
Doing SQL from PL/SQL:
Best and Worst Practices

An Oracle White Paper
September 2008



Doing SQL from PL/SQL: Best and Worst Practices

21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf

NOTE

The following is intended to outline our general product direction. it is intended
for information purposes only, and may not be incorporated into any contract. It
is not a commitment to deliver any material, code, or functionality, and should
not be relied upon in making purchasing decisions. The development, release,
and timing of any features or functionality described for Oracle’s products
remains at the sole discretion of Oracle.

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
Doing SQL from PL/SQL:
Best and Worst Practices

CONTENTS

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Caveat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Periodic revision of this paper  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Embedded SQL, native dynamic SQL and the DBMS_Sql API . . . . . . . . . . . . . . 5
Embedded SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Resolution of names in embedded SQL statements.  . . . . . . . . . . . . . . . . . . . . . . 6
Name capture, fine grained dependency tracking, and defensive programming  . . 8
Ultimately, all SQL issued by a PL/SQL program is dynamic SQL  . . . . . . . . . . . 9
Embedded SQL is more expressive than some programmers realize . . . . . . . . . 10

Native dynamic SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
The DBMS_Sql API  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Cursor taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Questions addressed by the cursor taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . 17
The terms of art  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

sharable SQL structure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
session cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
implicit cursor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
explicit cursor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
ref cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
cursor variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
strong ref cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
weak ref cursor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
identified cursor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
DBMS_Sql numeric cursor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
explicit cursor attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
implicit cursor attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Approaches for select statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Selecting many rows — unbounded result set . . . . . . . . . . . . . . . . . . . . . . . . 30

Programming the fetch loop  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Opening the cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Selecting many rows — bounded result set . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Selecting many rows — select list or binding requirement

not known until run-time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Selecting a single row . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Approaches for producer/consumer modularization  . . . . . . . . . . . . . . . . . . 41

Stateful producer/consumer relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Stateless producer/consumer relationship  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Doing SQL from PL/SQL: Best and Worst Practices

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
Approaches for insert, update, delete, and merge statements . . . . . . . . . . . . . 47
Single row operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Single row insert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Single row update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Single row delete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Single row merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Multirow operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Handling exceptions caused when executing the forall statement . . . . . . . . . . . . 54
Digression: DML Error Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Referencing fields of a record in the forall statement  . . . . . . . . . . . . . . . . . . . . . . 56
Bulk merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Using native dynamic SQL for insert, update, delete, and merge . . . . . . . . . . . . . 57

Some use cases  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Changing table data in response to query results . . . . . . . . . . . . . . . . . . . . . . 59
Number of in list items unknown until run time  . . . . . . . . . . . . . . . . . . . . . . 61

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Appendix A:

Change History  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Appendix B:

Summary of best practice principles  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Appendix C:

alternative approaches to populating a collection of records with the result of 
a select statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Appendix D:
Creating the test user Usr, and
the test table Usr.t(PK number, v1 varchar2(30), ...) . . . . . . . . . . . . . . . . . . . . 72
Doing SQL from PL/SQL: Best and Worst Practices

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
Doing SQL from PL/SQL:
Best and Worst Practices

ABSTRACT

The PL/SQL developer has many constructs for executing SQL statements, and
the space of possibilities has several dimensions: embedded SQL versus
native dynamic SQL versus the DBMS_Sql API; bulk versus non-bulk; implicit
cursor versus parameterized explicit cursor versus ref cursor; and so on.
Deciding which to use might seem daunting. Moreover, as new variants have
been introduced, older ones sometimes have ceased to be the optimal choice.
Oracle Database 11g has kept up the tradition by bringing some improvements
in the area of dynamic SQL.

This paper examines and categorizes the use cases for doing SQL from
PL/SQL, takes the Oracle Database 11g viewpoint, and explains the optimal
approach for the task at hand.
Doing SQL from PL/SQL: Best and Worst Practices page 1

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
INTRODUCTION

This paper is written for the Oracle Database developer who has reasonable
familiarity with programming database PL/SQL units and who, in particular, has
had some experience with all of PL/SQL’s methods for processing
SQL statements. Therefore, it doesn’t attempt to teach, or even to review, every
variant of each of these methods; rather, by assuming some prior knowledge, it is
able to make points that often go unmade in accounts that teach these methods
linearly. This way, it is able to give the reader the sound conceptual understanding
that is the basis of any and all best practice principles.

An analogy might help. Many people, as adults, pick up a foreign language by
osmosis and, eventually, end up where they can express themselves fairly clearly
but, nevertheless, use idioms that indicate that they have no deep understanding
of how the language works. Sometimes, these idioms are so awkward that what
they want to say is misunderstood. The remedy is active study to learn the
grammar rules and the meanings that sentences that adhere to these rules
convey.

The first section, “Embedded SQL, native dynamic SQL and the DBMS_Sql API” on
page 5, gives an overview of PL/SQL’s three methods for processing
SQL statements.

The select statement is by far the most frequent kind of SQL statement issued by
application code1. The second section, “Approaches for select statements” on page 30,
classifies the use cases along these dimensions:

• Selecting many rows where the result set size might be arbitrarily large;
selecting many rows where the result set size can be assumed not to exceed a
reasonable limit; and selecting exactly one row.

• Being able to fix the SQL statement at compile time; being able to fix its
template at compile time, but needing to defer specifying the table name(s)
until run time; needing to construct the select list, where clause, or order by clause
at run time.

