
Security Assessment

Panther ZKP Vesting
Nov 16th, 2021

Table of Contents
Summary

Overview
Project Summary

Audit Summary

Vulnerability Summary

Audit Scope

Findings
GLOBAL-01 : Unlocked Compiler Version

PSC-01 : Centralization Risk

PSC-02 : Potential Reentrancy Attack

PSC-03 : External Dependency

PSC-04 : Missing Error Messages

PSC-05 : Missing Emit Events

VPC-01 : Centralization Risk

VPC-02 : Releasable Amount May be Incorrect if Pool Time is Changed After Tokens are Released

VPC-03 : Potential Reentrancy Attack

VPC-04 : Incorrect Value Assignment of `poolId`

VPC-05 : External Dependency

VPC-06 : Missing Error Messages

VPC-07 : Missing Event Emissions for Significant Transactions

VPC-08 : Inefficient **require** Location

Appendix

Disclaimer

About

Panther ZKP Vesting Security Assessment

Summary
This report has been prepared for Panther Protocol to discover issues and vulnerabilities in the source

code of the Panther ZKP Vesting project as well as any contract dependencies that were not part of an

officially recognized library. A comprehensive examination has been performed, utilizing Static Analysis and

Manual Review techniques.

The auditing process pays special attention to the following considerations:

Testing the smart contracts against both common and uncommon attack vectors.

Assessing the codebase to ensure compliance with current best practices and industry standards.

Ensuring contract logic meets the specifications and intentions of the client.

Cross referencing contract structure and implementation against similar smart contracts produced

by industry leaders.

Thorough line-by-line manual review of the entire codebase by industry experts.

The security assessment resulted in findings that ranged from critical to informational. We recommend

addressing these findings to ensure a high level of security standards and industry practices. We suggest

recommendations that could better serve the project from the security perspective:

Enhance general coding practices for better structures of source codes;

Add enough unit tests to cover the possible use cases;

Provide more comments per each function for readability, especially contracts that are verified in

public;

Provide more transparency on privileged activities once the protocol is live.

Panther ZKP Vesting Security Assessment

Overview

Project Summary

Project Name Panther ZKP Vesting

Platform other

Language Solidity

Codebase https://github.com/pantherprotocol/zkp-token/tree/master/contracts

Commit
f1e9d857dbd1660d90f1f029511f93417896d792
ed7262b28e35f561cf35c66b4ac1bf60690d87a4

Audit Summary

Delivery Date Nov 16, 2021

Audit Methodology Static Analysis, Manual Review

Key Components

Vulnerability Summary

Vulnerability Level Total Pending Declined Acknowledged Partially Resolved Resolved

Critical 0 0 0 0 0 0

Major 3 0 0 2 0 1

Medium 3 0 0 2 0 1

Minor 2 0 0 2 0 0

Informational 6 0 0 3 0 3

Discussion 0 0 0 0 0 0

Panther ZKP Vesting Security Assessment

https://github.com/pantherprotocol/zkp-token/tree/master/contracts

Audit Scope

ID File SHA256 Checksum

CCK interfaces/Constants.sol 262cddb01adf7bff3c3f582e0fb1ef33d8989786cd5c4ad60688bb2a8bb93e8a

IMC interfaces/IMintable.sol 2e415fee5ca3ef70a3490e00ab957e8fd99f960452327765add2d18de749e37e

IVP interfaces/IVestingPools.sol 02560eb0c3691fcaeb7f859f793003124ec9f0b54b34b3964ffe5afc37d0caf2

TCK interfaces/Types.sol 79ebea3762649bf65421a21803ad7b5141cfb8eb76c6abee90ffb9a21fee0afc

CCP utils/Claimable.sol cb78483efb0f02b2a69313c5f547d31052a9f7e46c49f910c6fa2094f8460862

DOC utils/DefaultOwnable.sol a10d5a3adc25cec3d783da1742321f64fb588083fb76e9a7e427733994a5c01f

LCK utils/Linking.sol e6cc61aa66178bb061ee37ddd725403978f5c5b448756f240e215a300aef97e4

PFC utils/ProxyFactory.sol 9d7e546209c3f60236a462db0d107f64dad7dabadb4fe780f8660cf6fb6d3a4a

