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Chapter 1

Basics of C programming

The C programming language is a popular and widely used programming lan-

guage for creating computer programs. Programmers embrace C because it

gives maximum control and efficiency to the programmer.

If you are a programmer, or if you are interested in becoming a programmer, there

are a couple of benefits you gain from learning C:

• You will be able to read and write code for a large number of platforms –

everything from microcontrollers to the most advanced scientific systems

can be written in C.

• Because of the performance and portability of C, almost all popular cross-

platform programming languages and scripting languages, such as C++,

Java, Python, Objective-C, Perl, Ruby, PHP, Lua, and Bash, are imple-

mented in C and borrowed syntaxes and functions heavily from C. They

share the similar operators, expressions, repetition statements, control struc-

tures, arrays, input and output, and functions. Furthermore, almost all lan-

guages can interface with C and C++ to take advantage of a large volume of

existing C/C++ libraries.

In this article, we will walk through the entire language and show you how to

become a C programmer, starting at the beginning.
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WHAT IS C? CHAPTER 1. C PROGRAMMING

What is C?

C is a computer programming language. That means that you can use C to create

lists of instructions for a computer to follow. C is one of thousands of program-

ming languages currently in use. C has been around for several decades and has

won widespread acceptance because it gives programmers maximum control and

efficiency. C is an easy language to learn. It is a bit more cryptic in its style than

some other languages, but you get beyond that fairly quickly.

C is what is called a compiled language. This means that once you write your C

program, you must run it through a C compiler to turn your program into an exe-

cutable that the computer can run (execute). The C program is the human-readable

form, while the executable that comes out of the compiler is the machine-readable

and executable form. What this means is that to write and run a C program, you

must have access to a C compiler.

We will start at the beginning with an extremely simple C program and build up

from there. I will assume that you are using the Linux command line and gcc as

your environment for these examples; if you are not, all of the code will still work

fine – you will simply need to understand and use whatever compiler you have

available.

The simplest C program, I

Let’s start with the simplest possible C program and use it both to understand the

basics of C and the C compilation process. Type the following program into a

standard text editor. Then save the program to a file named samp.c. If you leave

off .c, you will probably get some sort of error when you compile it, so make

sure you remember the .c. Also, make sure that your editor does not automatically

append some extra characters (such as .txt) to the name of the file. Here’s the first

program:

# i n c l u d e < s t d i o . h>

i n t main ( vo id )

{

2



CHAPTER 1. C PROGRAMMING SPACING AND INDENTATION

p r i n t f ( " Th i s i s o u t p u t from my f i r s t program ! \ n " ) ;

r e t u r n 0 ;

}

Spacing and indentation

When you enter this program, position #include so that the pound sign is in col-

umn 1 (the far left side). Otherwise, the spacing and indentation can be any way

you like it. On some Linux systems, you will find a program called indent, which

will format code for you. The spacing and indentation shown above is a good

example to follow.

Compilation and run

When executed, this program instructs the computer to print out the line “This is

output from my first program!” – then the program quits. You can’t get much

simpler than that!

To compile this code on a Linux machine, type

gcc samp . c −o samp

This line invokes the C compiler called gcc, asks it to compile samp.c and asks it

to place the executable file it creates under the name samp. To run the program,

type

. / samp

You should see the output “This is output from my first program!” when you run

the program.

If you mistype the program, it either will not compile or it will not run. If the

program does not compile or does not run correctly, edit it again and see where

you went wrong in your typing. Fix the error and try again.
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The simplest C program, II

Let’s walk through this program and start to see what the different lines are doing:

# i n c l u d e < s t d i o . h>

i n t main ( vo id )

{

p r i n t f ( " Th i s i s o u t p u t from my f i r s t program ! \ n " ) ;

r e t u r n 0 ;

}

• This C program starts with #include <stdio.h>. This line includes the

“standard input/otput library” into your program. The standard I/O library

lets you read input from the keyboard (called “standard in”), write output to

the screen (called “standard out”), process text files stored on the disk, and

so on. It is an extremely useful library. C has a large number of standard

libraries like stdio, including string, time and math libraries. A library is

simply a package of code that someone else has written to make your life

easier (we’ll discuss libraries a bit later).

• The line int main(void) declares the main function. Every C program must

have a function named main somewhere in the code. We will learn more

about functions shortly. At run time, program execution starts at the first

line of the main function.

• In C, the { and } symbols mark the beginning and end of a block of code. In

this case, the block of code making up the main function contains two lines.

• The printf statement in C allows you to send output to standard out (for us,

the screen). The portion in quotes is called the format string and describes

how the data is to be formatted when printed. The format string can contain

string literals such as “This is output from my first program!,” symbols for

carriage returns (\n), and operators as placeholders for variables (see below).

• The return 0; line causes the function to return an error code of 0 (no error)

to the shell that started execution. More on this capability a bit later.
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CHAPTER 1. C PROGRAMMING VARIABLES

Variables

As a programmer, you will frequently want your program to “remember” a value.

For example, if your program requests a value from the user, or if it calculates a

value, you will want to remember it somewhere so you can use it later. The way

your program remembers things is by using variables. For example:

i n t b ;

This line says, “I want to create a space called b that is able to hold one integer

value.” A variable has a name (in this case, b) and a type (in this case, int, an

integer). You can store a value in b by saying something like:

b = 5 ;

You can use the value in b by saying something like:

p r i n t f ("%d " , b ) ;

In C, there are several standard types for variables:

• int - integer (whole number) values

• float - floating point values

• char - single character values (such as “m” or “Z”)

We will see examples of these other types as we go along.

5
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Chapter 2

Input and output

printf

The printf statement allows you to send output to standard out. For us, standard

out is generally the screen (although you can redirect standard out into a text file

or another command).

Here is another program that will help you learn more about printf:

# i n c l u d e < s t d i o . h>

i n t main ( vo id )

{

i n t a , b , c ;

a = 5 ;

b = 7 ;

c = a + b ;

p r i n t f ("%d + %d = %d \ n " , a , b , c ) ;

r e t u r n 0 ;

}

Type this program into a file and save it as add.c. Compile it with the line gcc

add.c -o add and then run it by typing ./add. You will see the line “5 + 7 = 12” as

output.

7
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Here is an explanation of the different lines in this program:

• The line int a, b, c; declares three integer variables named a, b and c. Inte-

ger variables hold whole numbers.

• The next line initializes the variable named a to the value 5.

• The next line sets b to 7.

• The next line adds a and b and “assigns” the result to c.

The computer adds the value in a (5) to the value in b (7) to form the result

12, and then places that new value (12) into the variable c. The variable c

is assigned the value 12. For this reason, the = in this line is called “the

assignment operator.”

• The printf statement then prints the line “5 + 7 = 12.” The %d placeholders

in the printf statement act as placeholders for values. There are three %d

placeholders, and at the end of the printf line there are the three variable

names: a, b and c. C matches up the first %d with a and substitutes 5 there.

It matches the second %d with b and substitutes 7. It matches the third %d

with c and substitutes 12. Then it prints the completed line to the screen:

5 + 7 = 12. The +, the = and the spacing are a part of the format line and

get embedded automatically between the %d operators as specified by the

programmer.

Let’s look at some variations to understand printf completely. Here is the simplest

printf statement:

p r i n t f ( " H e l l o " ) ;

This call to printf has a format string that tells printf to send the word “Hello” to

standard out. Contrast it with this:

p r i n t f ( " H e l l o \ n " ) ;

8



CHAPTER 2. INPUT AND OUTPUT PRINTF

The difference between the two is that the second version sends the word “Hello”

followed by a carriage return to standard out.

The following line shows how to output the value of a variable using printf.

p r i n t f ("%d " , b ) ;

The %d is a placeholder that will be replaced by the value of the variable b when

the printf statement is executed. Often, you will want to embed the value within

some other words. One way to accomplish that is like this:

p r i n t f ( " The t e m p e r a t u r e i s " ) ;

p r i n t f ("%d " , b ) ;

p r i n t f ( " d e g r e e s \ n " ) ;

An easier way is to say this:

p r i n t f ( " The t e m p e r a t u r e i s %d d e g r e e s \ n " , b ) ;

You can also use multiple %d placeholders in one printf statement:

p r i n t f ("%d + %d = %d \ n " , a , b , c ) ;

In the printf statement, it is extremely important that the number of operators in

the format string corresponds exactly with the number and type of the variables

following it. For example, if the format string contains three %d operators, then it

must be followed by exactly three parameters and they must have the same types

in the same order as those specified by the operators.

You can print all of the normal C types with printf by using different placeholders:

• int (integer values) uses %d

9



SCANF CHAPTER 2. INPUT AND OUTPUT

• float (floating point values) uses %f

• char (single character values) uses %c

• character strings (arrays of characters, discussed later) use %s

You can learn more about the nuances of printf on a Linux machine by typing man

3 printf.

scanf

The previous program is good, but it would be better if it read in the values 5 and

7 from the user instead of using constants. Try this program instead:

# i n c l u d e < s t d i o . h>

i n t main ( vo id )

{

i n t a , b , c ;

p r i n t f ( " E n t e r t h e f i r s t v a l u e : " ) ;

s c a n f ("%d " , &a ) ;

p r i n t f ( " E n t e r t h e second v a l u e : " ) ;

s c a n f ("%d " , &b ) ;

c = a + b ;

p r i n t f ("%d + %d = %d \ n " , a , b , c ) ;

r e t u r n 0 ;

}

Make the changes, then compile and run the program to make sure it works. Note

that scanf uses the same sort of format string as printf (type man scanf for more

info). Also note the & in front of a and b. This is the address operator in C:

It returns the address of the variable (this will not make sense until we discuss

pointers). You must use the & operator in scanf on any variable of type char, int,

or float, as well as structure types (which we will get to shortly). If you leave out

the & operator, you will get an error when you run the program. Try it so that you

can see what that sort of run-time error looks like.
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The scanf function allows you to accept input from standard in, which for us is

generally the keyboard. The scanf function can do a lot of different things, but it

is generally unreliable unless used in the simplest ways. It is unreliable because

it does not handle human errors very well. But for simple programs it is good

enough and easy-to-use.

The simplest application of scanf looks like this:

s c a n f ("%d " , &b ) ;

The program will read in an integer value that the user enters on the keyboard (%d

is for integers, as is printf, so b must be declared as an int) and place that value

into b.

The scanf function uses the same placeholders as printf:

• int uses %d

• float uses %f

• char uses %c

• character strings (discussed later) use %s

You must put & in front of the variable used in scanf. The reason why will become

clear once you learn about pointers. It is easy to forget the & sign, and when you

forget it your program will almost always crash when you run it.

In general, it is best to use scanf as shown here – to read a single value from the

keyboard. Use multiple calls to scanf to read multiple values. In any real program,

you will use the gets or fgets functions instead to read text a line at a time. Then

you will “parse” the line to read its values. The reason that you do that is so you

can detect errors in the input and handle them as you see fit.

The printf and scanf functions will take a bit of practice to be completely under-

stood, but once mastered they are extremely useful.
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Programming exercise

1. Modify the following program so that it accepts three values instead of two

and adds all three together:

# i n c l u d e < s t d i o . h>

i n t main ( vo id ) {

i n t a , b , c ;

p r i n t f ( " E n t e r t h e f i r s t v a l u e : " ) ;

s c a n f ("%d " , &a ) ;

p r i n t f ( " E n t e r t h e second v a l u e : " ) ;

s c a n f ("%d " , &b ) ;

c = a + b ;

p r i n t f ("%d + %d = %d \ n " , a , b , c ) ;

r e t u r n 0 ;

}

2. Try deleting or adding random characters or words in one of the previous

programs and watch how the compiler reacts to these errors.

For example, delete the b variable in the first line of the above program and

see what the compiler does when you forget to declare a variable. Delete

a semicolon and see what happens. Leave out one of the braces. Remove

one of the parentheses next to the main function. Make each error by itself

and then run the program through the compiler to see what happens. By

simulating errors like these, you can learn about different compiler errors,

and that will make your typos easier to find when you make them for real.

12



Chapter 3

Branching and looping

if statement

Here is a simple C program demonstrating an if statement:

# i n c l u d e < s t d i o . h>

i n t main ( vo id )

{

i n t b ;

p r i n t f ( " E n t e r a v a l u e : " ) ;

s c a n f ("%d " , &b ) ;

i f ( b < 0)

{

p r i n t f ( " The v a l u e i s n e g a t i v e \ n " ) ;

}

r e t u r n 0 ;

}

This program accepts a number from the user. It then tests the number using an if

statement to see if it is less than 0. If it is, the program prints a message. Otherwise,

the program is silent. The (b < 0) portion of the program is the Boolean expression.

C evaluates this expression to decide whether or not to print the message. If the

13
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Boolean expression evaluates to True, then C executes the single line immediately

following the if statement (or a block of lines within braces immediately following

the if statement). If the Boolean expression is False, then C skips the line or block

of lines immediately following the if statement.

Here’s slightly more complex example:

# i n c l u d e < s t d i o . h>

i n t main ( vo id )

{

i n t b ;

p r i n t f ( " E n t e r a v a l u e : " ) ;

s c a n f ("%d " , &b ) ;

i f ( b < 0)

{

p r i n t f ( " The v a l u e i s n e g a t i v e \ n " ) ;

}

e l s e i f ( b == 0)

{

p r i n t f ( " The v a l u e i s z e r o \ n " ) ;

}

e l s e

{

p r i n t f ( " The v a l u e i s p o s i t i v e \ n " ) ;

}

r e t u r n 0 ;

}

In this example, the else if and else sections evaluate for zero and positive values

as well.

Boolean expressions

Here is a more complicated Boolean expression:

14



CHAPTER 3. BRANCHING AND LOOPING BOOLEAN: = VS ==

i f ( ( x == y ) && ( j > k ) )

{

z = 1 ;

}

e l s e

{

q = 1 0 ;

}

This statement says, “If the value in variable x equals the value in variable y, and

if the value in variable j is greater than the value in variable k, then set the variable

z to 1, otherwise set the variable q to 10.” You will use if statements like this

throughout your C programs to make decisions. In general, most of the decisions

you make will be simple ones like the first example; but on occasion, things get

more complicated.

Notice that C uses == to test for equality, while it uses = to assign a value to a

variable. The && in C represents a Boolean AND operation.

Here are all of the Boolean operators in C:

e q u a l i t y ==

l e s s t h a n <

G r e a t e r t h a n >

<= <=

>= >=

i n e q u a l i t y !=

and &&

or | |

n o t !

= vs == in boolean expressions

The == sign is a problem in C because every now and then you may forget and

type just = in a Boolean expression. This is an easy mistake to make, but to the

compiler there is a very important difference. C will accept either = and == in a

15
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Boolean expression – the behavior of the program changes remarkably between

the two, however.