• Being able to encapsulate the specification of the SQL statement, fetching of
the results, and the subsequent processing that is applied to the results in a
single PL/SQL unit, or needing to implement to processing of the results in a
different PL/SQL unit.

After the select statement, SQL statements that change table data are the next
most common. The third section, “Approaches for insert, update, delete, and merge
statements” on page 47, discusses these.

The lock table statement, the transaction control statements, and all the kinds of
SQL statement that embedded SQL does not support are trivial to program and
need no discussion.

The fourth section, “Some use cases” on page 59, examines some commonly
occurring scenarios and discusses the best approach to implement the
requirements.

1. Our definition of application code excludes the scripts that install and upgrade it.

Make sure  that you’re reading the 
latest copy of this paper. Check the 
URL given at the top of each page.
Doing SQL from PL/SQL: Best and Worst Practices page 2

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
Several best practice principles will be stated in the context of the discussions in
this paper. They are reproduced2 for quick reference, in “Appendix B: Summary of
best practice principles” on page 65.

The paper aims to teach the reader the optimal approaches to use when writing
de novo code. It makes no attempt to justify code renovation projects.

Caveat

Prescribing best practice principles for programming any 3GL is phenomenally
difficult. One of the hardest challenges is the safety of the assumption that the
reader starts out with these qualities:

• Has chosen the right parents3.

• Has natural common sense coupled with well-developed verbal reasoning
skills.

• Has an ability to visualize mechanical systems.

• Requires excellence from self and others.

• Has first class negotiating skills. (Good code takes longer to write and test than
bad code; managers want code delivered in aggressive timeframes.)

• Has received a first class education.

• Can write excellent technical prose. (How else can you write the requirements
for your code, write the test specifications, and discuss problems that arise
along the way?)

Then, the reader would be fortunate enough to work in an environment which
provides intellectual succor:

• Has easy access to one or several excellent mentors.

Finally, the reader would accept that, with respect to the subject of this paper, the
internalization and instinctive application of best practice principles depends,
ultimately, on acquiring and maintaining these qualities:

• Knows Oracle Database inside out.

• Knows PL/SQL inside out.

Periodic revision of this paper

Sadly, but realistically, this paper is likely to have minor spelling and grammar
errors. For that reason alone, it is bound to be revised periodically4. Ongoing

2. This paper was prepared using Adobe Framemaker 8.0. Its cross-reference feature allows the
text of a source paragraph to be included by reference at the destination. The reader can be
certain, therefore, that the wording of each best practice principle in the quick-reference
summary is identical to the wording where is stated. (Sadly, the mechanism does not preserve
font nuances.)

3. The author’s mother-tongue is British English. Readers with other mother-tongues sometimes
need reminding about the tendency, in the author’s native culture, towards dead pan, tongue
in cheek humor as a device to make a serious point in a dramatic fashion. 

4. This document’s change history is listed at the end. See Appendix A: Change History on page 64.
Doing SQL from PL/SQL: Best and Worst Practices page 3

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
discussion of use cases with customers might lead to the formulation of new best
practice principles. Therefore, before settling down to study the paper, readers
should ensure that they have the latest copy — for which the URL is given in the
page’s header.

URLs sometimes change. But this one will always take you to the Oracle
Technical Network’s PL/SQL Technology Center:

www.oracle.com/technology/tech/pl_sql

Even in the unlikely event that the paper is moved, it will still be easy to find
from that page.
Doing SQL from PL/SQL: Best and Worst Practices page 4

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
http://www.oracle.com/technology/tech/pl_sql


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
EMBEDDED SQL, NATIVE DYNAMIC SQL AND THE DBMS_SQL API

PL/SQL supports three methods for issuing SQL. This section gives an
overview and makes some points that are best appreciated by the reader who has
some experience with each of the methods. A good understanding of all three
methods is necessary for choosing the optimal method for a particular
requirement.

Embedded SQL

PL/SQL’s embedded SQL5 allows SQL syntax directly within a
PL/SQL statement and is therefore very easy to use6. It supports only the
following kinds of SQL statement: select, insert, update, delete, merge, lock table, commit,
rollback, savepoint, and set transaction.

The syntax of a PL/SQL embedded SQL statement is usually identical to that of
the corresponding SQL statement7. However, the select... into statement, the
update... set row... statement, and the insert... values Some_Record statement (see
Code_3) have PL/SQL-specific syntax8.

An embedded SQL statement has a significant semantic bonus with respect to its
regular SQL counterpart: it allows a PL/SQL identifier at a spot where the
regular SQL counterpart allows a placeholder. This is explained more carefully in
the section “Resolution of names in embedded SQL statements.” on page 6.

Code_1 shows a simple example.

Here, b is the name of the block in which the variable v1 is declared.

5. We prefer the term embedded SQL to the more usual static SQL in this document for reasons
that will soon become clear.

6. It is this property that led to the aphorism “PL/SQL is Oracle Corporation’s procedural
extension to SQL”. But this is too brief to be accurate. (It reflects history: the anonymous
block, which is a particular kind of SQL statement, was introduced before the stored
PL/SQL unit.) It is better to say this: PL/SQL is an imperative 3GL that was designed
specifically for the seamless processing of SQL commands. It provides specific syntax for this
purpose and supports exactly the same datatypes as SQL.