SUC utils/SafeUints.sol de4d16d060c232460873795102bfef1382bba816f193b102e99d100d9da2c8b4

PSC PoolStakes.sol da6535f17682111f07159d3659ccf4035c61cc01d2d6c7fbb5a87e21fa0f1de6

VPC VestingPools.sol a78b78849a776b5943e57a44d30489b6f2a102594deffc052f034f57ad8463f8

ZKP ZKPToken.sol dae1edcf593ba4e946cce0d860bbd2663b6b65b12865bf6a22af670693bbac89

Panther ZKP Vesting Security Assessment

Understandings

Overview

The Panther Protocol is a blockchain network with a focus on privacy while also providing compliance

tools through zero-knowledge proofs. In this report, we looked at the Panther Protocol's ZKP token as well

as their implementation of vesting pools. This includes how stakeholders interact with the vesting pool and

the implementation of a vesting pool's wallet.

Dependencies

We assume the contracts PoolStakes , VestingPools , ZKPToken , Constants , Claimable ,

DefaultOwnable , TokenAddress , VestingPoolsAddress , DefaultOwnerAddress , ProxyFactory , and

SafeUints are deployed successfully and triggered correctly within the protocol.

There are a few depending injection contracts or addresses in the current project:

DefaultOwnerAddress , TokenAddress , and VestingPoolsAddress for the contract PoolStakes ;

TokenAddress for the contract VestingPools ;

_minter for the contract ZKPToken .

We assume these contracts or addresses are valid and non-vulnerable actors and implementing proper

logic to collaborate with the current project.

Privileged Functions

In the contract PoolStakes , the roles _owner and _defaultOwner have the authority over the following

functions:

PoolStakes.addStakes() , which adds stakeholders along with their allocations to a proxy;

PoolStakes.massWithdraw() , which sends tokens to stakeholders;

PoolStakes.claimErc20() , which sends the contract's extra tokens to an address;

PoolStakes.removeContract() , which destroys a proxy version of the contract under the conditions

that all stakes have been paid and the contract does not contain any vested Tokens;

DefaultOwnable.transferOwnership() , which transfers the _owner role to a designated address.

In the contract VestingPools , the role _owner has the authority over the following functions:

VestingPools.addVestingPools() , which adds a vesting pool and its associated wallet;

VestingPools.updatePoolTime() , which changes the start time and vesting duration of a vesting

pool;

VestingPools.claimErc20() , which sends ERC20 tokens or unvested tokens to an address;

Panther ZKP Vesting Security Assessment

VestingPools.removeContract() , which destroys the VestingPools contract under the condition

that all allocated tokens have been vested;

Ownable.renounceOwnership() , which disables all functions with the onlyOwner modifier;

Ownable.transferOwnership() , which transfers the _owner role to a different address.

In addition, the wallet associated to the vesting pool has the authority over the following functions:

VestingPools.release() , which sends tokens allocated in the vesting pool to the wallet;

VestingPools.releaseTo() , which sends tokens allocated in the vesting pool to a chosen address;

VestingPools.updatePoolWallet() , which changes the address of the wallet for that vesting pool.

In the contract ZKPToken , the role minter has the authority over the following functions:

ZKPToken.mint() , which mints new ZKP tokens;

ZKPToken.setMinter() , which sets the address for the minter role.

To improve the trustworthiness of the project, dynamic runtime updates in the project should be notified to

the community. Any plan to invoke the aforementioned functions should be also considered to move to the

execution queue of the Timelock contract.

Panther ZKP Vesting Security Assessment

Findings

ID Title Category Severity Status

GLOBAL-01 Unlocked Compiler Version
Language
Specific

Informational Resolved

PSC-01 Centralization Risk
Centralization /
Privilege

Major Acknowledged

PSC-02 Potential Reentrancy Attack Logical Issue Medium Acknowledged

PSC-03 External Dependency Volatile Code Minor Acknowledged

PSC-04 Missing Error Messages Coding Style Informational Resolved

PSC-05 Missing Emit Events Coding Style Informational Acknowledged

VPC-01 Centralization Risk
Centralization /
Privilege

Major Acknowledged

VPC-02
Releasable Amount May be Incorrect if Pool
Time is Changed After Tokens are Released

