
SQL 2003 Standard Support in
Oracle Database 10g

An Oracle White Paper
November 2003

SQL 2003 Standard Support in Oracle Database 10g

Introduction ...3
Object-Relational Features..3

ANSI SQL Standard Multiset Operations for Nested Tables..............4
Comparisons of Nested Tables ...5
Multisets Operations ...7

Business Intelligence Features...11
Examples of OLAP Functions in Oracle Databases..........................12

Inverse Percentile Family..12
Hypothetical Rank and Distribution Family..................................14

SQL/XML Features...14
Generating XML from SQL Data Using SQL/XML Functions15

XMLElement() Function ..15
XMLForest() Function ...17
XMLConcat() Function ..17
XMLAgg() Function ..18

Conclusion...19

SQL 2003 Standard Support in Oracle Database 10g Page 2

SQL 2003 Standard Support in Oracle Database 10g

INTRODUCTION

SQL standards have been the most popular and enduring standards in
computing. Although information processing has become increasingly more
sophisticated and more complex over the past decades, SQL has continually
evolved to meet the growing demands.

As the latest version of SQL standards, SQL 2003 is making major
improvements in a number of key areas. First, there are additional object-
relational features, which were first introduced in SQL 1999. Second, SQL 2003
standard revolutionizes SQL with comprehensive OLAP features. Third, SQL
2003 delivers a brand new Part 14 for XML-Related Specifications (SQL/XML)
to integrate popular XML standards into SQL. Finally, there are numerous
improvements throughout the SQL 2003 standard to refine existing features.

As the first commercial implementation of SQL over 25 years ago, Oracle
continues to lead the database industry in implementing SQL standards. In fact,
many of the SQL 2003 new features had already been supported since Oracle
Database 8/8i (Multisets, OLAP functions, etc.), Oracle Database 9i (additional
OLAP functions, Table functions, Nested collection types, Final structured
types, etc.) or Oracle Database 9i Release 2 (SQL/XML features). The latest
Oracle Database 10g supports additional SQL 2003 new features (advanced
Multiset support) as well as several new SQL capabilities beyond the current
SQL 2003 standard (e.g., additional statistical functions, regular expressions),
making Oracle Database 10g the best implementation of SQL standards.

In the next sections, we will describe the following three key categories of SQL
2003 new features supported in Oracle databases.

• Object-Relational features

• Business Intelligence features

• SQL/XML features

OBJECT-RELATIONAL FEATURES

With increasingly more complex eCommerce and eBusiness applications,
application development adopted object-oriented approach to simplify and to
manage complexity. Object-oriented programming languages (e.g., Java, C++)

SQL 2003 Standard Support in Oracle Database 10g Page 3

The latest Oracle Database 10g supports

additional SQL 2003 new features as well

as several new SQL capabilities beyond the

current SQL 2003 standard.

were also chosen to implement these new applications. Traditional relational
constructs fall short of the needs of object-oriented application developers.
Addressing the growing demands, SQL 1999 standard introduced extensive
object-relational features to simplify the storage and retrieval of complex-
structured application objects. Oracle has supported comprehensive Object-
Relational features since Oracle8/8i Database releases. SQL 2003 standard
makes further improvements in this area with the following new features,

• Multiset support: Multiset type is a newly defined Collection type for an
unordered collection. Since Oracle8, Multiset type has been supported in
Oracle databases as Nested Table datatype.

• Advanced Multiset support: SQL 2003 defines advanced Multiset support
with Comparison and Set operators (e.g., UNION, INTERSECTION).
Oracle Database 10g provides comprehensive support of these Multiset
operators for Nested Tables.

• Nested Collection Types: SQL 2003 defines two collection types, namely
the Array type and the Multiset type. In addition to Nested Table datatype,
Oracle supports the Array type as the Varray datatype since Oracle8.
Nested collection of Varrays and Nested Tables have been supported in
Oracle databases since Oracle9i.

• Final Structured Types: A User Defined Type (UDT) can be created with
either FINAL or NOT FINAL option to indicate whether subtypes can
inherit from it. Oracle databases have supported this feature since Oracle9i
as part of its comprehensive Type Inheritance support.

In the following section, we will describe Multiset Comparison and Set
operations in more detail. In depth information about other features can be found
in current Oracle database documentation online at
http://otn.oracle.com/documentation/index.html.

ANSI SQL Standard Multiset Operations for Nested Tables

New in Oracle Database 10g, a number of Multiset operators are now supported
for the Nested Table collection type. Real world applications use collection
types to model containment relationships. Comparison and Set operators for
collection types provide powerful tools for these applications. Oracle supports
two collection datatypes, VARRAYs and Nested Tables.

A nested table is an unordered set of data elements, all of the same datatype. No
maximum is specified in the definition of the table and the order of the elements
is not preserved. Elements of a nested table are actually stored in a separate
storage table that contains a column that identifies the parent table row or object
to which each element belongs. A nested table has a single column, and the type
of that column is a built-in type or an object type. If the column in a nested table
is an object type, the table can also be viewed as a multi-column table, with a
column for each attribute of the object type.