Boolean expressions evaluate to integers in C, and integers can be used inside of

Boolean expressions. The integer value 0 in C is False, while any other integer

value is True. The following is legal in C:

# i n c l u d e < s t d i o . h>

i n t main ( vo id )

{

i n t a ;

p r i n t f ( " E n t e r a number : " ) ;

s c a n f ("%d " , &a ) ;

i f ( a )

{

p r i n t f ( " The v a l u e i s True \ n " ) ;

}

r e t u r n 0 ;

}

If a is anything other than 0, the printf statement gets executed.

In C, a statement like if (a = b) means, "Assign b to a, and then test a for its

Boolean value." So if a becomes 0, the if statement is False; otherwise, it is True.

The value of a changes in the process. This is not the intended behavior if you

meant to type == (although this feature is useful when used correctly), so be care-

ful with your = and == usage.

while loop

You’ll find that while statements are just as easy to use as if statements. For

example:

16
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w h i l e ( a < b )

{

p r i n t f ("%d \ n " , a ) ;

a = a + 1 ;

}

This causes the two lines within the braces to be executed repeatedly until a is

greater than or equal to b. The while statement in general works as illustrated to

the right.

do-while loop

C also provides a do-while structure:

do

{

p r i n t f ("%d \ n " , a ) ;

a = a + 1 ;

}

w h i l e ( a < b ) ;

for loop

The for loop in C is simply a shorthand way of expressing a while statement. For

example, suppose you have the following code in C:

x = 1 ;

w h i l e ( x < 10)

{

b l a h b l a h b l a h

x ++; /∗ x++ i s t h e same as s a y i n g x = x+1 ∗ /

17
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}

You can convert this into a for loop as follows:

f o r ( x = 1 ; x < 1 0 ; x ++)

{

b l a h b l a h b l a h

}

Note that the while loop contains an initialization step (x=1), a test step (x<10),

and an increment step (x++). The for loop lets you put all three parts onto one

line, but you can put anything into those three parts. For example, suppose you

have the following loop:

a = 1 ;

b = 6 ;

w h i l e ( a < b )

{

a ++;

p r i n t f ("%d \ n " , a ) ;

}

You can place this into a for statement as well:

f o r ( a = 1 , b = 6 ; a < b ; a ++)

{

p r i n t f ("%d \ n " , a ) ;

}

It is slightly confusing, but it is possible. The comma operator lets you separate

several different statements in the initialization and increment sections of the for

loop (but not in the test section). Many C programmers like to pack a lot of

information into a single line of C code; but a lot of people think it makes the

code harder to understand, so they break it up.
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Looping: an example

Let’s say that you would like to create a program that prints a Fahrenheit-to-

Celsius conversion table. This is easily accomplished with a for loop or a while

loop:

# i n c l u d e < s t d i o . h>

i n t main ( vo id )

{

i n t a = 0 ;

w h i l e ( a <= 100)

{

p r i n t f ("%4 d d e g r e e s F = %4d d e g r e e s C \ n " ,

a , ( a − 32) ∗ 5 / 9 ) ;

a = a + 1 0 ;

}

r e t u r n 0 ;

}

If you run this program, it will produce a table of values starting at 0 degrees F

and ending at 100 degrees F. The output will look like this:

0 d e g r e e s F = −17 d e g r e e s C

10 d e g r e e s F = −12 d e g r e e s C

20 d e g r e e s F = −6 d e g r e e s C

30 d e g r e e s F = −1 d e g r e e s C

40 d e g r e e s F = 4 d e g r e e s C

50 d e g r e e s F = 10 d e g r e e s C

60 d e g r e e s F = 15 d e g r e e s C

70 d e g r e e s F = 21 d e g r e e s C

80 d e g r e e s F = 26 d e g r e e s C

90 d e g r e e s F = 32 d e g r e e s C

100 d e g r e e s F = 37 d e g r e e s C

The table’s values are in increments of 10 degrees. You can see that you can

easily change the starting, ending or increment values of the table that the program

produces.
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If you wanted your values to be more accurate, you could use floating point values

instead:

# i n c l u d e < s t d i o . h>

i n t main ( vo id )

{

f l o a t a = 0 ;

w h i l e ( a <= 100)

{

p r i n t f ("%6.2 f d e g r e e s F = %6.2 f d e g r e e s C \ n " ,

a , ( a − 3 2 . 0 ) ∗ 5 . 0 / 9 . 0 ) ;

a = a + 1 0 ;

}

r e t u r n 0 ;

}

You can see that the declaration for a has been changed to a float, and the %f

symbol replaces the %d symbol in the printf statement. In addition, the %f sym-

bol has some formatting applied to it: The value will be printed with six digits

preceding the decimal point and two digits following the decimal point.

Now let’s say that we wanted to modify the program so that the temperature 98.6 is

inserted in the table at the proper position. That is, we want the table to increment

every 10 degrees, but we also want the table to include an extra line for 98.6

degrees F because that is the normal body temperature for a human being. The

following program accomplishes the goal:

# i n c l u d e < s t d i o . h>

i n t main ( vo id )

{

f l o a t a = 0 ;

w h i l e ( a <= 100)

{

i f ( a > 9 8 . 6 )
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{

p r i n t f ("%6.2 f d e g r e e s F = %6.2 f d e g r e e s C \ n " ,

9 8 . 6 , ( 9 8 . 6 − 3 2 . 0 ) ∗ 5 . 0 / 9 . 0 ) ;

}

p r i n t f ("%6.2 f d e g r e e s F = %6.2 f d e g r e e s C \ n " ,

a , ( a − 3 2 . 0 ) ∗ 5 . 0 / 9 . 0 ) ;

a = a + 1 0 ;

}

r e t u r n 0 ;

}

This program works if the ending value is 100, but if you change the ending value

to 200 you will find that the program has a bug. It prints the line for 98.6 degrees

too many times. We can fix that problem in several different ways. Here is one

way:

# i n c l u d e < s t d i o . h>

i n t main ( vo id )

{

f l o a t a , b ;

a = 0 ;

b = −1;

w h i l e ( a <= 100)

{

i f ( ( a > 9 8 . 6 ) && ( b < 9 8 . 6 ) )

{

p r i n t f ("%6.2 f d e g r e e s F = %6.2 f d e g r e e s C \ n " ,

9 8 . 6 , ( 9 8 . 6 − 3 2 . 0 ) ∗ 5 . 0 / 9 . 0 ) ;

}

p r i n t f ("%6.2 f d e g r e e s F = %6.2 f d e g r e e s C \ n " ,

a , ( a − 3 2 . 0 ) ∗ 5 . 0 / 9 . 0 ) ;

b = a ;

a = a + 1 0 ;

}

r e t u r n 0 ;
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}

Programming exercise

1. Try changing the Fahrenheit-to-Celsius program so that it uses scanf to ac-

cept the starting, ending and increment value for the table from the user.

2. Add a heading line to the table that is produced.

3. Try to find a different solution to the bug fixed by the previous example.

4. Create a table that converts pounds to kilograms or miles to kilometers.
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Arrays

In this section, we will create a small C program that generates 10 random num-

bers and sorts them. To do that, we will use a new variable arrangement called an

array.

An array lets you declare and work with a collection of values of the same type.

For example, you might want to create a collection of five integers. One way to

do it would be to declare five integers directly:

i n t a , b , c , d , e ;

This is okay, but what if you needed a thousand integers? An easier way is to

declare an array of five integers:

i n t a [ 5 ] ;

The five separate integers inside this array are accessed by an index. All arrays

start at index zero and go to n-1 in C. Thus, int a[5]; contains five elements. For

example:
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i n t a [ 5 ] ;

a [ 0 ] = 1 2 ;

a [ 1 ] = 9 ;

a [ 2 ] = 1 4 ;

a [ 3 ] = 5 ;

a [ 4 ] = 1 ;

One of the nice things about array indexing is that you can use a loop to manipulate

the index. For example, the following code initializes all of the values in the array

to 0:

i n t a [ 5 ] ;

i n t i ;

f o r ( i = 0 ; i < 5 ; i ++)

{

a [ i ] = 0 ;

}

You declare arrays by inserting an array size after a normal declaration, as shown

below:

i n t a [ 1 0 ] ; /∗ a r r a y o f i n t e g e r s ∗ /

c h a r s [ 1 0 0 ] ; /∗ a r r a y o f c h a r a c t e r s ∗ /

f l o a t f [ 2 0 ] ; /∗ a r r a y o f r e a l s ∗ /

s t r u c t r e c r [ 5 0 ] ; /∗ a r r a y o f r e c o r d s ∗ /

Programming exercise

• In the first piece of code, try changing the for loop that fills the array to a

single line of code. Make sure that the result is the same as the original

code.
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• Take the bubble sort code out and put it into its own function. The function

header will be void bubble_sort(). Then move the variables used by the

bubble sort to the function as well, and make them local there. Because the

array is global, you do not need to pass parameters.

• Initialize the random number seed to different values.

The following code initializes the values in the array sequentially and then prints

them out:

# i n c l u d e < s t d i o . h>

i n t main ( vo id )

{

i n t a [ 5 ] ;

i n t i ;

f o r ( i = 0 ; i < 5 ; i ++)

{

a [ i ] = i ;

}

f o r ( i = 0 ; i < 5 ; i ++)

{

p r i n t f ( " a[%d ] = %d \ n " , i , a [ i ] ) ;

}

}

Arrays are used all the time in C. To understand a common usage, start an editor

and enter the following code:

# i n c l u d e < s t d i o . h>

# d e f i n e MAX 10

i n t a [MAX] ;

i n t r a n d _ s e e d =10;
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/∗

∗ from K&R − p r o d u c e s an i n t e g e r random number

∗ between 0 and 32767 .

∗ /

i n t r and ( vo id )

{

r a n d _ s e e d = r a n d _ s e e d ∗ 1103515245 + 12345 ;

r e t u r n ( u n s i g n e d i n t ) ( r a n d _ s e e d / 65536) % 32768 ;

}

i n t main ( vo id )

{

i n t i , t , x , y ;

/∗ f i l l a r r a y ∗ /

f o r ( i = 0 ; i < MAX; i ++)

{

a [ i ] = rand ( ) ;

p r i n t f ("%d \ n " , a [ i ] ) ;

}

/∗ more s t u f f w i l l go h e r e i n a m inu te ∗ /

r e t u r n 0 ;

}

This code contains several new concepts. The #define line declares a constant

named MAX and sets it to 10. Constant names are traditionally written in all

caps to make them obvious in the code. The line int a[MAX]; shows you how to

declare an array of integers in C. Note that because of the position of the array’s

declaration, it is global to the entire program.

The line int rand_seed=10 also declares a global variable, this time named

rand_seed, that is initialized to 10 each time the program begins. This value

is the starting seed for the random number code that follows. In a real random
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number generator, the seed should initialize as a random value, such as the system

time. Here, the rand function will produce the same values each time you run the

program.

The line int rand(void) is a function declaration. The rand function accepts no

parameters and returns an integer value. We will learn more about functions later.

The four lines that follow implement the rand function. We will ignore them for

now.

The main function is normal. Four local integers are declared, and the array is

filled with 10 random values using a for loop. Note that the array a contains

10 individual integers. You point to a specific integer in the array using square

brackets. So a[0] refers to the first integer in the array, a[1] refers to the second,

and so on. The line starting with /* and ending with */ is called a comment. The

compiler completely ignores the line. You can place notes to yourself or other

programmers in comments.

Now add the following code in place of the more stuff . . . comment:

/∗

∗ bubb le s o r t t h e a r r a y

∗ /

f o r ( x = 0 ; x < MAX−1; x ++)

{

f o r ( y = 0 ; y < MAX−x−1; y ++)

{

i f ( a [ y ] > a [ y + 1 ] )

{

t = a [ y ] ;

a [ y ] = a [ y + 1 ] ;

a [ y +1] = t ;

}

}

}

/∗

∗ p r i n t s o r t e d a r r a y

∗ /

p r i n t f ("−−−−−−−−−−−−−−−−−−−−\n " ) ;

f o r ( i = 0 ; i < MAX; i ++)
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{

p r i n t f ("%d \ n " , a [ i ] ) ;

}

This code sorts the random values and prints them in sorted order. Each time you

run it, you will get the same values. If you would like to change the values that

are sorted, change the value of rand_seed each time you run the program.

The only easy way to truly understand what this code is doing is to execute it

“by hand.” That is, assume MAX is 4 to make it a little more manageable, take

out a sheet of paper and pretend you are the computer. Draw the array on your

paper and put four random, unsorted values into the array. Execute each line of

the sorting section of the code and draw out exactly what happens. You will find

that, each time through the inner loop, the larger values in the array are pushed

toward the bottom of the array and the smaller values bubble up toward the top.
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Variable Types

There are three standard variable types in C:

• Integer: int

• Floating point: float

• Character: char

An int is a 4-byte integer value. A float is a 4-byte floating point value. A char

is a 1-byte single character (like “a” or “3”). A string is declared as an array of

characters.

There are a number of derivative types:

• double (8-byte floating point value)

• short (2-byte integer)

• unsigned short or unsigned int (positive integers, no sign bit)

Typecasting

C allows you to perform type conversions on the fly. You do this especially often

when using pointers. Typecasting also occurs during the assignment operation for
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certain types. For example, in the code above, the integer value was automatically

converted to a float.

You do typecasting in C by placing the type name in parentheses and putting it

in front of the value you want to change. Thus, in the above code, replacing the

line a = 10/3; with a = (float)10/3; produces 3.33333 as the result because 10 is

converted to a floating point value before the division.

Typedef

You declare named, user-defined types in C with the typedef statement. The fol-

lowing example shows a type that appears often in C code:

# d e f i n e TRUE 1

# d e f i n e FALSE 0

t y p e d e f i n t b o o l e a n ;

i n t main ( vo id )

{

b o o l e a n b ;

b = FALSE ;

b l a h b l a h b l a h

}

This code allows you to declare Boolean types in C programs.

If you do not like the word “float” for real numbers, you can say:

t y p e d e f f l o a t r e a l ;

and then later say:
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r e a l r1 , r2 , r3 ;

You can place typedef statements anywhere in a C program as long as they come

prior to their first use in the code.
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Operators

The operators in C are similar to the operators in most languages:

+ − a d d i t i o n

− − s u b t r a c t i o n

/ − d i v i s i o n

∗ − m u l t i p l i c a t i o n

\% − mod

The / operator performs integer division if both operands are integers, and per-

forms floating point division otherwise. For example:

i n t main ( vo id )

{

f l o a t a ;

a = 1 0 / 3 ;

p r i n r n t f ("% f \ n " , a ) ;

r e t u r n 0 ;

}

This code prints out a floating point value since a is declared as type float, but a

will be 3.0 because the code performed an integer division.
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Operator precedence, I

Operator precedence in C is also similar to that in most other languages. Division

and multiplication occur first, then addition and subtraction. The result of the

calculation 5+3*4 is 17, not 32, because the * operator has higher precedence

than + in C. You can use parentheses to change the normal precedence ordering:

(5+3)*4 is 32. The 5+3 is evaluated first because it is in parentheses. We’ll get

into precedence later – it becomes somewhat complicated in C once pointers are

introduced.