Logical Issue Major Resolved

VPC-03 Potential Reentrancy Attack Logical Issue Medium Acknowledged

VPC-04 Incorrect Value Assignment of poolId Logical Issue Medium Resolved

VPC-05 External Dependency Volatile Code Minor Acknowledged

VPC-06 Missing Error Messages Coding Style Informational Resolved

VPC-07
Missing Event Emissions for Significant
Transactions

Coding Style Informational Acknowledged

Panther ZKP Vesting Security Assessment

14
Total Issues

Critical 0 (0.00%)

Major 3 (21.43%)

Medium 3 (21.43%)

Minor 2 (14.29%)

Informational 6 (42.86%)

Discussion 0 (0.00%)

ID Title Category Severity Status

VPC-08 Inefficient require Location
Gas
Optimization

Informational Acknowledged

Panther ZKP Vesting Security Assessment

GLOBAL-01 | Unlocked Compiler Version

Category Severity Location Status

Language Specific Informational Global Resolved

Description

The contract has unlocked compiler version. An unlocked compiler version in the source code of the

contract permits the user to compile it at or above a particular version. This, in turn, leads to differences in

the generated bytecode between compilations due to differing compiler version numbers. This can lead to

an ambiguity when debugging as compiler specific bugs may occur in the codebase that would be hard to

identify over a span of multiple compiler versions rather than a specific one.

Recommendation

We advise that the compiler version is instead locked at the lowest version possible that the contract can

be compiled at. For example, for version v0.6.2 the contract should contain the following line:

pragmapragma soliditysolidity 0.60.6.2.2;;

Alleviation

The development team heeded our advice and applied an exact compiler version (8.4) in the

hardhat.config.ts.

Panther ZKP Vesting Security Assessment

PSC-01 | Centralization Risk

Category Severity Location Status

Centralization /
Privilege

Major
projects/panther/contracts/PoolStakes.sol (9a05001): 138, 174
, 183, 201

Acknowledged

Description

In the contract PoolStakes , the roles _owner and _defaultOwner have the authority over the following

functions:

PoolStakes.addStakes() , which adds stakeholders along with their allocations to a proxy;

PoolStakes.massWithdraw() , which sends tokens to stakeholders;

PoolStakes.claimErc20() , which sends the contract's extra tokens to an address;

PoolStakes.removeContract() , which destroys a proxy version of the contract under the conditions

that all stakes have been paid and the contract does not contain any vested Tokens.

Any compromise to the _owner or _defaultOwner accounts may allow the hacker to take advantage of

this and add unwanted stakeholders or steal tokens.

Recommendation

We advise the client to carefully manage the _owner and _defaultOwner accounts' private key to avoid

any potential risks of being hacked. In general, we strongly recommend centralized privileges or roles in

the protocol to be improved via a decentralized mechanism or smart-contract-based accounts with

enhanced security practices, e.g., Multisignature wallets.

Here are some feasible suggestions that would also mitigate this risk in the short-term and long-term:

A time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key;

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

Alleviation

[Panther Team]: the Deployment Plan (docs/deploymentPlan.README.md) and the Contracts Hierarchy

diagram (docs/ZKP-contracts-hierarchy.png) explicitly state the DAO Multisig as the

PoolStakes._defaultOwner.

Panther ZKP Vesting Security Assessment

Moreover, “governance/voting” smart contracts are the ones planned to be audited next. Furthermore, out

of functions mentioned, which the owner has privileges to call, only PoolStakes.addStakes() is potentially

harmful for stakeholders; this function is intended to be used once only, on the contract(s) initial

initialization, and for the entire available allocation of a vesting pool the contract distributes (which makes

this function useless for attacks).

[Certik]: The auditors agree that multi-signature wallets will reduce the centralization risks. The status of

this issue will be updated after contract deployment upon request.

Panther ZKP Vesting Security Assessment

PSC-02 | Potential Reentrancy Attack

Category Severity Location Status

Logical
Issue

Medium
projects/panther/contracts/PoolStakes.sol (9a05001): 91, 101, 107, 17
4

Acknowledged

Description

A reentrancy attack can occur when the contract creates a function that makes an external call to another

untrusted contract before resolving any effects. If the attacker can control the untrusted contract, they can

make a recursive call back to the original function, repeating interactions that would have otherwise not run

after the external call resolved the effects.