SQL 2003 Standard Support in Oracle Database 10g Page 4

Oracle has supported comprehensive

Object-Relational features since Oracle8/8i

Database releases.

Comparisons of Nested Tables

Equal and Not Equal Comparisons

The equal (=) and not equal (<>) conditions determine whether the input nested
tables are identical or not, returning the result as a boolean value.

Two nested tables are equal if they have the same named type, have the same
cardinality, and their elements are equal. Elements are equal depending on
whether they are equal by the elements own equality definitions, except for
object types which require a map method.

For example:

CREATE TYPE person_typ AS OBJECT (
 idno NUMBER,
 name VARCHAR2(30),
 phone VARCHAR2(20),
 MAP MEMBER FUNCTION get_idno RETURN NUMBER);
/

CREATE TYPE BODY person_typ AS
 MAP MEMBER FUNCTION get_idno RETURN NUMBER IS
 BEGIN
 RETURN idno;
 END;
END;
/

CREATE TYPE people_typ AS TABLE OF person_typ;
/
CREATE TABLE students (
 graduation DATE,
 math_majors people_typ,
 chem_majors people_typ,
 physics_majors people_typ)
 NESTED TABLE math_majors STORE AS math_majors_nt
 NESTED TABLE chem_majors STORE AS chem_majors_nt
 NESTED TABLE physics_majors STORE AS physics_majors_nt;

INSERT INTO students (graduation) VALUES ('01-JUN-03');
UPDATE students
 SET math_majors =
 people_typ (person_typ(12, 'Bob Jones', '111-555-1212'),
 person_typ(31, 'Sarah Chen', '111-555-2212'),
 person_typ(45, 'Chris Woods', '111-555-1213')),
 chem_majors =
 people_typ (person_typ(51, 'Joe Lane', '111-555-1312'),
 person_typ(31, 'Sarah Chen', '111-555-2212'),
 person_typ(52, 'Kim Patel', '111-555-1232')),
 physics_majors =
 people_typ (person_typ(12, 'Bob Jones', '111-555-1212'),
 person_typ(45, 'Chris Woods', '111-555-1213'))
WHERE graduation = '01-JUN-03';

SQL 2003 Standard Support in Oracle Database 10g Page 5

SELECT p.name FROM students, TABLE(physics_majors) p
WHERE math_majors = physics_majors;

no rows selected

In this example, the nested tables contain person_typ objects which have an
associated map method.

In Comparisons

The IN condition checks whether a nested table is in a list of nested tables,
returning the result as a boolean value. NULL is returned if the nested table is a
null nested table.

For example:

SELECT p.idno, p.name
 FROM students, TABLE(physics_majors) p
WHERE physics_majors IN (math_majors, chem_majors);

no rows selected

Subset of Multiset Comparison

The SUBMULTISET [OF] condition checks whether a nested table is a subset of
a another nested table, returning the result as a boolean value. The OF keyword
is optional and does not change the functionality of SUBMULTISET.

This operator is implemented only for nested tables because this is a multiset
function only.

For example:

SELECT p.idno, p.name
 FROM students, TABLE(physics_majors) p
WHERE physics_majors SUBMULTISET OF math_majors;

 IDNO NAME
---------- ------------------------------
 12 Bob Jones
 45 Chris Woods

Member of a Nested Table Comparison

The MEMBER [OF] or NOT MEMBER [OF] condition tests whether an element is
a member of a nested table, returning the result as a boolean value. The OF
keyword is optional and has no effect on the output.

For example:

SELECT graduation FROM students WHERE person_typ(12, 'Bob
Jones', '1-800-555-1212') MEMBER OF math_majors;

GRADUATION

01-JUN-03

SQL 2003 Standard Support in Oracle Database 10g Page 6

where person_typ (12, 'Bob Jones', '1-800-555-1212') is an
element of the same type as the elements of the nested table math_majors.

Empty Comparison

The IS [NOT] EMPTY condition checks whether a given nested table is empty
or not empty, regardless of whether any of the elements are NULL. If a NULL
is given for the nested table, the result is NULL. The result is returned as a
boolean value.

SELECT p.idno, p.name
 FROM students, TABLE(physics_majors) p
WHERE physics_majors IS NOT EMPTY;

 IDNO NAME
---------- ------------------------------
 12 Bob Jones
 45 Chris Woods

Set Comparison

The IS [NOT] A SET condition checks whether a given nested table is
composed of unique elements, returning a boolean value.

For example:

SELECT p.idno, p.name
 FROM students, TABLE(physics_majors) p
WHERE physics_majors IS A SET;

 IDNO NAME
---------- ------------------------------
 12 Bob Jones
 45 Chris Woods

Multisets Operations

CARDINALITY

The CARDINALITY function returns the number of elements in a varray or
nested table. The return type is NUMBER. If the varray or nested table is a null
collection, NULL is returned.

