A small number of datasets (often just one) is used for the
empirical validation. Empirical validation focuses mostly on classification problems. Regression problems
are rarely included, especially because they often require nontrivial adaptation of the proposed techniques.
In general, empirical validation does not aim for the exposure of real faults, since no dataset of real faults is
available yet, and surrogate evaluation targets (inaccuracies on adversarial inputs) are immature and quite
unconvincing.

Nondeterminism: ML systems behave differently if trained on a different dataset or even when re-trained
on the same dataset, if the training algorithm is nondeterministic (this is always the case of neural net-
works, whose weights are initially assigned a small random value). However, assessment of MLS testing
techniques often do not consider that results may differ upon re-execution, if the system is re-trained. A
notable example is the notion of mutation killing. In fact, drop of accuracy or prediction error cannot be
used as the only signal of a test suite being able to kill a mutant. In fact, the exposed performance drop may
be just due to the re-training of the mutated ML system, not to the effectiveness of the test suite. In fact,
even the original, un-mutated system may be “killed” by a test suite if it is trained multiple times and its
performance (accuracy or prediction error) drops upon some re-training.

Computational cost: Test generation techniques may require the execution of the system under test to as-
sess the quality (e.g., adequacy) of the generated test scenarios. This may be computationally expensive, for
instance, if execution involves complex and long-running simulations. The majority of existing approaches
do not consider the algorithmic and runtime cost of the proposed solutions. However, practical adoption
of the proposed MLS testing techniques in the daily activity of developers demands for computationally
affordable solutions that can deliver their results in a reasonable time.

6.2 Open Challenges

Most of the weaknesses discussed in the previous section can be turned into open challenges and opportu-
nities for future research. Correspondingly, many of the categories of weaknesses appear in this section as
open challenges. Our analysis of the literature highlighted several opportunities for future research that can
potentially lead to major breakthroughs in the area. We can group the open challenges into the following
categories: (1) hyper-parameters; (2) failures, faults, bug fixing; (3) empirical methodology and metrics; (4)
realism; (5) nondeterminism; (6) computational cost; (7) scope of MLS testing.

Hyper-parameters: we should define and adopt a systematic methodology for the selection and reporting
of hyper-parameters of the proposed MLS testing techniques. Assessment of the sensitivity of the proposed
techniques to their hyper-parameters should become standard practice.

Exposing failures, finding faults, fixing bugs: ML components should be evaluated in the context of the
software system they are part of. In fact, inaccuracies of an isolated ML component (misclassifications or
prediction errors) may or may not have consequences that can be regarded as failures at the system level.
Hence, the effectiveness of test input generators should be measured on relevant, practical usage scenarios
where a failure is a failure of the whole system, not an inaccuracy of the ML component alone. Indeed,
this is what distinguishes the software engineering perspective on testing from the machine learning one.
Correspondingly, bug fixing should amount to any intervention (e.g., on the model architecture or the
training phase) to improve the system level performance, so as to reduce the possibility of system level
failures. Hence, bug fixing may include, but should not be limited to, re-training.

Empirical methodology and metrics: We should introduce and adopt a solid empirical validation method-
ology, with associated metrics, that can assess the effectiveness of the proposed testing techniques directly,
without resorting to proxies (e.g., ML inaccuracies, such as misclassifications or prediction errors). The goal
is to be able to show that the proposed testing approaches are effective in exposing and fixing relevant ML
issues, i.e., issues that can make the whole system fail in realistic execution scenarios, not just inaccuracies
of the ML component alone, because the latter are intrinsic to the process of learning a behaviour from a
training dataset and are hence unavoidable: the overall system should respect the functional requirements,
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despite the occasional occurrence of ML inaccuracies. Correspondingly, we need a solid benchmark for the
evaluation of the proposed approaches. Such repositories exist in traditional software engineering research,
such as SIR [85], Defects4J [103], SF100 [88], and BugsJS [92]. This has not been the case, however, for ML
techniques in software engineering. Ideally, such a benchmark should include a variety of real ML based
systems, not just simple classifiers, with known ML faults. It should include both systems that make use of
regressors and systems that make use of classifiers. When it comes to systems that use regressors (e.g., for
the prediction of the steering angle in self-driving cars), an open challenge is the definition of the oracle,
which could take the form of metamorphic relations. Indeed, each application domain has its own con-
straints and requirements. More instances of domain specific oracles should be made available to ensure a
fair assessment of the detection of system failures.