Recommendation

We recommend using the Checks-Effects-Interactions Pattern to avoid the risk of calling unknown

contracts or applying OpenZeppelin ReentrancyGuard library - nonReentrant modifier for the

aforementioned functions to prevent reentrancy attack.

Alleviation

[Panther Team]: Mentioned functions call the audited smart contracts only, which neither re-enter calling

contracts, no call other contracts, which potentially may re-enter.

[Certik]: Considering the auditors cannot ensure the deployment will proceed correctly, the status of this

issue will be updated after contract deployment upon request.

Panther ZKP Vesting Security Assessment

https://docs.soliditylang.org/en/v0.6.12/security-considerations.html#use-the-checks-effects-interactions-pattern
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol

PSC-03 | External Dependency

Category Severity Location Status

Volatile Code Minor projects/panther/contracts/PoolStakes.sol (9a05001): 10 Acknowledged

Description

The contract is serving as the underlying wallet to interact with ZKPToken and VestingPools . The scope of

the audit treats external dependencies as black boxes and assumes their functional correctness. In order

to successfully deploy this contract, the right addresses should be provided, especially the

DefaultOwnerAddress who is a privileged role in this project.

Recommendation

We encourage the team to constantly monitor the statuses of external parties to mitigate the side effects

when unexpected activities are observed.

Alleviation

[Panther Team]: There are no external dependencies - contracts depend only on the audited smart

contracts.

[Certik]: Considering the auditors cannot ensure the deployment will proceed correctly, the status of this

issue will be updated after contract deployment upon request.

Panther ZKP Vesting Security Assessment

PSC-04 | Missing Error Messages

Category Severity Location Status

Coding Style Informational projects/panther/contracts/PoolStakes.sol (9a05001): 292 Resolved

Description

The require can be used to check for conditions and throw an exception if the condition is not met. It is

better to provide a string message containing details about the error that will be passed back to the caller.

Recommendation

We recommend adding corresponding error messages for the aforementioned require statement.

Alleviation

The development team heeded our advice and added an error message to the require statement in

commit 3510f7bafde4e095341e042d59b1a870444a6d52.

Panther ZKP Vesting Security Assessment

PSC-05 | Missing Emit Events

Category Severity Location Status

Coding Style Informational projects/panther/contracts/PoolStakes.sol (9a05001): 183, 201 Acknowledged

Description

The functions affect the status of the contract in important ways and should be able to emit events as

notifications:

PoolStakes.claimErc20()

PoolStakes.removeContract()

Recommendation

Consider adding events for sensitive actions and emit them in the function.

Alleviation

The Panther team has relayed to us that the mentioned transactions are not major protocol transactions

and do not represent an interest for stakeholders/investors. They are also not emitted to save gas.

Panther ZKP Vesting Security Assessment

VPC-01 | Centralization Risk

Category Severity Location Status

Centralization /
Privilege

Major
projects/panther/contracts/VestingPools.sol (9a05001): 121, 163,
186, 202, 90, 99, 109

Acknowledged

Description

In the contract VestingPools , the role _owner has the authority over the following functions:

VestingPools.addVestingPools() , which adds a vesting pool and its associated wallet;

VestingPools.updatePoolTime() , which changes the start time and vesting duration of a vesting

pool;

VestingPools.claimErc20() , which sends ERC20 tokens or unvested tokens to an address;

VestingPools.removeContract() , which destroys the VestingPools contract under the condition

that all allocated tokens have been vested.

In addition, the wallet associated to the vesting pool has the authority over the following functions:

VestingPools.release() , which sends tokens allocated in the vesting pool to the wallet;

VestingPools.releaseTo() , which sends tokens allocated in the vesting pool to a chosen address;

VestingPools.updatePoolWallet() , which changes the address of the wallet for that vesting pool.

Any compromise to the _owner account may allow the hacker to sabotage vesting pools or steal tokens

while any compromise to the wallet may allow the hacker to steal allocated tokens.