For example:
SELECT CARDINALITY(math_majors)
 FROM students;

CARDINALITY(MATH_MAJORS)

 3

COLLECT

The COLLECT function is an aggregate function which would create a multiset
from a set of elements. The function would take a column of the element type as

SQL 2003 Standard Support in Oracle Database 10g Page 7

input and create a multiset from rows selected. To get the results of this function
you must use it within a CAST function to specify the output type of COLLECT.

MULTISET EXCEPT

The MULTISET EXCEPT operator inputs two nested tables and returns a nested
table whose elements are in the first nested table but not in the second nested
table. The input nested tables and the output nested table are all type name
equivalent.

The ALL or DISTINCT options can be used with the operator. The default is
ALL.

With the ALL option, for ntab1 MULTISET EXCEPT ALL ntab2, all elements
in ntab1 other than those in ntab2 would be part of the result. If a particular
element occurs m times in ntab1 and n times in ntab2, the result will have (m -
n) occurrences of the element if m is greater than n otherwise 0 occurrences of
the element.

With the DISTINCT option, any element that is present in ntab1 which is also
present in ntab2 would be eliminated, irrespective of the number of
occurrences.

For example:

SELECT math_majors MULTISET EXCEPT physics_majors
 FROM students WHERE graduation = '01-JUN-03';

MATH_MAJORSMULTISETEXCEPTPHYSICS_MAJORS(IDNO, NAME, PHONE)

PEOPLE_TYP(PERSON_TYP(31, 'Sarah Chen', '111-555-2212'))

MULTISET INTERSECTION

The MULTISET INTERSECT operator returns a nested table whose values are
common in the two input nested tables. The input nested tables and the output
nested table are all type name equivalent.

There are two options associated with the operator: ALL or DISTINCT. The
default is ALL. With the ALL option, if a particular value occurs m times in
ntab1 and n times in ntab2, the result would contain the element MIN(m, n)
times. With the DISTINCT option the duplicates from the result would be
eliminated, including duplicates of NULL values if they exist.

For example:

SELECT math_majors MULTISET INTERSECT physics_majors
 FROM students
WHERE graduation = '01-JUN-03';

MATH_MAJORSMULTISETINTERSECTPHYSICS_MAJORS(IDNO, NAME, PHONE)
--
PEOPLE_TYP(PERSON_TYP(12, 'Bob Jones', '111-555-1212'),
 PERSON_TYP(45, 'Chris Woods', '111-555-1213'))

SQL 2003 Standard Support in Oracle Database 10g Page 8

MULTISET UNION

The MULTISET UNION operator returns a nested table whose values are those of
the two input nested tables. The input nested tables and the output nested table
are all type name equivalent.

There are two options associated with the operator: ALL or DISTINCT. The
default is ALL. With the ALL option, all elements that are in ntab1 and ntab2
would be part of the result, including all copies of NULLs. If a particular element
occurs m times in ntab1 and n times in ntab2, the result would contain the
element (m + n) times. With the DISTINCT option the duplicates from the result
are eliminated, including duplicates of NULL values if they exist.

For example:

SELECT math_majors MULTISET UNION DISTINCT physics_majors
 FROM students
WHERE graduation = '01-JUN-03';

MATH_MAJORSMULTISETUNIONDISTINCTPHYSICS_MAJORS(IDNO,
NAME, PHONE)

PEOPLE_TYP(PERSON_TYP(12, 'Bob Jones', '111-555-1212'),
 PERSON_TYP(31, 'Sarah Chen', '111-555-2212'),
 PERSON_TYP(45, 'Chris Woods', '111-555-1213'))

SELECT math_majors MULTISET UNION ALL physics_majors
 FROM students
WHERE graduation = '01-JUN-03';

MATH_MAJORSMULTISETUNIONALLPHYSICS_MAJORS(IDNO, NAME,
PHONE)

PEOPLE_TYP(PERSON_TYP(12, 'Bob Jones', '111-555-1212'),
 PERSON_TYP(31, 'Sarah Chen', '111-555-2212'),
 PERSON_TYP(45, 'Chris Woods', '111-555-1213'),
 PERSON_TYP(12, 'Bob Jones', '111-555-1212'),
 PERSON_TYP(45, 'Chris Woods', '111-555-1213'))

POWERMULTISET

The POWERMULTISET function generates all non-empty submultisets from a
given multiset. The input to the POWERMULTISET function could be any
expression which evaluates to a multiset. The limit on the cardinality of the
multiset argument is 32.

