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Chapter 1

OSPRayOverview

Intel® OSPRay is an open source, scalable, and portable ray tracing engine for
high-performance, high-fidelity visualization on Intel Architecture CPUs, Intel
Xe GPUs, and ARM64 CPUs. OSPRay is part of the Intel Rendering Toolkit (Ren-
der Kit) and is released under the permissive Apache 2.0 license.

The purpose of OSPRay is to provide an open, powerful, and easy-to-use
rendering library that allows one to easily build applications that use ray tracing
based rendering for interactive applications (including both surface- and volume-
based visualizations). OSPRay runs on anything from laptops, to workstations,
to compute nodes in HPC systems.

OSPRay internally builds on top of Intel Embree, Intel Open VKL, and Intel
Open Image Denoise. The CPU implementation is based on Intel ISPC (Implicit
SPMD Program Compiler) and fully exploits modern instruction sets like Intel
SSE4, AVX, AVX2, AVX-512 and NEON to achieve high rendering performance.
Hence, a CPU with support for at least SSE4.1 is required to run OSPRay on
x86_64 architectures, or a CPUwith support for NEON is required to run OSPRay
on ARM64 architectures.

OSPRay’s GPU implementation (beta status) is based on the SYCL cross-
platform programming language implemented by Intel oneAPI Data Parallel
C++ (DPC++) and currently supports Intel Arc™ GPUs on Linux and Windows,
and Intel Data Center GPU Flex and Max Series on Linux, exploiting ray tracing
hardware support.

1.1 OSPRay Support andContact

OSPRay is under active development, and though we do our best to guarantee
stable release versions a certain number of bugs, as-yet-missing features, incon-
sistencies, or any other issues are still possible. For any such requests or findings
please use OSPRay’s GitHub Issue Tracker (or, if you should happen to have a
fix for it, you can also send us a pull request).

To receive release announcements simply “Watch” the OSPRay repository on
GitHub.

Changes in v3.2.0:
• Sampling improvements:

– Better performance (lower rendering time and faster convergence)
– More pleasing blue noise enabled when the total number of frames

to be accumulated is known in advance and set as the targetFrames
parameter at the framebuffer

– Note a maximum of 64k samples is supported

https://software.intel.com/en-us/rendering-framework
https://software.intel.com/en-us/rendering-framework
http://www.apache.org/licenses/LICENSE-2.0
https://www.embree.org/
https://www.openvkl.org/
https://openimagedenoise.github.io/
https://ispc.github.io/
https://ispc.github.io/
https://www.khronos.org/sycl/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/data-parallel-c-plus-plus.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/data-parallel-c-plus-plus.html
https://github.com/ospray/OSPRay/issues
https://github.com/ospray/OSPRay
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• Improved denoiser image operation:

– User-controlled quality levels via parameter quality
– Optionally denoise alpha channel as well, enabled via parameter de-

noiseAlpha

• Support half-precision (16 bit float) texture formats OSP_TEXTURE_[RGBA16F|RGB16F|RA16F|R16F]
and two-channel 32 bit float textures OSP_TEXTURE_RA32F

• New parameter limitIndirectLightSamples for the pathtracerwhich
limits the number of light samples after the first non-specular (i.e., diffuse
and glossy) bounce to at most one

• Implement MIPMapping for better texture filtering. If the additional mem-
ory per texture needed cannot be spared, applications can disable the gen-
eration of MIP maps with device parameter disableMipMapGeneration

• The backplate (background texture) is now always sampled at the pixel
center and thus not blurred by the pixel filter anymore

• Avoid color bleeding across eye-subimages when stereo rendering
• Superbuild uses binary packages of Open VKL
• Removed Intel ISPCRT dependency (ISPC compiler is still needed):

– oneAPI Level Zero Loader is no longer necessary
– zeContext and zeDevicedevice parameters are no longer supported
– ispcrtContext and ispcrtDevicedevice parameters are no longer

supported

• Clarify the size of OSP_BOOL to be 1 byte
• Fix artifacts occasionally appearing with gpu device
• The new minimum versions of dependencies:

– Embree v4.3.3 (better error reporting)
– Open Image Denoise v2.3 (better image quality with HIGH quality

mode, added FAST quality mode)
– rkcommon v1.14.0

Changes in v3.1.0:
• Principled and Luminous materials support emissive textures
• Add native support for disc and oriented disc geometry
• Add support for mirror repeat and clamp to edge texture wrap modes
• GPU device now also supports motion blur
• Improve noise in reflections of ThinGlass
• Improve adaptive accumulation: working with GPU, fix correlations
• Fix indirectly seen albedo and normal buffer
• Fix artifacts when using specular texture for Principled
• Fixes for PixelFilter

– Parameter was ignored (always using the default Gaussian)
– Avoid a shift/misalignment within the pixel for first sample

• Fix empty image on Windows when focusDistance=0
• Fix missing SDK headers for ISPCDevice*
• The new minimum versions of dependencies:

– Embree v4.3.1
– Open VKL v2.0.1
– Open Image Denoise v2.2 (better quality with fine details, support
AArch64 CPU on Linux)

– ISPCRT v1.23.0 (uses environment variable ISPCRT_GPU_DRIVER to
select GPU to run on when multiple (i)GPUs are present)

– rkcommon v1.13.0 (fixes crash using GPU and emissive geometry)
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For the complete history of changes have a look at the CHANGELOG.

https://github.com/ospray/ospray/blob/master/CHANGELOG.md
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Chapter 2

Building and FindingOSPRay

The latest OSPRay sources are always available at the OSPRay GitHub repository.
The default master branch should always point to the latest bugfix release.

2.1 Prerequisites

OSPRay currently supports Linux, Mac OS X, and Windows. In addition, before
you can build OSPRay you need the following prerequisites:

• You can clone the latest OSPRay sources via:

git clone https://github.com/ospray/ospray.git

• To build OSPRay you need CMake, any form of C++11 compiler (we recom-
mend using GCC, but also support Clang, MSVC, and Intel® C++ Compiler
(icc)), and standard Linux development tools.

• Additionally you require a copy of the Intel® Implicit SPMD Program Com-
piler (ISPC), version 1.23.0 or later. Please obtain a release of ISPC from
the ISPC downloads page. If ISPC is not found by CMake its location can
be hinted with the variable ISPC_EXECUTABLE.

• OSPRay builds on top of the Intel Rendering Toolkit (Render Kit) common
library (rkcommon). The library provides abstractions for tasking, aligned
memory allocation, vector math types, among others. For users who also
need to build rkcommon, we recommend the default the Intel Threading
Building Blocks (TBB) as tasking system for performance and flexibility
reasons. TBB must be built from source when targeting ARM CPUs, or
can be built from source as part of the superbuild. Alternatively you can
set CMake variable RKCOMMON_TASKING_SYSTEM to OpenMP or Internal.

• OSPRay also heavily uses Intel Embree, installing version 4.3.3 or newer is
required. If Embree is not found by CMake its location can be hinted with
the variable embree_DIR.

• OSPRay supports volume rendering (enabled by default via OSPRAY_EN-
ABLE_VOLUMES), which heavily uses Intel Open VKL, version 2.0.1 or newer
is required. If Open VKL is not found by CMake its location can be hinted
with the variable openvkl_DIR, or disable OSPRAY_ENABLE_VOLUMES.

• OSPRay also provides an optional module implementing the denoiser im-
age operation, which is enabled by OSPRAY_MODULE_DENOISER. This mod-
ule requires Intel Open Image Denoise in version 2.3.0 or newer. You may
need to hint the location of the library with the CMake variable OpenIm-
ageDenoise_DIR.

http://github.com/ospray/ospray
http://www.cmake.org
https://software.intel.com/en-us/c-compilers
https://software.intel.com/en-us/c-compilers
http://ispc.github.io
http://ispc.github.io
https://ispc.github.io/downloads.html
https://www.github.com/ospray/rkcommon
https://www.github.com/ospray/rkcommon
https://www.threadingbuildingblocks.org/
https://www.threadingbuildingblocks.org/
https://www.embree.org/
https://www.openvkl.org/
https://openimagedenoise.github.io/
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• For the optional MPI modules (enabled by OSPRAY_MODULE_MPI), which
provide the mpiOffload and mpiDistributed devices, you need an MPI
library and Google Snappy.

• The optional example application, the test suit and benchmarks need some
version of OpenGL and GLFW as well as GoogleTest and Google Bench-
mark

Depending on your Linux distribution you can install these dependencies
using yum or apt-get. Some of these packages might already be installed or
might have slightly different names.

Type the following to install the dependencies using yum:

sudo yum install cmake.x86_64
sudo yum install tbb.x86_64 tbb-devel.x86_64

Type the following to install the dependencies using apt-get:

sudo apt-get install cmake-curses-gui
sudo apt-get install libtbb-dev

Under Mac OS X these dependencies can be installed using MacPorts:

sudo port install cmake tbb

Under Windows please directly use the appropriate installers for CMake,
TBB, ISPC (for your Visual Studio version) and Embree.

Additional Prerequisites forGPUBuild
To build OSPRay’s GPU module you need

• a SYCL compiler, either the open source oneAPI DPC++ Compiler 2023-10-
26 or the latest Intel oneAPI DPC++/C++ Compiler

• a recent CMake, version 3.25.3 or higher

2.2 CMake Superbuild

For convenience, OSPRay provides a CMake Superbuild script which will pull
down OSPRay’s dependencies and build OSPRay itself. By default, the result is
an install directory, with each dependency in its own directory.

Run with:

mkdir build
cd build
cmake [<OSPRAY_SOURCE_DIR>/scripts/superbuild]
cmake --build .

On Windows make sure to select a 64 bit generator, e.g.

cmake -G "Visual Studio 17 2022" [<OSPRAY_SOURCE_DIR>/scripts/superbuild]

The resulting install directory (or the one set with CMAKE_INSTALL_PRE-
FIX) will have everything in it, with one subdirectory per dependency.

CMake options to note (all have sensible defaults):

CMAKE_INSTALL_PREFIX will be the root directory where everything gets
installed.

BUILD_JOBS sets the number given to make -j for parallel builds.

https://github.com/google/snappy
https://github.com/google/googletest
https://github.com/google/benchmark/
https://github.com/google/benchmark/
http://www.macports.org/
https://cmake.org/download/
https://github.com/oneapi-src/oneTBB/releases
https://ispc.github.io/downloads.html
https://github.com/embree/embree/releases/
https://github.com/intel/llvm/releases/tag/nightly-2023-10-26
https://github.com/intel/llvm/releases/tag/nightly-2023-10-26
https://www.intel.com/content/www/us/en/developer/articles/tool/oneapi-standalone-components.html#dpcpp-cpp
http://www.cmake.org
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INSTALL_IN_SEPARATE_DIRECTORIES toggles installation of all libraries in
separate or the same directory.

BUILD_OPENVKL whether to enable volume rendering via Open VKL
BUILD_EMBREE_FROM_SOURCE set toOFFwill download a pre-built version

of Embree.
BUILD_OIDN_FROM_SOURCE set to OFF will download a pre-built version of

Open Image Denoise.
OIDN_VERSION determines which version of Open Image Denoise to pull

down.
BUILD_OSPRAY_MODULE_MPI set to ON to build OSPRay’s MPI module for

data-replicated and distributed parallel rendering on multiple nodes.
BUILD_GPU_SUPPORT enables beta GPU support, fetching the SYCL variants

of the dependencies and builds OSPRAY_MODULE_GPU
BUILD_TBB_FROM_SOURCE set to ON to build TBB from source (required for

ARM support). The default setting is OFF.

For the full set of options, run:

ccmake [<OSPRAY_SOURCE_DIR>/scripts/superbuild]

or

cmake-gui [<OSPRAY_SOURCE_DIR>/scripts/superbuild]

2.2.1 Cross-Compilationwith theSuperbuild
The superbuild can be passed a CMake Toolchain file to configure for cross-
compilation. This is done by passing the toolchain file when running cmake.
When cross compiling it is also likely that you’ll want to build TBB and Embree
from source to ensure they’re built for the correct target, rather than the target
the Github binaries are built for. It may also be necessary to disable specific ISAs
for the target by passing BUILD_ISA_<ISA_NAME>=OFF as well.

mkdir build
cd build
cmake --toolchain [toolchain_file.cmake] [path/to/this/directory]

-DBUILD_TBB_FROM_SOURCE=ON \
-DBUILD_EMBREE_FROM_SOURCE=ON \
<other arguments>

While OSPRay supports ARM natively, it may be desirable to cross-compile
it for x86_64 to run in Rosetta depending on the application integrating OSPRay.
This can be done using the toolchain file toolchains/macos-rosetta.cmake,
and by disabling all non-SSE ISAs when building. This can also be done by
launching an x86_64 bash shell and then compiling as usual in this environment,
which will cause the compilation chain to target x86_64. The BUILD_ISA_<ISA
NAME>=OFF flags should be passed to disable all ISAs besides SSE4 for Rosetta:

arch -x86_64 bash
mkdir build
cd build
cmake [path/to/this/directory]

-DBUILD_TBB_FROM_SOURCE=ON \
-DBUILD_EMBREE_FROM_SOURCE=ON \
-DBUILD_ISA_AVX=OFF \
-DBUILD_ISA_AVX2=OFF \
-DBUILD_ISA_AVX512=OFF \
<other arguments>

https://cmake.org/cmake/help/latest/manual/cmake-toolchains.7.html
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2.3 StandardCMake Build

2.3.1 CompilingOSPRay on Linux andMacOSX
Assuming the above requisites are all fulfilled, building OSPRay through CMake
is easy:

• Create a build directory, and go into it

mkdir ospray/build
cd ospray/build

(We do recommend having separate build directories for different configu-
rations such as release, debug, etc.).

• The compiler CMake will use will default to whatever the CC and CXX
environment variables point to. Should you want to specify a different
compiler, run cmake manually while specifying the desired compiler. The
default compiler on most linux machines is gcc, but it can be pointed to
clang instead by executing the following:

cmake -DCMAKE_CXX_COMPILER=clang++ -DCMAKE_C_COMPILER=clang ..

CMake will now use Clang instead of GCC. If you are OK with using the
default compiler on your system, then simply skip this step. Note that the
compiler variables cannot be changed after the first cmake or ccmake run.

• Open the CMake configuration dialog

ccmake ..

• Make sure to properly set build mode and enable the components you need,
etc.; then type ’c’onfigure and ’g’enerate. When back on the command
prompt, build it using

make

• You should now have libospray.[so,dylib] as well as a set of example
applications.

2.3.2 CompilingOSPRay onWindows
On Windows using the CMake GUI (cmake-gui.exe) is the most convenient
way to configure OSPRay and to create the Visual Studio solution files:

• Browse to the OSPRay sources and specify a build directory (if it does not
exist yet CMake will create it).

• Click “Configure” and select as generator the Visual Studio version you
have; OSPRay needs “Visual Studio 15 2017 Win64” or newer, 32
bit builds are not supported, e.g., “Visual Studio 17 2022”.

• If the configuration fails because some dependencies could not be found
then follow the instructions given in the errormessage, e.g., set the variable
embree_DIR to the folder where Embree was installed and openvkl_DIR
to where Open VKL was installed.

• Optionally change the default build options, and then click “Generate” to
create the solution and project files in the build directory.
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• Open the generated OSPRay.sln in Visual Studio, select the build config-
uration and compile the project.

Alternatively, OSPRay can also be built without any GUI, entirely on the con-
sole. In the Visual Studio command prompt type:

cd path\to\ospray
mkdir build
cd build
cmake -G "Visual Studio 17 2022" [-D VARIABLE=value] ..
cmake --build . --config Release

Use -D to set variables for CMake, e.g., the path to Embree with “-D embree_
DIR=\path\to\embree”.

You can also build only some projects with the --target switch. Additional
parameters after “--” will be passed to msbuild. For example, to build in parallel
only the OSPRay library without the example applications use

cmake --build . --config Release --target ospray -- /m

2.4 Finding anOSPRay Install with CMake

Client applications using OSPRay can find it with CMake’s find_package()
command. For example,

find_package(ospray 3.0.0 REQUIRED)

finds OSPRay via OSPRay’s configuration file osprayConfig.cmake1. Once 1 This file is usually in ${install_lo-
cation}/[lib|lib64]/cmake/ospray-
${version}/. If CMake does not find it
automatically, then specify its location in
variable ospray_DIR (either an environment
variable or CMake variable).

found, the following is all that is required to use OSPRay:

target_link_libraries(${client_target} ospray::ospray)

This will automatically propagate all required include paths, linked libraries,
and compiler definitions to the client CMake target (either an executable or li-
brary).

Advanced users may want to link to additional targets which are exported in
OSPRay’s CMake config, which includes all installed modules. All targets built
with OSPRay are exported in the ospray:: namespace, therefore all targets lo-
cally used in the OSPRay source tree can be accessed from an install. For example,
ospray_module_cpu can be consumed directly via the ospray::ospray_mod-
ule_cpu target. All targets have their libraries, includes, and definitions attached
to them for public consumption (please report bugs if this is broken!).
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Chapter 3

OSPRayAPI

To access the OSPRay API you first need to include the OSPRay header

#include "ospray/ospray.h"

where the API is compatible with C99 and C++.

3.1 Initialization and Shutdown

To use the API, OSPRay must be initialized with a “device”. A device is the ob-
ject which implements the API. Creating and initializing a device can be done
in either of two ways: command line arguments using ospInit or manually in-
stantiating a device and setting parameters on it.

3.1.1 Command LineArguments

The first is to do so by giving OSPRay the command line from main() by calling

OSPError ospInit(int *argc, const char **argv);

OSPRay parses (and removes) its known command line parameters from your
application’s main function. For an example see the tutorial. For possible error
codes see section Error Handling and Status Messages. It is important to note
that the arguments passed to ospInit are processed in order they are listed. The
following parameters (which are prefixed by convention with “--osp:”) are un-
derstood:

3.1.2 Manual Device Instantiation
The second method of initialization is to explicitly create the device and possibly
set parameters. This method looks almost identical to how other objects are
created and used by OSPRay (described in later sections). The first step is to
create the device with

OSPDevice ospNewDevice(const char *type);

where the type string maps to a specific device implementation. OSPRay al-
ways provides the “cpu” device, which maps to a fast, local CPU implementation.
Other devices can also be added through additional modules, such as distributed
MPI device implementations. See next Chapter for details.