7. SQL famously has no notions to sequence statements; therefore a SQL statement does not
need (and may not have) a special terminating character. In contrast, a PL/SQL unit consists
of many statements and each must end with a semicolon. PL/SQL’s embedded SQL
statements therefore differ from their SQL counterparts by requiring a final semicolon.
Beginners are sometimes confused because the SQL*Plus scripting language supports
sequences of SQL statements intermixed with SQL*Plus commands. The scripting language
therefore needs a special character to terminate each SQL statement. The default is the
semicolon, but this may be overwritten with the SET SQLTERMINATOR command. All SQL*Plus
script examples in this paper were prepared to run after issuing SET SQLTERMINATOR OFF. A
notorious beginner’s mistake is to write a semicolon at the end of a would-be SQL statement
in the text that is to be the argument of execute immediate.

-- Code_1 Basic_Embedded_Sql.sql
for j in 1..10 loop
  v1 := f(j);
  insert into t(PK, v1) values(j, b.v1);
end loop;
commit;
Doing SQL from PL/SQL: Best and Worst Practices page 5

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
Code_2 shows9 the canonical illustration of how PL/SQLs’ language features
make processing SQL statements simple and self-evidently correct, the so-called
implicit cursor for loop10.

Code_3, shows some of the kinds of embedded SQL statement that have
PL/SQL-specific syntax.

Resolution of names in embedded SQL statements.

When the PL/SQL compiler discovers an embedded SQL statement, it
processes it as follows:

• It hands it over to the SQL subsystem for analysis11. The SQL subsystem
establishes that the statement is syntactically correct (else the compilation of
the PL/SQL unit fails) and it discovers the names of the from list items and
attempts to resolve all other identifiers within their scope.

• When an identifier cannot be resolved in the scope of the SQL statement, it
“escapes” and the PL/SQL compiler attempts to resolve it. It tries first within

8. The where current of Cur syntax (where Cur is an explicit cursor) is also not found in regular SQL.
However, we shall see that this construct is never needed if the best practice principles that this
paper recommends are followed.

9. The code examples in this paper use a test table t. Code to create it is shown in “Appendix D:
Creating the test user Usr, and the test table Usr.t(PK number, v1 varchar2(30), ...)” on page 72

10. We will see in “Selecting many rows — unbounded result set” on page 30 that this simple construct
is never preferred for production-quality code.

11. For a select... into statement, the PL/SQL compiler removes the into clause before handing the
statement over to the SQL subsystem. It does the same with other PL/SQL-specific syntax in
other kinds of embedded SQL statement like, for example, set row.

-- Code_2 Many_Row_Select.sql
for r in (
  select    a.PK, a.v1
  from      t a
  where     a.PK > Some_Value
  order by  a.PK)
loop
  Process_One_Record(r);
end loop;

-- Code_3 Single_Row_DML.sql
<<b>>declare
  Some_Value t.PK%type := 42;
  The_Result t%rowtype;
begin
  select    a.*
  into      b.The_Result
  from      t a
  where     a.PK = b.Some_Value;

  The_Result.v1 := 'New text';

  update  t a
  set     row = b.The_Result
  where   a.PK = b.The_Result.PK;

  The_Result.PK := -Some_Value;
  insert  into t
  values  The_Result;
end;
Doing SQL from PL/SQL: Best and Worst Practices page 6

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
the scope of the current PL/SQL unit; if that attempt fails, then it tries in
schema scope; and if that fails, the compilation of the PL/SQL unit fails.

• In the absence of a compilation error, the PL/SQL compiler generates the text
of an equivalent regular SQL statement and stores this with the generated
machine code. This statement will use placeholders where the embedded SQL
statement used identifiers that were resolved in the scope of the PL/SQL unit.

• Then, at run time, appropriate calls are made to parse, bind, and execute the
regular SQL statement. The bind arguments are provided by the escaping
PL/SQL identifiers, which may be combined into expressions. For a
select statement, the results are fetched into the designated PL/SQL targets.

Code_4 shows the generated regular SQL statement12 for Code_1.

And Code_5 shows the generated regular SQL statements for Code_3.

Notice how much effort the PL/SQL compiler saves you. It discovers the shape
of the record The_Result and the column format of the table and generates the
regular SQL statement text accordingly. It canonicalizes case and whitespace to
increase the probability that embedded SQL statements at different call sites will
share the same structure in the shared pool. And comments in the
embedded SQL are preserved in the generated SQL only if they use the
/*+ ... */ hint syntax.

The PL/SQL identifier that will act as the bind argument for the generated
SQL statement must denote a variable or a formal parameter; it may not denote a
function that is visible only in the PL/SQL unit that includes the
embedded SQL. This follows from the defined semantics of function invocation
in a SQL statement: the function must be evaluated, by the SQL execution
subsystem, for every row. Therefore an embedded SQL statement may use only
functions that are accessible in schema scope. Code_1 shows how to
accommodate this fact.

12. Code_4 and Code_5 are discovered using a query like this:

Code_5 has been formatted by hand to make it easier to read.

-- Code_4 Basic_Embedded_Sql.sql
INSERT INTO T(PK, V1) VALUES(:B2 , :B1 )

select   Sql_Text
from     v$Sql
where    Lower(Sql_Text) not like '%v$sql%'
and     (Lower(Sql_Text) like 'select%a.*%from%t%' or
         Lower(Sql_Text) like 'update%t%set%' or
         Lower(Sql_Text) like 'insert%into%t%')

-- Code_5 Basic_Embedded_Sql.sql
SELECT A.* FROM T A WHERE A.PK = :B1

UPDATE T SET "PK" = :B1 ,
             "N1" = :B2 ,
             "N2" = :B3 ,
             "V1" = :B4 ,
             "V2" = :B5 WHERE PK = :B1

INSERT INTO T VALUES (:B1 ,:B2 ,:B3 ,:B4 ,:B5 )
Doing SQL from PL/SQL: Best and Worst Practices page 7

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
Name capture, fine grained dependency tracking, and defensive programming

The identifiers in Code_3 might seem to be excessively decorated with qualifiers.
It stands in contrast to a common way, shown in Code_6, to implement the same
functionality.