Incrementing

Long Way S h o r t Way

i = i + 1 ; i ++;

i = i − 1 ; i −−;

i = i + 3 ; i += 3 ;

i = i ∗ j ; i ∗= j ;

Programming exercise

• Try out different pieces of code to investigate typecasting and precedence.

Try out int, char, float, and so on.

• Create an array of records and write some code to sort that array on one

integer field.
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Functions

Most languages allow you to create functions of some sort. Functions let you

chop up a long program into named sections so that the sections can be reused

throughout the program. Functions accept parameters and return a result. C

functions can accept an unlimited number of parameters. In general, C does not

care in what order you put your functions in the program, so long as a the function

name is known to the compiler before it is called.

We have already talked a little about functions. The rand function seen previously

is about as simple as a function can get. It accepts no parameters and returns an

integer result:

i n t r and ( vo id )

/∗

∗ from K&R − p r o d u c e s an i n t e g e r random number

∗ between 0 and 32767 .

∗ /

{

r a n d _ s e e d = r a n d _ s e e d ∗ 1103515245 + 12345 ;

r e t u r n ( u n s i g n e d i n t ) ( r a n d _ s e e d / 65536) % 32768 ;

}

The int rand() line declares the function rand to the rest of the program and speci-

fies that rand will accept no parameters and return an integer result. This function
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has no local variables, but if it needed locals, they would go right below the open-

ing { (C allows you to declare variables after any { – they exist until the program

reaches the matching } and then they disappear. A function’s local variables there-

fore vanish as soon as the matching } is reached in the function. While they exist,

local variables live on the system stack.) Note that there is no ; after the () in the

first line. If you accidentally put one in, you will get a huge cascade of error mes-

sages from the compiler that make no sense. Also note that even though there are

no parameters, you must use the (). They tell the compiler that you are declaring

a function rather than simply declaring an int.

The return statement is important to any function that returns a result. It specifies

the value that the function will return and causes the function to exit immediately.

This means that you can place multiple return statements in the function to give

it multiple exit points. If you do not place a return statement in a function, the

function returns when it reaches } and returns a random value (many compilers

will warn you if you fail to return a specific value). In C, a function can return

values of any type: int, float, char, struct, etc.

There are several correct ways to call the rand function. For example: x=rand();.

The variable x is assigned the value returned by rand in this statement. Note

that you must use () in the function call, even though no parameter is passed.

Otherwise, x is given the memory address of the rand function, which is generally

not what you intended.

You might also call rand this way:

i f ( r and ( ) > 100)

Or this way:

rand ( ) ;

In the latter case, the function is called but the value returned by rand is discarded.

You may never want to do this with rand, but many functions return some kind of

error code through the function name, and if you are not concerned with the error

code (for example, because you know that an error is impossible) you can discard

it in this way.
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Functions can use a void return type if you intend to return nothing. For example:

vo id p r i n t _ h e a d e r ( )

{

p r i n t f ( " Program Number 1 \ n " ) ;

p r i n t f ( " by M a r s h a l l B r a i n \ n " ) ;

p r i n t f ( " V e r s i o n 1 . 0 , r e l e a s e d 1 2 / 2 6 / 9 1 \ n " ) ;

}

This function returns no value. You can call it with the following statement:

p r i n t _ h e a d e r ( ) ;

You must include () in the call. If you do not, the function is not called, even

though it will compile correctly on many systems.

C functions can accept parameters of any type. For example:

i n t f a c t ( i n t i )

{

i n t j , k ;

j = 1 ;

f o r ( k = 2 ; k <= i ; k ++)

{

j = j ∗k ;

}

r e t u r n j ;

}

returns the factorial of i, which is passed in as an integer parameter. Separate

multiple parameters with commas:
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i n t add ( i n t i , i n t j )

{

r e t u r n i + j ;

}

C has evolved over the years. You will sometimes see functions such as add

written in the “old style,” as shown below:

i n t add ( i , j )

i n t i ;

i n t j ;

{

r e t u r n i + j ;

}

It is important to be able to read code written in the older style. There is no

difference in the way it executes; it is just a different notation. You should use the

“new style,” (known as ANSI C) with the type declared as part of the parameter

list, unless you know you will be shipping the code to someone who has access

only to an “old style” (non-ANSI) compiler.

Programming exercise

• Go back to the bubble sort example presented earlier and create a function

for the bubble sort.

• Go back to earlier programs and create a function to get input from the user

rather than taking the input in the main function.

Function prototypes

It is considered good form to use function prototypes for all functions in your pro-

gram. A prototype declares the function name, its parameters, and its return type
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to the rest of the program prior to the function’s actual declaration. To understand

why function prototypes are useful, enter the following code and run it:

# i n c l u d e < s t d i o . h>

i n t main ( vo id )

{

p r i n t f ("%d \ n " , add ( 3 ) ) ;

r e t u r n 0 ;

}

i n t add ( i n t i , i n t j )

{

r e t u r n i + j ;

}

This code compiles on many compilers without giving you a warning, even though

add expects two parameters but receives only one. It works because many C com-

pilers do not check for parameter matching either in type or count. You can waste

an enormous amount of time debugging code in which you are simply passing one

too many or too few parameters by mistake. The above code compiles properly,

but it produces the wrong answer.

To solve this problem, C lets you place function prototypes at the beginning of

(actually, anywhere in) a program. If you do so, C checks the types and counts of

all parameter lists. Try compiling the following:

# i n c l u d e < s t d i o . h>

i n t add ( i n t , i n t ) ; /∗ f u n c t i o n p r o t o t y p e f o r add ∗ /

i n t main ( vo id )

{

p r i n t f ("%d \ n " , add ( 3 ) ) ;

r e t u r n 0 ;

}
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i n t add ( i n t i , i n t j )

{

r e t u r n i + j ;

}

The prototype causes the compiler to flag an error on the printf statement.

Place one prototype for each function at the beginning of your program. They

can save you a great deal of debugging time, and they also solve the problem you

get when you compile with functions that you use before they are declared. For

example, the following code will not compile:

# i n c l u d e < s t d i o . h>

i n t main ( vo id )

{

p r i n t f ("%d \ n " , add ( 3 ) ) ;

r e t u r n 0 ;

}

f l o a t add ( i n t i , i n t j )

{

r e t u r n i + j ;

}

Why, you might ask, will it compile when add returns an int but not when it

returns a float? Because older C compilers default to an int return value. Using

a prototype will solve this problem. “Old style” (non-ANSI) compilers allow

prototypes, but the parameter list for the prototype must be empty. Old style

compilers do no error checking on parameter lists.
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Structures

Structures in C allow you to group variable into a package. Here’s an example:

s t r u c t r e c

{

i n t a , b , c ;

f l o a t d , e , f ;

} ;

s t r u c t r e c r ;

As shown here, whenever you want to declare structures of the type rec, you have

to say struct rec. This line is very easy to forget, and you get many compiler

errors because you absent-mindedly leave out the struct. You can compress the

code into the form:

s t r u c t r e c

{

i n t a , b , c ;

f l o a t d , e , f ;

} r ;
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where the type declaration for rec and the variable r are declared in the same

statement. Or you can create a typedef statement for the structure name. For

example, if you do not like saying struct rec r every time you want to declare a

record, you can say:

t y p e d e f s t r u c t r e c r e c _ t y p e ;

and then declare records of type rec_type by saying:

r e c _ t y p e r ;

You access fields of structure using a period, for example, r.a = 5;.
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Libraries

Libraries are very important in C because the C language supports only the most

basic features that it needs. C does not even contain I/O functions to read from

the keyboard and write to the screen. Anything that extends beyond the basic

language must be written by a programmer. The resulting chunks of code are often

placed in libraries to make them easily reusable. We have seen the standard I/O,

or stdio, library already: Standard libraries exist for standard I/O, math functions,

string handling, time manipulation, and so on. You can use libraries in your own

programs to split up your programs into modules. This makes them easier to

understand, test, and debug, and also makes it possible to reuse code from other

programs that you write.

You can create your own libraries easily. As an example, we will take some code

from a previous article in this series and make a library out of two of its functions.

Here’s the code we will start with:

# i n c l u d e < s t d i o . h>

# d e f i n e MAX 10

i n t a [MAX] ;

i n t r a n d _ s e e d = 1 0 ;

i n t r and ( vo id )

/∗
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∗ from K&R − p r o d u c e s an i n t e g e r random number

∗ between 0 and 32767 .

∗ /

{

r a n d _ s e e d = r a n d _ s e e d ∗ 1103515245 + 12345 ;

r e t u r n ( u n s i g n e d i n t ) ( r a n d _ s e e d / 65536) % 32768 ;

}

i n t main ( vo id )

{

i n t i , t , x , y ;

/∗ f i l l a r r a y ∗ /

f o r ( i = 0 ; i < MAX; i ++)

{

a [ i ] = rand ( ) ;

p r i n t f ("%d \ n " , a [ i ] ) ;

}

/∗ bubb le s o r t t h e a r r a y ∗ /

f o r ( x = 0 ; x < MAX−1; x ++)

{

f o r ( y = 0 ; y < MAX−x−1; y ++)

{

i f ( a [ y ] > a [ y + 1 ] )

{

t = a [ y ] ;

a [ y ] = a [ y + 1 ] ;

a [ y +1] = t ;

}

}

}

/∗ p r i n t s o r t e d a r r a y ∗ /

p r i n t f ("−−−−−−−−−−−−−−−−−−−−\n " ) ;

f o r ( i = 0 ; i < MAX; i ++)

{

p r i n t f ("%d \ n " , a [ i ] ) ;

}

r e t u r n 0 ;
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}

This code fills an array with random numbers, sorts them using a bubble sort, and

then displays the sorted list.

Take the bubble sort code, and use what you learned in the previous article to

make a function from it. Since both the array a and the constant MAX are known

globally, the function you create needs no parameters, nor does it need to return a

result. However, you should use local variables for x, y, and t.

Once you have tested the function to make sure it is working, pass in the number

of elements as a parameter rather than using MAX:

# i n c l u d e < s t d i o . h>

# d e f i n e MAX 10

i n t a [MAX] ;

i n t r a n d _ s e e d = 1 0 ;

/∗

∗ from K&R − p r o d u c e s an i n t e g e r random number

∗ between 0 and 32767 .

∗ /

i n t r and ( vo id )

{

r a n d _ s e e d = r a n d _ s e e d ∗ 1103515245 + 12345 ;

r e t u r n ( u n s i g n e d i n t ) ( r a n d _ s e e d / 65536) % 32768 ;

}

vo id b u b b l e _ s o r t ( i n t m)

{

i n t x , y , t ;

f o r ( x = 0 ; x < m−1; x ++)

{

f o r ( y = 0 ; y < m−x−1; y ++)

{
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i f ( a [ y ] > a [ y + 1 ] )

{

t = a [ y ] ;

a [ y ] = a [ y + 1 ] ;

a [ y +1] = t ;

}

}

}

}

i n t main ( vo id )

{

i n t i , t , x , y ;

/∗ f i l l a r r a y ∗ /

f o r ( i = 0 ; i < MAX; i ++)

{

a [ i ] = rand ( ) ;

p r i n t f ("%d \ n " , a [ i ] ) ;

}

b u b b l e _ s o r t (MAX) ;

/∗ p r i n t s o r t e d a r r a y ∗ /

p r i n t f ("−−−−−−−−−−−−−−−−−−−−\n " ) ;

f o r ( i = 0 ; i < MAX; i ++)

{

p r i n t f ("%d \ n " , a [ i ] ) ;

}

r e t u r n 0 ;

}

You can also generalize the bubble_sort function even more by passing in a as a

parameter:

b u b b l e _ s o r t ( i n t m, i n t a [ ] )

This line says, “Accept the integer array a of any size as a parameter.” Nothing
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in the body of the bubble_sort function needs to change. To call bubble_sort,

change the call to:

b u b b l e _ s o r t (MAX, a ) ;

Note that &a has not been used in the function call even though the sort will

change a. The reason for this will become clear once you understand pointers.

Making a library

Since the rand and bubble_sort functions in the previous program are useful, you

will probably want to reuse them in other programs you write. You can put them

into a utility library to make their reuse easier.

Every library consists of two parts: a header file and the actual code file. The

header file, normally denoted by a .h suffix, contains information about the library

that programs using it need to know. In general, the header file contains constants

and types, along with prototypes for functions available in the library. Enter the

following header file and save it to a file named util.h.

/∗ u t i l . h ∗ /

e x t e r n i n t r and ( ) ;

e x t e r n vo id b u b b l e _ s o r t ( i n t , i n t [ ] ) ;

These two lines are function prototypes. The word “extern” in C represents func-

tions that will be linked in later.

Enter the following code into a file named util.c.

/∗ u t i l . c ∗ /

# i n c l u d e " u t i l . h "

i n t r a n d _ s e e d = 1 0 ;
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/∗

∗ from K&R − p r o d u c e s an i n t e g e r random number

∗ between 0 and 32767 .

∗ /

i n t r and ( vo id )

{

r a n d _ s e e d = r a n d _ s e e d ∗ 1103515245 + 12345 ;

r e t u r n ( u n s i g n e d i n t ) ( r a n d _ s e e d / 65536) % 32768 ;

}

vo id b u b b l e _ s o r t ( i n t m, i n t a [ ] )

{

i n t x , y , t ;

f o r ( x = 0 ; x < m−1; x ++)

{

f o r ( y = 0 ; y < m−x−1; y ++)

{

i f ( a [ y ] > a [ y + 1 ] )

{

t = a [ y ] ;

a [ y ] = a [ y + 1 ] ;

a [ y +1] = t ;

}

}

}

}

Note that the file includes its own header file (util.h) and that it uses quotes instead

of the symbols <and>, which are used only for system libraries. As you can see,

this looks like normal C code. Note that the variable rand_seed, because it is not

in the header file, cannot be seen or modified by a program using this library. This

is called information hiding. Adding the word static in front of int enforces the

hiding completely.