Once a device is created, you can call

void ospDeviceSetParam(OSPObject, const char *id, OSPDataType type, const void *mem);
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Table 3.1 – Command line parameters accepted by OSPRay’s ospInit.

Parameter Description

--osp:debug enables various extra checks and debug output, and disables
multi-threading

--osp:num-threads=<n> use n threads instead of per default using all detected
hardware threads

--osp:log-level=<str> set logging level; valid values (in order of severity) are none,
error, warning, info, and debug

--osp:warn-as-error send warning and error messages through the error callback,
otherwise send warning messages through the message
callback; must have sufficient logLevel to enable warnings

--osp:verbose shortcut for --osp:log-level=info and enable debug
output on cout, error output on cerr

--osp:vv shortcut for --osp:log-level=debug and enable debug
output on cout, error output on cerr

--osp:load-modules=<name>[,...] load one or more modules during initialization; equivalent to
calling ospLoadModule(name)

--osp:log-output=<dst> convenience for setting where status messages go; valid
values for dst are cerr and cout

--osp:error-output=<dst> convenience for setting where error messages go; valid values
for dst are cerr and cout

--osp:device=<name> use name as the type of device for OSPRay to create; e.g.,
--osp:device=cpu gives you the default cpu device; Note if
the device to be used is defined in a module, remember to pass
--osp:load-modules=<name> first

--osp:set-affinity=<n> if 1, bind software threads to hardware threads; 0 disables
binding; default is 0

--osp:device-params=<param>:<value>[,...] set one or more other device parameters; equivalent to calling
ospDeviceSet*(param, value)

to set parameters on the device. The semantics of setting parameters is ex-
actly the same as ospSetParam, which is documented below in the parameters
section. The following parameters can be set on all devices:

Once parameters are set on the created device, the device must be committed
with

void ospDeviceCommit(OSPDevice);

To use the newly committed device, you must call

void ospSetCurrentDevice(OSPDevice);

This then sets the given device as the object which will respond to all other
OSPRay API calls.

Device handle lifetimes are managed with two calls, the first which incre-
ments the internal reference count to the given OSPDevice

void ospDeviceRetain(OSPDevice)

and the second which decrements the reference count

void ospDeviceRelease(OSPDevice)
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Table 3.2 – Parameters shared by all devices.

Type Name Description

int numThreads number of threads which OSPRay should use
bool disableMipMapGeneration disable the default generation of MIP maps for textures (e.g., to save the

additional memory needed)
uint logLevel logging level; valid values (in order of severity) are OSP_LOG_NONE,

OSP_LOG_ERROR, OSP_LOG_WARNING, OSP_LOG_INFO, and OSP_LOG_DEBUG
string logOutput convenience for setting where status messages go; valid values are cerr and

cout
string errorOutput convenience for setting where error messages go; valid values are cerr and

cout
bool debug set debug mode; equivalent to logLevel=debug and numThreads=1
bool warnAsError send warning and error messages through the error callback, otherwise send

warning messages through the message callback; must have sufficient
logLevel to enable warnings

bool setAffinity bind software threads to hardware threads if set to 1; 0 disables binding
omitting the parameter will let OSPRay choose

Users can change parameters on the device after initialization (from either
method above), by calling

OSPDevice ospGetCurrentDevice();

This function returns the handle to the device currently used to respond to
OSPRay API calls, where users can set/change parameters and recommit the de-
vice. If changes are made to the device that is already set as the current device,
it does not need to be set as current again. Note this API call will increment the
ref count of the returned device handle, so applications must use ospDeviceRe-
lease when finished using the handle to avoid leaking the underlying device
object. If there is no current device set, this will return an invalid NULL handle.

When a device is created, its reference count is initially 1. When a device
is set as the current device, it internally has its reference count incremented.
Note that ospDeviceRetain and ospDeviceRelease should only be used with
reference counts that the application tracks: removing reference held by the
current set device should be handled by ospShutdown. Thus, ospDeviceRe-
lease should only decrement the reference counts that come from ospNewDe-
vice, ospGetCurrentDevice, and the number of explicit calls to ospDeviceRe-
tain.

OSPRay allows applications to query runtime properties of a device in order
to do enhanced validation of what device was loaded at runtime. The following
function can be used to get these device-specific properties (attributes about the
device, not parameter values)

int64_t ospDeviceGetProperty(OSPDevice, OSPDeviceProperty);

It returns an integer value of the queried property and the following proper-
ties can be provided as parameter:

OSP_DEVICE_VERSION
OSP_DEVICE_VERSION_MAJOR
OSP_DEVICE_VERSION_MINOR
OSP_DEVICE_VERSION_PATCH
OSP_DEVICE_SO_VERSION
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3.1.3 EnvironmentVariables
OSPRay’s generic device parameters can be overridden via environment vari-
ables for easy changes to OSPRay’s behavior without needing to change the ap-
plication (variables are prefixed by convention with “OSPRAY_”):

Table 3.3 – Environment variables interpreted by OSPRay.

Variable Description

OSPRAY_NUM_THREADS equivalent to --osp:num-threads
OSPRAY_LOG_LEVEL equivalent to --osp:log-level
OSPRAY_LOG_OUTPUT equivalent to --osp:log-output
OSPRAY_ERROR_OUTPUT equivalent to --osp:error-output
OSPRAY_DEBUG equivalent to --osp:debug
OSPRAY_WARN_AS_ERROR equivalent to --osp:warn-as-error
OSPRAY_SET_AFFINITY equivalent to --osp:set-affinity
OSPRAY_LOAD_MODULES equivalent to --osp:load-modules, can be a comma separated list of modules

which will be loaded in order
OSPRAY_DEVICE equivalent to --osp:device:

Note that these environment variables take precedence over values specified
through ospInit or manually set device parameters.

3.1.4 Error Handling andStatusMessages
The following errors are currently used by OSPRay:

Name Description

OSP_NO_ERROR no error occurred
OSP_UNKNOWN_ERROR an unknown error occurred
OSP_INVALID_ARGUMENT an invalid argument was specified
OSP_INVALID_OPERATION the operation is not allowed for the specified

object
OSP_OUT_OF_MEMORY there is not enough memory to execute the

command
OSP_UNSUPPORTED_CPU the CPU is not supported (minimum ISA is

SSE4.1 on x86_64 and NEON on ARM64)
OSP_VERSION_MISMATCH a module could not be loaded due to

mismatching version

Table 3.4 –Possible error codes, i.e., valid
named constants of type OSPError.

These error codes are either directly return by some API functions, or are
recorded to be later queried by the application via

OSPError ospDeviceGetLastErrorCode(OSPDevice);

A more descriptive error message can be queried by calling

const char* ospDeviceGetLastErrorMsg(OSPDevice);

Alternatively, the application can also register a callback function of type

typedef void (*OSPErrorCallback)(void *userData, OSPError, const char* errorDetails);
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via

void ospDeviceSetErrorCallback(OSPDevice, OSPErrorCallback, void *userData);

to get notified when errors occur.
Applications may be interested in messages which OSPRay emits, whether

for debugging or logging events. Applications can call

void ospDeviceSetStatusCallback(OSPDevice, OSPStatusCallback, void *userData);

in order to register a callback function of type

typedef void (*OSPStatusCallback)(void *userData, const char* messageText);

which OSPRay will use to emit status messages. By default, OSPRay uses
a callback which does nothing, so any output desired by an application will re-
quire that a callback is provided. Note that callbacks for C++ std::cout and
std::cerr can be alternatively set through ospInit or the OSPRAY_LOG_OUT-
PUT environment variable.

Applications can clear either callback by passing NULL instead of an actual
function pointer.

3.1.5 LoadingOSPRayExtensions at Runtime
OSPRay’s functionality can be extended via plugins (which we call “modules”),
which are implemented in shared libraries. To load module name from li-
bospray_module_<name>.so (on Linux and Mac OS X) or ospray_module_
<name>.dll (on Windows) use

OSPError ospLoadModule(const char *name);

Modules are searched in OS-dependent paths. ospLoadModule returns OSP_
NO_ERROR if the plugin could be successfully loaded.

3.1.6 ShuttingDownOSPRay
When the application is finished using OSPRay (typically on application exit),
the OSPRay API should be finalized with

void ospShutdown();

This API call ensures that the current device is cleaned up appropriately. Due
to static object allocation having non-deterministic ordering, it is recommended
that applications call ospShutdown before the calling application process termi-
nates.

3.2 Objects

All entities of OSPRay (the renderer, volumes, geometries, lights, cameras, …)
are a logical specialization of OSPObject and share common mechanism to deal
with parameters and lifetime.

An important aspect of object parameters is that parameters do not get passed
to objects immediately. Instead, parameters are not visible at all to objects until
they get explicitly committed to a given object via a call to

void ospCommit(OSPObject);
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at which time all previously additions or changes to parameters are visible at
the same time. If a user wants to change the state of an existing object (e.g., to
change the origin of an already existing camera) it is perfectly valid to do so, as
long as the changed parameters are recommitted.

The commit semantic allow for batching upmultiple small changes, and spec-
ifies exactly when changes to objects will occur. This can impact performance
and consistency for devices crossing a PCI bus or across a network.

Note that OSPRay uses reference counting to manage the lifetime of all ob-
jects, so one cannot explicitly “delete” any object. Instead, to indicate that the
application does not need and does not access the given object anymore, call

void ospRelease(OSPObject);

This decreases its reference count and if the count reaches 0 the object will
automatically get deleted. Passing NULL is not an error. Note that every handle
returned via the API needs to be released when the object is no longer needed,
to avoid memory leaks.

Sometimes applications may want to have more than one reference to an
object, where it is desirable for the application to increment the reference count
of an object. This is done with

void ospRetain(OSPObject);

It is important to note that this is only necessary if the application wants
to call ospRelease on an object more than once: objects which contain other
objects as parameters internally increment/decrement ref counts and should not
be explicitly done by the application.

3.2.1 Parameters
Parameters allow to configure the behavior of and to pass data to objects. How-
ever, objects do not have an explicit interface for reasons of high flexibility and
a more stable compile-time API. Instead, parameters are passed separately to
objects in an arbitrary order, and unknown parameters will simply be ignored
(though awarningmessagewill be posted). The following function allows adding
various types of parameters with name id to a given object:

void ospSetParam(OSPObject, const char *id, OSPDataType type, const void *mem);

The valid parameter names for all OSPObjects and what types are valid are
discussed in future sections.

Note that mem must always be a pointer to the object, otherwise accidental
type casting can occur. This is especially true for pointer types (OSP_VOID_PTR
and OSPObject handles), as they will implicitly cast to void\ *, but be incor-
rectly interpreted. To help with some of these issues, there also exist variants
of ospSetParam for specific types, such as ospSetInt and ospSetVec3f in the
OSPRay utility library (found in ospray_util.h). Note that half precision float
parameters OSP_HALF, OSP_VEC[234]H are not supported.

Users can also remove parameters that have been explicitly set from ospSet-
Param. Any parameters which have been removed will go back to their default
value during the next commit unless a new parameter was set after the parameter
was removed. To remove a parameter, use

void ospRemoveParam(OSPObject, const char *id);
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3.2.2 Data
OSPRay consumes data arrays from the application using a specific object type,
OSPData. There are several components to describing a data array: element type,
1/2/3 dimensional striding, and whether the array is shared with the application
or copied into opaque, OSPRay-owned memory.

Shared data arrays require that the application’s array memory outlives the
lifetime of the created OSPData, as OSPRay is referring to application memory.
Where this is not preferable, applications use opaque arrays to allow the OSPData
to own the lifetime of the arraymemory. However, opaque arrays dictate the cost
of copying data into it, which should be kept in mind.

Thus, the most efficient way to specify a data array from the application is
to created a shared data array, which is done with

OSPData ospNewSharedData(const void *sharedData,
OSPDataType,
uint64_t numItems1,
int64_t byteStride1 = 0,
uint64_t numItems2 = 1,
int64_t byteStride2 = 0,
uint64_t numItems3 = 1,
int64_t byteStride3 = 0,
OSPDeleterCallback = NULL,
void *userData = NULL);

The call returns an OSPData handle to the created array. The calling pro-
gram guarantees that the sharedData pointer will remain valid for the duration
that this data array is being used. The number of elements numItems must be
positive (there cannot be an empty data object). The data is arranged in three
dimensions, with specializations to two or one dimension (if some numItems
are 1). The distance between consecutive elements (per dimension) is given in
bytes with byteStride and can also be negative. If byteStride is zero it will
be determined automatically (e.g., as sizeof(type)). Strides do not need to be
ordered, i.e., byteStride2 can be smaller than byteStride1, which is equiva-
lent to a transpose. However, if the stride should be calculated, then an ordering
in dimensions is assumed to disambiguate, i.e., byteStride1 < byteStride2
< byteStride3.

An application can pass ownership of shared data to OSPRay (for example,
when it temporarily created a modified version of its data only to make it com-
patible with OSPRay) by providing a deleter function that OSPRay will call when-
ever the time comes to deallocate the shared buffer. The deleter function has the
following signature:

typedef void (*OSPDeleterCallback)(const void *userData, const void *sharedData);

where sharedData will receive the address of the buffer and userData will
receive whatever additional state the function needs to perform the deletion
(both provided to ospNewSharedData when sharing the data with OSPRay).

The enum type OSPDataType describes the different element types that can
be represented in OSPRay; valid constants are listed in the table below.

If the elements of the array are handles to objects, then their reference
counter is incremented.

An opaque OSPData with memory allocated by OSPRay is created with

OSPData ospNewData(OSPDataType,
uint64_t numItems1,
uint64_t numItems2 = 1,
uint64_t numItems3 = 1);
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Table 3.5 – Valid named constants for OSPDataType.

Type / Name Description

OSP_DEVICE API device object reference
OSP_DATA data reference
OSP_OBJECT generic object reference
OSP_CAMERA camera object reference
OSP_FRAMEBUFFER framebuffer object reference
OSP_FUTURE future object reference
OSP_LIGHT light object reference
OSP_MATERIAL material object reference
OSP_TEXTURE texture object reference
OSP_RENDERER renderer object reference
OSP_WORLD world object reference
OSP_GROUP group object reference
OSP_INSTANCE instance object reference
OSP_GEOMETRY geometry object reference
OSP_GEOMETRIC_MODEL geometric model object reference
OSP_VOLUME volume object reference
OSP_VOLUMETRIC_MODEL volumetric model object reference
OSP_TRANSFER_FUNCTION transfer function object reference
OSP_IMAGE_OPERATION image operation object reference
OSP_STRING C-style zero-terminated character string
OSP_BOOL 8 bit boolean
OSP_CHAR, OSP_VEC[234]C 8 bit signed character scalar and [234]-element vector
OSP_UCHAR, OSP_VEC[234]UC 8 bit unsigned character scalar and [234]-element vector
OSP_SHORT, OSP_VEC[234]S 16 bit unsigned integer scalar and [234]-element vector
OSP_USHORT, OSP_VEC[234]US 16 bit unsigned integer scalar and [234]-element vector
OSP_INT, OSP_VEC[234]I 32 bit signed integer scalar and [234]-element vector
OSP_UINT, OSP_VEC[234]UI 32 bit unsigned integer scalar and [234]-element vector
OSP_LONG, OSP_VEC[234]L 64 bit signed integer scalar and [234]-element vector
OSP_ULONG, OSP_VEC[234]UL 64 bit unsigned integer scalar and [234]-element vector
OSP_HALF, OSP_VEC[234]H 16 bit half precision floating-point scalar and [234]-element vector (IEEE 754

binary16)
OSP_FLOAT, OSP_VEC[234]F 32 bit single precision floating-point scalar and [234]-element vector
OSP_DOUBLE, OSP_VEC[234]D 64 bit double precision floating-point scalar and [234]-element vector
OSP_BOX[1234]I 32 bit integer box (lower + upper bounds)
OSP_BOX[1234]F 32 bit single precision floating-point box (lower + upper bounds)
OSP_LINEAR[23]F 32 bit single precision floating-point linear transform ([23] vectors)
OSP_AFFINE[23]F 32 bit single precision floating-point affine transform (linear transform plus

translation)
OSP_QUATF 32 bit single precision floating-point quaternion, in (i, j, k, w) layout
OSP_VOID_PTR raw memory address (only found in module extensions)
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To allow for (partial) copies or updates of data arrays use
void ospCopyData(const OSPData source,

OSPData destination,
uint64_t destinationIndex1 = 0,
uint64_t destinationIndex2 = 0,
uint64_t destinationIndex3 = 0);

which will copy the whole1 content of the source array into destination 1 The number of items to be copied is defined
by the size of the source array.at the given location destinationIndex. The OSPDataTypes of the data objects

must match. The region to be copied must be valid inside the destination, i.e., in
all dimensions, destinationIndex + sourceSize <= destinationSize. The
affected region [destinationIndex, destinationIndex + sourceSize) is
marked as dirty, which may be used by OSPRay to only process or update that
sub-region (e.g., updating an acceleration structure). If the destination array is
shared with OSPData by the application (created with ospNewSharedData), then

• the source array must be shared as well (thus ospCopyData cannot be used
to read opaque data)

• if source and destination memory overlaps (aliasing), then behavior is un-
defined

• except if source and destination regions are identical (including matching
strides), which can be used by application to mark that region as dirty
(instead of the whole OSPData)

To add a data array as parameter named id to another object call also use
void ospSetObject(OSPObject, const char *id, OSPData);

3.3 Volumes

Volumes are volumetric data sets with discretely sampled values in 3D space,
typically a 3D scalar field. To create a new volume object of given type type use
OSPVolume ospNewVolume(const char *type);

Note that OSPRay’s implementation forwards type directly to Open VKL,
allowing new Open VKL volume types to be usable within OSPRay without the
need to change (or even recompile) OSPRay.

3.3.1 StructuredRegular Volume
Structured volumes only need to store the values of the samples, because their
addresses in memory can be easily computed from a 3D position. A common
type of structured volumes are regular grids.

Structured regular volumes are created by passing the type string “struc-
turedRegular” to ospNewVolume. Structured volumes are represented through
an OSPData 3D array data (which may or may not be shared with the applica-
tion). The voxel data must be laid out in xyz-order2 and can be compact (best 2 For consecutive memory addresses the x-

index of the corresponding voxel changes the
quickest.

for performance) or can have a stride between voxels, specified through the
byteStride1 parameter when creating the OSPData. Only 1D strides are sup-
ported, additional strides between scanlines (2D, byteStride2) and slices (3D,
byteStride3) are not.

The parameters understood by structured volumes are summarized in the
table below.