Some programmers have become attached to a style where they name local
variables and formal parameters using a prefix or suffix convention that denotes
this status. (Some go further and use names that distinguish between in different
parameter modes — in, out, and in out.) They usually claim that the style
inoculates against the risk of name capture. The scenario they fear is that, in
Code_6, table t will be altered to add a column called, say, c1. Because the
SQL compiler attempts first to resolve c1, and allows it to escape to the
PL/SQL compiler only when it isn’t resolved, then the addition of the new c1
column might change the meaning of Code_6 by stopping that escape. This
would depend on whether the identifier c1 earlier had been resolved after
escaping — in other words, if it was already used in the embedded SQL
statement. Had it been so used, then the name c1 is now captured by SQL. When
c1 is not qualified, then the PL/SQL unit must be recompiled to establish
correctness.

Notice that, if each identifier that is intended to mean a table column is qualified
with a table alias, and if each identifier that is intended to be resolved in the
scope of the PL/SQL unit is qualified with the name of the block where it is
declared, then no room is left for uncertainty.

When explained this way, it is obvious that the programming style cannot
guarantee to deliver its intended benefit. In the present example, the table t might
be altered to add a column called p_PK. The style can work only if a development
shop insists on a wider naming convention that, for example, bans columns in
schema-level tables with names starting with p_ or l_. However, the
PL/SQL compiler cannot trust such a humanly policed rule, and this fact
becomes more significant in Oracle Database 11g which brings fine grained
dependency tracking.

Earlier, dependency information was recorded only with the granularity of the
whole object. In the example in Code_6, it would be recorded just that the
current PL/SQL unit depends on the table t. Now, in Oracle Database 11g, it is
recorded that the PL/SQL unit depends on the columns t.v and t.PK within
table t. The new approach aims to reduce unnecessary invalidation by avoiding it
when a referenced object is changed in a way which is immaterial for the
dependant. In this example, the beginner might think at first that the addition of
a new column to t, when the dependant PL/SQL unit refers to only certain
named columns in t, would be immaterial. But the discussion of name capture
shows that this is not always the case: the name of the new column might collide
with what used to be an escaping identifier that was resolved in PL/SQL scope.
The only way to guarantee that the PL/SQL has the correct meaning in the
regime of the altered table is to invalidate it in response to the addition of the
new column so that it will be recompiled and the name resolution will be done
afresh.

-- Code_6 Fine_Grained_Dependency_Test.sql
select  v1
into    l_v1
from    t where PK = p_PK;
Doing SQL from PL/SQL: Best and Worst Practices page 8

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
The use of qualified names, as used in Code_3, changes the analysis. The qualified
identifier b.PK, cannot possibly mean a column (existing or new) in the table
whose alias in the query is a. This is easily confirmed by experiment. Create table
t with columns PK and v, procedure p1 containing Code_3 and procedure p2
containing Code_6. Confirm, with a User_Objects query, that both are valid. Then
alter t to add a column (for example c1 of datatype number) and repeat the
User_Objects query; p1 remains valid but p2 becomes invalid13.

Finally, consider the counter-example shown in Code_7.

Here, foolishly, the alias for table t collides with the name of the PL/SQL block.
This code might well behave correctly while t has no column called Some_Value.
But if such a column were introduced, then the meaning of the query would
change to what is almost certainly not intended. In other words, the code is not
immune to name capture and neither is it able to take advantage of fine-grained
dependency tracking.

The understanding of how the PL/SQL compiler processes embedded SQL
statements, and in particular of how the risk of name capture arises, provides the
rationale for this best practice principle:

Principle_1
When writing an embedded SQL statement, always establish an alias for each
from list item and always qualify each column with the appropriate alias. Always
qualify the name of every identifier that you intend the be resolved in the
current PL/SQL unit with the name of the block in which it is declared. If this
is a block statement, give it a name using a label. The names of the aliases and
the PL/SQL bocks must all be different. This inoculates against name capture
when the referenced tables are changed and, as a consequence, increases the
likelihood that the fine-grained dependency analysis will conclude that the
PL/SQL unit need not be invalidated.

Ultimately, all SQL issued by a PL/SQL program is dynamic SQL

At run time, the SQL statement that has been generated from each
embedded SQL statement is executed in the only way that the SQL subsystem in
Oracle Database supports: a session cursor14 is opened; the SQL statement is
presented as text and is parsed; for a select statement, targets for the select list
elements are defined; if the SQL statement has placeholders, then a bind
argument is bound to each; the session cursor is executed; for a select statement, the

13. Of course, p2 is easily revalidated without any code changes. But, in the general case, its
meaning might change on revalidation while that of p1 cannot.

14. This term of art is defined on page 19.

-- Code_7 Single_Row_DML.sql
<<b>>declare
  Some_Value t.PK%type := 42;
  The_Result t%rowtype;
begin
  select    b.*
  into      b.The_Result
  from      t b
  where     b.PK = b.Some_Value;

  DBMS_Output.Put_Line(The_Result.n1);
end;

In embedded SQL, dot-qualify each 
column name with the from list item 
alias. Dot-qualify each PL/SQL 
identifier with the name of the name 
of the block that declares it.
Doing SQL from PL/SQL: Best and Worst Practices page 9

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
results are fetched; and the session cursor is closed15. When a PL/SQL program
uses dynamic SQL, the run-time processing of the SQL statement is identical.
The only difference is in who did the “thinking” needed to produces the run-
time code: for native dynamic SQL, and especially for the DBMS_Sql API, the
programmer does the work; for embedded SQL, the PL/SQL compiler does the
work.