Enter the following main program in a file named main.c.
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# i n c l u d e < s t d i o . h>

# i n c l u d e " u t i l . h "

# d e f i n e MAX 10

i n t a [MAX] ;

i n t main ( vo id )

{

i n t i , t , x , y ;

/∗ f i l l a r r a y ∗ /

f o r ( i = 0 ; i < MAX; i ++)

{

a [ i ] = rand ( ) ;

p r i n t f ("%d \ n " , a [ i ] ) ;

}

b u b b l e _ s o r t (MAX, a ) ;

/∗ p r i n t s o r t e d a r r a y ∗ /

p r i n t f ("−−−−−−−−−−−−−−−−−−−−\n " ) ;

f o r ( i = 0 ; i < MAX; i ++)

{

p r i n t f ("%d \ n " , a [ i ] ) ;

}

r e t u r n 0 ;

}

This code includes the utility library. The main benefit of using a library is that

the code in the main program is much shorter.

Compiling and running

To compile the library, type the following at the command line (assuming you are

using UNIX) (replace gcc with cc if your system uses cc):
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gcc −c −g u t i l . c

The -c causes the compiler to produce an object file for the library. The object file

contains the library’s machine code. It cannot be executed until it is linked to a

program file that contains a main function. The machine code resides in a separate

file named util.o.

To compile the main program, type the following:

gcc −c −g main . c

This line creates a file named main.o that contains the machine code for the main

program. To create the final executable that contains the machine code for the

entire program, link the two object files by typing the following:

gcc −o main main . o u t i l . o

This links main.o and util.o to form an executable named main. To run it, type

main.
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Makefiles

It can be cumbersome to type all of the gcc lines over and over again, especially

if you are making a lot of changes to the code and it has several libraries. The

make facility solves this problem. You can use the following makefile to replace

the compilation sequence above:

main : main . o u t i l . o

gcc −o main main . o u t i l . o

main . o : main . c u t i l . h

gcc −c −g main . c

u t i l . o : u t i l . c u t i l . h

gcc −c −g u t i l . c

Enter this into a file named makefile, and type maketo build the executable. Note

that you must precede all gcc lines with a tab. (Eight spaces will not suffice – it

must be a tab. All other lines must be flush left.)

This makefile contains two types of lines. The lines appearing flush left are depen-

dency lines. The lines preceded by a tab are executable lines, which can contain

any valid UNIX command. A dependency line says that some file is dependent

on some other set of files. For example, main.o: main.c util.h says that the file

main.o is dependent on the files main.c and util.h. If either of these two files

changes, the following executable line(s) should be executed to recreate main.o.

Note that the final executable produced by the whole makefile is main, on line 1

in the makefile. The final result of the makefile should always go on line 1, which
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in this makefile says that the file main is dependent on main.o and util.o. If either

of these changes, execute the line gcc -o main main.o util.o to recreate main.

It is possible to put multiple lines to be executed below a dependency line – they

must all start with a tab. A large program may have several libraries and a main

program. The makefile automatically recompiles everything that needs to be re-

compiled because of a change.

If you are not working on a UNIX machine, your compiler almost certainly has

functionality equivalent to makefiles. Read the documentation for your compiler

to learn how to use it.

Now you understand why you have been including stdio.h in earlier programs. It

is simply a standard library that someone created long ago and made available to

other programmers to make their lives easier.
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Pointers

Pointers are used everywhere in C, so if you want to use the C language fully

you have to have a very good understanding of pointers. They have to become

comfortable for you. The goal of this section and the next several that follow is

to help you build a complete understanding of pointers and how C uses them. For

most people it takes a little time and some practice to become fully comfortable

with pointers, but once you master them you are a full-fledged C programmer.

C uses pointers in three different ways:

• C uses pointers to create dynamic data structures – data structures built

up from blocks of memory allocated from the heap at run-time.

• C uses pointers to handle variable parameters passed to functions.

• Pointers in C provide an alternative way to access information stored in

arrays. Pointer techniques are especially valuable when you work with

strings. There is an intimate link between arrays and pointers in C.

In some cases, C programmers also use pointers because they make the code

slightly more efficient. What you will find is that, once you are completely com-

fortable with pointers, you tend to use them all the time.

We will start this discussion with a basic introduction to pointers and the concepts

surrounding pointers, and then move on to the three techniques described above.

Especially on this article, you will want to read things twice. The first time through
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you can learn all the concepts. The second time through you can work on binding

the concepts together into an integrated whole in your mind. After you make your

way through the material the second time, it will make a lot of sense.

Pointers: why?

Imagine that you would like to create a text editor – a program that lets you

edit normal ASCII text files, like “vim” on UNIX or “Notepad” on Windows. A

text editor is a fairly common thing for someone to create because, if you think

about it, a text editor is probably a programmer’s most commonly used piece of

software. The text editor is a programmer’s intimate link to the computer – it is

where you enter all of your thoughts and then manipulate them. Obviously, with

anything you use that often and work with that closely, you want it to be just right.

Therefore many programmers create their own editors and customize them to suit

their individual working styles and preferences.

So one day you sit down to begin working on your editor. After thinking about

the features you want, you begin to think about the “data structure” for your editor.

That is, you begin thinking about how you will store the document you are editing

in memory so that you can manipulate it in your program. What you need is a way

to store the information you are entering in a form that can be manipulated quickly

and easily. You believe that one way to do that is to organize the data on the basis

of lines of characters. Given what we have discussed so far, the only thing you

have at your disposal at this point is an array. You think, “Well, a typical line is 80

characters long, and a typical file is no more than 1,000 lines long.” You therefore

declare a two-dimensional array, like this:

c h a r doc [ 1 0 0 0 ] [ 8 0 ] ;

This declaration requests an array of 1,000 80-character lines. This array has a

total size of 80,000 characters.

As you think about your editor and its data structure some more, however, you

might realize three things:

• Some documents are long lists. Every line is short, but there are thousands

of lines.
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• Some special-purpose text files have very long lines. For example, a certain

data file might have lines containing 542 characters, with each character

representing the amino acid pairs in segments of DNA.

• In most modern editors, you can open multiple files at one time.

Let’s say you set a maximum of 10 open files at once, a maximum line length of

1,000 characters and a maximum file size of 50,000 lines. Your declaration now

looks like this:

c h a r doc [ 5 0 0 0 0 ] [ 1 0 0 0 ] [ 1 0 ] ;

That doesn’t seem like an unreasonable thing, until you pull out your calculator,

multiply 50,000 by 1,000 by 10 and realize the array contains 500 million charac-

ters! Most computers today are going to have a problem with an array that size.

They simply do not have the RAM, or even the virtual memory space, to support

an array that large. If users were to try to run three or four copies of this program

simultaneously on even the largest multi-user system, it would put a severe strain

on the facilities.

Even if the computer would accept a request for such a large array, you can see

that it is an extravagant waste of space. It seems strange to declare a 500 million

character array when, in the vast majority of cases, you will run this editor to look

at 100 line files that consume at most 4,000 or 5,000 bytes. The problem with

an array is the fact that you have to declare it to have its maximum size in every

dimension from the beginning. Those maximum sizes often multiply together to

form very large numbers. Also, if you happen to need to be able to edit an odd file

with a 2,000 character line in it, you are out of luck. There is really no way for you

to predict and handle the maximum line length of a text file, because, technically,

that number is infinite.

Pointers are designed to solve this problem. With pointers, you can create dynamic

data structures. Instead of declaring your worst-case memory consumption up-

front in an array, you instead allocate memory from the heap while the program

is running. That way you can use the exact amount of memory a document needs,

with no waste. In addition, when you close a document you can return the memory

to the heap so that other parts of the program can use it. With pointers, memory

can be recycled while the program is running.

55



POINTER BASICS CHAPTER 11. POINTERS

Pointer Basics

To understand pointers, it helps to compare them to normal variables.

A “normal variable” is a location in memory that can hold a value. For example,

when you declare a variable i as an integer, four bytes of memory are set aside for

it. In your program, you refer to that location in memory by the name i. At the

machine level that location has a memory address. The four bytes at that address

are known to you, the programmer, as i, and the four bytes can hold one integer

value.

A pointer is different. A pointer is a variable that points to another variable. This

means that a pointer holds the memory address of another variable. Put another

way, the pointer does not hold a value in the traditional sense; instead, it holds the

address of another variable. A pointer “points to” that other variable by holding a

copy of its address.

Because a pointer holds an address rather than a value, it has two parts. The

pointer itself holds the address. That address points to a value. There is the

pointer and the value pointed to. This fact can be a little confusing until you get

comfortable with it, but once you get comfortable it becomes extremely powerful.

The following example code shows a typical pointer:

# i n c l u d e < s t d i o . h>

i n t main ( vo id )

{

i n t i , j ;

i n t ∗p ; /∗ a p o i n t e r t o an i n t e g e r ∗ /

p = &i ;

∗p = 5 ;

j = i ;

p r i n t f ("%d %d %d \ n " , i , j , ∗p ) ;

r e t u r n 0 ;

}

The first declaration in this program declares two normal integer variables named

i and j. The line int *p declares a pointer named p. This line asks the compiler to
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declare a variable p that is a pointer to an integer. The * indicates that a pointer is

being declared rather than a normal variable. You can create a pointer to anything:

a float, a structure, a char, and so on. Just use a * to indicate that you want a

pointer rather than a normal variable.

The line p = &i; will definitely be new to you. In C, & is called the address

operator. The expression &i means, "The memory address of the variable i."

Thus, the expression p = &i; means, "Assign to p the address of i." Once you

execute this statement, p “points to” i. Before you do so, p contains a random,

unknown address, and its use will likely cause a segmentation fault or similar

program crash.

In the program above the three variables i, j and p have been declared, but none of

the three has been initialized. Once p points to i, the memory location i has two

names. It is still known as i, but now it is known as *p as well. This is how C talks

about the two parts of a pointer variable: p is the location holding the address,

while *p is the location pointed to by that address. Therefore *p=5 means that

the location pointed to by p should be set to 5. Because the location *p is also i, i

also takes on the value 5. Consequently, j = i; sets j to 5, and the printf statement

produces 5 5 5.

The main feature of a pointer is its two-part nature. The pointer itself holds an

address. The pointer also points to a value of a specific type - the value at the

address the point holds. The pointer itself, in this case, is p. The value pointed to

is *p.

Pointers: Understanding Memory Addresses

The previous discussion becomes a little clearer if you understand how memory

addresses work in a computer’s hardware. All computers have memory, also

known as RAM (Random Access Memory). For example, your computer might

have 16 or 32 or 64 megabytes of RAM installed right now. RAM holds the

programs that your computer is currently running along with the data they are cur-

rently manipulating (their variables and data structures). Memory can be thought

of simply as an array of bytes. In this array, every memory location has its own

address – the address of the first byte is 0, followed by 1, 2, 3, and so on. Memory

addresses act just like the indexes of a normal array. The computer can access

any address in memory at any time (hence the name “random access memory”).
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It can also group bytes together as it needs to to form larger variables, arrays, and

structures. For example, a floating point variable consumes 4 contiguous bytes in

memory. You might make the following global declaration in a program:

f l o a t f ;

This statement says, "Declare a location named f that can hold one floating point

value." When the program runs, the computer reserves space for the variable f

somewhere in memory. That location has a fixed address in the memory space.

The variable f consumes four bytes of RAM in memory.

While you think of the variable f, the computer thinks of a specific address in

memory (for example, 248,440). Therefore, when you create a statement like

this:

f = 3 . 1 4 ;

The compiler might translate that into, “Load the value 3.14 into memory location

248,440.” The computer is always thinking of memory in terms of addresses and

values at those addresses.

There are, by the way, several interesting side effects to the way your computer

treats memory. For example, say that you include the following code in one of

your programs:

i n t i , s [ 4 ] , t [ 4 ] , u = 0 ;

f o r ( i = 0 ; i <= 4 ; i ++)

{

s [ i ] = i ;

t [ i ] = i ;

}

p r i n t f ( " s : t \ n " ) ;

f o r ( i = 0 ; i <= 4 ; i ++)

{
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p r i n t f ("%d:%d \ n " , s [ i ] , t [ i ] ) ;

}

p r i n t f ( " u = %d \ n " , u ) ;

The output that you see from the program will probably look like this:

s : t

1 : 5

2 : 2

3 : 3

4 : 4

5 : 5

u = 5

Why are t[0] and u incorrect? If you look carefully at the code, you can see that

the for loops are writing one element past the end of each array. In memory, the

arrays are placed adjacent to one another. Therefore, when you try to write to s[4],

which does not exist, the system writes into t[0] instead because t[0] is where s[4]

ought to be. When you write into t[4], you are really writing into u. As far as

the computer is concerned, s[4] is simply an address, and it can write into it. As

you can see however, even though the computer executes the program, it is not

correct or valid. The program corrupts the array t in the process of running. If you

execute the following statement, more severe consequences result:

s [1000000] = 5 ;

The location s[1000000] is more than likely outside of your program’s memory

space. In other words, you are writing into memory that your program does not

own. On a system with protected memory spaces (UNIX, Windows 98/NT), this

sort of statement will cause the system to terminate execution of the program. On

other systems (Windows 3.1, the Mac), however, the system is not aware of what

you are doing. You end up damaging the code or variables in another application.

The effect of the violation can range from nothing at all to a complete system

crash. In memory, i, s, t and u are all placed next to one another at specific

addresses. Therefore, if you write past the boundaries of a variable, the computer

will do what you say but it will end up corrupting another memory location.
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Because C and C++ do not perform any sort of range checking when you access an

element of an array, it is essential that you, as a programmer, pay careful attention

to array ranges yourself and keep within the array’s appropriate boundaries. Un-

intentionally reading or writing outside of array boundaries always leads to faulty

program behavior.

As another example, try the following:

# i n c l u d e < s t d i o . h>

i n t main ( vo id )

{

i n t i , j ;

i n t ∗p ; /∗ a p o i n t e r t o an i n t e g e r ∗ /

p r i n t f ("%d %d \ n " , p , &i ) ;

p = &i ;

p r i n t f ("%d %d \ n " , p , &i ) ;

r e t u r n 0 ;

}

This code tells the compiler to print out the address held in p, along with the

address of i. The variable p starts off with some crazy value or with 0. The

address ofiis generally a large value. For example, when I ran this code, I received

the following output:

0 2147478276

2147478276 2147478276

which means that the address of i is 2147478276. Once the statement p = &i; has

been executed, p contains the address of i. Try this as well:

# i n c l u d e < s t d i o . h>

vo id main ( vo id )

{

i n t ∗p ; /∗ a p o i n t e r t o an i n t e g e r ∗ /
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p r i n t f ("%d \ n " ,∗ p ) ;

}

This code tells the compiler to print the value that p points to. However, p has not

been initialized yet; it contains the address 0 or some random address. In most

cases, a segmentation fault (or some other run-time error) results, which means

that you have used a pointer that points to an invalid area of memory. Almost al-

ways, an uninitialized pointer or a bad pointer address is the cause of segmentation

faults.