Realism: ML components produce an output for any input in their huge input domain, but the system
that uses those ML components has usually a much narrower validity domain. For instance, an ML regres-
sor that predicts the steering angle of a self-driving car from the image collected by its camera will produce
a steering angle for any input image, including pictures that can never be taken by the car camera, pic-
tures that do not represent any road and pictures that contain just noise or geometrical shapes. The frontier
between valid inputs and invalid ones can be blurred and difficult to define, but MLS testing techniques
should focus on the generation of inputs within the validity domain of the overall system in which the ML
component is used [120]. Otherwise, the detected misbehaviours are only hypothetical and do not repre-
sent any problematic scenario that can occur in the real world. Techniques that manipulate the inputs to
artificially generate new inputs (e.g., during the test generation process or in the definition of metamorphic
relations) have the same problem: when an input within the validity domain of the system is mutated and
becomes a new potential input, the result should be shown to be still a valid and realistic input for the sys-
tem. Some of the proposed metamorphic relations (e.g., introducing black bands upon image translation)
do not respect such constraints. We need to define a set of input transformations that produce realistic sce-
narios, not artificial ones. In the case of metamorphic relations, such transformations are also supposed to
be semantic preserving. Human studies may be needed to ensure that semantic preservation is indeed guar-
anteed by the proposed metamorphic relations. Realism of the transformed inputs could be also assessed
empirically in human studies. We should produce a catalog of input transformations that are ensured to
preserve realism, a subset of which is also ensured to preserve the semantics of the input (metamorphic
relations). When a misbehaviour is exposed, we should be able to distinguish between realistic/possible
vs unrealistic/unlikely test scenarios (e.g., by a measure of realism/likelihood). ML mutations are also af-
fected by the realism issue. In fact, mutations that do not match any real fault may be useless in exposing
failures of the MLS. Ideally, mutation operators should be based on real faults that developers may intro-
duce into ML components when these are designed, developed and trained. Moreover, useful mutation
operators are also required to be nontrivial as well as not impossible to kill, because they are otherwise not
discriminative at all [101]. Simulators are often used to run ML based systems in a controlled environment,
where testing is faster and safer than in the production environment. However, the degree of realism of the
simulated environment affects the capability to expose all and only relevant faults. We need complex open
source simulation environments that support rich models of the execution contexts (e.g., complete models
of the environment where a self-driving car operates, including pedestrians, other vehicles, buildings, trees,
obstacles, signs, and traffic lights).

Nondeterminism: Effectiveness of the proposed MLS testing techniques should take the intrinsic nonde-
terminism of ML training into account. Observing a change of behaviour is not enough to show that the
MLS testing technique is effective, because the same change may be observed when training the system
multiple times on the same dataset. A positive effect of the proposed testing technique can be meaningfully
reported only when the distribution of the effectiveness metric values is shown to be statistically different
from the distribution observed upon multiple training. For instance, a mutant can be said to be killed by a
test suite only if a statistical test, such as Wilcoxon, can reject the null hypothesis [101] (in this case, the null
hypothesis states that the accuracy distributions for the mutant and for the original system are the same). In
general, a statistical test should be executed to compare the distributions of the effectiveness metrics upon
multiple training of the original system vs the mutated/faulty version.

Computational cost: MLS testing techniques may require computationally expensive executions of the
ML system and studies often report long timeouts (e.g., days) and substantial computational resources
(e.g., high performance computing clusters), which may be unavailable to the ML system testers. Further
research is needed to speed up test generation techniques that require test case execution, e.g., by resorting
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to surrogate models that can estimate the output of an ML based system without executing it (see prelimi-
nary results by Beglerovic et al. [6]).

Scope of the MLS testing research area: MLS testing is not a well established and consolidated area
yet. As such, it lacks a shared terminology, experimental methodology, agreed assessment metrics and
benchmark. Its positioning in the broad discipline of computer science is also not completely clear. This
was quite apparent when we collected the papers relevant for this systematic mapping. In fact, while most
MLS testing papers appeared in software engineering and software testing venues, other important works
(reached through snowballing) were published at machine learning, autonomous vehicles and other AI-
related conferences. The tagging of the relevant papers (e.g., in arXiv) is usually “software engineering”,
but this is often accompanied by “machine learning” and occasionally only the latter tag is used. This
situation points to the need for finding the most appropriate venue and community for research works on
MLS testing. Some attempts to create new events devoted to this new field are already emerging, such as the
DeepTest workshop,12 co-located with ICSE, or the IEEE International Conference On Artificial Intelligence
Testing.13