Beginners, and especially programmers who are meeting dynamic SQL for the
first time and who have had some experience with embedded SQL, do not
always realize this. For example, it might appear (to a beginner) that if an
embedded SQL statement compiled successfully, then the SQL statement that is
generated from it is bound not to fail16 at run time. A moment’s thought reveals
the fallacy: when an invoker’s rights PL/SQL unit17 runs, the Current_Schema is
set either to the Session_User (when only invoker’s rights PL/SQL units are on
the call stack) or to the Owner of the definer’s rights PL/SQL unit18 or view that
is closest on the stack. This means, for example, that an unqualified identifier in
the generated SQL statement might be resolved differently at run time than at
compile time19. In the worst case, this can result in the ORA-00942: table or view
does not exist run-time error20.

Embedded SQL is more expressive than some programmers realize

We occasionally see code (especially when it has been written by a beginner and
has not been reviewed by an experienced PL/SQL programmer) where
native dynamic SQL or the DBMS_Sql API has been used to implement a SQL
requirement that could have been met with embedded SQL. There is almost
never any convincing reason to avoid embedded SQL when it its expressivity is
sufficient; such avoidance is undoubtedly a worst practice. (We will return to this
point in the next section.)

15. When a select list is not known until run time, and is not constructed directly by the
PL/SQL program, then an extra step is needed. The PL/SQL program asks the SQL system
to describe the select list. This requires the use of the DBMS_Sql API. However, this use case is
exceedingly rare in production PL/SQL programs; an implementation design that proposes
this approach should be viewed with extreme suspicion.

16. Here, the notion of failure is defined to exclude data-driven conditions like the
Dup_Val_On_Index exception for insert and the No_Data_Found and Too_Many_Rows
exceptions for select... into.

17. An invoker’s rights PL/SQL unit is one where the authid property is equal to Current_User.

18. An definer’s rights PL/SQL unit is one where the authid property is equal to Definer.

19. This is the reason that successful compilation of an invoker’s rights PL/SQL unit sometimes
requires so-called template objects in the schema owned by the PL/SQL unit’s Owner. The
rules for name resolution and for privilege checking that are used at PL/SQL compile time are
identical for invoker’s rights and definer’s rights PL/SQL units.
Doing SQL from PL/SQL: Best and Worst Practices page 10

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
Native dynamic SQL

Code_8 shows a simple example of native dynamic SQL. The use of the word
native in the name of the method denotes the fact that it is implemented as a
PL/SQL language feature.

Notice that the alter session SQL statement is not supported by embedded SQL
and so the use of a method where the PL/SQL compiler does not analyze the
SQL statement (as Code_9 dramatically demonstrates) is mandated. The term
dynamic SQL is universally used to denote such a method, but the word
“dynamic” is arguably misleading. It was chosen because the text of the
SQL statement that is executed this way may be constructed at run time; but, of
course, it need not be. In Code_8, the SQL statement is fixed at compile time; this
is emphasized by the use of the constant keyword.

A generic PL/SQL best practice principle urges this:

Principle_2
Use the constant keyword in the declaration of any variable that is not changed
after its initialization21. Following this principle has no penalty because the
worst that can happen is that code that attempts to change a constant will fail to
compile — and this error will sharpen the programmer’s thinking. The
principle has a clear advantage for readability and correctness22.

In the context of dynamic SQL, it is especially valuable to declare the text of the
SQL statement as a constant when this is possible because doing so reduces the
surface area of attack for SQL injection23.

Notice, in this connection, that p’s authid property is explicitly set to Current_User.
If the authid clause is omitted, then the default value for the property, Definer, is

20. A definer’s rights PL/SQL unit always sees just those privileges that have been granted
explicitly to its Owner together with those that have been granted explicitly to public. An
invoker’s rights PL/SQL unit sees privileges that depend on the state of the call stack. When
a definer’s rights PL/SQL unit is on the stack, then the invoker’s rights PL/SQL unit sees
exactly the same privileges as the definer’s rights PL/SQL unit, or view, that is closest on the
stack. When only invoker’s rights PL/SQL units are on the call stack, each sees those privileges
that the Current_User has directly and those that the Current_User has via public together with
those that the Current_User has via all currently enabled roles. Therefore, even when an
invoker’s rights PL/SQL unit identifies an object using a schema-qualified name, ORA-00942
might still occur at run time.

21. It is possible for the PL/SQL compiler to detect this case (except when the variable is declared
at global level in a package spec). Enhancement request 6621216 asks for a compiler warning
for this case.

22. Using the constant keyword can, under some circumstances, tell the PL/SQL compiler that
particular optimizations are safe where, without this information, they would have to be
assumed to be unsafe.

-- Code_8 Basic_NDS.txt
procedure p authid Current_User is
  SQL_Statement constant varchar2(80) := q'[
    alter session
       set NLS_Date_Format = 'dd-Mon-yyyy hh24:mi:ss'
    ]';
begin
  execute immediate SQL_Statement;
  DBMS_Output.Put_Line(Sysdate());
end p;

Declare every PL/SQL variable with 
the constant keyword unless the 
block intends to change it.
Doing SQL from PL/SQL: Best and Worst Practices page 11

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
used. This behavior is determined by history and cannot be changed for
compatibility reasons. However, programmers should ignore the fact that the
property has a default value and adopt this best practice principle:

Principle_3
Always specify the authid property explicitly in every PL/SQL unit; choose
between definer’s rights and invoker’s rights after a careful analysis of the
purpose of the unit24.