Having said all of this, we can now look at pointers in a whole new light. Take

this program, for example:

# i n c l u d e < s t d i o . h>

i n t main ( vo id )

{

i n t i ;

i n t ∗p ; /∗ a p o i n t e r t o an i n t e g e r ∗ /

p = &i ;

∗p = 5 ;

p r i n t f ("%d %d \ n " , i , ∗p ) ;

r e t u r n 0 ;

}

The variable i consumes 4 bytes of memory. The pointer p also consumes 4 bytes

(on most machines in use today, a pointer consumes 8 bytes of memory. Memory

addresses are 64-bits long on most today). The location of i has a specific address,

in this case 248,440. The pointer p holds that address once you say p = &i;. The

variables *p and i are therefore equivalent.

The pointer p literally holds the address of i. When you say something like this in

a program:
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p r i n t f ("%d " , p ) ;

what comes out is the actual address of the variable i.

Pointers: Pointing to the Same Address

Here is a cool aspect of C: Any number of pointers can point to the same

address. For example, you could declare p, q, and r as integer pointers and set all

of them to point to i, as shown here:

i n t i ;

i n t ∗p , ∗q , ∗ r ;

p = &i ;

q = &i ;

r = p ;

Note that in this code, r points to the same thing that p points to, which is i. You

can assign pointers to one another, and the address is copied from the right-hand

side to the left-hand side during the assignment. The variable i now has four

names: i, *p, *q and *r. There is no limit on the number of pointers that can hold

(and therefore point to) the same address.

Pointers: Common Bugs

Bug #1 - Uninitialized pointers

One of the easiest ways to create a pointer bug is to try to reference the value of

a pointer even though the pointer is uninitialized and does not yet point to a valid

address. For example:
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i n t ∗p ;

∗p = 1 2 ;

The pointer p is uninitialized and points to a random location in memory when

you declare it. It could be pointing into the system stack, or the global variables,

or into the program’s code space, or into the operating system. When you say

*p=12;, the program will simply try to write a 12 to whatever random location p

points to. The program may explode immediately, or may wait half an hour and

then explode, or it may subtly corrupt data in another part of your program and

you may never realize it. This can make this error very hard to track down. Make

sure you initialize all pointers to a valid address before dereferencing them.

Bug #2 - Invalid Pointer References

An invalid pointer reference occurs when a pointer’s value is referenced even

though the pointer doesn’t point to a valid block.

One way to create this error is to say p = q;, when q is uninitialized. The pointer

p will then become uninitialized as well, and any reference to *p is an invalid

pointer reference.

The only way to avoid this bug is to draw pictures of each step of the program and

make sure that all pointers point somewhere. Invalid pointer references cause a

program to crash inexplicably for the same reasons given in Bug #1.

Bug #3 - Zero Pointer Reference

A zero pointer reference occurs whenever a pointer pointing to zero is used in a

statement that attempts to reference a block. For example, if p is a pointer to an

integer, the following code is invalid:

p = 0 ;

∗p = 1 2 ;
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There is no block pointed to by p. Therefore, trying to read or write anything from

or to that block is an invalid zero pointer reference. There are good, valid reasons

to point a pointer to zero, as we will see in later articles. Dereferencing such a

pointer, however, is invalid.

All of these bugs are fatal to a program that contains them. You must watch your

code so that these bugs do not occur. The best way to do that is to draw pictures

of the code’s execution step by step.

Using Pointers for Function Parameters

Most C programmers first use pointers to implement something called variable

parameters in functions. You have actually been using variable parameters in the

scanf function – that’s why you’ve had to use the & (the address operator) on

variables used with scanf. Now that you understand pointers you can see what has

really been going on.

To understand how variable parameters work, lets see how we might go about

implementing a swap function in C. To implement a swap function, what you

would like to do is pass in two variables and have the function swap their values.

Here’s one attempt at an implementation – enter and execute the following code

and see what happens:

# i n c l u d e < s t d i o . h>

vo id swap ( i n t i , i n t j )

{

i n t t ;

t = i ;

i = j ;

j = t ;

}

vo id main ( vo id )

{

i n t a , b ;
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a = 5 ;

b = 1 0 ;

p r i n t f ("%d %d \ n " , a , b ) ;

swap ( a , b ) ;

p r i n t f ("%d %d \ n " , a , b ) ;

}

When you execute this program, you will find that no swapping takes place. The

values of a and b are passed to swap, and the swap function does swap them, but

when the function returns nothing happens.

To make this function work correctly you can use pointers, as shown below:

# i n c l u d e < s t d i o . h>

vo id swap ( i n t ∗ i , i n t ∗ j )

{

i n t t ;

t = ∗ i ;

∗ i = ∗ j ;

∗ j = t ;

}

vo id main ( vo id )

{

i n t a , b ;

a = 5 ;

b = 1 0 ;

p r i n t f ("%d %d \ n " , a , b ) ;

swap(&a , &b ) ;

p r i n t f ("%d %d \ n " , a , b ) ;

}

To get an idea of what this code does, print it out, draw the two integers a and

b, and enter 5 and 10 in them. Now draw the two pointers i and j, along with
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the integer t. When swap is called, it is passed the addresses of a and b. Thus, i

points to a (draw an arrow from i to a) and j points to b (draw another arrow from

b to j). Once the pointers are initialized by the function call, *i is another name

for a, and *j is another name for b. Now run the code in swap. When the code

uses *i and *j, it really means a and b. When the function completes, a and b have

been swapped.

Suppose you accidentally forget the & when the swap function is called, and that

the swap line accidentally looks like this: swap(a, b);. This causes a segmentation

fault. When you leave out the &, the value of a is passed instead of its address.

Therefore, i points to an invalid location in memory and the system crashes when

*i is used.

This is also why scanf crashes if you forget the & on variables passed to it. The

scanf function is using pointers to put the value it reads back into the variable you

have passed. Without the &, scanf is passed a bad address and crashes.

Variable parameters are one of the most common uses of pointers in C. Now you

understand what’s happening!
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Dynamic Data Structures

Dynamic data structures are data structures that grow and shrink as you need them

to by allocating and deallocating memory from a place called the heap. They are

extremely important in C because they allow the programmer to exactly control

memory consumption.

Dynamic data structures allocate blocks of memory from the heap as required, and

link those blocks together into some kind of data structure using pointers. When

the data structure no longer needs a block of memory, it will return the block to

the heap for reuse. This recycling makes very efficient use of memory.

To understand dynamic data structures completely, we need to start with the heap.

Dynamic Data Structures: The Heap

The operating system and several applications, along with their global variables

and stack spaces, all consume portions of memory. When a program completes

execution, it releases its memory for reuse by other programs. Note that part of

the memory space remains unused at any given time.

Memory holds the executable code for the different applications currently running

on the machine, along with the executable code for the operating system itself.

Each application has certain global variables associated with it. These variables

also consume memory. Finally, each application uses an area of memory called

the stack, which holds all local variables and parameters used by any function.
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The stack also remembers the order in which functions are called so that function

returns occur correctly. Each time a function is called, its local variables and pa-

rameters are “pushed onto” the stack. When the function returns, these locals and

parameters are “popped.” Because of this, the size of a program’s stack fluctuates

constantly as the program is running, but it has some maximum size.

As a program finishes execution, the operating system unloads it, its globals and

its stack space from memory. A new program can make use of that space at a later

time. In this way, the memory in a computer system is constantly “recycled” and

reused by programs as they execute and complete.

In general, perhaps 50 percent of the computer’s total memory space might be

unused at any given moment. The operating system owns and manages the un-

used memory, and it is collectively known as the heap. The heap is extremely

important because it is available for use by applications during execution using

the C functions malloc (memory allocate) and free. The heap allows programs

to allocate memory exactly when they need it during the execution of a program,

rather than pre-allocating it with a specifically-sized array declaration.

Dynamic Data Structures: Malloc and Free

Let’s say that you would like to allocate a certain amount of memory during the

execution of your application. You can call the malloc function at any time, and it

will request a block of memory from the heap. The operating system will reserve a

block of memory for your program, and you can use it in any way you like. When

you are done with the block, you return it to the operating system for recycling by

calling the free function. Then other applications can reserve it later for their own

use.

For example, the following code demonstrates the simplest possible use of the

heap:

i n t main ( vo id )

{

i n t ∗p ;

p = ( i n t ∗ ) m a l loc ( s i z e o f ( i n t ) ) ;
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i f ( p == 0)

{

p r i n t f ( "ERROR : Out o f memory \ n " ) ;

r e t u r n 1 ;

}

∗p = 5 ;

p r i n t f ("%d \ n " , ∗p ) ;

f r e e ( p ) ;

r e t u r n 0 ;

}

The first line in this program calls the malloc function. This function does three

things:

1. The malloc statement first looks at the amount of memory available on

the heap and asks, “Is there enough memory available to allocate a block

of memory of the size requested?” The amount of memory needed for

the block is known from the parameter passed into malloc – in this case,

sizeof(int) is 4 bytes. If there is not enough memory available, the mal-

loc function returns the address zero to indicate the error (another name

for zero is NULL and you will see it used throughout C code). Otherwise

malloc proceeds.

2. If memory is available on the heap, the system “allocates” or “reserves” a

block from the heap of the size specified. The system reserves the block of

memory so that it isn’t accidentally used by more than one malloc statement.

3. The system then places into the pointer variable (p, in this case) the address

of the reserved block. The pointer variable itself contains an address. The

allocated block is able to hold a value of the type specified, and the pointer

points to it.

The program next checks the pointer p to make sure that the allocation request

succeeded with the line if (p == 0) (which could have also been written as if (p ==

NULL) or even if (!p). If the allocation fails (if p is zero), the program terminates.

If the allocation is successful, the program then initializes the block to the value 5,
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prints out the value, and calls the free function to return the memory to the heap

before the program terminates.

There is really no difference between this code and previous code that sets p equal

to the address of an existing integer i. The only distinction is that, in the case of

the variable i, the memory existed as part of the program’s pre-allocated memory

space and had the two names: i and *p. In the case of memory allocated from

the heap, the block has the single name *p and is allocated during the program’s

execution. Two common questions:

• Is it really important to check that the pointer is zero after each allo-

cation? Yes. Since the heap varies in size constantly depending on which

programs are running, how much memory they have allocated, etc., there is

never any guarantee that a call to malloc will succeed. You should check

the pointer after any call to malloc to make sure the pointer is valid.

• What happens if I forget to delete a block of memory before the

program terminates? When a program terminates, the operating system

“cleans up after it,” releasing its executable code space, stack, global

memory space and any heap allocations for recycling. Therefore, there

are no long-term consequences to leaving allocations pending at program

termination. However, it is considered bad form, and “memory leaks”

during the execution of a program are harmful, as discussed below.

The following two programs show two different valid uses of pointers, and try to

distinguish between the use of a pointer and of the pointer’s value:

vo id main ( vo id )

{

i n t ∗p , ∗q ;

p = ( i n t ∗ ) m a l loc ( s i z e o f ( i n t ) ) ;

q = p ;

∗p = 1 0 ;

p r i n t f ("%d \ n " , ∗q ) ;

∗q = 2 0 ;

p r i n t f ("%d \ n " , ∗q ) ;

}
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The final output of this code would be 10 from line 4 and 20 from line 6.

The following code is slightly different:

vo id main ( vo id )

{

i n t ∗p , ∗q ;

p = ( i n t ∗ ) m a l loc ( s i z e o f ( i n t ) ) ;

q = ( i n t ∗ ) m a l loc ( s i z e o f ( i n t ) ) ;

∗p = 1 0 ;

∗q = 2 0 ;

∗p = ∗q ;

p r i n t f ("%d \ n " , ∗p ) ;

}

The final output from this code would be 20 from line 6.

Notice that the compiler will allow *p = *q, because *p and *q are both integers.

This statement says, “Move the integer value pointed to by q into the integer value

pointed to by p.” The statement moves the values. The compiler will also allow p

= q, because p and q are both pointers, and both point to the same type (if s is a

pointer to a character, p = s is not allowed because they point to different types).

The statement p = q says, “Point p to the same block q points to.” In other words,

the address pointed to by q is moved into p, so they both point to the same block.

This statement moves the addresses.

From all of these examples, you can see that there are four different ways to initial-

ize a pointer. When a pointer is declared, as in int *p, it starts out in the program in

an uninitialized state. It may point anywhere, and therefore to dereference it is an

error. Initialization of a pointer variable involves pointing it to a known location

in memory.

1. One way, as seen already, is to use the malloc statement. This statement

allocates a block of memory from the heap and then points the pointer at

the block. This initializes the pointer, because it now points to a known

location. The pointer is initialized because it has been filled with a valid

address – the address of the new block.
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2. The second way, as seen just a moment ago, is to use a statement such as p

= q so that p points to the same place as q. If q is pointing at a valid block,

then p is initialized. The pointer p is loaded with the valid address that q

contains. However, if q is uninitialized or invalid, p will pick up the same

useless address.

3. The third way is to point the pointer to a known address, such as a global

variable’s address. For example, if i is an integer and p is a pointer to an

integer, then the statement p=&i initializes p by pointing it to i.

4. The fourth way to initialize the pointer is to use the value zero. Zero is a

special values used with pointers, as shown here:

p = 0 ;

or:

p = NULL;

What this does physically is to place a zero into p. The pointer p’s address

is zero.

Any pointer can be set to point to zero. When p points to zero, however, it does

not point to a block. The pointer simply contains the address zero, and this value

is useful as a tag. You can use it in statements such as:

i f ( p == 0)

{

. . .

}

or:
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w h i l e ( p != 0)

{

. . .

}

The system also recognizes the zero value, and will generate error messages if you

happen to dereference a zero pointer. For example, in the following code:

p = 0 ;

∗p = 5 ;

The program will normally crash. The pointer p does not point to a block, it points

to zero, so a value cannot be assigned to *p. The zero pointer will be used as a

flag when we get to linked lists.

The malloc command is used to allocate a block of memory. It is also possible

to deallocate a block of memory when it is no longer needed. When a block is

deallocated, it can be reused by a subsequent malloc command, which allows the

system to recycle memory. The command used to deallocate memory is called

free, and it accepts a pointer as its parameter. The free command does two things:

1. The block of memory pointed to by the pointer is unreserved and given

back to the free memory on the heap. It can then be reused by later new

statements.

2. The pointer is left in an uninitialized state, and must be reinitialized before

it can be used again.

The free statement simply returns a pointer to its original uninitialized state and

makes the block available again on the heap.

The following example shows how to use the heap. It allocates an integer block,

fills it, writes it, and disposes of it:
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# i n c l u d e < s t d i o . h>

i n t main ( vo id )

{

i n t ∗p ;

p = ( i n t ∗ ) m a l loc ( s i z e o f ( i n t ) ) ;

∗p =10;

p r i n t f ("%d \ n " ,∗ p ) ;

f r e e ( p ) ;

r e t u r n 0 ;

}

This code is really useful only for demonstrating the process of allocating, deal-

locating, and using a block in C. The malloc line allocates a block of memory of

the size specified – in this case, sizeof(int) bytes (4 bytes). The sizeof command

in C returns the size, in bytes, of any type. The code could just as easily have

said malloc(4), since sizeof(int) equals 4 bytes on most machines. Using sizeof,

however, makes the code much more portable and readable.