For example:

SELECT * FROM TABLE(POWERMULTISET(people_typ (
 person_typ(12, 'Bob Jones', '1-800-555-1212'),
 person_typ(31, 'Sarah Chen', '1-800-555-2212'),
 person_typ(45, 'Chris Woods', '1-800-555-1213'))));

SQL 2003 Standard Support in Oracle Database 10g Page 9

COLUMN_VALUE(IDNO, NAME, PHONE)

PEOPLE_TYP(PERSON_TYP(12, 'Bob Jones', '1-800-555-1212'))
PEOPLE_TYP(PERSON_TYP(31, 'Sarah Chen', '1-800-555-2212'))
PEOPLE_TYP(PERSON_TYP(12, 'Bob Jones', '1-800-555-1212'),
 PERSON_TYP(31, 'Sarah Chen', '1-800-555-2212'))
PEOPLE_TYP(PERSON_TYP(45, 'Chris Woods', '1-800-555-1213'))
PEOPLE_TYP(PERSON_TYP(12, 'Bob Jones', '1-800-555-1212'),
 PERSON_TYP(45, 'Chris Woods', '1-800-555-1213'))
PEOPLE_TYP(PERSON_TYP(31, 'Sarah Chen', '1-800-555-2212'),
 PERSON_TYP(45, 'Chris Woods', '1-800-555-1213'))
PEOPLE_TYP(PERSON_TYP(12, 'Bob Jones', '1-800-555-1212'),
 PERSON_TYP(31, 'Sarah Chen', '1-800-555-2212'),
 PERSON_TYP(45, 'Chris Woods', '1-800-555-1213'))

7 rows selected.

POWERMULTISET_BY_CARDINALITY

The POWERMULTISET_BY_CARDINALITY function returns all non-empty
submultisets of a nested table of the specified cardinality. The output would be
rows of nested tables.

POWERMULTISET_BY_CARDINALITY(x, l) is equivalent to TABLE
(POWERMULTISET(x)) p where CARDINALITY(value(p)) = l, where x is
a multiset and l is the specified cardinality.

The first input parameter to the POWERMULTISET_BY_CARDINALITY could be
any expression which evaluates to a nested table. The length parameter should
be a positive integer, otherwise an error will be returned. The limit on the
cardinality of the nested table argument is 32.

For example:

SELECT * FROM TABLE(POWERMULTISET_BY_CARDINALITY(people_typ (
 person_typ(12, 'Bob Jones', '1-800-555-1212'),
 person_typ(31, 'Sarah Chen', '1-800-555-2212'),
 person_typ(45, 'Chris Woods', '1-800-555-1213')),2));

COLUMN_VALUE(IDNO, NAME, PHONE)
--
PEOPLE_TYP(PERSON_TYP(12, 'Bob Jones', '1-800-555-1212'),
PERSON_TYP(31, 'Sarah Chen', '1-800-555-2212'))

PEOPLE_TYP(PERSON_TYP(12, 'Bob Jones', '1-800-555-1212'),
PERSON_TYP(45, 'Chris Woods', '1-800-555-1213'))

PEOPLE_TYP(PERSON_TYP(31, 'Sarah Chen', '1-800-555-2212'),
PERSON_TYP(45, 'Chris Woods', '1-800-555-1213'))

SET

The SET function converts a nested table into a set by eliminating duplicates,
and returns a nested table whose elements are DISTINCT from one another. The
nested table returned is of the same named type as the input nested table.

For example:

SQL 2003 Standard Support in Oracle Database 10g Page 10

SELECT SET(physics_majors)
 FROM students
WHERE graduation = '01-JUN-03';

SET(PHYSICS_MAJORS)(IDNO, NAME, PHONE)
--
PEOPLE_TYP(PERSON_TYP(12, 'Bob Jones', '111-555-1212'),
 PERSON_TYP(45, 'Chris Woods', '111-555-1213'))

BUSINESS INTELLIGENCE FEATURES

As information proliferated and sizes of databases continued to grow,
enterprises were eager to gain precious insights from information. Data
warehousing, OLAP, and Data Mining became essential tools for enterprises to
extract business intelligence. In the past, OLAP functions were performed
outside of databases in a separate OLAP server using non-standard APIs. It
became apparent that the bottleneck of OLAP applications was in moving huge
amount of data between the database server and the OLAP server. Productivity
of OLAP application developers also suffered from non-standard APIs. The
simple solution to these problems is to process OLAP functions inside the
database server using standard SQL functions. To this end, ANSI SQL
committee published in year 2000 an amendment to SQL 1999 standard defining
an extensive list of OLAP functions, which are now part of the SQL 2003 new
features. Oracle was one of the collaborators working on defining these SQL
2003 new OLAP features for the past few years, and had provided complete and
highly optimized support of these OLAP features since Oracle Database 9i.
There are additional new features in SQL 2003 defined specifically for data
warehousing applications. Below is a list of these new features:

• OLAP functions: These new features have been implemented since
Oracle8i or Oracle9i consisting of

• Window functions: SQL 2003 defines aggregates computed over a
window with ROW_NUMBER function, rank functions (i.e., RANK,
DENSE_RANK, PERCENT_RANK, CUME_DIST), and aggregate
functions (e.g., inverse distribution, hypothetical set function)

• NULLS FIRST, NULLS LAST in ORDER BY clause: This clause
indicates the position of NULLs in the ordered sequence, either first or
last in the sequence.