Recommendation

We advise the client to carefully manage the _owner account's private key to avoid any potential risks of

being hacked. In general, we strongly recommend centralized privileges or roles in the protocol to be

improved via a decentralized mechanism or smart-contract-based accounts with enhanced security

practices, e.g., Multisignature wallets.

Here are some feasible suggestions that would also mitigate this risk in the short-term and long-term:

A time-lock with reasonable latency, e.g., 48 hours, for awareness on privileged operations;

Assignment of privileged roles to multi-signature wallets to prevent a single point of failure due to the

private key;

Introduction of a DAO/governance/voting module to increase transparency and user involvement.

Panther ZKP Vesting Security Assessment

Alleviation

[Panther Team]: the Deployment Plan (docs/deploymentPlan.README.md) and the Contracts Hierarchy

diagram (docs/ZKP-contracts-hierarchy.png) explicitly state the DAO Multisig as the owner of the

VestingPools instance.

[Certik]: The auditors agree that multi-signature wallets will reduce the centralization risks. The status of

this issue will be updated after contract deployment upon request.

Panther ZKP Vesting Security Assessment

VPC-02 | Releasable Amount May be Incorrect if Pool Time is Changed

After Tokens are Released

Category Severity Location Status

Logical Issue Major projects/panther/contracts/VestingPools.sol (9a05001): 163 Resolved

Description

If a vesting pool has already released allocated tokens and then its start time is changed, this could cause

an inaccurate measurement of its releasable amount.

For example, suppose we have a vesting pool with the following attributes:

pool.isAdjustable = true ,

pool.vestingDays = 0 ,

pool.sAllocation = 100 ,

pool.sUnlocked = 100 ,

pool.vested = 0 .

Suppose the current time is greater than the pool.start , and all 100 * SCALE tokens are released to the

wallet, so pool.vested = 100 * SCALE and _getReleasable(pool, block.timestamp) = 0 .

If updatePoolTime() is called on the same pool , changing pool.start to some time in the future, then

exactly when block.timestamp = pool.start (and no later), we will have _getReleasable(pool,

pool.start) = pool.sUnlocked = 100 . This allows release() to be called again even though all

allocated tokens have already been vested.

Recommendation

We recommend only allowing updatePoolTime() to be called if pool.start > block.timestamp or

changing the logic of _getReleasable() .

Alleviation

This issue was resolved by no longer having a special case for when timeNow == pool.start in commit

ed7262b28e35f561cf35c66b4ac1bf60690d87a4.

Panther ZKP Vesting Security Assessment

VPC-03 | Potential Reentrancy Attack

Category Severity Location Status

Logical Issue Medium projects/panther/contracts/VestingPools.sol (9a05001): 90, 99~103 Acknowledged

Description

A reentrancy attack can occur when the contract creates a function that makes an external call to another

untrusted contract before resolving any effects. If the attacker can control the untrusted contract, they can

make a recursive call back to the original function, repeating interactions that would have otherwise not run

after the external call resolved the effects.

Recommendation

We recommend using the Checks-Effects-Interactions Pattern to avoid the risk of calling unknown

contracts or applying OpenZeppelin ReentrancyGuard library - nonReentrant modifier for the

aforementioned functions to prevent reentrancy attack.

Alleviation

[Panther Team]: Mentioned functions call the audited smart contracts only, which neither re-enter calling

contracts, no call other contracts, which potentially may re-enter.

[Certik]: Considering the auditors do not know if the deployment will proceed correctly, the status of this

issue will be updated after contract deployment upon request.

Panther ZKP Vesting Security Assessment

https://docs.soliditylang.org/en/v0.6.12/security-considerations.html#use-the-checks-effects-interactions-pattern
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol

VPC-04 | Incorrect Value Assignment of poolId

Category Severity Location Status

Logical Issue Medium projects/panther/contracts/VestingPools.sol (9a05001): 145 Resolved

Description

In the function addVestingPools , the poolId is assigned as the pools.length , which is constant over the

iterations. Based on the fundamental logic of pushing a new entry into an array, in order to emit the right

information about the newly added pools and wallets, the correct pool ID should be

 uint256uint256 poolId poolId == _pools _pools..lengthlength;;

Recommendation

We recommend using the following logic to assign the correct poolId .

 uint256uint256 poolId poolId == _pools _pools..lengthlength;;

Alleviation

This was resolved by assigning the correct poolId in commit

ed7262b28e35f561cf35c66b4ac1bf60690d87a4.