The malloc function returns a pointer to the allocated block. This pointer is

generic. Using the pointer without typecasting generally produces a type warning

from the compiler. The (int *) typecast converts the generic pointer returned by

malloc into a “pointer to an integer,” which is what p expects. The free statement

in C returns a block to the heap for reuse.

The second example illustrates the same functions as the previous example, but it

uses a structure instead of an integer. In C, the code looks like this:

# i n c l u d e < s t d i o . h>

s t r u c t r e c

{

i n t i ;

f l o a t f ;

c h a r c ;

} ;
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i n t main ( vo id )

{

s t r u c t r e c ∗p ;

p =( s t r u c t r e c ∗ ) m a l loc ( s i z e o f ( s t r u c t r e c ) ) ;

(∗ p ) . i =10;

(∗ p ) . f = 3 . 1 4 ;

(∗ p ) . c = ’ a ’ ;

p r i n t f ("%d %f %c \ n " , (∗ p ) . i , ( ∗ p ) . f , ( ∗ p ) . c ) ;

f r e e ( p ) ;

r e t u r n 0 ;

}

Note the following line:

(∗ p ) . i =10;

Many wonder why the following doesn’t work:

∗p . i =10;

The answer has to do with the precedence of operators in C. The result of the

calculation 5+3*4 is 17, not 32, because the * operator has higher precedence

than + in most computer languages. In C, the . operator has higher precedence

than *, so parentheses force the proper precedence.

Most people tire of typing (*p).i all the time, so C provides a shorthand notation.

The following two statements are exactly equivalent, but the second is easier to

type:

(∗ p ) . i =10;

p−> i =10;

You will see the second more often than the first when reading other people’s code.
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Advanced Pointers

You will normally use pointers in somewhat more complicated ways than those

shown in some of the previous examples. For example, it is much easier to create

a normal integer and work with it than it is to create and use a pointer to an integer.

In this section, some of the more common and advanced ways of working with

pointers will be explored.

Pointer Types

It is possible, legal, and beneficial to create pointer types in C, as shown below:

t y p e d e f i n t ∗ I n t P o i n t e r ;

. . .

I n t P o i n t e r p ;

This is the same as saying:

i n t ∗p ;

This technique will be used in many of the examples on the following pages. The

technique often makes a data declaration easier to read and understand, and also
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makes it easier to include pointers inside of structures or pass pointer parameters

in functions.

Pointers to Structures

It is possible to create a pointer to almost any type in C, including user-defined

types. It is extremely common to create pointers to structures.

t y p e d e f s t r u c t

{

c h a r name [ 2 1 ] ;

c h a r c i t y [ 2 1 ] ;

c h a r s t a t e [ 3 ] ;

} Rec ;

t y p e d e f Rec ∗ R e c P o i n t e r ;

R e c P o i n t e r r ;

r = ( R e c P o i n t e r ) m a l loc ( s i z e o f ( Rec ) ) ;

The pointer r is a pointer to a structure. Please note the fact that r is a pointer,

and therefore takes four bytes of memory just like any other pointer. However, the

malloc statement allocates 45 bytes of memory from the heap. *r is a structure

just like any other structure of type Rec. The following code shows typical uses

of the pointer variable:

s t r c p y ( ( ∗ r ) . name , " Leigh " ) ;

s t r c p y ( ( ∗ r ) . c i t y , " R a l e i g h " ) ;

s t r c p y ( ( ∗ r ) . s t a t e , "NC " ) ;

p r i n t f ("% s \ n " , (∗ r ) . c i t y ) ;

f r e e ( r ) ;

You deal with *r just like a normal structure variable, but you have to be careful

with the precedence of operators in C. If you were to leave off the parenthesis

78



CHAPTER 13. ADVANCED POINTERS POINTERS TO ARRAYS

around *r the code would not compile because the “.” operator has a higher prece-

dence than the “*” operator. Because it gets tedious to type so many parentheses

when working with pointers to structures, C includes a shorthand notation that

does exactly the same thing:

s t r c p y ( r −>name , " Leigh " ) ;

The r-> notation is exactly equivalent to (*r)., but takes two fewer characters.

Pointers to Arrays

It is also possible to create pointers to arrays, as shown below:

i n t ∗p ;

i n t i ;

p = ( i n t ∗ ) m a l loc ( s i z e o f ( i n t [ 1 0 ] ) ) ;

f o r ( i =0 ; i <10; i ++)

p [ i ] = 0 ;

f r e e ( p ) ;

or:

i n t ∗p ;

i n t i ;

p = ( i n t ∗ ) m a l loc ( s i z e o f ( i n t [ 1 0 ] ) ) ;

f o r ( i =0 ; i <10; i ++)

∗ ( p+ i ) = 0 ;

f r e e ( p ) ;
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Note that when you create a pointer to an integer array, you simply create a normal

pointer to int. The call to malloc allocates an array of whatever size you desire,

and the pointer points to that array’s first element. You can either index through

the array pointed to by p using normal array indexing, or you can do it using

pointer arithmetic. C sees both forms as equivalent.

This particular technique is extremely useful when working with strings. It lets

you allocate enough storage to exactly hold a string of a particular size.

Arrays of Pointers

Sometimes a great deal of space can be saved, or certain memory-intensive prob-

lems can be solved, by declaring an array of pointers. In the example code below,

an array of 10 pointers to structures is declared, instead of declaring an array of

structures. If an array of the structures had been created instead, 243 * 10 = 2,430

bytes would have been required for the array. Using the array of pointers allows

the array to take up minimal space until the actual records are allocated with mal-

loc statements. The code below simply allocates one record, places a value in it,

and disposes of the record to demonstrate the process:

t y p e d e f s t r u c t

{

c h a r s1 [ 8 1 ] ;

c h a r s2 [ 8 1 ] ;

c h a r s3 [ 8 1 ] ;

} Rec ;

Rec ∗a [ 1 0 ] ;

a [ 0 ] = ( Rec ∗ ) m a l loc ( s i z e o f ( Rec ) ) ;

s t r c p y ( a [0]−> s1 , " h e l l o " ) ;

f r e e ( a [ 0 ] ) ;
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Structures Containing Pointers

Structures can contain pointers, as shown below:

t y p e d e f s t r u c t

{

c h a r name [ 2 1 ] ;

c h a r c i t y [ 2 1 ] ;

c h a r phone [ 2 1 ] ;

c h a r ∗comment ;

} Addr ;

Addr s ;

c h a r comm [ 1 0 0 ] ;

g e t s ( s . name , 2 0 ) ;

g e t s ( s . c i t y , 2 0 ) ;

g e t s ( s . phone , 2 0 ) ;

g e t s (comm , 1 0 0 ) ;

s . comment =

( c h a r ∗ ) m a l loc ( s i z e o f ( c h a r [ s t r l e n (comm ) + 1 ] ) ) ;

s t r c p y ( s . comment , comm ) ;

This technique is useful when only some records actually contained a comment in

the comment field. If there is no comment for the record, then the comment field

would consist only of a pointer (4 bytes). Those records having a comment then

allocate exactly enough space to hold the comment string, based on the length of

the string typed by the user.

Pointers to Pointers

It is possible and often useful to create pointers to pointers. This technique is

sometimes called a handle, and is useful in certain situations where the operating

system wants to be able to move blocks of memory on the heap around at its

discretion.
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i n t ∗∗p ;

i n t ∗q ;

p = ( i n t ∗∗ ) m a l loc ( s i z e o f ( i n t ∗ ) ) ;

∗p = ( i n t ∗ ) m a l loc ( s i z e o f ( i n t ) ) ;

∗∗p = 1 2 ;

q = ∗p ;

p r i n t f ("%d \ n " , ∗q ) ;

f r e e ( q ) ;

f r e e ( p ) ;

Windows and the Mac OS use this structure to allow memory compaction on the

heap. The program manages the pointer p, while the operating system manages

the pointer *p. Because the OS manages *p, the block pointed to by *p (**p)

can be moved, and *p can be changed to reflect the move without affecting the

program using p. Pointers to pointers are also frequently used in C to handle

pointer parameters in functions.

Pointers to Structures Containing Pointers

It is also possible to create pointers to structures that contain pointers. The follow-

ing example uses the Addr record from the previous section:

t y p e d e f s t r u c t

{

c h a r name [ 2 1 ] ;

c h a r c i t y [ 2 1 ] ;

c h a r phone [ 2 1 ] ;

c h a r ∗comment ;

} Addr ;

Addr ∗ s ;

c h a r comm [ 1 0 0 ] ;

s = ( Addr ∗ ) m a l loc ( s i z e o f ( Addr ) ) ;
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g e t s ( s−>name , 2 0 ) ;

g e t s ( s−>c i t y , 2 0 ) ;

g e t s ( s−>phone , 2 0 ) ;

g e t s (comm , 1 0 0 ) ;

s−>comment =

( c h a r ∗ ) m a l loc ( s i z e o f ( c h a r [ s t r l e n (comm ) + 1 ] ) ) ;

s t r c p y ( s−>comment , comm ) ;

The pointer s points to a structure that contains a pointer that points to a string.

In this example, it is very easy to create lost blocks if you aren’t careful. For

example, here is a different version of the AP example.

s = ( Addr ∗ ) m a l loc ( s i z e o f ( Addr ) ) ;

g e t s (comm , 1 0 0 ) ;

s−>comment =

( c h a r ∗ ) m a l loc ( s i z e o f ( c h a r [ s t r l e n (comm ) + 1 ] ) ) ;

s t r c p y ( s−>comment , comm ) ;

f r e e ( s ) ;

This code creates a lost block because the structure containing the pointer pointing

to the string is disposed of before the string block is disposed of, as shown to the

right.

Linking

Finally, it is possible to create structures that are able to point to identical struc-

tures, and this capability can be used to link together a whole string of identical

records in a structure called a linked list.

t y p e d e f s t r u c t

{

c h a r name [ 2 1 ] ;
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c h a r c i t y [ 2 1 ] ;

c h a r s t a t e [ 2 1 ] ;

Addr ∗ n e x t ;

} Addr ;

Addr ∗ f i r s t ;

The compiler will let you do this, and it can be used with a little experience to

create structures like the one shown to the right.

A Linked Stack Example

A good example of dynamic data structures is a simple stack library, one that uses

a dynamic list and includes functions to init, clear, push, and pop. The library’s

header file looks like this:

/∗ S t a c k L i b r a r y − Thi s l i b r a r y o f f e r s t h e

min imal s t a c k o p e r a t i o n s f o r a

s t a c k o f i n t e g e r s ( e a s i l y c h a n g e a b l e ) ∗ /

t y p e d e f i n t s t a c k _ d a t a ;

e x t e r n vo id s t a c k _ i n i t ( ) ;

/∗ I n i t i a l i z e s t h i s l i b r a r y .

C a l l f i r s t b e f o r e c a l l i n g a n y t h i n g . ∗ /

e x t e r n vo id s t a c k _ c l e a r ( ) ;

/∗ C l e a r s t h e s t a c k o f a l l e n t r i e s . ∗ /

e x t e r n i n t s t a c k _ e m p t y ( ) ;

/∗ R e t u r n s 1 i f t h e s t a c k i s empty , 0 o t h e r w i s e . ∗ /

e x t e r n vo id s t a c k _ p u s h ( s t a c k _ d a t a d ) ;

/∗ Pushes t h e v a l u e d on to t h e s t a c k . ∗ /
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e x t e r n s t a c k _ d a t a s t a c k _ p o p ( ) ;

/∗ R e t u r n s t h e t o p e l e m e n t o f t h e s t a c k ,

and removes t h a t e l e m e n t .

R e t u r n s g a r b a g e i f t h e s t a c k i s empty . ∗ /

The library’s code file follows:

# i n c l u d e " s t a c k . h "

# i n c l u d e < s t d i o . h>

/∗ S t a c k L i b r a r y − Thi s l i b r a r y o f f e r s t h e

min imal s t a c k o p e r a t i o n s f o r a s t a c k o f i n t e g e r s ∗ /

s t r u c t s t a c k _ r e c

{

s t a c k _ d a t a d a t a ;

s t r u c t s t a c k _ r e c ∗ n e x t ;

} ;

s t r u c t s t a c k _ r e c ∗ t o p =NULL;

vo id s t a c k _ i n i t ( )

/∗ I n i t i a l i z e s t h i s l i b r a r y .

C a l l b e f o r e c a l l i n g a n y t h i n g e l s e . ∗ /

{

t o p =NULL;

}

vo id s t a c k _ c l e a r ( )

/∗ C l e a r s t h e s t a c k o f a l l e n t r i e s . ∗ /

{

s t a c k _ d a t a x ;

w h i l e ( ! s t a c k _ e m p t y ( ) )

x= s t a c k _ p o p ( ) ;

}
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i n t s t a c k _ e m p t y ( )

/∗ R e t u r n s 1 i f t h e s t a c k i s empty , 0 o t h e r w i s e . ∗ /

{

i f ( t o p ==NULL)

r e t u r n ( 1 ) ;

e l s e

r e t u r n ( 0 ) ;

}

vo id s t a c k _ p u s h ( s t a c k _ d a t a d )

/∗ Pushes t h e v a l u e d on to t h e s t a c k . ∗ /

{

s t r u c t s t a c k _ r e c ∗ temp ;

temp = ( s t r u c t s t a c k _ r e c ∗ ) m a l loc ( s i z e o f ( s t r u c t s t a c k _ r e c ) ) ;

temp−>d a t a =d ;

temp−>n e x t = t o p ;

t o p =temp ;

}

s t a c k _ d a t a s t a c k _ p o p ( )

/∗ R e t u r n s t h e t o p e l e m e n t o f t h e s t a c k ,

and removes t h a t e l e m e n t .

R e t u r n s g a r b a g e i f t h e s t a c k i s empty . ∗ /

{

s t r u c t s t a c k _ r e c ∗ temp ;

s t a c k _ d a t a d =0;

i f ( t o p !=NULL)

{

d= top −>d a t a ;

temp= t o p ;

t o p = top −>n e x t ;

f r e e ( temp ) ;

}

r e t u r n ( d ) ;

}
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Programming exercise

• Add a dup, a count, and an add function to the stack library to duplicate

the top element of the stack, return a count of the number of elements in the

stack, and add the top two elements in the stack.

• Build a driver program and a makefile, and compile the stack library with

the driver to make sure it works.