• Table functions: A table function is defined as a function that can produce
a set of rows as output. Since Oracle9i, table functions have provided the
support for pipelined and parallel execution of transformations
implemented in PL/SQL, C, or Java. Scenarios as mentioned above can be
done without requiring the use of intermediate staging tables, which
interrupt the data flow through various steps of transformations.

SQL 2003 Standard Support in Oracle Database 10g Page 11

Oracle was one of the collaborators

working on defining these SQL 2003 new

OLAP features for the past few years, and

had provided complete and highly

optimized support of these OLAP features

since Oracle Database 9i.

Examples of OLAP Functions in Oracle Databases

This section describes the key features of the analytic functions introduced in
Oracle database with examples. Most of the examples involve data from a sales
table, where each row contains detail or aggregated sales data. Complete
information of OLAP functions in Oracle databases can be found in Oracle
database documentation online at
http://otn.oracle.com/documentation/index.html.

Inverse Percentile Family

One very common analytic question is to find the value in a data set that
corresponds to a specific percentile. For example, what if we ask “what value is
the median (50th percentile) of my data?” This question is the inverse of the
information provided by CUME_DIST function, which answers the question
“what is the percentile value for each row?” Two new Oracle9i functions,
PERCENTILE_CONT and PERCENTILE_DISC, compute inverse percentile.
These functions require a sort specification and a percentile parameter value
between 0 and 1. For instance, if a user needs the median value of income data,
he would specify that the data set be sorted on income, and specify a percentile
value of 0.5. The functions can be used as either aggregate functions or
reporting aggregate functions. When used as aggregate functions, they return a
single value per ordered set; and when used as reporting aggregate functions,
they repeat the data on each row. PERCENTILE_DISC function returns the
actual “discrete” value which is closest to the specified percentile values while
the PERCENTILE_CONT function calculates a “continuous” percentile value
using linear interpolation. The functions use a new WITHIN GROUP clause to
specify the data ordering.

Example of Inverse Percentile as an aggregate function:

Consider the table HOMES which has the following data:

Area Address Price
Uptown 15 Peak St 456,000
Uptown 27 Primrose Path 349,000
Uptown 44 Shady Lane 341,000
Uptown 23301 Highway 64 244,000
Uptown 34 Design Rd 244,000
Uptown 77 Sunset Strip 102,000
Downtown 72 Easy St 509,000
Downtown 29 Wire Way 402,000
Downtown 45 Diamond Lane 203,000
Downtown 76 Blind Alley 201,000
Downtown 15 Tern Pike 199,000
Downtown 444 Kanga Rd 102,000

SQL 2003 Standard Support in Oracle Database 10g Page 12

To find the average and median value for each area, we could use the query
below:

SELECT Homes.Area, AVG(Homes.Price),
PERCENTILE_DISC (0.5) WITHIN GROUP (ORDER BY Homes.Price DESC),
PERCENTILE_CONT (0.5) WITHIN GROUP (ORDER BY Homes.Price DESC)
FROM Homes GROUP BY Area;

Area AVG PERCENTILE_DISC PERCENTILE_CONT
Uptown 289,333 341,000 292,500
Downtown 269,333 203,000 202,000

In the example above, to compute the median price of homes, the data is
ordered on home price within each area and the median price is computed using
the “discrete” and “interpolation” methods. The results above show how
PERCENTILE_DISC returns actual values from the table, while
PERCENTILE_CONT calculates new interpolated values.

Example of Inverse Percentile as a reporting function:

The inverse percentile functions can be used as reporting functions. In that
usage they will return a value that is repeated on multiple rows, allowing easy
calculations. Consider the same HOMES table shown above. To find the
median value for each area and display the results as a reporting function , we
could use the query below:

SELECT Homes.Area, Homes.Price,
PERCENTILE_DISC (0.5) WITHIN GROUP (ORDER BY Homes.Price DESC)
OVER (PARTITION BY Area),
PERCENTILE_CONT (0.5) WITHIN GROUP (ORDER BY Homes.Price DESC)
OVER (PARTITION BY Area)
FROM Homes;

Area Price PERCENTILE_DISC PERCENTILE_CONT
Uptown 456,000 341,000 292,500
Uptown 349,000 341,000 292,500
Uptown 341,000 341,000 292,500
Uptown 244,000 341,000 292,500
Uptown 244,000 341,000 292,500
Uptown 102,000 341,000 292,500
Downtown 509,000 203,000 202,000
Downtown 402,000 203,000 202,000
Downtown 203,000 203,000 202,000
Downtown 201,000 203,000 202,000
Downtown 199,000 203,000 202,000
Downtown 102,000 203,000 202,000

SQL 2003 Standard Support in Oracle Database 10g Page 13

Hypothetical Rank and Distribution Family

In certain analyses, such as financial planning, we may wish to know how a data
value would rank if it were added to our data set. For instance, if we hired a
worker at a salary of $50,000, where would his salary rank compared to the
other salaries at our firm? The hypothetical rank and distribution functions
support this form of what-if analysis: they return the rank or percentile value
which a row would be assigned if the row was hypothetically inserted into a set
of other rows. The hypothetical functions can calculate RANK,
DENSE_RANK, PERCENT_RANK and CUME_DIST. Like the inverse
percentile functions, the hypothetical rank and distributions functions use a
WITHIN GROUP clause containing an ORDER BY specification.