The size of the volume is inferred from the size of the 3D array data, as is the
type of the voxel values (currently supported are: OSP_UCHAR, OSP_SHORT, OSP_
USHORT, OSP_HALF, OSP_FLOAT, and OSP_DOUBLE). Data can be provided either
per cell or per vertex (the default), selectable via the cellCentered parameter
(which will also affect the computed bounding box).
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Table 3.6 – Configuration parameters for structured regular volumes.

Type Name Default Description

vec3f gridOrigin (0, 0, 0) origin of the grid in object-space
vec3f gridSpacing (1, 1, 1) size of the grid cells in object-space
OSPData data the actual voxel 3D data
bool cellCentered false whether the data is provided per cell (as opposed to per

vertex)
uint filter OSP_VOLUME_FILTER_LINEAR filter used for reconstructing the field, also allowed is

OSP_VOLUME_FILTER_NEAREST and
OSP_VOLUME_FILTER_CUBIC

uint gradientFilter same as filter filter used during gradient computations
float background NaN value that is used when sampling an undefined region

outside the volume domain

3.3.2 StructuredSpherical Volume
Structured spherical volumes are also supported, which are created by passing a
type string of “structuredSpherical” to ospNewVolume. The grid dimensions
and parameters are defined in terms of radial distance r, inclination angle θ, and
azimuthal angle ϕ, conforming with the ISO convention for spherical coordinate
systems. The coordinate system and parameters understood by structured spher-
ical volumes are summarized below.

x

y

z
(r, θ, φ)

φ

θ

r
Figure 3.1 – Coordinate system of struc-
tured spherical volumes.

The dimensions (r, θ, ϕ) of the volume are inferred from the size of the 3D
array data, as is the type of the voxel values (currently supported are: OSP_
UCHAR, OSP_SHORT, OSP_USHORT, OSP_HALF, OSP_FLOAT, and OSP_DOUBLE).

These grid parameters support flexible specification of spheres, hemispheres,
spherical shells, spherical wedges, and so forth. The grid extents (computed as
[gridOrigin, gridOrigin + (dimensions - 1) * gridSpacing]) however
must be constrained such that:

• r ≥ 0
• 0 ≤ θ ≤ 180
• 0 ≤ ϕ ≤ 360
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Table 3.7 – Configuration parameters for structured spherical volumes.

Type Name Default Description

vec3f gridOrigin (0, 0, 0) origin of the grid in units of (r, θ, ϕ); angles in degrees
vec3f gridSpacing (1, 180/dim.y, 360/dim.z) size of the grid cells in units of (r, θ, ϕ), per default

covering the full sphere; angles in degrees
OSPData data the actual voxel 3D data
uint filter OSP_VOLUME_FILTER_LINEAR filter used for reconstructing the field, also allowed is

OSP_VOLUME_FILTER_NEAREST

uint gradientFilter same as filter filter used during gradient computations
float background NaN value that is used when sampling an undefined region

outside the volume domain

3.3.3 AdaptiveMeshRefinement (AMR)Volume
OSPRay currently supports block-structured (Berger-Colella) AMR volumes. Vol-
umes are specified as a list of blocks, which exist at levels of refinement in poten-
tially overlapping regions. Blocks exist in a tree structure, with coarser refine-
ment level blocks containing finer blocks. The cell width is equal for all blocks
at the same refinement level, though blocks at a coarser level have a larger cell
width than finer levels.

There can be any number of refinement levels and any number of blocks at
any level of refinement. An AMR volume type is created by passing the type
string “amr” to ospNewVolume.

Blocks are defined by three parameters: their bounds, the refinement level in
which they reside, and the scalar data contained within each block.

Note that cell widths are defined per refinement level, not per block.

Table 3.8 – Configuration parameters for AMR volumes.

Type Name Default Description

uint method OSP_AMR_CURRENT OSPAMRMethod sampling method. Supported methods are:
OSP_AMR_CURRENT
OSP_AMR_FINEST
OSP_AMR_OCTANT

float[] cellWidth NULL array of each level’s cell width
box3i[] block.bounds NULL data array of grid sizes (in voxels) for each AMR block
int[] block.level NULL array of each block’s refinement level
OSPData[] block.data NULL data array of OSPData containing the actual scalar voxel data,

only OSP_FLOAT is supported as OSPDataType
vec3f gridOrigin (0, 0, 0) origin of the grid
vec3f gridSpacing (1, 1, 1) size of the grid cells
float background NaN value that is used when sampling an undefined region outside

the volume domain

Lastly, note that the gridOrigin and gridSpacing parameters act just like
the structured volume equivalent, but they only modify the root (coarsest level)
of refinement.

In particular, OSPRay’s / Open VKL’s AMR implementation was designed
to cover Berger-Colella [1] and Chombo [2] AMR data. The method parameter
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above determines the interpolation method used when sampling the volume.

OSP_AMR_CURRENT finds the finest refinement level at that cell and interpo-
lates through this “current” level

OSP_AMR_FINEST will interpolate at the closest existing cell in the volume-
wide finest refinement level regardless of the sample cell’s level

OSP_AMR_OCTANT interpolates through all available refinement levels at that
cell. This method avoids discontinuities at refinement level boundaries at
the cost of performance

Details and more information can be found in the publication for the imple-
mentation [3].

1. M.J. Berger and P. Colella, “Local adaptive mesh refinement for shock hy-
drodynamics.” Journal of Computational Physics 82.1 (1989): 64-84. DOI:
10.1016/0021-9991(89)90035-1

2. M. Adams, P. Colella, D.T. Graves, J.N. Johnson, N.D. Keen, T.J. Ligocki, D.F.
Martin. P.W. McCorquodale, D. Modiano. P.O. Schwartz, T.D. Sternberg,
and B. Van Straalen, “Chombo Software Package for AMR Applications
– Design Document”, Lawrence Berkeley National Laboratory Technical
Report LBNL-6616E.

3. I. Wald, C. Brownlee, W. Usher, and A. Knoll, “CPU volume rendering of
adaptive mesh refinement data”. SIGGRAPH Asia 2017 Symposium on Vi-
sualization – SA ’17, 18(8), 1–8. DOI: 10.1145/3139295.3139305

3.3.4 UnstructuredVolume
Unstructured volumes can have their topology and geometry freely defined. Ge-
ometry can be composed of tetrahedral, hexahedral, wedge or pyramid cell types.
The data format used is compatible with VTK and consists of multiple arrays:
vertex positions and values, vertex indices, cell start indices, cell types, and cell
values. An unstructured volume type is created by passing the type string “un-
structured” to ospNewVolume.

Sampled cell values can be specified either per-vertex (vertex.data) or per-
cell (cell.data). If both arrays are set, cell.data takes precedence.

Similar to a mesh, each cell is formed by a group of indices into the vertices.
For each vertex, the corresponding (by array index) data value will be used for
sampling when rendering, if specified. The index order for a tetrahedron is the
same as VTK_TETRA: bottom triangle counterclockwise, then the top vertex.

For hexahedral cells, each hexahedron is formed by a group of eight indices
into the vertices and data values. Vertex ordering is the same as VTK_HEXAHE-
DRON: four bottom vertices counterclockwise, then top four counterclockwise.

For wedge cells, each wedge is formed by a group of six indices into the
vertices and data values. Vertex ordering is the same as VTK_WEDGE: three bottom
vertices counterclockwise, then top three counterclockwise.

For pyramid cells, each cell is formed by a group of five indices into the ver-
tices and data values. Vertex ordering is the same as VTK_PYRAMID: four bottom
vertices counterclockwise, then the top vertex.

To maintain VTK data compatibility, the index array may be specified with
cell sizes interleavedwith vertex indices in the following format: n, id1, ..., idn,m, id1, ..., idm.
This alternative index array layout can be enabled through the indexPrefixed
flag (in which case, the cell.type parameter must be omitted).

3.3.5 VDBVolume
VDB volumes implement a data structure that is very similar to the data struc-
ture outlined in Museth [1], they are created by passing the type string “vdb” to
ospNewVolume.
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Table 3.9 – Configuration parameters for unstructured volumes.

Type Name Default Description

vec3f[] vertex.position data array of vertex positions
float[] vertex.data data array of vertex data values to be sampled
uint32[] / uint64[] index data array of indices (into the vertex array(s)) that form cells
bool indexPrefixed false indicates that the index array is compatible to VTK, where

the indices of each cell are prefixed with the number of
vertices

uint32[] / uint64[] cell.index data array of locations (into the index array), specifying the
first index of each cell

float[] cell.data data array of cell data values to be sampled
uint8[] cell.type data array of cell types (VTK compatible), only set if

indexPrefixed = false. Supported types are:
OSP_TETRAHEDRON
OSP_HEXAHEDRON
OSP_WEDGE
OSP_PYRAMID

bool hexIterative false hexahedron interpolation method, defaults to fast
non-iterative version which could have rendering
inaccuracies may appear if hex is not parallelepiped

bool precomputedNormals false whether to accelerate by precomputing, at a cost of 12
bytes/face

float background NaN value that is used when sampling an undefined region
outside the volume domain

The data structure is a hierarchical regular grid at its core: Nodes are regular
grids, and each grid cell may either store a constant value (this is called a tile),
or child pointers. Nodes in VDB trees are wide: Nodes on the first level have a
resolution of 323 voxels, on the next level 163, and on the leaf level 83 voxels. All
nodes on a given level have the same resolution. This makes it easy to find the
node containing a coordinate using shift operations (see [1]). VDB leaf nodes
are implicit in OSPRay / Open VKL: they are stored as pointers to user-provided
data.

VDB volumes interpret input data as constant cells (which are then poten-
tially filtered). This is in contrast to structuredRegular volumes, which have
a vertex-centered interpretation.

The VDB implementation in OSPRay / Open VKL follows the following goals:

• Efficient data structure traversal on vector architectures.
• Enable the use of industry-standard .vdb files created through the Open-
VDB library.

• Compatibility with OpenVDB on a leaf data level, so that .vdb file may be
loaded with minimal overhead.

VDB volumes have the following parameters:
The nodesPackedDense and nodesPackedTile together with node.format

parameters may be provided instead of node.data; this packed data layout may
provide better performance.

1. Museth, K. VDB:High-Resolution Sparse VolumeswithDynamic Topology.
ACM Transactions on Graphics 32(3), 2013. DOI: 10.1145/2487228.2487235
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Root Node
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Level 2

Inner Nodes LeavesTiles
(stored in parent) (pointers to user data)

Level 3

Figure 3.2 – Topology of VDB volumes.

Table 3.10 – Configuration parameters for VDB volumes.

Type Name Description

int maxSamplingDepth do not descend further than to this depth during sampling, the maximum value
and the default is 3

uint32[] node.level level on which each input node exists, may be 1, 2 or 3 (levels are counted from
the root level = 0 down)

vec3i[] node.origin the node origin index (per input node)
OSPData[] node.data data arrays with the node data (per input node). Nodes that are tiles are

expected to have single-item arrays. Leaf-nodes with grid data expected to have
compact 3D arrays in zyx layout (z changes most quickly) with the correct
number of voxels for the level. Only OSP_FLOAT is supported as field
OSPDataType.

OSPData nodesPackedDense optionally provided instead of node.data, a single array of all dense node data
in a contiguous zyx layout, provided in the same order as the corresponding
node.* parameters

OSPData nodesPackedTile optionally provided instead of node.data, a single array of all tile node data in
a contiguous layout, provided in the same order as the corresponding
node.* parameters

uint32[] node.format for each input node, whether it is of format OSP_VOLUME_FORMAT_DENSE_ZYX
(and thus stored in nodesPackedDense), or OSP_VOLUME_FORMAT_TILE (stored
in nodesPackedTile)

uint filter filter used for reconstructing the field, default is OSP_VOLUME_FILTER_LINEAR,
alternatively OSP_VOLUME_FILTER_NEAREST, or OSP_VOLUME_FILTER_CUBIC.

uint gradientFilter filter used for reconstructing the field during gradient computations, default
same as filter

float background value that is used when sampling an undefined region outside the volume
domain, default NaN

3.3.6 ParticleVolume
Particle volumes consist of a set of points in space. Each point has a position, a
radius, and a weight typically associated with an attribute. Particle volumes are



OSPRay API 26

created by passing the type string “particle” to ospNewVolume.
A radial basis function defines the contribution of that particle. Currently,

we use the Gaussian radial basis function

ϕ(P ) = w exp
(
− (P − p)2

2r2

)
,

where P is the particle position, p is the sample position, r is the radius and w is
the weight. At each sample, the scalar field value is then computed as the sum
of each radial basis function ϕ, for each particle that overlaps it.

The OSPRay / Open VKL implementation is similar to direct evaluation of
samples in Reda et al. [2]. It uses an Embree-built BVH with a custom traversal,
similar to the method in [1].

Table 3.11 – Configuration parameters for particle volumes.

Type Name Default Description

vec3f[] particle.position data array of particle positions
float[] particle.radius data array of particle radii
float[] particle.weight NULL optional data array of particle weights, specifying the height of

the kernel.
float radiusSupportFactor 3.0 The multiplier of the particle radius required for support. Larger

radii ensure smooth results at the cost of performance. In the
Gaussian kernel, the radius is one standard deviation (σ), so a
value of 3 corresponds to 3σ.

float clampMaxCumulativeValue 0 The maximum cumulative value possible, set by user. All
cumulative values will be clamped to this, and further traversal
(RBF summation) of particle contributions will halt when this
value is reached. A value of zero or less turns this off.

bool estimateValueRanges true Enable heuristic estimation of value ranges which are used in
internal acceleration structures as well as for determining the
volume’s overall value range. When set to false, the user must
specify clampMaxCumulativeValue, and all value ranges will be
assumed [0–clampMaxCumulativeValue]. Disabling this switch
may improve volume commit time, but will make volume
rendering less efficient.

1. A. Knoll, I. Wald, P. Navratil, A. Bowen, K. Reda, M.E., Papka, and K.
Gaither, “RBF Volume Ray Casting on Multicore and Manycore CPUs”,
2014, Computer Graphics Forum, 33: 71–80. doi:10.1111/cgf.12363

2. K. Reda, A. Knoll, K. Nomura, M. E. Papka, A. E. Johnson and J. Leigh, “Vi-
sualizing large-scale atomistic simulations in ultra-resolution immersive
environments”, 2013 IEEE Symposium on Large-Scale Data Analysis and
Visualization (LDAV), Atlanta, GA, 2013, pp. 59–65.

3.3.7 Transfer Function
Transfer functions map the scalar values of volumes to color and opacity and
thus they can be used to visually emphasize certain features of the volume. To
create a new transfer function of given type type use

OSPTransferFunction ospNewTransferFunction(const char *type);
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The returned handle can be assigned to a volumetric model (described below)
as parameter “transferFunction” using ospSetObject.

One type of transfer function that is supported by OSPRay is the linear trans-
fer function, which interpolates between given equidistant colors and opacities.
It is create by passing the string “piecewiseLinear” to ospNewTransferFunc-
tion and it is controlled by these parameters:

Type Name Description

vec3f[] color data array of colors (linear RGB)
float[] opacity data array of opacities
box1f value domain (scalar range) this function maps from

Table 3.12 – Parameters accepted by the
linear transfer function.

The arrays color and opacity can be of different length.

3.3.8 VolumetricModels
Volumes in OSPRay are given volume rendering appearance information through
VolumetricModels. This decouples the physical representation of the volume
(and possible acceleration structures it contains) to rendering-specific parame-
ters (where more than one set may exist concurrently). To create a volume in-
stance, call

OSPVolumetricModel ospNewVolumetricModel(OSPVolume);

The passed volume can be NULL as long as the volume to be used is passed as
a parameter. If both a volume is specified on object creation and as a parameter,
the parameter value is used. If the parameter value is later removed, the volume
object passed on object creation is again used.

Table 3.13 – Parameters understood by VolumetricModel.

Type Name Default Description

OSPVolume volume optional volume object this model references
OSPTransferFunction transferFunction transfer function to use
float densityScale 1.0 makes volumes uniformly thinner or thicker
float anisotropy 0.0 anisotropy of the (Henyey-Greenstein) phase function in

[-1–1] (path tracer only), default to isotropic scattering
uint32 id -1u optional user ID, for framebuffer channel OSP_FB_ID_OBJECT

3.4 Geometries

Geometries in OSPRay are objects that describe intersectable surfaces. To create
a new geometry object of given type type use

OSPGeometry ospNewGeometry(const char *type);

Note that in the current implementation geometries are limited to a maxi-
mum of 232 primitives.
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Table 3.14 – Parameters defining a mesh geometry.

Type Name Description

vec3f[] vertex.position data array of vertex positions, overridden by motion.* arrays
vec3f[] normal data array of face-varying normals, overridden by motion.* arrays
vec3f[] vertex.normal data array of vertex-varying normals, overridden by motion.* arrays
vec4f[] / vec3f[] color data array of face-varying colors (linear RGBA/RGB)
vec4f[] / vec3f[] vertex.color data array of vertex-varying colors (linear RGBA/RGB)
vec2f[] texcoord data array of face-varying texture coordinates
vec2f[] vertex.texcoord data array of vertex-varying texture coordinates
vec3ui[] / vec4ui[] index data array of (either triangle or quad) indices (into the vertex array(s))
bool quadSoup when no explicit index is given, indicates whether to assume a ‘soup’

of quads instead of triangles, default false
vec3f[][] motion.vertex.position data array of vertex position arrays (uniformly distributed keys for

deformation motion blur)
vec3f[][] motion.normal data array of face-varying normal arrays (uniformly distributed keys

for deformation motion blur)
vec3f[][] motion.vertex.normal data array of vertex-varying normal arrays (uniformly distributed

keys for deformation motion blur)
box1f time time associated with first and last key in motion.* arrays (for

deformation motion blur), default [0, 1]

3.4.1 Mesh
A mesh consisting of either triangles or quads is created by calling ospNewGe-
ometry with type string “mesh”. Once created, a mesh recognizes the following
parameters:

The data type of index arrays differentiates between the underlying geome-
try, triangles are used for a index with vec3ui type and quads for vec4ui type.
Quads are internally handled as a pair of two triangles, thus mixing triangles and
quads is supported by encoding some triangle as a quad with the last two vertex
indices being identical (w=z).

The vertex.position array is mandatory to create a valid mesh.
The index array is optional. If none is provided, a ‘triangle soup’ is assumed,

i.e., each three consecutive vertices form one triangle; unless the boolean quad-
Soup is set to true, then a ‘quad soup’ is assumed i.e., each four subsequent ver-
tices form one quad. If the size of the vertex.position array is not a multiple
of three for triangles or four for quads, the remainder vertices are ignored.