7 Related Work

To the best of our knowledge, eight secondary studies have been conducted in the area of MLS testing.
Among them, the works by Sherin et al. [124] and J. M. Zhang et al. [133] are the most related to this
mapping in terms of goals and approach. Our discussion of the former work is based on the preprint
version, since it is not published in any peer-reviewed venue at the time of writing.
Similarly to our study, Sherin et al. [124] performed a systematic mapping on testing techniques for ma-
chine learning programs. They considered 37 papers in total. Sherin et al. have mostly focused on the
analysis of ML components in isolation, with a few exceptions, such as the work by Tuncali et al. [55]. In
contrast, our mapping is not limited to ML model testing, but also considers testing of whole systems that
use one or multiple ML components. Moreover, in the work by Sherin et al. [124] the considered studies are
classified based only on the type of testing approach, e.g., mutation, combinatorial, evolutionary. We in-
stead investigate multiple aspects of the testing approaches, and provide a finer-grained, multi-dimensional
classification, by considering, among the others, the used/proposed adequacy criteria, the algorithms for
automated input generation, and the test oracles. There are also remarkable methodological differences
between the two mappings: in the data extraction phase, Sherin et al. [124] identified beforehand a closed
list of values for each attribute, and assessors assigned a value from the list to each paper. Hence, their con-
clusions descend from the distribution of these attributes. Differently, we allowed the assessors to provide
open answers that were later analysed, grouped and labeled, so as to report an informed discussion about
addressed problems, open challenges and weaknesses of the retrieved papers. Many of them are not re-
ported among the findings of Sherin et al. [124], such as our discussion about hyper-parameter selection,
the regression problems potentially introduced when re-training is used as a corrective action, or the effect
of non-deterministic training algorithms on the oracle problem. Moreover, open-ended questions allowed
us to propose new concepts such as data-box access, ML model testing level, domain-specific failure and
scenario coverage, which are specific for MLS testing. This allowed us to provide additional insights about
weaknesses common to many existing studies, such as evaluating ML models mostly in isolation and not
as a part of the whole MLS. We also identify unique open challenges not reported by Sherin et al. [124],
among which: (1) evaluating whether inaccuracies of an isolated ML model have consequences that can be
regarded as failures at the system level, and (2) generating inputs within the validity domain of the overall
system in order to detect misbehaviours that can occur in the real world. In conclusion, our mapping fo-
cuses on whole MLSs, covers multiple dimensions, and provides open-ended analyses that cannot be found
in the systematic mapping by Sherin et al. [124].
J. M. Zhang et al. [133] provide a comprehensive survey on MLS testing. The authors collected 128 relevant
primary studies through multiple search methods. The work is broader in scope than our systematic map-
ping, since it considers testing aspects other than functional testing, such as security, data privacy, efficiency
and interpretability, and their analysis is not restricted to the software engineering field. On the other hand,
we investigated software engineering aspects not considered by J. M. Zhang et al., such as the testing levels
and the type of access to the ML component; the kind of experimental evaluation (e.g., academic vs indus-
trial); the types of ML models and systems; the availability of artefacts; the metrics adopted in the experi-