Example of Hypothetical Rank function:

Here is a query using our real estate data introduced above. It finds the
hypothetical ranks and distributions for a house with a price of $400,000.

SELECT Area,
 RANK (400000) WITHIN GROUP (ORDER BY Price DESC),
 DENSE_RANK (400000) WITHIN GROUP (ORDER BY Price DESC),
 PERCENT_RANK (400000) WITHIN GROUP (ORDER BY Price
DESC),
 CUME_DIST (400000) WITHIN GROUP (ORDER BY Price DESC)
FROM Homes GROUP BY Area;

Area RANK DENSE_RANK PERCENT
_RANK

CUME_
DIST

Uptown 2 2 0.166 0.285
Downtown 3 3 0.333 0.428

Unlike Inverse Percentile functions, Hypothetical functions cannot be used as a
reporting function.

SQL/XML FEATURES

As the amount of data expressed in XML grows, it becomes necessary to store,
manage and search that data in a robust, secure, and scalable environment, i.e. in
a database. With SQL/XML you can have all the benefits of a relational
database plus all the benefits of XML. New in SQL 2003 standard as Part 14,
SQL/XML defines how SQL can be used in conjunction with XML in a
database. Part 14 provides detailed definition of a new XML type, the values of
an XML type, mappings between SQL constructs and XML constructs, and
functions for generating XML from SQL data. Since Oracle Database 9i Release
2, SQL/XML features had been supported as an integral part of the XML DB.
XML DB also includes a number of additional SQL extensions to support
querying, updating, and transformation of XML data. Oracle is working closely
with the SQL standard committee to standardize these extensions. Below is a list
of SQL 2003 standard functions for generating XML from SQL data.

SQL 2003 Standard Support in Oracle Database 10g Page 14

. Since Oracle Database 9i Release 2,

SQL/XML features had been supported as

an integral part of the XML DB.

• XMLElement takes an element name, an optional collection of attributes
for the element, and arguments that make up the element's content and
returns an instance of type XMLType.

• XMLForest converts each of its argument parameters to XML, and then
returns an XML fragment that is the concatenation of these converted
arguments

• XMLConcat takes as input a series of XMLType instances, concatenates
the series of elements for each row, and returns the concatenated series.
XMLConcat is the inverse of XMLSequence.

• XMLAgg takes a collection of XML fragments and returns an aggregated
XML document

Oracle Database 9i Release 2 XML DB extensions below provide additional
capabilities to generate, query, update, and transform XML data.

• XMLColAttVal creates an XML fragment and then expands the resulting
XML so that each XML fragment has the name "column" with the
attribute "name".

• XMLSequence has two forms: the first form takes as input an XMLType
instance and returns a varray of the top-level nodes in the XMLType. The
second form takes as input a REFCURSOR instance, with an optional
instance of the XMLFormat object, and returns as an XMLSequence type
an XML document for each row of the cursor.

• ExtractValue takes as arguments an XMLType instance and an XPath
expression and returns a scalar value of the resultant node.

• Extract (XML) takes as arguments an XMLType instance and an XPath
expression and returns an XMLType instance containing an XML
fragment.

• UpdateXML updates a value of the XML document and then replacing the
whole document with the newly updated document.

• XMLTransform takes as arguments an XMLType instance and an XSL
style sheet, which is itself a form of XMLType instance. It applies the
style sheet to the instance and returns an XMLType instance.

Generating XML from SQL Data Using SQL/XML Functions

XMLElement() Function

XMLElement() function is based on the emerging SQL XML standard. It takes
an element name, an optional collection of attributes for the element, and zero or
more arguments that make up the element content and returns an instance of
type XMLType

SQL 2003 Standard Support in Oracle Database 10g Page 15

It is similar to SYS_XMLGEN(), but unlike SYS_XMLGEN(), XMLElement()
does not create an XML document with the prolog (the XML version
information). It allows multiple arguments and can include attributes in the
XML returned.

XMLElement() is primarily used to construct XML instances from relational
data. It takes an identifier that is partially escaped to give the name of the root
XML element to be created. The identifier does not have to be a column name,
or column reference, and cannot be an expression. If the identifier specified is
NULL, then no element is returned.