Note how this library practices information hiding: Someone who can see only

the header file cannot tell if the stack is implemented with arrays, pointers, files,

or in some other way. Note also that C uses NULL. NULL is defined in stdio.h,

so you will almost always have to include stdio.h when you use pointers. NULL

is the same as zero.

Using Pointers with Arrays

Arrays and pointers are intimately linked in C. To use arrays effectively, you have

to know how to use pointers with them. Fully understanding the relationship

between the two probably requires several days of study and experimentation, but

it is well worth the effort.

Let’s start with a simple example of arrays in C:

# d e f i n e MAX 10

i n t main ( vo id )

{

i n t a [MAX] ;

i n t b [MAX] ;

i n t i ;

f o r ( i =0 ; i <MAX; i ++)

a [ i ]= i ;

b=a ;

r e t u r n 0 ;

}
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Enter this code and try to compile it. You will find that C will not compile it. If

you want to copy a into b, you have to enter something like the following instead:

f o r ( i =0 ; i <MAX; i ++)

b [ i ]= a [ i ] ;

Or, to put it more succinctly:

f o r ( i =0 ; i <MAX; b [ i ]= a [ i ] , i + + ) ;

Better yet, use the memcpy utility in string.h.

Arrays in C are unusual in that variables a and b are not, technically, arrays them-

selves. Instead they are permanent pointers to arrays. a and b permanently point

to the first elements of their respective arrays – they hold the addresses of a[0]

and b[0] respectively. Since they are permanent pointers you cannot change their

addresses. The statement a=b; therefore does not work.

Because a and b are pointers, you can do several interesting things with pointers

and arrays. For example, the following code works:

# d e f i n e MAX 10

vo id main ( vo id )

{

i n t a [MAX] ;

i n t i ;

i n t ∗p ;

p=a ;

f o r ( i =0 ; i <MAX; i ++)

a [ i ]= i ;

p r i n t f ("%d \ n " ,∗ p ) ;

}
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The statement p=a; works because a is a pointer. Technically, a points to the

address of the 0th element of the actual array. This element is an integer, so a is

a pointer to a single integer. Therefore, declaring p as a pointer to an integer and

setting it equal to a works. Another way to say exactly the same thing would be

to replace p=a; with p=&a[0];. Since a contains the address of a[0], a and &a[0]

mean the same thing.

Now that p is pointing at the 0th element of a, you can do some rather strange

things with it. The a variable is a permanent pointer and can not be changed, but

p is not subject to such restrictions. C actually encourages you to move it around

using pointer arithmetic. For example, if you say p++;, the compiler knows that

p points to an integer, so this statement increments p the appropriate number of

bytes to move it to the next element of the array. If p were pointing to an array of

100-byte-long structures, p++; would move p over by 100 bytes. C takes care of

the details of element size.

You can copy the array a into b using pointers as well. The following code can

replace (for i=0; i<MAX; a[i]=b[i], i++); :

p=a ;

q=b ;

f o r ( i =0 ; i <MAX; i ++)

{

∗q = ∗p ;

q ++;

p ++;

}

You can abbreviate this code as follows:

p=a ;

q=b ;

f o r ( i =0 ; i <MAX; i ++)

∗q++ = ∗p ++;

And you can further abbreviate it to:

f o r ( p=a , q=b , i =0; i <MAX; ∗q++ = ∗p ++ , i + + ) ;
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What if you go beyond the end of the array a or b with the pointers p or q? C does

not care – it blithely goes along incrementing p and q, copying away over other

variables with abandon. You need to be careful when indexing into arrays in C,

because C assumes that you know what you are doing.

You can pass an array such as a or b to a function in two different ways. Imagine

a function dump that accepts an array of integers as a parameter and prints the

contents of the array to stdout. There are two ways to code dump:

vo id dump ( i n t a [ ] , i n t n i a )

{

i n t i ;

f o r ( i =0 ; i < n i a ; i ++)

p r i n t f ("%d \ n " , a [ i ] ) ;

}

or:

vo id dump ( i n t ∗p , i n t n i a )

{

i n t i ;

f o r ( i =0 ; i < n i a ; i ++)

p r i n t f ("%d \ n " ,∗ p + + ) ;

}

The nia (number_in_array) variable is required so that the size of the array is

known. Note that only a pointer to the array, rather than the contents of the array,

is passed to the function. Also note that C functions can accept variable-size arrays

as parameters.
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Strings

Strings in C are intertwined with pointers to a large extent. You must become

familiar with the pointer concepts covered in the previous articles to use C strings

effectively. Once you get used to them, however, you can often perform string

manipulations very efficiently.

A string in C is simply an array of characters. The following line declares an array

that can hold a string of up to 99 characters.

c h a r s t r [ 1 0 0 ] ;

It holds characters as you would expect: str[0] is the first character of the string,

str[1] is the second character, and so on. But why is a 100-element array unable to

hold up to 100 characters? Because C usesnull-terminated strings, which means

that the end of any string is marked by the ASCII value 0 (the null character),

which is also represented in C as ‘\0’.

Null termination is very different from the way many other languages handle

strings. For example, in Pascal, each string consists of an array of characters,

with a length byte that keeps count of the number of characters stored in the ar-

ray. This structure gives Pascal a definite advantage when you ask for the length

of a string. Pascal can simply return the length byte, whereas C has to count the

characters until it finds ‘\0’. This fact makes C much slower than Pascal in certain

cases, but in others it makes it faster, as we will see in the examples below.

Because C provides no explicit support for strings in the language itself, all of the

string-handling functions are implemented in libraries. The string I/0 operations
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(gets, puts, and so on) are implemented in <stdio.h>, and a set of fairly simple

string manipulation functions are implemented in <string.h> (on some systems,

<strings.h> ).

The fact that strings are not native to C forces you to create some fairly roundabout

code. For example, suppose you want to assign one string to another string; that

is, you want to copy the contents of one string to another. In C you cannot simply

assign one array to another. You have to copy it element by element. The string

library (<string.h> or <strings.h> ) contains a function called strcpy for this task.

Here is an extremely common piece of code to find in a normal C program:

c h a r s [ 1 0 0 ] ;

s t r c p y ( s , " h e l l o " ) ;

The following code shows how to use strcpy in C:

# i n c l u d e < s t r i n g . h>

i n t main ( vo id )

{

c h a r s1 [ 1 0 0 ] , s2 [ 1 0 0 ] ;

s t r c p y ( s1 , " h e l l o " ) ; /∗ copy " h e l l o " i n t o s1 ∗ /

s t r c p y ( s2 , s1 ) ; /∗ copy s1 i n t o s2 ∗ /

r e t u r n 0 ;

}

strcpy is used whenever a string is initialized in C. You use the strcmp function

in the string library to compare two strings. It returns an integer that indicates the

result of the comparison. Zero means the two strings are equal, a negative value

means that s1 is less than s2, and a positive value means s1 is greater than s2.

# i n c l u d e < s t d i o . h>

# i n c l u d e < s t r i n g . h>

i n t main ( vo id )

{

c h a r s1 [ 1 0 0 ] , s2 [ 1 0 0 ] ;

g e t s ( s1 ) ;

g e t s ( s2 ) ;

i f ( s t r cm p ( s1 , s2 ) == 0) {

p r i n t f ( " e q u a l \ n " ) ;

} e l s e i f ( s t r cm p ( s1 , s2 ) < 0) {

p r i n t f ( " s1 l e s s t h a n s2 \ n " ) ;
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} e l s e {

p r i n t f ( " s1 g r e a t e r t h a n s2 \ n " ) ;

}

r e t u r n 0 ;

}

Other common functions in the string library include strlen, which returns the

length of a string, and strcat which concatenates two strings. The string library

contains a number of other functions, which you can peruse by reading the man

page.

To get you started building string functions, and to help you understand other

programmers’ code (everyone seems to have his or her own set of string functions

for special purposes in a program), we will look at two examples, strlen and

strcpy. Following is a strictly Pascal-like version of strlen:

i n t s t r l e n ( c h a r s [ ] )

{

i n t x ;

x =0;

w h i l e ( s [ x ] != ’ \ 0 ’ )

x=x +1;

r e t u r n ( x ) ;

}

Most C programmers shun this approach because it seems inefficient. Instead,

they often use a pointer-based approach:

i n t s t r l e n ( c h a r ∗ s )

{

i n t x =0;

w h i l e (∗ s != ’ \ 0 ’ )

{

x ++;

s ++;

}

r e t u r n ( x ) ;

}

You can abbreviate this code to the following:
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i n t s t r l e n ( c h a r ∗ s )

{

i n t x =0;

w h i l e (∗ s ++)

x ++;

r e t u r n ( x ) ;

}

I imagine a true C expert could make this code even shorter.

When I compile these three pieces of code with gcc, using no optimization, and

run each 20,000 times on a 120-character string, the first piece of code yields a

time of 12.3 seconds, the second 12.3 seconds, and the third 12.9 seconds. What

does this mean? To me, it means that you should write the code in whatever way

is easiest for you to understand. Pointers generally yield faster code, but the strlen

code above shows that that is not always the case.

We can go through the same evolution with strcpy:

s t r c p y ( c h a r s1 [ ] , c h a r s2 [ ] )

{

i n t x ;

f o r ( x = 0 ; x <= s t r l e n ( s2 ) ; x ++)

s1 [ x ] = s2 [ x ] ;

}

Note here that <= is important in the for loop because the code then copies the

‘\0’. Be sure to copy ‘\0’. Major bugs occur later on if you leave it out, because

the string has no end and therefore an unknown length. Note also that this code

is very inefficient, because strlen gets called every time through the for loop. To

solve this problem, you could use the following code:

s t r c p y ( c h a r s1 [ ] , c h a r s2 [ ] )

{

i n t x , l e n ;

l e n = s t r l e n ( s2 ) ;

f o r ( x = 0 ; x <= l e n ; x ++)

s1 [ x ] = s2 [ x ] ;

}

The pointer version is similar.
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s t r c p y ( c h a r ∗ s1 , c h a r ∗ s2 )

{

w h i l e (∗ s2 != ’ \ 0 ’ )

{

∗ s1 = ∗ s2 ;

s1 ++;

s2 ++;

}

}

You can compress this code further:

s t r c p y ( c h a r ∗ s1 , c h a r ∗ s2 )

{

w h i l e (∗ s2 )

∗ s1 ++ = ∗ s2 ++;

}

If you wish, you can even say while (*s1++ = *s2++);. The first version of strcpy

takes 415 seconds to copy a 120-character string 10,000 times, the second version

takes 14.5 seconds, the third version 9.8 seconds, and the fourth 10.3 seconds. As

you can see, pointers provide a significant performance boost here.

The prototype for the strcpy function in the string library indicates that it is de-

signed to return a pointer to a string:

c h a r ∗ s t r c p y ( c h a r ∗ s1 , c h a r ∗ s2 )

Most of the string functions return a string pointer as a result, and strcpy returns

the value of s1 as its result.

Using pointers with strings can sometimes result in definite improvements in

speed and you can take advantage of these if you think about them a little. For

example, suppose you want to remove the leading blanks from a string. You might

be inclined to shift characters over on top of the blanks to remove them. In C, you

can avoid the movement altogether:

# i n c l u d e < s t d i o . h>

# i n c l u d e < s t r i n g . h>

i n t main ( vo id )
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{

c h a r s [ 1 0 0 ] , ∗p ;

g e t s ( s ) ;

p = s ;

w h i l e (∗ p == ’ ’ )

p ++;

p r i n t f ("% s \ n " , p ) ;

r e t u r n 0 ;

}

This is much faster than the movement technique, especially for long strings.

You will pick up many other tricks with strings as you go along and read other

code. Practice is the key.

Special Note on String Constants

Suppose you create the following two code fragments and run them:

Fragment 1

{

c h a r ∗ s ;

s = " h e l l o " ;

p r i n t f ("% s \ n " , s ) ;

}

Fragment 2

{

c h a r s [ 1 0 0 ] ;

s t r c p y ( s , " h e l l o " ) ;

p r i n t f ("% s \ n " , s ) ;

}
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These two fragments produce the same output, but their internal behavior is quite

different. In fragment 2, you cannot say s = “hello”;. To understand the differ-

ences, you have to understand how the string constant table works in C.

When your program is compiled, the compiler forms the object code file, which

contains your machine code and a table of all the string constants declared in the

program. In fragment 1, the statement s = “hello”; causes s to point to the address

of the string hello in the string constant table. Since this string is in the string

constant table, and therefore technically a part of the executable code, you cannot

modify it. You can only point to it and use it in a read-only manner.

In fragment 2, the string hello also exists in the constant table, so you can copy

it into the array of characters named s. Since s is not a pointer, the statement s =

“hello”; will not work in fragment 2. It will not even compile.

Special Note on Using Strings with malloc

Suppose you write the following program:

i n t main ( vo id )

{

c h a r ∗ s ;

s = ( c h a r ∗ ) m a l loc ( 1 0 0 ) ;

s = " h e l l o " ;

f r e e ( s ) ;

r e t u r n 0 ;

}

It compiles properly, but gives a segmentation fault at the free line when you

run it. The malloc line allocates a block 100 bytes long and points s at it, but

now the s = “hello”; line is a problem. It is syntactically correct because s is a

pointer; however, when s = “hello”; is executed, s points to the string in the string

constant table and the allocated block is orphaned. Since s is pointing into the

string constant table, the string cannot be changed; free fails because it cannot

deallocate a block in an executable region.

The correct code follows:

i n t main ( vo id )
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{

c h a r ∗ s ;

s = ( c h a r ∗ ) m a l loc ( 1 0 0 ) ;

s t r c p y ( s , " h e l l o " ) ;

f r e e ( s ) ;

r e t u r n 0 ;

}

Programming exercise

• Create a program that reads in a string containing a first name followed by

a blank followed by a last name. Write functions to remove any leading or

trailing blanks. Write another function that returns the last name.

• Write a function that converts a string to uppercase.

• Write a function that gets the first word from a string and returns the remain-

der of the string.

98



Chapter 15

Operator Precedence, II

C contains many operators, and because of the way in which operator precedence

works, the interactions between multiple operators can become confusing.

x = 5 + 3 ∗ 6 ;

x receives the value 23, not 48, because in C multiplication and division have

higher precedence than addition and subtraction.

c h a r ∗a { [ } 1 0 { ] } ;

Is a a single pointer to an array of 10 characters, or is it an array of 10 pointers

to character? Unless you know the precedence conventions in C, there is no way

to find out. Similarly, because of precedence statements such as *p.i = 10; do not

work. Instead, the form (*p).i = 10;must be used to force correct precedence.

The following table from C Programming Language by Kernighan and Ritchie,

shows the precedence hierarchy in C. The top line has the highest precedence.