12https://deeptestconf.github.io
13http://ieeeaitests.com/
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ments; the baselines used for comparison (in case of comparative studies); the availability of experimental
data; the software and hardware setup used in the experiments. We believe that both works provide useful
and complementary information to researchers interested in MLS testing. However, it should be noted that
their study is designed as a survey, whose goal is to provide a generic yet comprehensive overview on the
body of literature related to MLS testing. Differently, our work is a systematic mapping that was driven
by 33 carefully formulated research questions. Accordingly, we investigated in detail the retrieved papers
along multiple dimensions (e.g., test level, access, metrics) to synthesise new evidence based on the analysis
of the literature. For instance, analysis of the testing level allowed us to identify a gap between model level
faults and system level failures, which definitely deserves further investigation. The high computational
costs for the execution of test cases in simulators challenge researchers to find time-efficient approaches for
test generation. As in the survey by J. M. Zhang et al., we also identify nondeterminism as a weakness of
the existing MLS testing techniques. Zhang et al. address it by proposing flaky test detection as an open
challenge for research. Instead, we suggest to execute statistical tests to compare the distributions of the
effectiveness metrics upon multiple trainings.
In addition to the two studies discussed above, there are six secondary studies that investigate research
areas partially overlapping with ML testing.
Masuda et al. [115] report a short survey about software quality of learning-based applications. They col-
lected 101 papers from artificial intelligence and software engineering conferences, including five maga-
zines, and tagged each paper with one keyword from an artificial intelligence vocabulary. The research
questions are quite specific to quality, verification, and design aspects. Differently, our work focuses on
functional aspects of MLS testing, for which we classified the retrieved papers considering multiple dimen-
sions and a set of research questions biased toward software testing.
Braiek and Khomh [77] reviewed 39 papers about verification and testing practices for ensuring the quality
of ML models and their training data. Similarly to Braiek and Khomh [77], we outline the main features of
the proposed testing approaches. However, the scope of our mapping is wider, since we considered tech-
niques that test systems containing one or more ML components, not just isolated ML models. Moreover,
we performed a deeper decomposition of the testing aspects into multiple, detailed research questions, and
investigated how the considered techniques have been evaluated.
Borg et al. [76] performed a literature review focused on challenges and solution proposals for verification
& validation and safety analysis (including test case design) in the automotive industry. The findings were
validated through a semi-structured survey submitted to practitioners from the automotive domain. On
the contrary, our scope includes testing approaches for MLSs in any domain, which includes, but it is not
limited to the automotive domain.
Huang et al. [96] surveyed 178 papers on safety and trustworthiness of deep neural networks, including
aspects like verification, testing, adversarial attacks, and interpretability. They reviewed testing as one
of the NN certification approaches along with verification. On the contrary, we focused specifically on
testing approaches and on systems that are not limited to isolated NN: any system that includes an NN as
a component (or more generally an ML component) is in the scope of our mapping. Moreover, the authors
focused only on coverage criteria, test case generation and model-level mutation, whereas we included a
more thorough set of dimensions and research questions.
Ma et al. [113] surveyed 223 papers about quality assurance and security of DL components and proposed
a DL software development process. Our work has a different scope, i.e., we focus on testing techniques
instead of quality/security assurance. As for the analysis, they identified the main challenges but did not
investigate the features of the considered techniques. On the other hand, we answer research questions
designed to provide a detailed characterisation of several features of the proposed approaches.
Hains et al. [93] surveyed 26 papers about secure DL, including works about testing DL systems. We differ
from this work as we conducted a systematic mapping instead of a survey, and we focus on functional
testing rather than on safety and security assurance.

8 Conclusions and Future Work

A fast growing trend in nowadays software is to adopt ML components, which are very effective in practice,
but raise novel and unprecedented challenges with respect to testing their correctness and dependability.
In this paper we adopted a rigorous methodology to gain a better understanding of the trends and the
state-of-the-art concerning MLS testing, along with the limitations they bear. We have identified several
key open challenges that researchers should focus on in future work. From an initial pool of 1’175 papers
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retrieved from scientific databases, we systematically selected 47 papers and complemented them with
other 23 papers obtained through snowballing. We analysed the final pool of 70 papers using a large
number of research dimensions.
Our findings show that the most prevalent testing problems addressed in these papers are the oracle prob-
lem (19%), followed by the design and adoption of test adequacy criteria (17%). This is further confirmed
by our analysis of test artefacts produced by each paper, where 60% of the artefacts are test inputs and 22%
are test oracles. For the generation of test inputs, the most popular techniques are input mutation (31%) and
search-based approaches (25%). In half of the papers, the test adequacy criterion to assess the quality of the
inputs is measured using recently proposed metrics based on neuron activation of the NN. The main type
of oracle used is the metamorphic oracle (44%), followed by domain-specific failures (20%). The papers
mostly address model level testing (63%), with only one paper focusing on integration level testing. When
it comes to the access to the system under test, white box access is required in 43% and black box in 41% of
the cases.
We further investigated whether the proposed approaches and the produced experimental data are shared
with the research community by the authors of each publication. Our results show that these artefacts are
not available for more than 74% of papers. Moreover, a very small fraction of the papers report details
about the experimental process, such as software setup (31%), hardware setup (27%) and allocated time
budget (11%).
The demographic overview shows that 51 out of 70 papers were produced in recent years, i.e. starting from
2016. When it comes to venue, 40 of the papers (57%) have been published in conferences.
Overall, our analysis revealed that novel testing techniques need to be devised to account for the peculiar
characteristics of MLS and highlights the most challenging problems, among which the notion of fault for
an ML system, the precise characterisation of the decision boundaries of such systems, the generation of
realistic inputs, within the validity domain of the MLS under test, and the creation of automated and reliable
oracles for systems governed by intrinsic uncertainty, affected by nondeterminism and dealing with a huge
input space.
Our suggestions for future work include the development of common frameworks and benchmarks to
collect and evaluate the state-of-the-art techniques, to avoid relying on ad-hoc solutions and to support
replication and comparative research. We believe that the findings of this work can help newcomers to the
field in better understanding the research landscape, as well as active researchers in defining the roadmap
toward future testing techniques for ML-based software.
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