Face-varying attributes (normal, motion.normal, color, texcoord) map
unique values to each vertex of a primitive/face (triangle or quad), thus attributes
can be different for the same vertex that is shared by multiple primitives. Essen-
tially, face-varying attributes are a ‘attribute soup’ and behave similar to the
implicit index, the size of the array must be at least three times the number of tri-
angles or four times the number of quads, respectively. Face-varying attributes
take precedence over the respective vertex attributes (vertex.normal, motion.
vertex.normal, vertex.color, vertex.texcoord) when both arrays of the
same attribute are present.
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3.4.2 Subdivision
A mesh consisting of subdivision surfaces, created by specifying a geometry of
type “subdivision”. Once created, a subdivision recognizes the following pa-
rameters:

Table 3.15 – Parameters defining a Subdivision geometry.

Type Name Description

vec3f[] vertex.position data array of vertex positions
vec4f[] color optional data array of face-varying colors (linear RGBA)
vec4f[] vertex.color optional data array of vertex-varying colors (linear RGBA)
vec2f[] texcoord optional data array of vertex-varying texture coordinates
vec2f[] vertex.texcoord optional data array of vertex-varying texture coordinates
float level global level of tessellation, default 5
uint[] index data array of indices (into the vertex array(s))
float[] index.level optional data array of per-edge levels of tessellation, overrides global level
uint[] face optional data array holding the number of indices/edges (3 to 15) per face, defaults

to 4 (a pure quad mesh)
vec2i[] edgeCrease.index optional data array of edge crease indices
float[] edgeCrease.weight optional data array of edge crease weights
uint[] vertexCrease.index optional data array of vertex crease indices
float[] vertexCrease.weight optional data array of vertex crease weights
uint mode OSPSubdivisionMode subdivision edge boundary mode, supported modes are:

OSP_SUBDIVISION_NO_BOUNDARY

OSP_SUBDIVISION_SMOOTH_BOUNDARY (default)
OSP_SUBDIVISION_PIN_CORNERS
OSP_SUBDIVISION_PIN_BOUNDARY
OSP_SUBDIVISION_PIN_ALL

The vertex and index arrays are mandatory to create a valid subdivision
surface. If no face array is present then a pure quad mesh is assumed (the num-
ber of indices must be a multiple of 4). Optionally supported are edge and vertex
creases.

3.4.3 Spheres
A geometry consisting of individual spheres, each of which can have an own
radius, is created by calling ospNewGeometry with type string “sphere”. The
spheres will not be tessellated but rendered procedurally and are thus perfectly
round. To allow a variety of sphere representations in the application this ge-
ometry allows a flexible way of specifying the data of center position and radius
within a data array:

3.4.4 Curves
A geometry consisting of multiple curves is created by calling ospNewGeometry
with type string “curve”. The parameters defining this geometry are listed in
the table below.

Positions in vertex.position_radius parameter supports per-vertex vary-
ing radii with data type vec4f[] and instantiate Embree curves internally for
the relevant type/basis mapping.
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Table 3.16 – Parameters defining a spheres geometry.

Type Name Default Description

vec3f[] sphere.position data array of center positions
float[] sphere.radius NULL optional data array of the per-sphere radius
vec3f[] sphere.normal NULL optional data array of normals (only for “oriented disc”)
vec2f[] sphere.texcoord NULL optional data array of texture coordinates (constant per sphere)
float radius 0.01 default radius for all spheres (if sphere.radius is not set)
uint type OSPSphereType for rendering the sphere. Supported types are:

OSP_SPHERE (default)
OSP_DISC
OSP_ORIENTED_DISC

Table 3.17 – Parameters defining a curves geometry.

Type Name Description

vec4f[] vertex.position_radius data array of vertex position and per-vertex radius
vec2f[] vertex.texcoord data array of per-vertex texture coordinates
vec4f[] vertex.color data array of corresponding vertex colors (linear RGBA)
vec3f[] vertex.normal data array of curve normals (only for “ribbon” curves)
vec4f[] vertex.tangent data array of curve tangents (only for “hermite” curves)
uint32[] index data array of indices to the first vertex or tangent of a curve segment
uint type OSPCurveType for rendering the curve. Supported types are:

OSP_FLAT
OSP_ROUND
OSP_RIBBON
OSP_DISJOINT

uint basis OSPCurveBasis for defining the curve. Supported bases are:
OSP_LINEAR
OSP_BEZIER
OSP_BSPLINE
OSP_HERMITE
OSP_CATMULL_ROM

The following section describes the properties of different curve basis’ and
how they use the data provided in data buffers:

OSP_LINEAR The indices point to the first of 2 consecutive control points in
the vertex buffer. The first control point is the start and the second control
point the end of the line segment. The curve goes through all control points
listed in the vertex buffer.

OSP_BEZIER The indices point to the first of 4 consecutive control points in the
vertex buffer. The first control point represents the start point of the curve,
and the 4th control point the end point of the curve. The Bézier basis is
interpolating, thus the curve does go exactly through the first and fourth
control vertex.

OSP_BSPLINE The indices point to the first of 4 consecutive control points in
the vertex buffer. This basis is not interpolating, thus the curve does in
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general not go through any of the control points directly. Using this ba-
sis, 3 control points can be shared for two continuous neighboring curve
segments, e.g., the curves (p0, p1, p2, p3) and (p1, p2, p3, p4) are C1 con-
tinuous. This featuremake this basis a good choice to construct continuous
multi-segment curves, as memory consumption can be kept minimal.

OSP_HERMITE It is necessary to have both vertex buffer and tangent buffer
for using this basis. The indices point to the first of 2 consecutive points
in the vertex buffer, and the first of 2 consecutive tangents in the tangent
buffer. This basis is interpolating, thus does exactly go through the first
and second control point, and the first order derivative at the begin and end
matches exactly the value specified in the tangent buffer. When connect-
ing two segments continuously, the end point and tangent of the previous
segment can be shared.

OSP_CATMULL_ROM The indices point to the first of 4 consecutive control
points in the vertex buffer. If (p0, p1, p2, p3) represent the points then this
basis goes through p1 and p2, with tangents as (p2−p0)/2 and (p3−p1)/2.

The following section describes the properties of different curve types’ and
how they define the geometry of a curve:

OSP_FLAT This type enables faster rendering as the curve is rendered as a con-
nected sequence of ray facing quads.

OSP_ROUND This type enables rendering a real geometric surface for the curve
which allows closeup views. This mode renders a sweep surface by sweep-
ing a varying radius circle tangential along the curve.

OSP_RIBBON The type enables normal orientation of the curve and requires a
normal buffer be specified along with vertex buffer. The curve is rendered
as a flat band whose center approximately follows the provided vertex
buffer and whose normal orientation approximately follows the provided
normal buffer. Not supported for basis OSP_LINEAR.

OSP_DISJOINT Only supported for basis OSP_LINEAR; the segments are open
and not connected at the joints, i.e., the curve segments are either individ-
ual cones or cylinders.

3.4.5 Boxes
OSPRay can directly render axis-aligned bounding boxes without the need to
convert them to quads or triangles. To do so create a boxes geometry by calling
ospNewGeometry with type string “box”.

Type Name Description

box3f[] box data array of boxes
Table 3.18 – Parameters defining a boxes
geometry.

3.4.6 Planes
OSPRay can directly render planes defined by plane equation coefficients in its
implicit form ax+by+cz+d = 0. By default planes are infinite but their extents
can be limited by defining optional bounding boxes. A planes geometry can be
created by calling ospNewGeometry with type string “plane”.

3.4.7 Isosurfaces
OSPRay can directly render multiple isosurfaces of a volume without first tessel-
lating them. To do so create an isosurfaces geometry by calling ospNewGeometry
with type string “isosurface”. The appearance information of the surfaces is
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Type Name Description

vec4f[] plane.coefficients data array of plane coefficients (a, b, c, d)
box3f[] plane.bounds optional data array of bounding boxes

Table 3.19 –Parameters defining a planes
geometry.

set through the Geometric Model. Per-isosurface colors can be set by passing
per-primitive colors to the Geometric Model, in order of the isosurface array.

Type Name Description

float isovalue single isovalues
float[] isovalue data array of isovalues
OSPVolume volume handle of the Volume to be isosurfaced

Table 3.20 – Parameters defining an iso-
surfaces geometry.

3.4.8 GeometricModels
Geometries are matched with surface appearance information through Geomet-
ricModels. These take a geometry, which defines the surface representation, and
applies either full-object or per-primitive color and material information. To cre-
ate a geometric model, call

OSPGeometricModel ospNewGeometricModel(OSPGeometry);

The passed geometry can be NULL as long as the geometry to be used is passed
as a parameter. If both a geometry is specified on object creation and as a param-
eter, the parameter value is used. If the parameter value is later removed, the
geometry object passed on object creation is again used.

Color and material are fetched with the primitive ID of the hit (clamped to
the valid range, thus a single color or material is fine), or mapped first via the
index array (if present). All parameters are optional, however, some renderers
(notably the path tracer) require a material to be set. Materials are either han-
dles of OSPMaterial, or indices into the material array on the renderer, which
allows to build a world which can be used by different types of renderers.

An invertNormals flag allows to invert (shading) normal vectors of the ren-
dered geometry. That is particularly useful for clipping. By changing normal
vectors orientation one can control whether inside or outside of the clipping
geometry is being removed. For example, a clipping geometry with normals ori-
ented outside clips everything what’s inside.

3.5 Lights

To create a new light source of given type type use

OSPLight ospNewLight(const char *type);

All light sources accept the following parameters:
In OSPRay the intensity parameter of a light source can correspond to dif-

ferent types of radiometric quantities. The type of the value represented by a
light’s intensity parameter is set using intensityQuantity, which accepts
values from the enum type OSPIntensityQuantity. The supported types of
OSPIntensityQuantity differ between the different light sources (see documen-
tation of each specific light source).
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Table 3.21 – Parameters understood by GeometricModel.

Type Name Description

OSPGeometry geometry optional geometry object this model references
OSPMaterial / OSPMaterial[] / uint32 / uint32[] material optional (data array of per-primitive) material,

may be an index into the material parameter
on the renderer (if it exists)

vec4f / vec4f[] color optional (data array of per-primitive) color
assigned to the geometry (linear RGBA)

uint8[] index optional data array of per-primitive indices into
color and material

bool invertNormals inverts all shading normals (Ns), default false
uint32 id optional user ID, for framebuffer channel

OSP_FB_ID_OBJECT, default -1u

Table 3.22 – Parameters accepted by all lights.

Type Name Default Description

vec3f color white color of the light (linear RGB)
float intensity 1 intensity of the light (a factor)
uint intensityQuantity OSPIntensityQuantity to set the radiometric quantity represented by

intensity. The default value depends on the light source.
bool visible true whether the light can be directly seen

Table 3.23 – Types of radiometric quantities used to interpret a light’s intensity param-
eter.

Name Description

OSP_INTENSITY_QUANTITY_POWER the overall amount of light energy emitted by the light source into
the scene, unit is W

OSP_INTENSITY_QUANTITY_INTENSITY the overall amount of light emitted by the light in a given direction,
unit is W/sr

OSP_INTENSITY_QUANTITY_RADIANCE the amount of light emitted by a point on the light source in a given
direction, unit is W/sr/m2

OSP_INTENSITY_QUANTITY_IRRADIANCE the amount of light arriving at a surface point, assuming the light is
oriented towards to the surface, unit is W/m2

OSP_INTENSITY_QUANTITY_SCALE a linear scaling factor for light sources with a built-in quantity (e.g.,
HDRI, or sunSky, or when using intensityDistribution).

3.5.1 Photometric Lights
Measured light sources (IES, EULUMDAT, …) are supported by the sphere, spot,
and quad lights when setting an intensityDistribution data array to modu-
late the intensity per direction. The mapping is using the C-γ coordinate system
(see also below figure): the values of the first (or only) dimension of intensi-
tyDistribution are uniformly mapped to γ in [0–π]; the first intensity value
to 0, the last value to π, thus at least two values need to be present.

If the array has a second dimension then the intensities are not rotational
symmetric around the main direction (where angle γ is zero), but are accordingly
mapped to the C-halfplanes in [0–2π]; the first “row” of values to 0 and 2π, the
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Figure 3.3 – C-γ coordinate system for
the mapping of intensityDistribu-
tion with photometric lights.

other rows such that they have uniform distance to its neighbors. The orientation
of the C0-plane is specified via c0.

Table 3.24 – Special parameters for photometric lights.

Type Name Description

float[] intensityDistribution luminous intensity distribution for photometric lights; can be 2D for asymmetric
illumination; values are assumed to be uniformly distributed

vec3f c0 orientation, i.e., direction of the C0-(half)plane (only needed if illumination via
intensityDistribution is asymmetric)

When using an intensityDistribution then the default and only valid
value for intensityQuantity is OSP_INTENSITY_QUANTITY_SCALE.

The following light types are supported by most OSPRay renderers.

3.5.2 Directional Light / Distant Light
The distant light (or traditionally the directional light) is thought to be far away
(outside of the scene), thus its light arrives (almost) as parallel rays. It is created
by passing the type string “distant” to ospNewLight. The distant light sup-
ports OSP_INTENSITY_QUANTITY_RADIANCE and OSP_INTENSITY_QUANTITY_
IRRADIANCE (default) as intensityQuantity parameter value. In addition to
the general parameters understood by all lights the distant light supports the
following special parameters:

Type Name Default Description

vec3f direction (0, 0, 1) main emission direction of the distant
light

float angularDiameter 0 apparent size (angle in degree) of the
light

Table 3.25 – Special parameters accepted
by the distant light.

Setting the angular diameter to a value greater than zero will result in soft
shadows when the renderer uses stochastic sampling (like the path tracer). For
instance, the apparent size of the sun is about 0.53°.

3.5.3 Point Light / Sphere Light
The sphere light (or the special case point light) is a light emitting uniformly in all
directions from the surface toward the outside. It does not emit any light toward
the inside of the sphere. It is created by passing the type string “sphere” to os-
pNewLight. The point light supports only OSP_INTENSITY_QUANTITY_SCALE
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when intensityDistribution is set, or otherwise OSP_INTENSITY_QUAN-
TITY_POWER, OSP_INTENSITY_QUANTITY_INTENSITY (then default) and OSP_
INTENSITY_QUANTITY_RADIANCE as intensityQuantity parameter value. In
addition to the general parameters understood by all lights and the photometric
parameters the sphere light supports the following special parameters:

Type Name Default Description

vec3f position (0, 0, 0) the center of the sphere light
float radius 0 the size of the sphere light
vec3f direction (0, 0, 1) main orientation of

intensityDistribution

Table 3.26 – Special parameters accepted
by the sphere light.

Setting the radius to a value greater than zero will result in soft shadows
when the renderer uses stochastic sampling (like the path tracer).

3.5.4 Spotlight / Ring Light

The spotlight is a light emitting into a cone of directions. It is created by
passing the type string “spot” to ospNewLight. The spotlight supports only
OSP_INTENSITY_QUANTITY_SCALE when intensityDistribution is set, or
otherwise OSP_INTENSITY_QUANTITY_POWER, OSP_INTENSITY_QUANTITY_IN-
TENSITY (then default) and OSP_INTENSITY_QUANTITY_RADIANCE as intensi-
tyQuantity parameter value. In addition to the general parameters understood
by all lights and the photometric parameters the spotlight supports the special
parameters listed in the table.

Table 3.27 – Special parameters accepted by the spotlight.

Type Name Default Description

vec3f position (0, 0, 0) the center of the spotlight
vec3f direction (0, 0, 1) main emission direction of the spot
float openingAngle 180 full opening angle (in degree) of the spot; outside of this cone is no

illumination
float penumbraAngle 5 size (angle in degree) of the “penumbra”, the region between the rim (of the

illumination cone) and full intensity of the spot; should be smaller than half of
openingAngle

float radius 0 the size of the spotlight, the radius of a disk with normal direction
float innerRadius 0 in combination with radius turns the disk into a ring

openingAngle

penumbraAngle Figure 3.4 –Angles used by the spotlight.

Setting the radius to a value greater than zero will result in soft shadows
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when the renderer uses stochastic sampling (like the path tracer). Additionally
setting the inner radius will result in a ring instead of a disk emitting the light.

3.5.5 Quad Light

The quad3 light is a planar, procedural area light source emitting uniformly on 3 actually a parallelogram
one side into the half-space. It is created by passing the type string “quad” to
ospNewLight. The quad light supports only OSP_INTENSITY_QUANTITY_SCALE
when intensityDistribution is set, or otherwise OSP_INTENSITY_QUAN-
TITY_POWER, OSP_INTENSITY_QUANTITY_INTENSITY and OSP_INTENSITY_QUAN-
TITY_RADIANCE (then default) as intensityQuantity parameter. In addition to
the general parameters understood by all lights and the photometric parameters
the quad light supports the following special parameters:

Type Name Default Description

vec3f position (0, 0, 0) position of one vertex of the quad light
vec3f edge1 (1, 0, 0) vector to one adjacent vertex
vec3f edge2 (0, 1, 0) vector to the other adjacent vertex

Table 3.28 – Special parameters accepted
by the quad light.

position

edge2

edge1

c0

c90

Figure 3.5 – Defining a quad light which
emits toward the reader.

The emission side is determined by the cross product of edge1×edge2. which
is also the main emission direction for intensityDistribution. Note that only
renderers that use stochastic sampling (like the path tracer) will compute soft
shadows from the quad light. Other renderers will just sample the center of the
quad light, which results in hard shadows.

3.5.6 Cylinder Light
The cylinder light is a cylinderical, procedural area light source emitting uni-
formly outwardly into the space beyond the boundary. It is created by passing
the type string “cylinder” to ospNewLight. The cylinder light supports OSP_
INTENSITY_QUANTITY_POWER, OSP_INTENSITY_QUANTITY_INTENSITY and OSP_
INTENSITY_QUANTITY_RADIANCE (default) as intensityQuantity parameter.
In addition to the general parameters understood by all lights the cylinder light
supports the following special parameters:

Type Name Default Description

vec3f position0 (0, 0, 0) position of the start of the cylinder
vec3f position1 (0, 0, 1) position of the end of the cylinder
float radius 1 radius of the cylinder

Table 3.29 – Special parameters accepted
by the cylinder light.