Code_9 shows a counter-example of native dynamic SQL.

This version of procedure p compiles without error; but at run time (in this
example, irrespectively of what actual argument is used) it fails with ORA-00900:
invalid SQL statement. This is a dramatic way to make an obvious observation and
to provide the context to discuss a less obvious one; the discussion motivates
some comments on best practice principles.

Obviously, the SQL statement is not analyzed until run time; it is this property of
the method that allows it to support the kinds of SQL statement that
embedded SQL does not. In the general case, the text of the SQL statement is
not known until run time. As a consequence, a SQL statement that is executed
may access objects that do not exist at compile time but that, rather, are created
between compile time and when the SQL statement is executed. Before the
introduction of the global temporary table,25 PL/SQL programs sometimes
used scratch tables to accommodate the overflow of large volumes of transient
data. Naïve implementations would create, and later drop, the scratch table using
dynamic SQL. More sophisticated implementations would reserve, and later
relinquish, the name of an available such table from a managed pool. Either way,
the program could not know the name of the table until run time and so

23. A detailed discussion of SQL injection is beyond the scope of this paper. It suffices here to say
that a PL/SQL program that issues only SQL statements whose text is fixed at compile time
is proof against the threat — and to point out that both embedded SQL and dynamic SQL that
uses constant SQL statement text have this property. Of course, it is the responsibility of a
PL/SQL programmer who writes code that issues SQL to ensure that this is not vulnerable to
SQL injection. A companion paper, How to write injection-proof PL/SQL, is posted on the
Oracle Technology Network here:
www.oracle.com/technology/tech/pl_sql/how_to_write_injection_proof_plsql.pdf
Its careful study is very strongly encouraged.

24. Enhancement request 6522196 asks for a compiler warning when the authid property is not
explicitly specified. We expect this to be implemented in Oracle Database 11g Release 2.

25. The global temporary table is now supported in all supported versions of Oracle Database.

Always specify the authid property 
explicitly. Decide carefully between 
Current_User and Definer.

-- Code_9 Basic_NDS.txt
procedure p(Input in varchar2) authid Current_User is
  SQL_Statement constant varchar2(80) := 'Mary had... ';
begin
  execute immediate SQL_Statement||Input;
end p;
Doing SQL from PL/SQL: Best and Worst Practices page 12

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
http://www.oracle.com/technology/tech/pl_sql/how_to_write_injection_proof_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
dynamic SQL was required even for those ordinary SQL statements that are
supported in embedded SQL. Code_10 shows a stylized typical example.

The use of a constant template26, and the derivation from it of the constant
intended SQL statement, are devices to make the code self-evidently correct.

Because this paper’s focus is best and worst practices, it cannot afford to show
(except as clearly advertised counter-examples) code that is anything other than
exemplary. This explains the use of Sys.DBMS_Assert.Simple_Sql_Name(). The
name is qualified in accordance with a generic SQL and PL/SQL best practice
principle:

Principle_4
References to objects that Oracle Corporation ships with Oracle Database
should be dot-qualified with the Owner. (This is frequently, but not always, Sys.)
This preserves the intended meaning even if a local object, whose name
collides with that of the intended object, is created in the schema which will be
current when name resolution is done.

When the actual argument is a legal, unqualified SQL identifier, spelled just as it
would be spelled in a SQL statement, then the function simply returns its input;
otherwise, it raises the ORA-44003: invalid SQL name error. Each of the
invocations of b() shown in Code_11 runs without error and produces the
expected result. 

The invocation shown in Code_12 fails with ORA-44003. 

Code_13 shows the SQL statement it requests.

Though this statement is legal, the identifier is qualified and so the assertion that
it is unqualified fails.

26. The notation &&t in the SQL statement template has no formal significance. It is used in the
companion paper How to write injection-proof PL/SQL which elaborates at length on the template
notion. Oracle Database’s scheme for SQL execution allows a value to be bound to a
placeholder; but it has no corresponding facility for an identifier in the statement.

-- Code_10 NDS_Select_Into.sql
procedure b(The_Table in varchar2, PK t.PK%type)
  authid Current_User
is
  Template constant varchar2(200) := '
    select a.v1 from &&t a where a.PK = :b1';
  Stmt constant varchar2(200) := Replace(
    Template, '&&t',
    Sys.DBMS_Assert.Simple_Sql_Name(The_Table));
  v1 t.v1%type;
begin
  execute immediate Stmt into v1 using PK;
  ...
end b;

Use the Owner to dot-qualify the 
names of objects that ship with 
Oracle Database.

-- Code_11 NDS_Select_Into.sql
b('t',   42);
b('T',   42);
b('"T"', 42);

-- Code_12 NDS_Select_Into.sql
b('"USR"."T"', 42);

-- Code_13 NDS_Select_Into.sql
select a.v1 from "USR"."T" a where a.PK = :b1
Doing SQL from PL/SQL: Best and Worst Practices page 13

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
The invocation shown in Code_14 also fails with ORA-44003. 

Again, the identifier is illegal and so, again, the assertion fails. Code_15 shows the
SQL statement it requests.