O p e r a t o r s A s s o c i a t i v i t y

( [ − . L e f t t o r i g h t

! − ++ −{− + ∗ & ( type −c a s t ) s i z e o f R i g h t t o l e f t

( i n t h e above l i n e , + , − and ∗ a r e t h e unary forms )
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∗ / % L e f t t o r i g h t

+ − L e f t t o r i g h t

<< >> L e f t t o r i g h t

< <= > >= L e f t t o r i g h t

== != L e f t t o r i g h t

& L e f t t o r i g h t

^ L e f t t o r i g h t

| L e f t t o r i g h t

&& L e f t t o r i g h t

| | L e f t t o r i g h t

? : L e f t t o r i g h t

= += −= ∗= /= %= &= ^= | = <<= >>= R i g h t t o l e f t

, L e f t t o r i g h t

Using this table, you can see that char *a[10]; is an array of 10 pointers to char-

acter. You can also see why the parentheses are required if (*p).i is to be handled

correctly. After some practice, you will memorize most of this table, but every

now and again something will not work because you have been caught by a subtle

precedence problem.
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Command Line Arguments

C provides a fairly simple mechanism for retrieving command line parameters en-

tered by the user. It passes an argv parameter to the main function in the program.

argv structures appear in a fair number of the more advanced library calls, so

understanding them is useful to any C programmer.

Enter the following code and compile it:

# i n c l u d e < s t d i o . h>

i n t main ( i n t argc , c h a r ∗ a rgv [ ] )

{

i n t x ;

p r i n t f ("%d \ n " , a r g c ) ;

f o r ( x = 0 ; x < a r g c ; x ++)

p r i n t f ("% s \ n " , a rgv [ x ] ) ;

r e t u r n 0 ;

}

In this code, the main program accepts two parameters, argv and argc. The argv

parameter is an array of pointers to string that contains the parameters entered

when the program was invoked at the UNIX command line. The argc integer

contains a count of the number of parameters. This particular piece of code types
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out the command line parameters. To try this, compile the code to an executable

file named aaa and type aaa xxx yyy zzz. The code will print the command line

parameters xxx, yyy and zzz, one per line.

The char *argv[] line is an array of pointers to string. In other words, each

element of the array is a pointer, and each pointer points to a string (technically, to

the first character of the string). Thus, argv[0] points to a string that contains the

first parameter on the command line (the program’s name), argv[1] points to the

next parameter, and so on. The argc variable tells you how many of the pointers in

the array are valid. You will find that the preceding code does nothing more than

print each of the valid strings pointed to by argv.

Because argv exists, you can let your program react to command line parameters

entered by the user fairly easily. For example, you might have your program detect

the word help as the first parameter following the program name, and dump a help

file to stdout. File names can also be passed in and used in your fopen statements.
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Text files

Text files in C are straightforward and easy to understand. All text file functions

and types in C come from the stdio library.

When you need text I/O in a C program, and you need only one source for input

information and one sink for output information, you can rely on stdin (standard

in) and stdout (standard out). You can then use input and output redirection at the

command line to move different information streams through the program. There

are six different I/O commands in <stdio.h> that you can use with stdin and stdout:

• printf - prints formatted output to stdout

• scanf - reads formatted input from stdin

• puts - prints a string to stdout

• gets - reads a string from stdin

• putc - prints a character to stdout

• getc, getchar - reads a character from stdin

The advantage of stdin and stdout is that they are easy to use. Likewise, the ability

to redirect I/O is very powerful. For example, maybe you want to create a program

that reads from stdin and counts the number of characters:
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# i n c l u d e < s t d i o . h>

# i n c l u d e < s t r i n g . h>

i n t main ( vo id )

{

c h a r s [ 1 0 0 0 ] ;

i n t c o u n t = 0 ;

w h i l e ( g e t s ( s ) )

{

c o u n t += s t r l e n ( s ) ;

}

p r i n t f ("%d \ n " , c o u n t ) ;

r e t u r n 0 ;

}

Enter this code and run it. It waits for input from stdin, so type a few lines. When

you are done, press CTRL-D to signal end-of-file (eof). The gets function reads

a line until it detects eof, then returns a 0 so that the while loop ends. When you

press CTRL-D, you see a count of the number of characters in stdout (the screen).

(Use man gets or your compiler’s documentation to learn more about the gets

function.)

Now, suppose you want to count the characters in a file. If you compiled the

program to an executable named xxx, you can type the following:

xxx < f i l e n a m e

Instead of accepting input from the keyboard, the contents of the file named file-

name will be used instead. You can achieve the same result using pipes:

c a t < f i l e n a m e | xxx

You can also redirect the output to a file:

xxx < f i l e n a m e > o u t

This command places the character count produced by the program in a text file

named out.
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Sometimes, you need to use a text file directly. For example, you might need

to open a specific file and read from or write to it. You might want to manage

several streams of input or output or create a program like a text editor that can

save and recall data or configuration files on command. In that case, use the text

file functions in stdio:

• fopen - opens a text file

• fclose - closes a text file

• feof - detects end-of-file marker in a file

• fprintf - prints formatted output to a file

• fscanf - reads formatted input from a file

• fputs - prints a string to a file

• fgets - reads a string from a file

• fputc - prints a character to a file

• fgetc - reads a character from a file

Text files: opening

You use fopen to open a file. It opens a file for a specified mode (the three most

common are r, w, and a, for read, write, and append). It then returns a file pointer

that you use to access the file. For example, suppose you want to open a file and

write the numbers 1 to 10 in it. You could use the following code:

# i n c l u d e < s t d i o . h>

# d e f i n e MAX 10

i n t main ( vo id )

{

FILE ∗ f ;

i n t x ;
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f = fopen ( " o u t " , "w " ) ;

i f ( ! f )

r e t u r n 1 ;

f o r ( x = 1 ; x <= MAX; x ++)

f p r i n t f ( f ,"%d \ n " , x ) ;

f c l o s e ( f ) ;

r e t u r n 0 ;

}

The fopen statement here opens a file named out with the w mode. This is a

destructive write mode, which means that if out does not exist it is created, but

if it does exist it is destroyed and a new file is created in its place. The fopen

command returns a pointer to the file, which is stored in the variable f. This

variable is used to refer to the file. If the file cannot be opened for some reason, f

will contain NULL.

The fprintf statement should look very familiar: It is just like printf but uses the

file pointer as its first parameter. The fclose statement closes the file when you are

done.

Text files: reading

To read a file, open it with r mode. In general, it is not a good idea to use fscanffor

reading: Unless the file is perfectly formatted, fscanf will not handle it correctly.

Instead, use fgets to read in each line and then parse out the pieces you need.

The following code demonstrates the process of reading a file and dumping its

contents to the screen:

# i n c l u d e < s t d i o . h>

i n t main ( vo id )

{

FILE ∗ f ;

c h a r s [ 1 0 0 0 ] ;
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f = fopen ( " i n f i l e " , " r " ) ;

i f ( ! f )

r e t u r n 1 ;

w h i l e ( f g e t s ( s , 1 0 0 0 , f ) != NULL)

p r i n t f ("% s " , s ) ;

f c l o s e ( f ) ;

r e t u r n 0 ;

}

The fgets statement returns a NULL value at the end-of-file marker. It reads a line

(up to 1,000 characters in this case) and then prints it to stdout. Notice that the

printf statement does not include \n in the format string, because fgets adds \n to

the end of each line it reads. Thus, you can tell if a line is not complete in the

event that it overflows the maximum line length specified in the second parameter

to fgets.

Main function return values

This program is the first program in this series that returns an error value from

the main program. If the fopen command fails, f will contain a NULL value (a

zero). We test for that error with the if statement. The if statement looks at the

True/False value of the variable f. Remember that in C, 0 is False and anything

else is true. So if there were an error opening the file, f would contain zero, which

is False. The ! is the NOT operator. It inverts a Boolean value. So the if statement

could have been written like this:

i f ( f == 0)

That is equivalent. However, if (!f) is more common.

If there is a file error, we return a 1 from the main function. In Linux, you can

actually test for this value on the command line. See the shell documentation for

details.
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Binary Files

Binary files are very similar to arrays of structures, except the structures are in a

disk file rather than in an array in memory. Because the structures in a binary file

are on disk, you can create very large collections of them (limited only by your

available disk space). They are also permanent and always available. The only

disadvantage is the slowness that comes from disk access time.

Binary files have two features that distinguish them from text files:

• You can jump instantly to any structure in the file, which provides random

access as in an array.

• You can change the contents of a structure anywhere in the file at any time.

Binary files also usually have faster read and write times than text files, because a

binary image of the record is stored directly from memory to disk (or vice versa).

In a text file, everything has to be converted back and forth to text, and this takes

time.

C supports the file-of-structures concept very cleanly. Once you open the file you

can read a structure, write a structure, or seek to any structure in the file. This

file concept supports the concept of a file pointer. When the file is opened, the

pointer points to record 0 (the first record in the file). Any read operation reads

the currently pointed-to structure and moves the pointer down one structure. Any

write operation writes to the currently pointed-to structure and moves the pointer

down one structure. Seek moves the pointer to the requested record.
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Keep in mind that C thinks of everything in the disk file as blocks of bytes read

from disk into memory or read from memory onto disk. C uses a file pointer, but

it can point to any byte location in the file. You therefore have to keep track of

things.

The following program illustrates these concepts:

# i n c l u d e < s t d i o . h>

/∗ random r e c o r d d e s c r i p t i o n − c o u l d be a n y t h i n g ∗ /

s t r u c t r e c

{

i n t x , y , z ;

} ;

/∗

∗ w r i t e s and t h e n r e a d s 10 a r b i t r a r y r e c o r d s

∗ from t h e f i l e " junk " .

∗ /

i n t main ( vo id )

{

i n t i , j ;

FILE ∗ f ;

s t r u c t r e c r ;

/∗ c r e a t e t h e f i l e o f 10 r e c o r d s ∗ /

f = fopen ( " junk " , "w " ) ;

i f ( ! f )

{

r e t u r n 1 ;

}

f o r ( i = 1 ; i <= 1 0 ; i ++)

{

r . x = i ;

f w r i t e (& r , s i z e o f ( s t r u c t r e c ) , 1 , f ) ;

}

f c l o s e ( f ) ;
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/∗ r e a d t h e 10 r e c o r d s ∗ /

f = fopen ( " junk " , " r " ) ;

i f ( ! f )

{

r e t u r n 1 ;

}

f o r ( i = 1 ; i <= 1 0 ; i ++)

{

f r e a d (& r , s i z e o f ( s t r u c t r e c ) , 1 , f ) ;

p r i n t f ("%d \ n " , r . x ) ;

}

f c l o s e ( f ) ;

p r i n t f ( " \ n " ) ;

/∗ use f s e e k t o r e a d t h e 10 r e c o r d s

i n r e v e r s e o r d e r ∗ /

f = fopen ( " junk " , " r " ) ;

i f ( ! f )

{

r e t u r n 1 ;

}

f o r ( i = 9 ; i >= 0 ; i −−)

{

f s e e k ( f , s i z e o f ( s t r u c t r e c )∗ i , SEEK_SET ) ;

f r e a d (& r , s i z e o f ( s t r u c t r e c ) , 1 , f ) ;

p r i n t f ("%d \ n " , r . x ) ;

}

f c l o s e ( f ) ;

p r i n t f ( " \ n " ) ;

/∗ use f s e e k t o r e a d e v e r y o t h e r r e c o r d ∗ /

f = fopen ( " junk " , " r " ) ;

i f ( ! f )

{

r e t u r n 1 ;

}

f s e e k ( f , 0 , SEEK_SET ) ;
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f o r ( i = 0 ; i < 5 ; i ++)

{

f r e a d (&r , s i z e o f ( s t r u c t r e c ) , 1 , f ) ;

p r i n t f ("%d \ n " , r . x ) ;

f s e e k ( f , s i z e o f ( s t r u c t r e c ) , SEEK_CUR ) ;

}

f c l o s e ( f ) ;

p r i n t f ( " \ n " ) ;

/∗ use f s e e k t o r e a d 4 t h r e c o r d ,

change i t , and w r i t e i t back ∗ /

f = fopen ( " junk " , " r + " ) ;

i f ( ! f )

{

r e t u r n 1 ;

}

f s e e k ( f , s i z e o f ( s t r u c t r e c )∗3 , SEEK_SET ) ;

f r e a d (&r , s i z e o f ( s t r u c t r e c ) , 1 , f ) ;

r . x = 100 ;

f s e e k ( f , s i z e o f ( s t r u c t r e c )∗3 , SEEK_SET ) ;

f w r i t e (& r , s i z e o f ( s t r u c t r e c ) , 1 , f ) ;

f c l o s e ( f ) ;

p r i n t f ( " \ n " ) ;

/∗ r e a d t h e 10 r e c o r d s t o i n s u r e

4 t h r e c o r d was changed ∗ /

f = fopen ( " junk " , " r " ) ;

i f ( ! f )

{

r e t u r n 1 ;

}

f o r ( i = 1 ; i <= 1 0 ; i ++)

{

f r e a d (&r , s i z e o f ( s t r u c t r e c ) , 1 , f ) ;

p r i n t f ("%d \ n " , r . x ) ;

}

f c l o s e ( f ) ;
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r e t u r n 0 ;

}

In this program, a structure description rec has been used, but you can use any

structure description you want. You can see that fopen and fclose work exactly as

they did for text files.

The new functions here are fread, fwrite and fseek. The fread function takes four

parameters:

• A memory address

• The number of bytes to read per block

• The number of blocks to read

• The file variable

Thus, the line fread(&r,sizeof(struct rec),1,f); says to read 12 bytes (the size of

rec) from the file f (from the current location of the file pointer) into memory

address &r. One block of 12 bytes is requested. It would be just as easy to read

100 blocks from disk into an array in memory by changing 1 to 100.

The fwrite function works the same way, but moves the block of bytes from mem-

ory to the file. The fseek function moves the file pointer to a byte in the file. Gen-

erally, you move the pointer in sizeof(struct rec) increments to keep the pointer

at record boundaries. You can use three options when seeking:

• SEEK_SET

• SEEK_CUR

• SEEK_END

SEEK_SET moves the pointer x bytes down from the beginning of the file (from

byte 0 in the file). SEEK_CUR moves the pointer x bytes down from the current

pointer position. SEEK_END moves the pointer from the end of the file (so you

must use negative offsets with this option).
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Several different options appear in the code above. In particular, note the section

where the file is opened with r+ mode. This opens the file for reading and writing,

which allows records to be changed. The code seeks to a record, reads it, and

changes a field; it then seeks back because the read displaced the pointer, and

writes the change back.
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Further reading

For more information on C and related topics, check out the links below.

1. Cprogramming.com: Programming Tutorials

2. C Program Development Cycle

3. Introduction to Object-Oriented Programming Using C++

4. C Programming

5. comp.lang.c Frequently Asked Questions
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