Note that only renderers that use stochastic sampling (like the path tracer)
will compute soft shadows from the cylinder light. Other renderers will just
sample the closest point on the cylinder light, which results in hard shadows.
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3.5.7 HDRI Light
The HDRI light is a textured light source surrounding the scene and illuminating
it from infinity. It is created by passing the type string “hdri” to ospNewLight.
The values of the HDRI correspond to radiance and therefore the HDRI light
only accepts OSP_INTENSITY_QUANTITY_SCALE as intensityQuantity param-
eter value. In addition to the general parameters the HDRI light supports the
following special parameters:

Table 3.30 – Special parameters accepted by the HDRI light.

Type Name Default Description

vec3f up (0, 1, 0) up direction of the light
vec3f direction (0, 0, 1) direction to which the center of the texture will be mapped to (analog to

panoramic camera)
OSPTexture map environment map in latitude / longitude format

up

direction
Figure 3.6 – Orientation and Mapping of
an HDRI Light.

Note that the SciVis renderer only shows the HDRI light in the background
(like an environment map) without computing illumination of the scene.

3.5.8 Ambient Light
The ambient light surrounds the scene and illuminates it from infinity with con-
stant radiance (determined by combining the parameters color and intensity).
It is created by passing the type string “ambient” to ospNewLight. The ambi-
ent light supports OSP_INTENSITY_QUANTITY_RADIANCE and OSP_INTENSITY_
QUANTITY_IRRADIANCE (default) as intensityQuantity parameter value.

Note that the SciVis renderer uses ambient lights to control the color and
intensity of the computed ambient occlusion (AO).

3.5.9 Sun-Sky Light
The sun-sky light is a combination of a distant light for the sun and a procedural
hdri light for the sky. It is created by passing the type string “sunSky” to osp-
NewLight. The sun-sky light surrounds the scene and illuminates it from infinity
and can be used for rendering outdoor scenes. The radiance values are calculated
using the Hošek-Wilkie sky model and solar radiance function. The underly-
ing model of the sun-sky light returns radiance values and therefore the light
only accepts OSP_INTENSITY_QUANTITY_SCALE as intensityQuantity param-
eter value. To rescale the returned radiance of the sky model the default value for
the intensity parameter is set to 0.025. In addition to the general parameters
the following special parameters are supported:

The lowest elevation for the sun is restricted to the horizon.
Note that the SciVis renderer only computes illumination from the sun (yet

the sky is still shown in the background, like an environment map).
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Table 3.31 – Special parameters accepted by the sunSky light.

Type Name Default Description

vec3f up (0, 1, 0) zenith of sky
vec3f direction (0,−1, 0) main emission direction of the sun
float turbidity 3 atmospheric turbidity due to particles, in [1–10]
float albedo 0.3 ground reflectance, in [0–1]
float horizonExtension 0.01 extend the sky dome by stretching the horizon, fraction of the lower

hemisphere to cover, in [0–1]

3.5.10 EmissiveObjects

The path tracer will consider illumination by geometries which have a light emit-
ting material assigned (for example the Luminous or Principled material).

3.6 Materials

Materials describe how light interacts with surfaces, they give objects their dis-
tinctive look. To create a new material of given type type call

OSPMaterial ospNewMaterial(const char *material_type);

The returned handle can then be used to assign the material to a given geom-
etry with

void ospSetObject(OSPGeometricModel, "material", OSPMaterial);

3.6.1 OBJMaterial
The OBJ material is the workhorse material supported by both the SciVis ren-
derer and the path tracer (the Ambient Occlusion renderer only uses the kd and
d parameter). It offers widely used common properties like diffuse and specular
reflection and is based on the MTL material format of Lightwave’s OBJ scene
files. To create an OBJ material pass the type string “obj” to ospNewMaterial.
Its main parameters are

Type Name Default Description

vec3f kd white 0.8 diffuse color (linear RGB)
vec3f ks black specular color (linear RGB)
float ns 10 shininess (Phong exponent),

usually in [2–104]
float d opaque opacity
vec3f tf black transparency filter color (linear

RGB)
OSPTexture map_bump NULL normal map

Table 3.32 –Main parameters of the OBJ
material.

In particular when using the path tracer it is important to adhere to the prin-
ciple of energy conservation, i.e., that the amount of light reflected by a surface
is not larger than the light arriving. Therefore the path tracer issues a warning
and renormalizes the color parameters if the sum of kd, ks, and tf is larger than

http://paulbourke.net/dataformats/mtl/
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one in any color channel. Similarly important to mention is that almost all ma-
terials of the real world reflect at most only about 80% of the incoming light. So
even for a white sheet of paper or white wall paint do better not set kd larger
than 0.8; otherwise rendering times are unnecessary long and the contrast in the
final images is low (for example, the corners of a white room would hardly be
discernible, as can be seen in the figure below).

Figure 3.7 – Comparison of diffuse
rooms with 100% reflecting white paint
(left) and realistic 80% reflecting white
paint (right), which leads to higher over-
all contrast. Note that exposure has
been adjusted to achieve similar bright-
ness levels.

If present, the color component of geometries is also used for the diffuse color
kd and the alpha component is also used for the opacity d.

Normal mapping can simulate small geometric features via the texture map_
bump. The normals n in the normal map are with respect to the local tangen-
tial shading coordinate system and are encoded as 1/2(n + 1), thus a texel
(0.5, 0.5, 1)4 represents the unperturbed shading normal (0, 0, 1). Because of 4 respectively (127, 127, 255) for 8 bit tex-

tures and (32767, 32767, 65535) for 16 bit
textures

this encoding an sRGB gamma texture format is ignored and normals are always
fetched as linear from a normal map. Note that the orientation of normal maps
is important for a visually consistent look: by convention OSPRay uses a co-
ordinate system with the origin in the lower left corner; thus a convexity will
look green toward the top of the texture image (see also the example image of a
normal map). If this is not the case flip the normal map vertically or invert its
green channel.

Figure 3.8 –Normal map representing an
exalted square pyramidal frustum.

Note that tf colored transparency is implemented in the SciVis and the path
tracer but normal mapping with map_bump is currently supported in the path
tracer only.

All parameters (except tf) can be textured by passing a texture handle, pre-
fixed with “map_”. The fetched texels are multiplied by the respective parameter
value. If only the texture is given (but not the corresponding parameter), only
the texture is used (the default value of the parameter is not multiplied). The
color textures map_kd and map_ks are typically in one of the sRGB gamma en-
coded formats, whereas textures map_ns and map_d are usually in a linear format
(and only the first component is used). Additionally, all textures support texture
transformations.
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Figure 3.9 – Rendering of a OBJ material
with wood textures.

3.6.2 Principled
The Principled material is the most complex material offered by the path tracer,
which is capable of producing a wide variety of materials (e.g., plastic, metal,
wood, glass) by combining multiple different layers and lobes. It uses the GGX
microfacet distribution with approximate multiple scattering for dielectrics and
metals, uses the Oren-Nayar model for diffuse reflection, and is energy conserv-
ing. To create a Principled material, pass the type string “principled” to osp-
NewMaterial. Its parameters are listed in the table below.

All parameters can be textured by passing a texture handle, prefixed with
“map_” (e.g., “map_baseColor”). texture transformations are supported as well.

Figure 3.10 – Rendering of a Principled
coated brushed metal material with tex-
tured anisotropic rotation and a dust
layer (sheen) on top.

3.6.3 CarPaint

The CarPaint material is a specialized version of the Principled material for ren-
dering different types of car paints. To create a CarPaint material, pass the type
string “carPaint” to ospNewMaterial. Its parameters are listed in the table be-
low.

All parameters can be textured by passing a texture handle, prefixed with
“map_” (e.g., “map_baseColor”). texture transformations are supported as well.

3.6.4 Metal
The path tracer offers a physical metal, supporting changing roughness and real-
istic color shifts at edges. To create a Metal material pass the type string “metal”
to ospNewMaterial. Its parameters are

The main appearance (mostly the color) of the Metal material is controlled
by the physical parameters eta and k, the wavelength-dependent, complex index
of refraction. These coefficients are quite counter-intuitive but can be found in



OSPRay API 41

Table 3.33 – Parameters of the Principled material.

Type Name Default Description

vec3f baseColor white 0.8 base reflectivity (diffuse and/or metallic, linear RGB)
vec3f edgeColor white edge tint (metallic only, linear RGB)
float metallic 0 mix between dielectric (diffuse and/or specular) and metallic (specular

only with complex IOR) in [0–1]
float diffuse 1 diffuse reflection weight in [0–1]
float specular 1 specular reflection/transmission weight in [0–1]
float ior 1 dielectric index of refraction
float transmission 0 specular transmission weight in [0–1]
vec3f transmissionColor white attenuated color due to transmission (Beer’s law, linear RGB)
float transmissionDepth 1 distance at which color attenuation is equal to transmissionColor
float roughness 0 diffuse and specular roughness in [0–1], 0 is perfectly smooth
float anisotropy 0 amount of specular anisotropy in [0–1]
float rotation 0 rotation of the direction of anisotropy in [0–1], 1 is going full circle
float normal 1 default normal map/scale for all layers
float baseNormal 1 base normal map/scale (overrides default normal)
bool thin false flag specifying whether the material is thin or solid
float thickness 1 thickness of the material (thin only), affects the amount of color

attenuation due to specular transmission
float backlight 0 amount of diffuse transmission (thin only) in [0–2], 1 is 50% reflection and

50% transmission, 2 is transmission only
float coat 0 clear coat layer weight in [0–1]
float coatIor 1.5 clear coat index of refraction
vec3f coatColor white clear coat color tint (linear RGB)
float coatThickness 1 clear coat thickness, affects the amount of color attenuation
float coatRoughness 0 clear coat roughness in [0–1], 0 is perfectly smooth
float coatNormal 1 clear coat normal map/scale (overrides default normal)
float sheen 0 sheen layer weight in [0–1]
vec3f sheenColor white sheen color tint (linear RGB)
float sheenTint 0 how much sheen is tinted from sheenColor toward baseColor
float sheenRoughness 0.2 sheen roughness in [0–1], 0 is perfectly smooth
float opacity 1 cut-out opacity/transparency, 1 is fully opaque
vec3f emissiveColor black color (and intensity) of the emitted light

published measurements. For accuracy the index of refraction can be given as
an array of spectral samples in ior, each sample a triplet of wavelength (in nm),
eta, and k, ordered monotonically increasing by wavelength; OSPRay will then
calculate the Fresnel in the spectral domain. Alternatively, eta and k can also be
specified as approximated RGB coefficients; some examples are given in below
table.

The roughness parameter controls the variation of microfacets and thus how
polished the metal will look. The roughness can be modified by a texture map_
roughness (texture transformations are supported as well) to create notable edg-
ing effects.

https://refractiveindex.info/
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Table 3.34 – Parameters of the CarPaint material.

Type Name Default Description

vec3f baseColor white 0.8 diffuse base reflectivity (linear RGB)
float roughness 0 diffuse roughness in [0–1], 0 is perfectly smooth
float normal 1 normal map/scale
vec3f flakeColor Aluminium color of metallic flakes (linear RGB)
float flakeDensity 0 density of metallic flakes in [0–1], 0 disables flakes, 1 fully covers the

surface with flakes
float flakeScale 100 scale of the flake structure, higher values increase the amount of flakes
float flakeSpread 0.3 flake spread in [0–1]
float flakeJitter 0.75 flake randomness in [0–1]
float flakeRoughness 0.3 flake roughness in [0–1], 0 is perfectly smooth
float coat 1 clear coat layer weight in [0–1]
float coatIor 1.5 clear coat index of refraction
vec3f coatColor white clear coat color tint (linear RGB)
float coatThickness 1 clear coat thickness, affects the amount of color attenuation
float coatRoughness 0 clear coat roughness in [0–1], 0 is perfectly smooth
float coatNormal 1 clear coat normal map/scale
vec3f flipflopColor white reflectivity of coated flakes at grazing angle, used together with coatColor

produces a pearlescent paint (linear RGB)
float flipflopFalloff 1 flip flop color falloff, 1 disables the flip flop effect

Table 3.35 – Parameters of the Metal material.

Type Name Default Description

vec3f[] ior Aluminium data array of spectral samples of complex refractive index, each entry in the
form (wavelength, eta, k), ordered by wavelength (which is in nm)

vec3f eta RGB complex refractive index, real part
vec3f k RGB complex refractive index, imaginary part
float roughness 0.1 roughness in [0–1], 0 is perfect mirror

Metal eta k

Ag, Silver (0.051, 0.043, 0.041) (5.3, 3.6, 2.3)
Al, Aluminium (1.5, 0.98, 0.6) (7.6, 6.6, 5.4)
Au, Gold (0.07, 0.37, 1.5) (3.7, 2.3, 1.7)
Cr, Chromium (3.2, 3.1, 2.3) (3.3, 3.3, 3.1)
Cu, Copper (0.1, 0.8, 1.1) (3.5, 2.5, 2.4)

Table 3.36 – Index of refraction of
selected metals as approximated
RGB coefficients, based on data from
https://refractiveindex.info/.

3.6.5 Alloy
The path tracer offers an alloy material, which behaves similar to Metal, but
allows for more intuitive and flexible control of the color. To create an Alloy
material pass the type string “alloy” to ospNewMaterial. Its parameters are

The main appearance of the Alloy material is controlled by the parameter
color, while edgeColor influences the tint of reflections when seen at grazing
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Figure 3.11 – Rendering of a pearlescent
CarPaint material.

Figure 3.12 – Rendering of golden Metal
material with textured roughness.

Type Name Default Description

vec3f color white 0.9 reflectivity at normal incidence (0 degree,
linear RGB)

vec3f edgeColor white reflectivity at grazing angle (90 degree,
linear RGB)

float roughness 0.1 roughness, in [0–1], 0 is perfect mirror

Table 3.37 – Parameters of the Alloy ma-
terial.

angles (for real metals this is always 100%white). If present, the color component
of geometries is also used for reflectivity at normal incidence color. As in Metal
the roughness parameter controls the variation of microfacets and thus how
polished the alloy will look. All parameters can be textured by passing a texture
handle, prefixed with “map_”; texture transformations are supported as well.

3.6.6 Glass
The path tracer offers a realistic a glass material, supporting refraction and vol-
umetric attenuation (i.e., the transparency color varies with the geometric thick-
ness). To create aGlassmaterial pass the type string “glass” to ospNewMaterial.
Its parameters are

Type Name Default Description

float eta 1.5 index of refraction
vec3f attenuationColor white resulting color due to attenuation

(linear RGB)
float attenuationDistance 1 distance affecting attenuation

Table 3.38 – Parameters of the Glass ma-
terial.
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Figure 3.13 – Rendering of a fictional Al-
loy material with textured color.

For convenience, the rather counter-intuitive physical attenuation coeffi-
cients will be calculated from the user inputs in such a way, that the atten-
uationColor will be the result when white light traveled through a glass of
thickness attenuationDistance.

Figure 3.14 – Rendering of a Glass mate-
rial with orange attenuation.

3.6.7 ThinGlass
The path tracer offers a thin glass material useful for objects with just a single
surface, most prominently windows. It models a thin, transparent slab, i.e., it
behaves as if a second, virtual surface is parallel to the real geometric surface.
The implementation accounts for multiple internal reflections between the in-
terfaces (including attenuation), but neglects parallax effects due to its (virtual)
thickness. To create a such a thin glass material pass the type string “thinGlass”
to ospNewMaterial. Its parameters are

Type Name Default Description

float eta 1.5 index of refraction
vec3f attenuationColor white resulting color due to attenuation

(linear RGB)
float attenuationDistance 1 distance affecting attenuation
float thickness 1 virtual thickness

Table 3.39 – Parameters of the ThinGlass
material.

For convenience the attenuation is controlled the same way as with the Glass
material. Additionally, the color due to attenuation can be modulated with a tex-
ture map_attenuationColor (texture transformations are supported as well).
If present, the color component of geometries is also used for the attenuation
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color. The thickness parameter sets the (virtual) thickness and allows for easy
exchange of parameters with the (real) Glass material; internally just the ratio be-
tween attenuationDistance and thickness is used to calculate the resulting
attenuation and thus the material appearance.

Figure 3.15 – Rendering of a ThinGlass
material with red attenuation.

Figure 3.16 – Example image of a col-
ored window made with textured atten-
uation of the ThinGlass material.

3.6.8 MetallicPaint
The path tracer offers a metallic paint material, consisting of a base coat with
optional flakes and a clear coat. To create a MetallicPaint material pass the type
string “metallicPaint” to ospNewMaterial. Its parameters are listed in the
table below.

Type Name Default Description

vec3f baseColor white 0.8 color of base coat (linear RGB)
float flakeAmount 0.3 amount of flakes, in [0–1]
vec3f flakeColor Aluminium color of metallic flakes (linear RGB)
float flakeSpread 0.5 spread of flakes, in [0–1]
float eta 1.5 index of refraction of clear coat

Table 3.40 – Parameters of the Metallic-
Paint material.

The color of the base coat baseColor can be textured by a texture map_
baseColor, which also supports texture transformations. If present, the color
component of geometries is also used for the color of the base coat. Parameter
flakeAmount controls the proportion of flakes in the base coat, so when setting
it to 1 the baseColorwill not be visible. The shininess of the metallic component
is governed by flakeSpread, which controls the variation of the orientation of
the flakes, similar to the roughness parameter of Metal. Note that the effect of
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the metallic flakes is currently only computed on average, thus individual flakes
are not visible.

Figure 3.17 – Rendering of a Metallic-
Paint material.

3.6.9 Luminous
The path tracer supports the Luminous material which emits light uniformly in
all directions andwhich can thus be used to turn any geometric object into a light
source. It is created by passing the type string “luminous” to ospNewMaterial.
The amount of constant radiance that is emitted is determined by combining the
general parameters of lights: color and intensity (which essentially means
that parameter intensityQuantity is not needed because it is always OSP_IN-
TENSITY_QUANTITY_RADIANCE).

Type Name Default Description

vec3f color white color of the emitted light (linear RGB)
float intensity 1 intensity of the light (a factor)
float transparency 0 material transparency

Table 3.41 – Parameters accepted by the
Luminous material.

The emission can be textured by passing a map_color texture handle, texture
transformations are supported as well.

Figure 3.18 – Rendering of a yellow Lu-
minous material.
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3.7 Texture

OSPRay currently implements two texture types (texture2d and volume) and
is open for extension to other types by applications. More types may be added
in future releases.