This is the canonical SQL injection example. The requested SQL statement is
legal. Significantly, the SQL statement is an instance of a different syntax
template than the programmer intended and the dynamically constructed
SQL statement has been changed in a dramatic and dangerous fashion27.
Scrupulous use of the DBMS_Assert functions inoculates code against such
vulnerability.

While the availability of the global temporary table allows a simpler and better
approach in some use cases, there are others where the claim that one or more
identifiers in a SQL statement are unknown until run time is unassailable. This is
use case is (almost) the only one where a select, insert, update, delete, merge, or
lock table statement28 is optimally supported with native dynamic SQL.29

We sometimes hear a different supposed justification for using dynamic SQL
where embedded SQL is functionally adequate: that doing this avoids the
creation of dependencies and therefore allows the structure of tables and views
that a PL/SQL unit relies on to be changed without invalidating that
PL/SQL unit. The suggestion is that the programmer knows what the
PL/SQL compiler cannot: that no changes to these essential tables and views
will affect the validity of the access that the PL/SQL unit makes to them. The

27. It helps to imagine that the attacker has seen the source code, maybe in a test implementation,
and has understood its weakness. However, many vulnerabilities to SQL injection can be
discovered by black-box testing.

28. We will avoid the term DML in this paper because its formal definition in the Oracle Database
SQL Language Reference book differs from common usage. Common usage excludes select
and sets this in contrast to insert, update, delete, and merge — calling only the latter four DML (and
forgetting lock table altogether). Moreover, the SQL Language Reference book includes call and
explain plan in its definition of DML — but neither of these is supported by PL/SQL’s
embedded SQL.

29. There is one other — but it is esoteric. In, for example, a data warehouse application with huge
tables, the optimal execution plan depends on using literal values for restriction predicates so
that proper use may be made of the statistics that record the actual distribution of the values
in the referenced columns. This implies that the predicates be directly encoded into the
SQL statement which in turn mandates dynamic SQL.

For this use case, Sys.DBMS_Assert.Enquote_Literal() should be used to prevent the threat of
SQL injection.

-- Code_14 NDS_Select_Into.sql
b(
  't a
    where 1=0
    union
    select Username v1
    from   All_Users where User_ID = :b1 --',
  42);

-- Code_15 NDS_Select_Into.sql
select a.v1 from t a
where 1=0
union
select Username v1
from   All_Users where User_ID = :b1 -- a where a.PK = :b1
Doing SQL from PL/SQL: Best and Worst Practices page 14

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
need for this risky analysis vanishes in Oracle Database 11g because of the new
fine-grained dependency tracking model that it brings. The system now
establishes the safety of changes made to objects that are referenced in
embedded SQL. If the change is safe, then the referencing PL/SQL unit remains
valid; if it is potentially unsafe, then the PL/SQL unit is invalidated.

The discussion in this section is summarized in this best practice principle:

Principle_5
Strive always to use only SQL statements whose text is fixed at compile time.
For select, insert, update, delete, merge, or lock table statements, use embedded SQL.
For other kinds of statement, use native dynamic SQL. When the
SQL statement text cannot be fixed at compile time, strive to use a fixed syntax
template and limit the run-time variation to the provision of names. (This
implies using placeholders and making the small effort to program the
binding.) For the names of schema objects and within-object identifiers like
column names, use Sys.DBMS_Assert.Simple_Sql_Name(). If exceptional
requirements mandate the use of a literal value rather than a placeholder, use
Sys.DBMS_Assert.Enquote_Literal(). For other values (like, for example, the
value for NLS_Date_Format in Code_8) construct it programatically in response
to parameterized user input.

Finally in this section, recall that execute immediate is not the only construct that
implements native dynamic SQL; the the open Cur for statement, where Cur is a
cursor variable, will be examined in a later section.

The DBMS_Sql API

The DBMS_Sql API supports a procedural method for doing dynamic SQL. In
historical versions of Oracle Database, it was the only way to do dynamic SQL,
but events have moved on and native dynamic SQL is now supported in all
supported versions of Oracle Database.

Native dynamic SQL was introduced as an improvement on the DBMS_Sql API
(it is easier to write and executes faster). This point is made convincingly by
Code_17 and Code_18. Each executes the SQL statement set up by Code_16 in a
contrived test that successively selects each uniquely identified single row in a
large table.

Strive to use SQL statements whose 
text is fixed at compile time. When 
you cannot, use a fixed template. 
Bind to placeholders. Use 
DBMS_Assert  to make  concatenated 
SQL identifiers safe.

-- Code_16 DBMS_Sql_Vs_Exec_Im.sql
Stmt constant varchar2(80) := '
  select t.n1 from t where t.PK = :b1';
Doing SQL from PL/SQL: Best and Worst Practices page 15

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
Code_17 uses the DBMS_Sql API.

Notice that the calls to Open_Cursor(), Parse(), Define_Column(), and Close_Cursor()
are done outside the loop while the calls to Bind_Variable() and to
Execute_And_Fetch() are done inside the loop. This saves the cost of repeatedly
parsing the same SQL statement30. 

Code_18 uses native dynamic SQL.

Notice how much shorter and more transparent Code_18 is than Code_17; this, of
course, improves that probability that correctly expresses the programmer’s
intention. Moreover, Code_18 runs about twice as fast as Code_17 on a 11,000
row test table, and at about the same speed as the equivalent embedded SQL
approach.