Panther ZKP Vesting Security Assessment

VPC-05 | External Dependency

Category Severity Location Status

Volatile Code Minor projects/panther/contracts/VestingPools.sol (9a05001): 12 Acknowledged

Description

The contract is serving as the underlying pool to interact with ZKPToken . The scope of the audit treats

external dependencies as black boxes and assumes their functional correctness. In order to successfully

deploying this contract, the correct address of TokenAddress should be provided.

Recommendation

We encourage the team to constantly monitor the statuses of external parties to mitigate the side effects

when unexpected activities are observed.

Alleviation

[Panther Team]: There are no external dependencies - contracts depend only on the audited smart

contracts.

[Certik]: Considering the auditors do not know if the deployment will proceed correctly, the status of this

issue will be updated after contract deployment upon request.

Panther ZKP Vesting Security Assessment

VPC-06 | Missing Error Messages

Category Severity Location Status

Coding Style Informational projects/panther/contracts/VestingPools.sol (9a05001): 204 Resolved

Description

The require can be used to check for conditions and throw an exception if the condition is not met. It is

better to provide a string message containing details about the error that will be passed back to the caller.

Recommendation

We recommend adding corresponding error messages for the aforementioned require statement.

Alleviation

An error message was added to the require statement in commit

3510f7bafde4e095341e042d59b1a870444a6d52.

Panther ZKP Vesting Security Assessment

VPC-07 | Missing Event Emissions for Significant Transactions

Category Severity Location Status

Coding Style Informational projects/panther/contracts/VestingPools.sol (9a05001): 186, 202 Acknowledged

Description

The functions affect the status of the contract in important ways and should be able to emit events as

notifications.

VestingPools.claimErc20() , which sends ERC20 tokens or unvested tokens to an address;

VestingPools.removeContract() , which destroys the VestingPools contract under the condition

that all allocated tokens have been vested.

Recommendation

We recommend emitting events for all the essential state variables that are possible to be changed during

the runtime.

Alleviation

The Panther team has relayed to us that the mentioned transactions are not major protocol transactions

and do not represent an interest for stakeholders/investors. They are also not emitted to save gas.

Panther ZKP Vesting Security Assessment

VPC-08 | Inefficient require Location

Category Severity Location Status

Gas Optimization Informational projects/panther/contracts/VestingPools.sol (9a05001): 154 Acknowledged

Description

The function addVestingPools() adds vesting pools and their corresponding allocations. When adding a

new vesting pool, the total allocation for the pool is updated:

129129 uint256uint256 updAllocation updAllocation == uint256uint256((totalAllocationtotalAllocation));;

At the end of the loop, a require checks the total allocation amount is less than the MAX_SUPPLY .

154154 requirerequire((updAllocation updAllocation <=<= MAX_SUPPLY MAX_SUPPLY,, "VPools: supply exceeded""VPools: supply exceeded"));;

Since the cost of storage type data is far more expensive than a require, it is more gas efficient to

relocate the require statement inside the for loop in case of reverting.

Recommendation

We recommend relocating the aforementioned the require into the for loop.

Alleviation

[Panther Team]: Gas costs in this function is intentionally optimized for execution w/o reverting (note, it’s

supposed to be a one-time call that adds all vesting pools at once on deployment and initial configuration

of contracts).

Panther ZKP Vesting Security Assessment

Appendix

Finding Categories

Centralization / Privilege

Centralization / Privilege findings refer to either feature logic or implementation of components that act

against the nature of decentralization, such as explicit ownership or specialized access roles in

combination with a mechanism to relocate funds.

Gas Optimization

Gas Optimization findings do not affect the functionality of the code but generate different, more optimal

EVM opcodes resulting in a reduction on the total gas cost of a transaction.

Logical Issue

Logical Issue findings detail a fault in the logic of the linked code, such as an incorrect notion on how

block.timestamp works.