To create a new texture use

OSPTexture ospNewTexture(const char *type);

3.7.1 Texture2D
The texture2d texture type implements an image-based texture, where its pa-
rameters are as follows

Type Name Description

uint format OSPTextureFormat for the texture
uint filter default OSP_TEXTURE_FILTER_LINEAR,

alternatively OSP_TEXTURE_FILTER_NEAREST

OSPData data the actual texel 2D data
uint / vec2ui wrapMode OSPTextureWrapMode for the texture

coordinates s and t; supported wrap modes are:
OSP_TEXTURE_WRAP_REPEAT (default)
OSP_TEXTURE_WRAP_MIRRORED_REPEAT
OSP_TEXTURE_WRAP_CLAMP_TO_EDGE

Table 3.42 – Parameters of texture2d
texture type.

The supported texture formats for texture2d are:
The size of the texture is inferred from the size of the 2D array data, which

also needs have a compatible type to format. The texel data in data starts with
the texels in the lower left corner of the texture image, like inOpenGL. Per default
a texture fetch is filtered by performing bi-linear interpolation of the nearest 2×2
texels; if instead fetching only the nearest texel is desired (i.e., no filtering) then
pass the OSP_TEXTURE_FILTER_NEAREST flag.

Texturing with texture2d image textures requires geometries with texture
coordinates, e.g., a mesh with vertex.texcoord provided.

3.7.2 VolumeTexture
The volume texture type implements texture lookups based on 3D object coordi-
nates of the surface hit point on the associated geometry. If the given hit point is
within the attached volume, the volume is sampled and classified with the trans-
fer function attached to the volume. This implements the ability to visualize
volume values (as colored by a transfer function) on arbitrary surfaces inside the
volume (as opposed to an isosurface showing a particular value in the volume).
Its parameters are as follows

TextureVolume can be used for implementing slicing of volumes with any ge-
ometry type. It enables coloring of the slicing geometry with a different transfer
function than that of the sliced volume.

3.7.3 Texture Transformations
All materials with textures also offer to manipulate the placement of these tex-
tures with the help of texture transformations. If so, this convention shall be
used: the following parameters are prefixed with “texture_name.*”).
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Name Description

OSP_TEXTURE_RGBA8 8 bit [0–255] linear components red, green,
blue, alpha

OSP_TEXTURE_SRGBA 8 bit sRGB gamma encoded color components,
and linear alpha

OSP_TEXTURE_RGBA32F 32 bit float components red, green, blue, alpha
OSP_TEXTURE_RGBA16F 16 bit float components red, green, blue, alpha
OSP_TEXTURE_RGB8 8 bit [0–255] linear components red, green,

blue
OSP_TEXTURE_SRGB 8 bit sRGB gamma encoded components red,

green, blue
OSP_TEXTURE_RGB32F 32 bit float components red, green, blue
OSP_TEXTURE_RGB16F 16 bit float components red, green, blue
OSP_TEXTURE_R8 8 bit [0–255] linear single component red
OSP_TEXTURE_RA8 8 bit [0–255] linear two components red, alpha
OSP_TEXTURE_L8 8 bit [0–255] gamma encoded luminance

(replicated into red, green, blue)
OSP_TEXTURE_LA8 8 bit [0–255] gamma encoded luminance, and

linear alpha
OSP_TEXTURE_RA32F 32 bit float two component red, alpha
OSP_TEXTURE_R32F 32 bit float single component red
OSP_TEXTURE_RA16F 16 bit float two component red, alpha
OSP_TEXTURE_R16F 16 bit float single component red
OSP_TEXTURE_RGBA16 16 bit [0–65535] linear components red, green,

blue, alpha
OSP_TEXTURE_RGB16 16 bit [0–65535] linear components red, green,

blue
OSP_TEXTURE_RA16 16 bit [0–65535] linear two components red,

alpha
OSP_TEXTURE_R16 16 bit [0–65535] linear single component red

Table 3.43 – Supported texture formats
by texture2d, i.e., valid constants of
type OSPTextureFormat.

Type Name Description

OSPVolume volume Volume used to generate color
lookups

OSPTransferFunction transferFunction transfer function applied to
volume

Table 3.44 – Parameters of volume tex-
ture type.

Type Name Description

linear2f transform linear transformation (rotation, scale)
float rotation angle in degree, counterclockwise, around center
vec2f scale enlarge texture, relative to center (0.5, 0.5)
vec2f translation move texture in positive direction (right/up)

Table 3.45 – Parameters to define 2D tex-
ture coordinate transformations.

Above parameters are combined into a single affine2d transformation ma-
trix and the transformations are applied in the given order. Rotation, scale and
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translation are interpreted “texture centric”, i.e., their effect seen by an user are
relative to the texture (although the transformations are applied to the texture
coordinates).

Type Name Description

affine3f transform linear transformation (rotation, scale) plus
translation

Table 3.46 – Parameter to define 3D vol-
ume texture transformations.

Similarly, volume texture placement can also be modified by an affine3f
transformation matrix.

3.8 Cameras

To create a new camera of given type type use

OSPCamera ospNewCamera(const char *type);

All cameras accept these parameters:
The camera is placed and oriented in the world with position, direction

and up. Additionally, an extra transformation transform can be specified, which
will only be applied to 3D vectors (i.e., position, direction and up), but does
not affect any sizes (e.g., nearClip, apertureRadius, or height). The same
holds for the array of transformations motion.transform to achieve camera
motion blur (in combination with time and shutter).

OSPRay uses a right-handed coordinate system. The region of the camera
sensor that is rendered to the image can be specified in normalized screen-space
coordinates with imageStart (lower left corner) and imageEnd (upper right cor-
ner). This can be used, for example, to crop the image, to achieve asymmetrical
view frusta, or to horizontally flip the image to view scenes which are specified
in a left-handed coordinate system. Note that values outside the default range
of [0–1] are valid, which is useful to easily realize overscan or film gate, or to
emulate a shifted sensor.

3.8.1 PerspectiveCamera
The perspective camera implements a simple thin lens camera for perspective
rendering, supporting optionally depth of field and stereo rendering (with the
path tracer). It is created by passing the type string “perspective” to ospNew-
Camera. In addition to the general parameters understood by all cameras the
perspective camera supports the special parameters listed in the table below.

Note that when computing the aspect ratio a potentially set image region
(using imageStart & imageEnd) needs to be regarded as well.

In architectural photography it is often desired for aesthetic reasons to dis-
play the vertical edges of buildings or walls vertically in the image as well, regard-
less of how the camera is tilted. Enabling the architecturalmode achieves this
by internally leveling the camera parallel to the ground (based on the up direc-
tion) and then shifting the lens such that the objects in direction dir are centered
in the image. If finer control of the lens shift is needed use imageStart & im-
ageEnd. Because the camera is now effectively leveled its image plane and thus
the plane of focus is oriented parallel to the front of buildings, the whole façade
appears sharp, as can be seen in the example images below. The resolution of
the framebuffer is not altered by imageStart/imageEnd.
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Figure 3.19 – Example image created
with the perspective camera, featuring
depth of field.

Figure 3.20 – Enabling the architec-
tural flag corrects the perspective pro-
jection distortion, resulting in parallel
vertical edges.
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Table 3.47 – Parameters accepted by all cameras.

Type Name Default Description

vec3f position (0, 0, 0) position of the camera
vec3f direction (0, 0, 1) main viewing direction of the camera
vec3f up (0, 1, 0) up direction of the camera
affine3f transform identity additional world-space transform, overridden by

motion.* arrays
float nearClip 10-6 near clipping distance
vec2f imageStart (0, 0) start of image region (lower left corner)
vec2f imageEnd (1, 1) end of image region (upper right corner)
affine3f[] motion.transform additional uniformly distributed world-space

transforms
vec3f[] motion.scale additional uniformly distributed world-space scale,

overridden by motion.transform

vec3f[] motion.pivot additional uniformly distributed world-space
translation which is applied before
motion.rotation (i.e., the rotation center),
overridden by motion.transform

quatf[] motion.rotation additional uniformly distributed world-space
quaternion rotation, overridden by
motion.transform

vec3f[] motion.translation additional uniformly distributed world-space
translation, overridden by motion.transform

box1f time [0, 1] time associated with first and last key in
motion.* arrays

box1f shutter [0.5, 0.5] start and end of shutter time (for motion blur), in [0,
1]

uint shutterType OSP_SHUTTER_GLOBAL OSPShutterType for motion blur, also allowed are:
OSP_SHUTTER_ROLLING_RIGHT
OSP_SHUTTER_ROLLING_LEFT
OSP_SHUTTER_ROLLING_DOWN
OSP_SHUTTER_ROLLING_UP

float rollingShutterDuration 0 for a rolling shutter (see shutterType) the “open”
time per line, in [0, shutter.upper-shutter.lower]

3.8.2 OrthographicCamera
The orthographic camera implements a simple camera with orthographic projec-
tion, without support for depth. It is created by passing the type string “ortho-
graphic” to ospNewCamera. In addition to the general parameters understood by
all cameras the orthographic camera supports the following special parameters:

For convenience the size of the camera sensor, and thus the extent of the scene
that is captured in the image, can be controlled with the height parameter. The
same effect can be achieved with imageStart and imageEnd, and both methods
can be combined. In any case, the aspect ratio needs to be set accordingly to
get an undistorted image.
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Figure 3.21 – Example 3D stereo im-
age using stereoMode = OSP_STEREO_
SIDE_BY_SIDE.

Figure 3.22 – Example image created
with the orthographic camera.
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Table 3.48 – Additional parameters accepted by the perspective camera.

Type Name Default Description

float fovy 60 the field of view (angle in degree) of the frame’s height
float aspect 1 ratio of width by height of the frame (and image region)
float apertureRadius 0 size of the aperture, controls the depth of field
float focusDistance 1 distance at where the image is sharpest when depth of field is

enabled
bool architectural false vertical edges are projected to be parallel
uint stereoMode OSP_STEREO_NONE OSPStereoMode for stereo rendering, also allowed are:

OSP_STEREO_LEFT
OSP_STEREO_RIGHT
OSP_STEREO_SIDE_BY_SIDE

OSP_STEREO_TOP_BOTTOM (left eye at top half)
float interpupillaryDistance 0.0635 distance between left and right eye when stereo is enabled

Type Name Description

float height size of the camera’s image plane in y, in world coordinates
float aspect ratio of width by height of the frame

Table 3.49 – Additional parameters ac-
cepted by the orthographic camera.

3.8.3 PanoramicCamera
The panoramic camera implements a simple camera with support for stereo ren-
dering. It captures the complete surrounding with a latitude / longitude mapping
and thus the rendered images should best have a ratio of 2:1. A panoramic cam-
era is created by passing the type string “panoramic” to ospNewCamera. It is
placed and oriented in the scene by using the general parameters understood by
all cameras.

Table 3.50 – Additional parameters accepted by the panoramic camera.

Type Name Description

uint stereoMode OSPStereoMode for stereo rendering, possible values are:
OSP_STEREO_NONE (default)
OSP_STEREO_LEFT
OSP_STEREO_RIGHT
OSP_STEREO_SIDE_BY_SIDE

OSP_STEREO_TOP_BOTTOM (left eye at top half)
float interpupillaryDistance distance between left and right eye when stereo is enabled, default 0.0635

3.9 SceneHierarchy

3.9.1 Groups
Groups in OSPRay represent collections of GeometricModels, VolumetricModels
and Lights which share a common local-space coordinate system. To create a
group call
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Figure 3.23 – Latitude / longitude map
created with the panoramic camera.

OSPGroup ospNewGroup();

Groups take arrays of geometric models, volumetric models, clipping geomet-
ric models and lights, but they are all optional. In other words, there is no need
to create empty arrays if there are no geometries, volumes or lights in the group.

By adding OSPGeometricModels to the clippingGeometry array a clipping
geometry feature is enabled. Geometries assigned to this parameter will be used
as clipping geometries. Any supported geometry can be used for clipping5, the 5 including spheres, boxes, infinite planes,

closed meshes, closed subdivisions and
curves

only requirement is that it has to distinctly partition space into clipping and non-
clipping one. The use of clipping geometry that is not closed or infinite could
result in rendering artifacts. User can decide which part of space is clipped by
changing shading normals orientation with the invertNormals flag of the Geo-
metricModel. All geometries and volumes assigned to geometry or volume will
be clipped. All clipping geometries from all groups and Instances will be com-
bined together – a union of these areas will be applied to all other objects in the
world.

Table 3.51 – Parameters understood by groups.

Type Name Default Description

OSPGeometricModel[] geometry NULL data array of GeometricModels
OSPVolumetricModel[] volume NULL data array of VolumetricModels
OSPGeometricModel[] clippingGeometry NULL data array of GeometricModels used for clipping
OSPLight[] light NULL data array of lights
bool dynamicScene false tell Embree to use faster BVH build (slower ray traversal),

otherwise optimized for faster ray traversal (slightly
slower BVH build)

bool compactMode false tell Embree to use a more compact BVH in memory by
trading ray traversal performance

bool robustMode false tell Embree to enable more robust ray intersection code
paths (slightly slower)

3.9.2 Instances
Instances in OSPRay represent a single group’s placement into the world via a
transform. To create and instance call

OSPInstance ospNewInstance(OSPGroup);
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The passed group can be NULL as long as the group to be instanced is passed
as a parameter. If both a group is specified on object creation and as a parameter,
the parameter value is used. If the parameter value is later removed, the group
object passed on object creation is again used.

Table 3.52 – Parameters understood by instances.

Type Name Default Description

OSPGroup group optional group object to be instanced
affine3f transform identity world-space transform for all attached geometries and volumes,

overridden by motion.* arrays
affine3f[] motion.transform uniformly distributed world-space transforms
vec3f[] motion.scale uniformly distributed world-space scale, overridden by

motion.transform
vec3f[] motion.pivot uniformly distributed world-space translation which is applied before

motion.rotation (i.e., the rotation center), overridden by
motion.transform

quatf[] motion.rotation uniformly distributed world-space quaternion rotation, overridden by
motion.transform

vec3f[] motion.translation uniformly distributed world-space translation, overridden by
motion.transform

box1f time [0, 1] time associated with first and last key in motion.* arrays (for motion
blur)

uint32 id -1u optional user ID, for framebuffer channel OSP_FB_ID_INSTANCE

3.9.3 World
Worlds are a container of scene data represented by instances. To create an
(empty) world call

OSPWorld ospNewWorld();

Objects are placed in the world through an array of instances. Similar to
groups, the array of instances is optional: there is no need to create empty arrays
if there are no instances (though there will be nothing to render).

Applications can query the world (axis-aligned) bounding box after the world
has been committed. To get this information, call

OSPBounds ospGetBounds(OSPObject);

The result is returned in the provided OSPBounds6 struct: 6 OSPBounds has essentially the same layout
as the OSP_BOX3F OSPDataType.

typedef struct {
float lower[3];
float upper[3];

} OSPBounds;

This call can also take OSPGroup and OSPInstance as well: all other object
types will return an empty bounding box.

Finally, Worlds can be configured with parameters for making various fea-
ture/performance trade-offs (similar to groups).
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Table 3.53 – Parameters understood by worlds.

Type Name Default Description

OSPInstance[] instance NULL data array with handles of the instances
OSPLight[] light NULL data array with handles of the lights
bool dynamicScene false tell Embree to use faster BVH build (slower ray traversal), otherwise

optimized for faster ray traversal (slightly slower BVH build)
bool compactMode false tell Embree to use a more compact BVH in memory by trading ray

traversal performance
bool robustMode false tell Embree to enable more robust ray intersection code paths (slightly

slower)

3.10 Renderers

A renderer is the central object for rendering in OSPRay. Different renderers
implement different features and support different materials. To create a new
renderer of given type type use

OSPRenderer ospNewRenderer(const char *type);

General parameters of all renderers are

Table 3.54 – Parameters understood by all renderers.

Type Name Default Description

int pixelSamples 1 samples per pixel, best results when a
power of 2

int maxPathLength 20 maximum ray recursion depth
float minContribution 0.001 sample contributions below this value will

be neglected to speedup rendering
float varianceThreshold 0 threshold for adaptive accumulation
float / vec3f / vec4f backgroundColor black, transparent background color and alpha (linear

A/RGB/RGBA), if no map_backplate is set
OSPTexture map_backplate optional texture image used as background

(use texture type texture2d)
OSPTexture map_maxDepth optional screen-sized float texture with

maximum far distance per pixel (use
texture type texture2d)

OSPMaterial[] material optional data array of materials which can
be indexed by a GeometricModel’s
material parameter

uint pixelFilter OSP_PIXELFILTER_GAUSS OSPPixelFilterType to select the pixel
filter used by the renderer for antialiasing.
Possible pixel filters are listed below.

float mipMapBias 0 bias for texture MIP-mapping, balancing
between sharpness/aliasing and blurriness
due to prefiltering

OSPRay’s renderers support a feature called adaptive accumulation, which
accelerates progressive rendering by stopping the rendering and refinement of
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image regions that have an estimated variance below the varianceThreshold.
This feature requires a framebuffer with an OSP_FB_VARIANCE channel.

Per default the background of the rendered image will be transparent black,
i.e., the alpha channel holds the opacity of the rendered objects. This eases
transparency-aware blending of the image with an arbitrary background image
by the application (via ospray.rgb+ appBackground.rgb⋅(1− ospray.alpha)).
The parameter backgroundColor or map_backplate can be used to already
blend with a constant background color or backplate texture, respectively, (and
alpha) during rendering.

OSPRay renderers support depth composition with images of other render-
ers, for example to incorporate help geometries of a 3D UI that were rendered
with OpenGL. The screen-sized texture map_maxDepth must have format OSP_
TEXTURE_R32F and flag OSP_TEXTURE_FILTER_NEAREST. The fetched values are
used to limit the distance of primary rays, thus objects of other renderers can hide
objects rendered by OSPRay.

OSPRay supports antialiasing in image space by using pixel filters, which
are aligned around the center of a pixel. The size w×w of the filter depends on
the selected filter type. The types of supported pixel filters are defined by the
OSPPixelFilterType enum and can be set using the pixelFilter parameter.

Table 3.55 – Pixel filter types supported by OSPRay for antialiasing in image space.