As part of generating a valid XML element name from a SQL identifier,
characters that are disallowed in an XML element name are escaped. With
partial escaping the SQL identifiers other than the ":" sign that are not
representable in XML, are preceded by an escape character using the # sign
followed by the unicode representation of that character in hexadecimal format.
This can be used to specify namespace prefixes for the elements being
generated. The fully escaped mapping escapes all non-XML characters in the
SQL identifier name, including the ":" character.

XMLAttributes Clause

XMLElement() also takes an optional XMLAttributes() clause, which
specifies the attributes of that element. This can be followed by a list of values
that make up the children of the newly created element.

In the XMLAttributes() clause, the value expressions are evaluated to get the
values for the attributes. For a given value expression, if the AS clause is
omitted, the fully escaped form of the column name is used as the name of the
attribute. If the AS clause is specified, then the partially escaped form of the
alias is used as the name of the attribute. If the expression evaluates to NULL,
then no attribute is created for that expression. The type of the expression cannot
be an object type or collection.

The list of values that follow the XMLAttributes() clause are converted to
XML format, and are made as children of the top-level element. If the
expression evaluates to NULL, then no element is created for that expression.

The following example illustrates the use of namespaces to create an XML
schema-based document. Assuming that an XML schema
"http://www.oracle.com/Employee.xsd" exists and has no target
namespace, then the following query creates an XMLType instance conforming
to that schema:

SELECT XMLELEMENT ("Employee", X
MLATTRIBUTES ('http://www.w3.org/2001/XMLSchema' AS
"xmlns:xsi", 'http://www.oracle.com/Employee.xsd' AS
"xsi:nonamespaceSchemaLocation"),
XMLForest(empno, ename, sal)) AS "result"
 FROM scott.emp WHERE deptno = 100;

SQL 2003 Standard Support in Oracle Database 10g Page 16

This creates an XML document that conforms to the Employee.xsd
XMLSchema, result:

<Employee xmlns:xsi="http://www.w3.org/2001/XMLSchema"
 xsi:nonamespaceSchemaLocation="http://www.oracl
e.com/Employee.xsd">
 <EMPNO>1769</EMPNO>
 <ENAME>John</ENAME>
 <SAL>200000</SAL>
</Employee>

XMLForest() Function

XMLForest() function produces a forest of XML elements from the given list
of arguments. The arguments may be value expressions with optional aliases.

The list of value expressions are converted to XML format. For a given
expression, if the AS clause is omitted, then the fully escaped form of the
column name is used as the name of the enclosing tag of the element.

For an object type or collection, the AS clause is mandatory. For other types, the
AS clause can be optionally specified. If the AS clause is specified, then the
partially escaped form of the alias is used as the name of the enclosing tag. If the
expression evaluates to NULL, then no element is created for that expression.

The following example generates an Emp element for each employee, with a
name attribute and elements with the employee's start date and department as
the content.

SELECT XMLELEMENT("Emp", XMLATTRIBUTES (e.fname ||' '||
e.lname AS "name"), XMLForest (e.hire, e.dept AS
"department")) AS "result" FROM employees e;

This query can produce the following XML result:

<Emp name="John Smith">
 <HIRE>2000-05-24</HIRE>
 <department>Accounting</department>
</Emp>
<Emp name="Mary Martin">
 <HIRE>1996-02-01</HIRE>
 <department>Shipping</department>
</Emp>

XMLConcat() Function

XMLConcat() function concatenates all the arguments passed in to create a
XML fragment. XMLConcat() has two forms:

• The first form takes an XMLSequenceType, which is a VARRAY of
XMLType and returns a single XMLType instance that is the concatenation
of all of the elements of the varray. This form is useful to collapse lists of
XMLTypes into a single instance.

SQL 2003 Standard Support in Oracle Database 10g Page 17

• The second form takes an arbitrary number of XMLType values and
concatenates them together. If one of the value is null, then it is ignored in
the result. If all the values are NULL, then the result is NULL. This form
is used to concatenate arbitrary number of XMLType instances in the same
row. XMLAgg() can be used to concatenate XMLType instances across
rows.

The example below shows XMLConcat() returning the concatenation of
XMLTypes from the XMLSequence function:

SELECT XMLConcat(XMLSequence(
 xmltype('<PartNo>1236</PartNo>'),
 xmltype('<PartName>Widget</PartName>'),
 xmltype('<PartPrice>29.99</PartPrice>'))).getClobVal()
FROM dual;

returns a single fragment of the form:

<PartNo>1236</PartNo>
<PartName>Widget</PartName>
<PartPrice>29.99</PartPrice>

XMLAgg() Function

XMLAgg() is an aggregate function that produces a forest of XML elements
from a collection of XML elements.

As with XMLConcat(), any arguments that are null are dropped from the result.
This function can be used to concatenate XMLType instances across multiple
rows. It also allows an optional ORDER BY clause to order the XML values
being aggregated.

XMLAgg() is an aggregation function and hence produces one aggregated XML
result for each group. If there is no group by specified in the query, then it
returns a single aggregated XML result for all the rows of the query.