Volatile Code

Volatile Code findings refer to segments of code that behave unexpectedly on certain edge cases that may

result in a vulnerability.

Language Specific

Language Specific findings are issues that would only arise within Solidity, i.e. incorrect usage of private or

delete.

Coding Style

Coding Style findings usually do not affect the generated byte-code but rather comment on how to make

the codebase more legible and, as a result, easily maintainable.

Checksum Calculation Method

The "Checksum" field in the "Audit Scope" section is calculated as the SHA-256 (Secure Hash Algorithm 2

with digest size of 256 bits) digest of the content of each file hosted in the listed source repository under

the specified commit.

Panther ZKP Vesting Security Assessment

The result is hexadecimal encoded and is the same as the output of the Linux "sha256sum" command

against the target file.

Panther ZKP Vesting Security Assessment

Disclaimer
This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability) set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to you (“Customer” or the “Company”) in connection with the

Agreement. This report provided in connection with the Services set forth in the Agreement shall be used

by the Company only to the extent permitted under the terms and conditions set forth in the Agreement.

This report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes,

nor may copies be delivered to any other person other than the Company, without CertiK’s prior written

consent in each instance.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular project or

team. This report is not, nor should be considered, an indication of the economics or value of any

“product” or “asset” created by any team or project that contracts CertiK to perform a security

assessment. This report does not provide any warranty or guarantee regarding the absolute bug-free

nature of the technology analyzed, nor do they provide any indication of the technologies proprietors,

business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with any

particular project. This report in no way provides investment advice, nor should be leveraged as investment

advice of any sort. This report represents an extensive assessing process intending to help our customers

increase the quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. CertiK’s position is

that each company and individual are responsible for their own due diligence and continuous security.

CertiK’s goal is to help reduce the attack vectors and the high level of variance associated with utilizing

new and consistently changing technologies, and in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

The assessment services provided by CertiK is subject to dependencies and under continuing

development. You agree that your access and/or use, including but not limited to any services, reports,

and materials, will be at your sole risk on an as-is, where-is, and as-available basis. Cryptographic tokens

are emergent technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives, false negatives, and other unpredictable results. The

services may access, and depend upon, multiple layers of third-parties.

ALL SERVICES, THE LABELS, THE ASSESSMENT REPORT, WORK PRODUCT, OR OTHER MATERIALS,

OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF ARE PROVIDED “AS IS” AND “AS

Panther ZKP Vesting Security Assessment

AVAILABLE” AND WITH ALL FAULTS AND DEFECTS WITHOUT WARRANTY OF ANY KIND. TO THE

MAXIMUM EXTENT PERMITTED UNDER APPLICABLE LAW, CERTIK HEREBY DISCLAIMS ALL

WARRANTIES, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE

SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS. WITHOUT LIMITING THE FOREGOING,

CERTIK SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT, AND ALL WARRANTIES ARISING FROM

COURSE OF DEALING, USAGE, OR TRADE PRACTICE. WITHOUT LIMITING THE FOREGOING, CERTIK

MAKES NO WARRANTY OF ANY KIND THAT THE SERVICES, THE LABELS, THE ASSESSMENT REPORT,

WORK PRODUCT, OR OTHER MATERIALS, OR ANY PRODUCTS OR RESULTS OF THE USE THEREOF,

WILL MEET CUSTOMER’S OR ANY OTHER PERSON’S REQUIREMENTS, ACHIEVE ANY INTENDED

RESULT, BE COMPATIBLE OR WORK WITH ANY SOFTWARE, SYSTEM, OR OTHER SERVICES, OR BE

SECURE, ACCURATE, COMPLETE, FREE OF HARMFUL CODE, OR ERROR-FREE. WITHOUT LIMITATION

TO THE FOREGOING, CERTIK PROVIDES NO WARRANTY OR UNDERTAKING, AND MAKES NO

REPRESENTATION OF ANY KIND THAT THE SERVICE WILL MEET CUSTOMER’S REQUIREMENTS,

ACHIEVE ANY INTENDED RESULTS, BE COMPATIBLE OR WORK WITH ANY OTHER SOFTWARE,

APPLICATIONS, SYSTEMS OR SERVICES, OPERATE WITHOUT INTERRUPTION, MEET ANY

PERFORMANCE OR RELIABILITY STANDARDS OR BE ERROR FREE OR THAT ANY ERRORS OR

DEFECTS CAN OR WILL BE CORRECTED.