Name Description

OSP_PIXELFILTER_POINT a point filter only samples the center of the pixel, therefore the filter
width is w = 0

OSP_PIXELFILTER_BOX a uniform box filter with a width of w = 1

OSP_PIXELFILTER_GAUSS a truncated, smooth Gaussian filter with a standard deviation of
σ = 0.5 and a filter width of w = 3

OSP_PIXELFILTER_MITCHELL the Mitchell-Netravali filter with a width of w = 4

OSP_PIXELFILTER_BLACKMAN_HARRIS the Blackman-Harris filter with a width of w = 3

OSPRay also antialiases textures with prefiltering and MIP-mapping, which
can be adjusted with parameter mipMapBias. For final frame rendering with a
high number of pixelSamples or accumulated frames mipMapBias can be low-
ered (e.g., set to -0.5 or -2) to result in sharper textures which are essentially
anisotropically filtered. Conversely, for preview rendering with just a single
sample per pixel a higher mipMapBias of 1 or 2 can reduce texture aliasing and
increase rendering speed.

3.10.1 SciVis Renderer
The SciVis renderer is a fast ray tracer for scientific visualization which supports
volume rendering and ambient occlusion (AO). It is created by passing the type
string “scivis” to ospNewRenderer. In addition to the general parameters un-
derstood by all renderers, the SciVis renderer supports the following parameters:

Note that the intensity (and color) of AO is deduced from an ambient light in
the lights array.7 If aoSamples is zero (the default) then ambient lights cause 7 If there are multiple ambient lights then

their contribution is added.ambient illumination (without occlusion).

3.10.2 AmbientOcclusionRenderer
This renderer supports only a subset of the features of the SciVis renderer to
gain performance. As the name suggest its main shading method is ambient oc-
clusion (AO), lights are not considered at all. Volume rendering is supported. The
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Table 3.56 – Special parameters understood by the SciVis renderer.

Type Name Default Description

bool shadows false whether to compute (hard) shadows
int aoSamples 0 number of rays per sample to compute ambient occlusion
float aoDistance 1020 maximum distance to consider for ambient occlusion
float volumeSamplingRate 1 sampling rate for volumes
bool visibleLights false whether light sources are potentially visible (as in the path tracer,

regarding each light’s visible)

Ambient Occlusion renderer is created by passing the type string “ao” to osp-
NewRenderer. In addition to the general parameters understood by all renderers
the following parameters are supported as well:

Table 3.57 – Special parameters understood by the Ambient Occlusion renderer.

Type Name Default Description

int aoSamples 1 number of rays per sample to compute ambient occlusion
float aoDistance 1020 maximum distance to consider for ambient occlusion
float aoIntensity 1 ambient occlusion strength
float volumeSamplingRate 1 sampling rate for volumes

3.10.3 PathTracer
The path tracer supports soft shadows, indirect illumination and realistic mate-
rials. This renderer is created by passing the type string “pathtracer” to osp-
NewRenderer. In addition to the general parameters understood by all renderers
the path tracer supports the following special parameters:

Table 3.58 – Special parameters understood by the path tracer.

Type Name Default Description

int lightSamples all number of random light samples per path vertex, best results when a
power of 2; per default all light sources are sampled

bool limitIndirectLightSamples true after the first non-specular (i.e., diffuse and glossy) path vertex take
(at most) a single light sample (instead of lightSamples many)

int roulettePathLength 5 ray recursion depth at which to start Russian roulette termination
int maxScatteringEvents 20 maximum number of non-specular (i.e., diffuse and glossy) bounces
float maxContribution ∞ samples are clamped to this value before they are accumulated into

the framebuffer
bool backgroundRefraction false allow for alpha blending even if background is seen through

refractive objects like glass

The path tracer requires that materials are assigned to geometries, otherwise
surfaces are treated as completely black.

The path tracer supports volumes with multiple scattering. The scattering
albedo can be specified using the transfer function. Extinction is assumed to be
spectrally constant.
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3.11 Framebuffer

The framebuffer holds the rendered 2D image (and optionally auxiliary informa-
tion associated with pixels). To create a new framebuffer object of given size
size (in pixels), color format, and channels use

OSPFrameBuffer ospNewFrameBuffer(int size_x, int size_y,
OSPFrameBufferFormat format = OSP_FB_SRGBA,
uint32_t frameBufferChannels = OSP_FB_COLOR);

The parameter format describes the format the color buffer has on the host,
and the format that ospMapFrameBuffer will eventually return. Valid values
are:

Name Description

OSP_FB_NONE framebuffer will not be mapped by the application
OSP_FB_RGBA8 8 bit [0–255] linear component red, green, blue, alpha
OSP_FB_SRGBA 8 bit sRGB gamma encoded color components, and

linear alpha
OSP_FB_RGBA32F 32 bit float components red, green, blue, alpha

Table 3.59 – Supported color formats
of the framebuffer that can be passed
to ospNewFrameBuffer, i.e., valid con-
stants of type OSPFrameBufferFormat.

The parameter frameBufferChannels specifies which channels the frame-
buffer holds, and can be combined together by bitwise OR from the values of
OSPFrameBufferChannel listed in the table below.

Name Description

OSP_FB_COLOR RGB color including alpha
OSP_FB_DEPTH euclidean distance to the camera (not to the

image plane), as linear 32 bit float; for multiple
samples per pixel their minimum is taken

OSP_FB_ACCUM accumulation buffer for progressive refinement
OSP_FB_VARIANCE for estimation of the current noise level if

OSP_FB_ACCUM is also present, see rendering
OSP_FB_NORMAL accumulated world-space normal of the first

non-specular hit, as vec3f
OSP_FB_ALBEDO accumulated material albedo (color without

illumination) at the first non-specular hit, as
vec3f

OSP_FB_ID_PRIMITIVE primitive index of the first hit, as uint32
OSP_FB_ID_OBJECT geometric/volumetric model id, if specified, or

index in group of first hit, as uint32
OSP_FB_ID_INSTANCE user defined instance id, if specified, or instance

index of first hit, as uint32

Table 3.60 – Framebuffer channels con-
stants (of type OSPFrameBufferChan-
nel), naming optional information the
framebuffer can store. These values
can be combined by bitwise OR when
passed to ospNewFrameBuffer.

If a certain channel value is not specified, the given buffer channel will not
be present. Note that OSPRay makes a clear distinction between the external
format of the framebuffer and the internal one: The external format is the for-
mat the user specifies in the format parameter; it specifies what color format
OSPRay will eventually return the framebuffer to the application (when calling
ospMapFrameBuffer): no matter what OSPRay uses internally, it will simply
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return a 2D array of pixels of that format, with possibly all kinds of reformat-
ting, compression/decompression, etc., going on in-between the generation of
the internal framebuffer and the mapping of the externally visible one.

In particular, OSP_FB_NONE is a perfectly valid pixel format for a framebuffer
that an application will never map. For example, an application driving a display
wall may well generate an intermediate framebuffer and eventually transfer its
pixel to the individual displays using an OSPImageOperation image operation.

The application canmap the given channel of a framebuffer – and thus access
the stored pixel information – via

const void *ospMapFrameBuffer(OSPFrameBuffer, OSPFrameBufferChannel = OSP_FB_COLOR);

Note that OSP_FB_ACCUM or OSP_FB_VARIANCE cannot be mapped. The ori-
gin of the screen coordinate system in OSPRay is the lower left corner (as in
OpenGL), thus the first pixel addressed by the returned pointer is the lower left
pixel of the image.

A previously mapped channel of a framebuffer can be unmapped by passing
the received pointer mapped to

void ospUnmapFrameBuffer(const void *mapped, OSPFrameBuffer);

The individual channels of a framebuffer can be cleared with

void ospResetAccumulation(OSPFrameBuffer);

This function will clear all accumulating buffers (OSP_FB_VARIANCE, OSP_
FB_NORMAL, and OSP_FB_ALBEDO, if present) and resets the accumulation counter
accumID. It is unspecified if the existing color and depth buffers are physically
cleared when ospResetAccumulation is called.

If OSP_FB_VARIANCE is specified, an estimate of the variance of the last accu-
mulated frame can be queried with

float ospGetVariance(OSPFrameBuffer);

Note this value is only updated after synchronizing with OSP_FRAME_FIN-
ISHED, as further described in asynchronous rendering. The estimated variance
can be used by the application as a quality indicator and thus to decide whether
to stop or to continue progressive rendering.

The framebuffer takes a list of pixel operations to be applied to the image in
sequence as an OSPData. The pixel operations will be run in the order they are
in the array.

Table 3.61 – Parameters accepted by the framebuffer.

Type Name Description

OSPImageOperation[] imageOperation ordered sequence of image operations
int targetFrames anticipated number of frames that will be accumulated for progressive

refinement, used renderers to generate a blue noise sampling pattern;
should be a power of 2, is always 1 without OSP_FB_ACCUM; default 0
(disabled)

If the total number of frames to be accumulated is known, then target-
Frames should be set, because then renderers can generate more pleasing blue
noise patterns. Accumulation stops when targetFrames is reached.
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3.11.1 ImageOperation
Image operations are functions that are applied to every pixel of a frame. Exam-
ples include post-processing, filtering, blending, tone mapping, or sending tiles
to a display wall. To create a new pixel operation of given type type use

OSPImageOperation ospNewImageOperation(const char *type);

3.11.1.1 ToneMapper

The tone mapper is a pixel operation which implements a generic filmic tone
mapping operator. Using the default parameters it approximates the Academy
Color Encoding System (ACES). The tone mapper is created by passing the type
string “tonemapper” to ospNewImageOperation. The tone mapping curve can
be customized using the parameters listed in the table below.

Table 3.62 – Parameters accepted by the tone mapper. The column “Filmic” lists alternative
values for the popular “Uncharted 2” tone mapping curve (note that that curve includes
an exposure bias to match 18% middle gray).

Type Name Default Filmic Description

float exposure 1.0 1.0 amount of light per unit area
float contrast 1.6773 1.1759 contrast (toe of the curve); typically is in [1–2]
float shoulder 0.9714 0.9746 highlight compression (shoulder of the curve); typically is in [0.9–1]
float midIn 0.18 0.18 mid-level anchor input; default is 18% gray
float midOut 0.18 0.18 mid-level anchor output; default is 18% gray
float hdrMax 11.0785 6.3704 maximum HDR input that is not clipped
bool acesColor true false apply the ACES color transforms

3.11.1.2 Denoiser

OSPRay comes with a module that adds support for Intel® Open Image Denoise
(OIDN). This is provided as an optional module as it creates an additional project
dependency at compile time. The module implements a “denoiser” frame op-
eration, which denoises the entire frame before the frame is completed. OIDN
will automatically select the fastest device, using a GPU when available. The
device selection be overridden by the environment variable OIDN_DEFAULT_DE-
VICE, possible values are cpu, sycl, cuda, hip, or a physical device ID

Table 3.63 – Parameters accepted by the denoiser.

Type Name Description

uint quality OSPDenoiserQuality for denoiser quality, default is
OSP_DENOISER_QUALITY_MEDIUM: balanced quality/performance for interactive/real-time
rendering; also allowed are:
OSP_DENOISER_QUALITY_LOW: high performance, for interactive/real-time preview
rendering
OSP_DENOISER_QUALITY_HIGH: high quality, for final frame rendering

bool denoiseAlpha whether to denoise the alpha channel as well, default false
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3.12 Rendering

3.12.1 AsynchronousRendering
Rendering is by default asynchronous (non-blocking), and is done by combining
a framebuffer, renderer, camera, and world.

What to render and how to render it depends on the renderer’s parameters. If
the framebuffer supports accumulation (i.e., it was created with OSP_FB_ACCUM)
then successive calls to ospRenderFrame will progressively refine the rendered
image (until targetFrames is reached).

To start an render task, use

OSPFuture ospRenderFrame(OSPFrameBuffer, OSPRenderer, OSPCamera, OSPWorld);

This returns an OSPFuture handle, which can be used to synchronize with
the application, cancel, or query for progress of the running task. When ospRen-
derFrame is called, there is no guarantee when the associated task will begin
execution.

Progress of a running frame can be queried with the following API function

float ospGetProgress(OSPFuture);

This returns the approximated progress of the task in [0-1].
Applications can cancel a currently running asynchronous operation via

void ospCancel(OSPFuture);

Applications can wait on the result of an asynchronous operation, or choose
to only synchronize with a specific event. To synchronize with an OSPFuture
use

void ospWait(OSPFuture, OSPSyncEvent = OSP_TASK_FINISHED);

The following are values which can be synchronized with the application

Table 3.64 – Supported events that can be passed to ospWait.

Name Description

OSP_NONE_FINISHED Do not wait for anything to be finished (immediately return from ospWait)
OSP_WORLD_COMMITTED Wait for the world to be committed (not yet implemented)
OSP_WORLD_RENDERED Wait for the world to be rendered, but not post-processing operations

(Pixel/Tile/Frame Op)
OSP_FRAME_FINISHED Wait for all rendering operations to complete
OSP_TASK_FINISHED Wait on full completion of the task associated with the future. The underlying task

may involve one or more of the above synchronization events

Currently only rendering can be invoked asynchronously. However, future
releases of OSPRay may add more asynchronous versions of API calls (and thus
return OSPFuture).

Applications can query whether particular events are complete with

int ospIsReady(OSPFuture, OSPSyncEvent = OSP_TASK_FINISHED);

As the given running task runs (as tracked by the OSPFuture), applications
can query a boolean [0, 1] result if the passed event has been completed.

Applications can query how long an async task ran with
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float ospGetTaskDuration(OSPFuture);

This returns the wall clock execution time of the task in seconds. If the task
is still running, this will block until the task is completed. This is useful for
applications to query exactly how long an asynchronous task executed without
the overhead of measuring both task execution + synchronization by the calling
application.

3.12.2 SynchronousRendering
For convenience in certain use cases, ospray_util.h provides a synchronous
version of ospRenderFrame:

float ospRenderFrameBlocking(OSPFrameBuffer, OSPRenderer, OSPCamera, OSPWorld);

This version is the equivalent of:

ospRenderFrame
ospWait(f, OSP_TASK_FINISHED)
return ospGetVariance(fb)

This version is closest to ospRenderFrame from OSPRay v1.x.

3.12.3 Rendering and ospCommit
The use of either ospRenderFrame or ospRenderFrameBlocking requires that
all objects in the scene being rendered have been committed before rendering
occurs. If a call to ospCommit happens while a frame is rendered, the result is
undefined behavior and should be avoided.

3.12.4 Picking
To get the world-space position of the geometry (if any) seen at [0–1] normalized
screen-space pixel coordinates screenPos_x and screenPos_y use

void ospPick(OSPPickResult *,
OSPFrameBuffer,
OSPRenderer,
OSPCamera,
OSPWorld,
float screenPos_x,
float screenPos_y);

The result is returned in the provided OSPPickResult struct:

typedef struct {
int hasHit;
float worldPosition[3];
OSPInstance instance;
OSPGeometricModel model;
uint32_t primID;

} OSPPickResult;

Note that ospPick considers exactly the same camera of the given renderer
that is used to render an image, thus matching results can be expected. If the cam-
era supports depth of field then the center of the lens and thus the center of the
circle of confusion is used for picking. Note that the caller needs to ospRelease
the instance and model handles of OSPPickResult once the information is not
needed anymore.
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Chapter 4

Modules andDevices

4.1 CPU

The CPU module is implicitly loaded and the cpu device is automatically used if
no other options are specified.

4.2 GPU (Beta)

To use the GPU for rendering load the gpu module and select the gpu device:

./ospExamples --osp:load-modules=gpu --osp:device=gpu

or via explicit device creation by the application:

ospLoadModule("gpu");
OSPDevice dev = ospNewDevice("gpu");
ospDeviceCommit(dev);
ospSetCurrentDevice(dev);

Type Name Description

void * syclContext SYCL context
void * syclDevice SYCL device

Table 4.1 –Parameters specific to the gpu
device.

Applications can set their SYCL context and device to share device memory
with OSPRay or to control which device should be used (e.g., in case multiple
GPUs are present). If neither parameter is set, the gpu device will automatically
create a context internally and select a GPU (that selection can be influenced
via environment variable ONEAPI_DEVICE_SELECTOR, see Intel oneAPI DPC++
Compiler documentation).

Compile times for just in time compilation (JIT compilation) can be large.
To resolve this issue we recommend enabling persistent JIT compilation caching
inside your application before the SYCL device is created, by setting environment
variables SYCL_CACHE_PERSISTENT=1 (and optionally SYCL_CACHE_DIR=<path>
to some proper directory where the JIT cache should get stored).

To reduce GPU memory allocation overhead when rendering scenes with
many objects (geometries, instances, etc.), memory pooling should be enabled by
setting the environment variable SYCL_PI_LEVEL_ZERO_USM_ALLOCATOR="1;
0;shared:1M,0,2M". See Intel oneAPI DPC++ Compiler documentation for
more details.

https://intel.github.io/llvm-docs/EnvironmentVariables.html#oneapi-device-selector
https://intel.github.io/llvm-docs/EnvironmentVariables.html#oneapi-device-selector
https://intel.github.io/llvm-docs/EnvironmentVariables.html#debugging-variables-for-level-zero-plugin
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Known Issues
The following features are not implemented yet or are not working correctly on
the GPU device:

• Multiple volumes in the scene
• Clipping
• Motion blur
• Subdivision surfaces
• Progress reporting via ospGetProgress or canceling the frame via osp-
Cancel

• Picking via ospPick
• Adaptive accumulation via OSP_FB_VARIANCE and varianceThreshold
• Framebuffer channels OSP_FB_ID_* (id buffers)
• Experimental support for shared device-only data, works only for struc-
turedRegular volume

There will be some delay on start-up as the kernel code is JIT compiled for
the device, and similar pauses when changing the scene configuration, because
the kernel specialized and re-compiled.

For some combination of compiler, GPU driver and scene the rendered images
might show artifacts (e.g., vertical lines or small blocks).

4.3 Distributed RenderingwithMPI

The purpose of OSPRay’s MPI modules is to provide distributed rendering ca-
pabilities for OSPRay. The modules enables image- and data-parallel rendering
across HPC clusters using MPI, allowing applications to transparently distribute
rendering work, or to render data sets which are too large to fit in memory on a
single machine.

OSPRay provides multiple MPI modules that expose different distributed ren-
dering capabilities. The mpi_offloadmodule provides image-parallel rendering
through the mpiOffload device; it enables OSPRay applications written for local
rendering to be replicated across multiple nodes to distribute the rendering work
without code changes.