The following example produces a Department element containing Employee
elements with employee job ID and last name as the contents of the elements. It
also orders the employee XML elements in the department by their last name.

SELECT XMLELEMENT("Department", XMLAGG(
XMLELEMENT("Employee", e.job_id||' '||e.last_name)
ORDER BY last_name)) as "Dept_list"
FROM employees e WHERE e.department_id = 30;

Dept_list

<Department>
 <Employee>PU_CLERK Baida</Employee>
 <Employee>PU_CLERK Colmenares</Employee>
 <Employee>PU_CLERK Himuro</Employee>
 <Employee>PU_CLERK Khoo</Employee>
 <Employee>PU_MAN Raphaely</Employee>
 <Employee>PU_CLERK Tobias</Employee>
</Department>

SQL 2003 Standard Support in Oracle Database 10g Page 18

The result is a single row, because XMLAgg() aggregates the rows. You can use
the GROUP BY clause to group the returned set of rows into multiple groups:

SELECT XMLELEMENT("Department",
 XMLAttributes(department_id AS deptno),
 XMLAGG(XMLELEMENT("Employee", e.job_id||' '||
e.last_name))) AS "Dept_list"
 FROM employees e
 GROUP BY e.department_id;

Dept_list

<Department deptno="1001">
 <Employee>AD_ASST Whalen</Employee>
</Department>

<Department deptno="2002">
 <Employee>MK_MAN Hartstein</Employee>
 <Employee>MK_REP Fay</Employee>
</Department>

<Department deptno="3003">
 <Employee>PU_MAN Raphaely</Employee>
 <Employee>PU_CLERK Khoo</Employee>
 <Employee>PU_CLERK Tobias</Employee>
 <Employee>PU_CLERK Baida</Employee>
 <Employee>PU_CLERK Colmenares</Employee>
 <Employee>PU_CLERK Himuro</Employee>
</Department>

CONCLUSION

As the latest version of SQL standards, SQL 2003 has made major
improvements in three key areas. First, there are additional object-relational
features, which were first introduced in SQL 1999. Second, SQL 2003 standard
revolutionizes SQL with comprehensive OLAP features. Third, SQL 2003
delivers a brand new Part 14 for XML-Related Specifications (SQL/XML) to
integrate popular XML standards into SQL. Oracle Database 10g provides
comprehensive support for these new features.

Oracle’s Object-Relational Technology tracks closely with SQL standards
development. It has grown to maturity over the years to provide a complete
object type system, extensive language binding APIs, and a rich set of utilities
and tools. This complete object type system is based on the latest ANSI SQL
2003 standard. Oracle has optimized the object type performance in the database
server for object-oriented applications. Oracle’s language binding APIs in Java,
C/C++, and XML provide direct interfaces to database server object type
system. These comprehensive APIs support the most recent standards to access
database object type system services. The attendant rich set of utilities for
object-relational data include import/export, SQL loader, replication, etc.

SQL 2003 Standard Support in Oracle Database 10g Page 19

As the latest version of SQL standards,

SQL 2003 has made major improvements in

three key areas: Object-Relational, OLAP,

and SQL/XML.

With the introduction of analytic functions, Oracle solved many problems of
using SQL in business intelligence tasks. The added analytic functions enable
faster query performance and greater developer productivity for even more
calculations. The value of analytic functions has already been recognized, and
major business intelligence tool vendors are using them in their products. The
power of the analytic functions, combined with their status as international SQL
standards, will make them an important tool for all SQL users.

SQL/XML features are crucial to enterprises with structured and semi-structured
data, which needs to interoperate with various enterprise (SQL) reporting tools,
relational data stores, transactional middleware, and so on. If your organization
uses SQL today, Oracle XML DB will give you native XML capability, and
SQL/XML implemented in Oracle XML DB will be the standard way to query
your XML data.

In addition, Oracle Database 10g introduces enormous improvements in
manageability, Grid computing infrastructure, Database Web Services, OLAP,
Data Mining, and many other areas to meet the needs of global enterprises.
Oracle’s database technology provides the most comprehensive solution for the
development, deployment, and management of enterprise applications.

Oracle has been the leader of industrial-strength SQL technology since its birth.
Oracle will continue to meet the needs of our partners and customers with the
best SQL technology. In short, new SQL 2003 capabilities in Oracle Database
10g provide the most comprehensive functionality for developing versatile,
scalable, concurrent, and high performance database applications running in a
Grid environment.

SQL 2003 Standard Support in Oracle Database 10g Page 20

SQL 2003 Standard Support in Oracle Database 10g

November 2003

Author: Geoff Lee

Contributing Authors: Fred Zemke

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

www.oracle.com

Oracle Corporation provides the software

that powers the internet.

Oracle is a registered trademark of Oracle Corporation. Various

product and service names referenced herein may be trademarks

of Oracle Corporation. All other product and service names

mentioned may be trademarks of their respective owners.

Copyright © 2003 Oracle Corporation

All rights reserved.