WITHOUT LIMITING THE FOREGOING, NEITHER CERTIK NOR ANY OF CERTIK’S AGENTS MAKES ANY

REPRESENTATION OR WARRANTY OF ANY KIND, EXPRESS OR IMPLIED AS TO THE ACCURACY,

RELIABILITY, OR CURRENCY OF ANY INFORMATION OR CONTENT PROVIDED THROUGH THE

SERVICE. CERTIK WILL ASSUME NO LIABILITY OR RESPONSIBILITY FOR (I) ANY ERRORS, MISTAKES,

OR INACCURACIES OF CONTENT AND MATERIALS OR FOR ANY LOSS OR DAMAGE OF ANY KIND

INCURRED AS A RESULT OF THE USE OF ANY CONTENT, OR (II) ANY PERSONAL INJURY OR

PROPERTY DAMAGE, OF ANY NATURE WHATSOEVER, RESULTING FROM CUSTOMER’S ACCESS TO

OR USE OF THE SERVICES, ASSESSMENT REPORT, OR OTHER MATERIALS.

ALL THIRD-PARTY MATERIALS ARE PROVIDED “AS IS” AND ANY REPRESENTATION OR WARRANTY

OF OR CONCERNING ANY THIRD-PARTY MATERIALS IS STRICTLY BETWEEN CUSTOMER AND THE

THIRD-PARTY OWNER OR DISTRIBUTOR OF THE THIRD-PARTY MATERIALS.

THE SERVICES, ASSESSMENT REPORT, AND ANY OTHER MATERIALS HEREUNDER ARE SOLELY

PROVIDED TO CUSTOMER AND MAY NOT BE RELIED ON BY ANY OTHER PERSON OR FOR ANY

PURPOSE NOT SPECIFICALLY IDENTIFIED IN THIS AGREEMENT, NOR MAY COPIES BE DELIVERED TO,

ANY OTHER PERSON WITHOUT CERTIK’S PRIOR WRITTEN CONSENT IN EACH INSTANCE.

NO THIRD PARTY OR ANYONE ACTING ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR

OTHER BENEFICIARY OF SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

Panther ZKP Vesting Security Assessment

MATERIALS AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF CONTRIBUTION AGAINST

CERTIK WITH RESPECT TO SUCH SERVICES, ASSESSMENT REPORT, AND ANY ACCOMPANYING

MATERIALS.

THE REPRESENTATIONS AND WARRANTIES OF CERTIK CONTAINED IN THIS AGREEMENT ARE

SOLELY FOR THE BENEFIT OF CUSTOMER. ACCORDINGLY, NO THIRD PARTY OR ANYONE ACTING

ON BEHALF OF ANY THEREOF, SHALL BE A THIRD PARTY OR OTHER BENEFICIARY OF SUCH

REPRESENTATIONS AND WARRANTIES AND NO SUCH THIRD PARTY SHALL HAVE ANY RIGHTS OF

CONTRIBUTION AGAINST CERTIK WITH RESPECT TO SUCH REPRESENTATIONS OR WARRANTIES OR

ANY MATTER SUBJECT TO OR RESULTING IN INDEMNIFICATION UNDER THIS AGREEMENT OR

OTHERWISE.

FOR AVOIDANCE OF DOUBT, THE SERVICES, INCLUDING ANY ASSOCIATED ASSESSMENT REPORTS

OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, TAX,

LEGAL, REGULATORY, OR OTHER ADVICE.

Panther ZKP Vesting Security Assessment

About
Founded in 2017 by leading academics in the field of Computer Science from both Yale and Columbia

University, CertiK is a leading blockchain security company that serves to verify the security and

correctness of smart contracts and blockchain-based protocols. Through the utilization of our world-class

technical expertise, alongside our proprietary, innovative tech, we’re able to support the success of our

clients with best-in-class security, all whilst realizing our overarching vision; provable trust for all

throughout all facets of blockchain.

Panther ZKP Vesting Security Assessment