And the mpi_distributed_cpu and mpi_distributed_gpu modules pro-
vides data-parallel rendering through the mpiDistributed device, which allows
MPI distributed applications to use OSPRay for distributed rendering. Each rank
using the mpiDistributed device can render an independent piece of a global
data set, or perform hybrid rendering where ranks partially or completely share
data.

The mpiDistributed device’s image-parallel rendering support can be used
to accelerate data loading for image-parallel applications, where all ranks load
the same data from a shared disk and then perform image-parallel rendering on
the replicated data, as if the mpiOffload device where being used.

4.3.1 MPIOffloadRendering
The mpiOffload device can be used to distribute image rendering tasks across
a cluster without requiring modifications to the application itself. Existing ap-
plications using OSPRay for local rendering simply be passed command line
arguments to load the module and indicate that the mpiOffload device should
be used for image-parallel rendering. To load the module, pass --osp:load-
modules=mpi_offload, to select theMPIOffloadDevice, pass --osp:device=mpiOffload.
For example, the ospExamples application can be run as:

mpirun -n <N> ./ospExamples --osp:load-modules=mpi_offload --osp:device=mpiOffload
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and will automatically distribute the image rendering tasks among the cor-
responding N nodes. Note that in this configuration rank 0 will act as a mas-
ter/application rank, and will run the user application code but not perform ren-
dering locally. Thus, a minimum of 2 ranks are required, one master to run the
application and one worker to perform the rendering. Running with 3 ranks for
example would now distribute half the image rendering work to rank 1 and half
to rank 2.

If more control is required over the placement of ranks to nodes, or you want
to run a worker rank on the master node as well you can run the application and
the ospray_mpi_worker program through MPI’s MPMD mode. The ospray_
mpi_worker will load the MPI module and select the offload device by default.

mpirun -n 1 ./ospExamples --osp:load-modules=mpi_offload --osp:device=mpiOffload \
: -n <N> ./ospray_mpi_worker

If initializing the mpiOffload devicemanually, or passing parameters through
the command line, the following parameters can be set:

Table 4.2 – Parameters specific to the mpiOffload device.

Type Name Default Description

string mpiMode mpi The mode to communicate with the worker ranks. mpi will
assume you are launching the application and workers in the
same mpi command (or split launch command). mpi is the only
supported mode

uint maxCommandBufferEntries 8192 Set the max number of commands to buffer before submitting the
command buffer to the workers

uint commandBufferSize 512 MiB Set the max command buffer size to allow. Units are in MiB. Max
size is 1.8 GiB

uint maxInlineDataSize 32 MiB Set the max size of an OSPData which can be inline’d into the
command buffer instead of being sent separately. Max size is half
the commandBufferSize. Units are in MiB

The maxCommandBufferEntries, commandBufferSize, and maxInline-
DataSize can also be set via the environment variables: OSPRAY_MPI_MAX_COM-
MAND_BUFFER_ENTRIES, OSPRAY_MPI_COMMAND_BUFFER_SIZE, and OSPRAY_MPI_
MAX_INLINE_DATA_SIZE, respectively.

The mpiOffload device uses a dynamic load balancer by default. If you wish
to use a static load balancer you can do so by setting the OSPRAY_STATIC_BAL-
ANCER environment variable to 1.

For theworker ranks to create GPU devices instead of the default CPU devices
set the environment variable OSPRAY_MPI_DISTRIBUTED_GPU, e.g.,

export OSPRAY_MPI_DISTRIBUTED_GPU=1

or

mpiexec -genv OSPRAY_MPI_DISTRIBUTED_GPU 1 \
-n 1 ./ospExamples --osp:load-modules=mpi_offload --osp:device=mpiOffload \
: -n 2 ./ospray_mpi_worker

The mpiOffload device does not support multiple init/shutdown cycles.
Thus, to run ospBenchmark for this devicemake sure to exclude the init/shutdown
test by passing --benchmark_filter=-ospInit_ospShutdown through the
command line.
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4.3.2 MPIDistributedRendering
While MPI Offload rendering is used to transparently distribute rendering work
without requiring modification to the application, MPI Distributed rendering is
targeted at use of OSPRay within MPI-parallel applications. The MPI distributed
device can be selected by loading the mpi_distributed_cpu module for CPU
rendering or mpi_distributed_gpu for GPU rendering, and manually creating
and using an instance of the mpiDistributed device, for example:

ospLoadModule("mpi_distributed_cpu");

OSPDevice mpiDevice = ospNewDevice("mpiDistributed");
ospDeviceCommit(mpiDevice);
ospSetCurrentDevice(mpiDevice);

Your application can either initialize MPI before-hand, ensuring that MPI_
THREAD_SERIALIZED or higher is supported, or allow the device to initialize MPI
on commit. Thread multiple support is required if your application will make
MPI calls while rendering asynchronously with OSPRay. When using the dis-
tributed device each rank can specify independent local data using the OSPRay
API, as if rendering locally. However, when calling ospRenderFrameAsync the
ranks will work collectively to render the data. The distributed device supports
both image-parallel, where the data is replicated, and data-parallel, where the
data is distributed, rendering modes. The mpiDistributed device will by de-
fault use each rank in MPI_COMM_WORLD as a render worker; however, it can also
take a specific MPI communicator to use as the world communicator. Only those
ranks in the specified communicator will participate in rendering.

Table 4.3 – Parameters specific to the mpiDistributed device.

Type Name Default Description

void * worldCommunicator MPI_COMM_WORLD The MPI communicator which the OSPRay workers should
treat as their world

Table 4.4 – Parameters specific to the distributed OSPWorld.

Type Name Default Description

box3f[] region NULL A list of bounding boxes which bound the owned local data to be rendered by the rank

Table 4.5 – Parameters specific to the mpiRaycast renderer.

Type Name Default Description

int aoSamples 0 The number of AO samples to take per-pixel
float aoDistance 1020 The AO ray length to use. Note that if the AO ray would have crossed a

rank boundary and ghost geometry is not available, there will be visible
artifacts in the shading

float volumeSamplingRate 1 sampling rate for volumes

4.3.2.1 ImageParallel Rendering in theMPIDistributedDevice

If all ranks specify exactly the same data, the distributed device can be used for
image-parallel rendering. This works identical to the offload device, except that
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the MPI-aware application is able to load data in parallel on each rank rather
than loading on the master and shipping data out to the workers. When a par-
allel file system is available, this can improve data load times. Image-parallel
rendering is selected by specifying the same data on each rank, and using any of
the existing local renderers (e.g., scivis, pathtracer). See ospMPIDistribTuto-
rialReplicated for an example.

4.3.2.2 Data Parallel Rendering in theMPIDistributedDevice

The MPI Distributed device also supports data-parallel rendering with sort-last
compositing. Each rank can specify a different piece of data, as long as the bound-
ing boxes of each rank’s data are non-overlapping. The rest of the scene setup is
similar to local rendering; however, for distributed rendering only the mpiRay-
cast renderer is supported. This renderer implements a subset of the scivis
rendering features which are suitable for implementation in a distributed envi-
ronment.

By default the aggregate bounding box of the instances in the local world will
be used as the bounds of that rank’s data. However, when using ghost zones for
volume interpolation, geometry or ambient occlusion, each rank’s data can over-
lap. To clip these non-owned overlap regions out a set of regions (the region
parameter) can pass as a parameter to the OSPWorld being rendered. Each rank
can specify one or more non-overlapping box3f’s which bound the portions of
its local data which it is responsible for rendering. See the ospMPIDistribTutori-
alVolume for an example.

Finally, the MPI distributed device also supports hybrid-parallel rendering,
where multiple ranks can share a single piece of data. For each shared piece
of data the rendering work will be assigned image-parallel among the ranks.
Partially-shared regions are determined by finding those ranks specifying data
with the same bounds (matching regions) and merging them. See the ospMPIDis-
tribTutorialPartialRepl for an example.

Picking onDistributedData in theMPIDistributedDevice

Calling ospPick in the distributed device will find and return the closest global
object at the screen position on the rank that owns that object. The other ranks
will report no hit. Picking in the distributed device takes into account data clip-
ping applied through the regions parameter to avoid picking ghost data.

4.3.3 InteractionwithUserModules
TheMPI Offload renderingmode trivially supports user modules, with the caveat
that attempting to share data directly with the application (e.g., passing a void *
or other tricks to themodule) will not work in a distributed environment. Instead,
use the ospNewSharedData API to share data from the application with OSPRay,
which will in turn be copied over the network to the workers.

The MPI Distributed device also supports user modules, as all that is required
for compositing the distributed data are the bounds of each rank’s local data.

4.4 MultiDevice

The multidevice module is an experimental OSPRay device type that renders im-
ages by delegating off pixel tiles to a number of internal delegate OSPRay devices.

If you wish to try it set the OSPRAY_NUM_SUBDEVICES environmental variable
to the number of subdevices you want to create and tell OSPRay to both load the
multidevice_cpu extension and create a multidevice for rendering instead of
the default CPU device.

https://github.com/ospray/ospray/blob/master/modules/mpi/tutorials/ospMPIDistribTutorialReplicated.cpp
https://github.com/ospray/ospray/blob/master/modules/mpi/tutorials/ospMPIDistribTutorialReplicated.cpp
https://github.com/ospray/ospray/blob/master/modules/mpi/tutorials/ospMPIDistribTutorialVolume.cpp
https://github.com/ospray/ospray/blob/master/modules/mpi/tutorials/ospMPIDistribTutorialVolume.cpp
https://github.com/ospray/ospray/blob/master/modules/mpi/tutorials/ospMPIDistribTutorialPartialRepl.cpp
https://github.com/ospray/ospray/blob/master/modules/mpi/tutorials/ospMPIDistribTutorialPartialRepl.cpp
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One example in a bash like shell is as follows:

OSPRAY_NUM_SUBDEVICES=6 ./ospTutorial --osp:load-modules=multidevice_cpu --osp:device=multidevice

Note that the multidevice currently does not support OSPImageOperations
for denoising nor tone mapping.
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Chapter 5

Tutorials

5.1 ospTutorial

A minimal working example demonstrating how to use OSPRay can be found at
apps/tutorials/ospTutorial.c1. 1 A C++ version that uses the C++ con-

venience wrappers of OSPRay’s C99 API
via include/ospray/ospray_cpp.h is
available at apps/tutorials/ospTuto-
rial.cpp.

An example of building ospTutorial.c with CMake can be found in apps/
tutorials/ospTutorialFindospray/.

To build the tutorial on Linux, build it in a build directory with

gcc -std=c99 ../apps/ospTutorial/ospTutorial.c \
-I ../ospray/include -L . -lospray -Wl,-rpath,. -o ospTutorial

OnWindows build it can be buildmanually in a “build_directory\$Configuration”
directory with

cl ..\..\apps\ospTutorial\ospTutorial.c -I ..\..\ospray\include -I ..\.. ospray.lib

Running ospTutorial will create two images of two triangles, rendered
with the Scientific Visualization renderer with full Ambient Occlusion. The first
image firstFrame.ppm shows the result after one call to ospRenderFrame –
jagged edges and noise in the shadow can be seen. Calling ospRenderFrame
multiple times enables progressive refinement, resulting in antialiased edges and
converged shadows, shown after ten frames in the second image accumulated-
Frames.ppm.

Figure 5.1 – First frame.

https://github.com/ospray/ospray/blob/master/apps/ospTutorial/ospTutorial.c
https://github.com/ospray/ospray/blob/master/ospray/include/ospray/ospray_cpp.h
https://github.com/ospray/ospray/blob/master/apps/ospTutorial/ospTutorial.cpp
https://github.com/ospray/ospray/blob/master/apps/ospTutorial/ospTutorial.cpp
https://github.com/ospray/ospray/tree/master/apps/ospTutorial/ospTutorialFindospray
https://github.com/ospray/ospray/tree/master/apps/ospTutorial/ospTutorialFindospray
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Figure 5.2 – After accumulating ten
frames.

5.2 ospExamples

Apart from tutorials, OSPRay comes with a C++ app called ospExamples which
is an elaborate easy-to-use tutorial, with a single interface to try various OSPRay
features. It is aimed at providing users with multiple simple scenes composed of
basic geometry types, lights, volumes etc. to get started with OSPRay quickly.

ospExamples app runs a GLFWOSPRayWindow instance that manages in-
stances of the camera, framebuffer, renderer and other OSPRay objects necessary
to render an interactive scene. The scene is rendered on a GLFW window with an
imgui GUI controls panel for the user to manipulate the scene at runtime.

The application is located in apps/ospExamples/ directory and can be built
with CMake. It can be run from the build directory via:

./ospExamples <command-line-parameter>

The command line parameter is optional however.

Figure 5.3 – ospExamples application
with default boxes scene.

5.2.1 Scenes
Different scenes can be selected from the scenes dropdown and each scene cor-
responds to an instance of a special detail::Builder struct. Example builders
are located in apps/common/ospray_testing/builders/. These builders pro-
vide a usage guide for the OSPRay scene hierarchy and OSPRay API in the form
of cpp wrappers. They instantiate and manage objects for the specific scene like
cpp::Geometry, cpp::Volume, cpp::Light etc.

https://github.com/ospray/ospray/tree/master/apps/ospExamples
https://github.com/ospray/ospray/tree/master/apps/ospExamples
https://github.com/ospray/ospray/tree/master/apps/common/ospray_testing/builders
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The detail::Builder base struct is mostly responsible for setting up OS-
PRay world and objects common in all scenes (for example lighting and ground
plane), which can be conveniently overridden in the derived builders.

5.2.2 Renderer
This app comes with four renderer options: scivis, pathtracer, ao and debug.
The app provides some common rendering controls like pixelSamples and other
more specific to the renderer type like aoSamples for the scivis and ao renderer
or maxPathLength for the pathtracer.

The sun-sky lighting can be used in a sample scene by enabling the ren-
derSunSky option of the pathtracer renderer. It allows the user to change
turbidity and sunDirection.

Figure 5.4 – Rendering an evening sky
with the renderSunSky option.

5.3 ospMPIDistribTutorial

A minimal working example demonstrating how to use OSPRay for rendering
distributed data can be found at modules/mpi/tutorials/ospMPIDistribTu-
torial.c2. 2 A C++ version that uses the C++ con-

venience wrappers of OSPRay’s C99 API
via include/ospray/ospray_cpp.h is
available at modules/mpi/tutorials/
ospMPIDistribTutorial.cpp.

The compilation process via CMake is the similar to apps/tutorials/osp-
TutorialFindospray/, with the addition of finding and linking MPI.

To build the tutorial on Linux, build it in a build directory with

mpicc -std=c99 ../modules/mpi/tutorials/ospMPIDistribTutorial.c \
-I ../ospray/include -L . -lospray -Wl,-rpath,. -o ospMPIDistribTutorial

OnWindows build it can be buildmanually in a “build_directory\$Configuration”
directory with

cl ..\..\modules\mpi\tutorials\ospMPIDistribTutorial.c -I ..\..\ospray\include -I ..\.. ospray.lib

The MPI module does not need to be linked explicitly, as it is loaded as a
module at runtime.

https://github.com/ospray/ospray/blob/master/modules/mpi/tutorials/ospMPIDistribTutorial.c
https://github.com/ospray/ospray/blob/master/modules/mpi/tutorials/ospMPIDistribTutorial.c
https://github.com/ospray/ospray/blob/master/ospray/include/ospray/ospray_cpp.h
https://github.com/ospray/ospray/blob/master/modules/mpi/tutorials/ospMPIDistribTutorial.cpp
https://github.com/ospray/ospray/blob/master/modules/mpi/tutorials/ospMPIDistribTutorial.cpp
https://github.com/ospray/ospray/tree/master/apps/ospTutorial/ospTutorialFindospray
https://github.com/ospray/ospray/tree/master/apps/ospTutorial/ospTutorialFindospray
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Figure 5.5 –The first frame output by the
ospMPIDistribTutorial or C++ tuto-
rial with 4 ranks.

Figure 5.6 – The accumulated frame out-
put by the ospMPIDistribTutorial or
C++ tutorial with 4 ranks.

5.4 ospMPIDistribTutorialSpheres and ospMPIDis-
tribTutorialVolume

The spheres and volume distributed tutorials are built as part of the MPI tuto-
rials when building OSPRay with the MPI module and tutorials enabled. These
tutorials demonstrate using OSPRay to render distributed data sets where each
rank owns some subregion of the data, and displaying the output in an interac-
tive window. The domain is distributed in a grid among the processes, each of
which will generate a subset of the data corresponding to its subdomain.

In ospMPIDistribTutorialSpheres, each process generates a set of spheres
within its assigned domain. The spheres are colored from dark to light blue,
where lighter colors correspond to higher ranks.

Figure 5.7 – Running ospMPIDistrib-
TutorialSpheres on 4 ranks.

In ospMPIDistribTutorialVolume, each process generates a subbrick of
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volume data, which is colored by its rank.

Figure 5.8 – Running ospMPIDistrib-
TutorialVolume on 4 ranks.

5.5 ospMPIDistribTutorialPartialRepl

The partially replicated MPI tutorial demonstrates how to use OSPRay’s dis-
tributed rendering capabilities to render data sets that are partially replicated
among the processes. Each pair of ranks generates the same volume brick, allow-
ing them to subdivide the rendering workload between themselves. For example,
when run with two ranks, each will generate the same brick and be responsible
for rendering half of the image tiles it projects to. When run with four ranks, the
pairs of ranks 0,1 and 2,3 will generate the same data and divide the rendering
workload for that data among themselves.

The image work subdivision happens automatically, based on which ranks
specify the same bounding box for their data, as demonstrated in the tutorial.

The partially replicated distribution is useful to support load-balanced ren-
dering of data sets that are too large to be fully replicated among the processes,
but are small enough to be partially replicated among them.

5.6 ospMPIDistribTutorialReplicated

The replicated MPI tutorial demonstrates how OSPRay’s distributed rendering
capabilities can be used to render data sets that are fully replicated among the
ranks with advanced illumination effects. In this case, although the processes
are run MPI parallel, each rank specifies the exact same data. OSPRay’s MPI par-
allel renderer will detect that the data is replicated in this case and use the same
image-parallel rendering algorithms employed in the MPI offload rendering con-
figuration to render the data. This image-parallel rendering algorithm supports
all rendering configurations that are used in local rendering, e.g., path tracing, to
provide high-quality images.

The replicated MPI tutorial supports the same scenes and parameters as the
ospExamples app described above.

This mode can be useful when high-quality rendering is desired and it is
possible to copy the entire data set on to each rank, or to accelerate loading of a
large model by leveraging a parallel file system.
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