However, the DBMS_Sql API supports some requirements for executing a
SQL statement that cannot be met by native dynamic SQL31. These are they:

30. The call to Parse() attempts to find a sharable SQL structure in the shared pool with the same
statement text that has the same meaning. If none is found, a so-called hard parse occurs. This
is famously expensive. But even the task of establishing that there does already exist a suitable
shareable structure, the so-called soft parse, incurs a cost. A re-work of Code_17 that moves the
Open_Cursor(), Parse(), Define_Column(), and Close_Cursor() calls into the loop runs about three
times as slowly as does Code_17 as presented on the 11,000 row test table used for the
experiment. (Examination of appropriate statistics shows that the repeated parsing is indeed
soft.)

31. Conversely, almost every requirement for executing a SQL statement that can be met by
native dynamic SQL can also be met by the DBMS_Sql API. Oracle Database 11g brought a
number of enhancements to the DBMS_Sql API: Parse() has new overload with a clob formal
for the SQL statement; the select list may include columns of user-defined types; bind
arguments of user-defined types are supported; and a DBMS_Sql numeric cursor may by
transformed to a ref cursor. (A ref cursor may also be transformed to a DBMS_Sql numeric cursor.)

There is one exception: the select list cannot be bulk fetched into a collection whose datatype is
user-defined; rather, one of the collection types defined in the DBMS_Sql package spec must
be used.

-- Code_17 DBMS_Sql_Vs_Exec_Im.sql
declare
  Cur    integer := DBMS_Sql.Open_Cursor(Security_Level=>2);
  Dummy  integer;
begin
  DBMS_Sql.Parse(Cur, Stmt, DBMS_Sql.Native);
  DBMS_Sql.Define_Column(Cur, 1, n1);

  for j in 1..No_Of_Rows loop
    DBMS_Sql.Bind_Variable(Cur, ':b1', j);
    Dummy := DBMS_Sql.Execute_And_Fetch(Cur, true);
    DBMS_Sql.Column_Value(Cur, 1, n1);
    ...
  end loop;

  DBMS_Sql.Close_Cursor(Cur);
end;

-- Code_18 DBMS_Sql_Vs_Exec_Im.sql
for j in 1..No_Of_Rows loop
  execute immediate Stmt
    into n1 using j;
  ...
end loop;
Doing SQL from PL/SQL: Best and Worst Practices page 16

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
• The requirement for binding to placeholders is not known until run time. It is
easy so see why by looking at Code_18. Native dynamic SQL supports binding
with the using clause; and this clause is fixed at compile time. The DBMS_Sql
API, in contrast, allows as many calls to Bind_Variable() as are needed to be
made in response to run-time tests.

• The requirement for returning values is not known until run time. This arises
most obviously with a select statement whose select list is not known until run
time. Code_18 shows how native dynamic SQL specifies the PL/SQL targets
for the select list with the into clause; and this clause too is fixed at compile time.
The DBMS_Sql API, in contrast, allows as many calls to Define_Column() as are
needed to be made in response to run-time tests.

If an insert, update, delete, or merge statement has a returning clause, the PL/SQL
targets for these values are specified with the using clause32 as shown in
Code_19. 

The obvious question is this: when is which method for doing dynamic SQL
preferred? And it answered obviously with this best practice principle:

Principle_6
For dynamic SQL, always use native dynamic SQL except when its
functionality is insufficient; only then, use the DBMS_Sql API. For select, insert,
update, delete, and merge statements, native dynamic SQL is insufficient when the
SQL statement has placeholders or select list items that are not known at
compile time33. For other kinds of SQL statement, native dynamic SQL is
insufficient when the operation is to be done in a remote database.

Cursor taxonomy

Only when the PL/SQL programmer has a reasonable experience of using each
of three methods for issuing SQL is the need for carefully defined terms of art34

to characterize the various kinds of cursor appreciated; and only then is it
possible to understand the definitions.

Questions addressed by the cursor taxonomy

These are the key questions:

32. This apparent asymmetry is a consequence of the syntax of SQL’s returning clause where the
target for a returned value is given as a placeholder.

33. Notice that the function DBMS_Sql.To_Refcursor() can be used to transform a
DBMS_Sql numeric cursor that has been executed to cursor variable; and the function
DBMS_Sql.To_Cursor_Number() can be used to transform a cursor variable to a
DBMS_Sql numeric cursor.

-- Code_19 Returning_Into.sql
  ...
  Stmt constant varchar2(200) := q'[
    update t
      set t.v1 = 'New '||t.v1
      where t.PK = :i1
      returning t.v1 into :o1]';
begin
  ...
  execute immediate Stmt using in PK, out v1;
  ...

For dynamic SQL, aim to use 
native dynamic SQL. Only when you 
cannot, use the DBMS_Sql API.
Doing SQL from PL/SQL: Best and Worst Practices page 17

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
Question 0: In what domains of discourse is the term cursor used, and does it
mean the same thing in each domain?

Question 1: Who manages the cursor (opening it, parsing the SQL statement,
and so on through to closing it) — the programmer or the PL/SQL system?

Question 2: Does the cursor have a programmer-defined identifier, and if it has,
how can this be used?

Question 3: Is the cursor opened using embedded SQL, native dynamic SQL, or
the DBMS_Sql API?

With respect to Question 0, there are two different domains of discourse: the
overt and the covert. The overt one is PL/SQL source text and the discussion of
the behavior it specifies given the definition of PL/SQL’s syntax and semantics.
And the covert one is the implementation of the PL/SQL system — of which,
as theoretically undesirable as this might be, the professional Oracle Database
developer eventually needs some understanding. The PL/SQL run-time system
manages the processing of the SQL statements that the source text specifies by
making appropriate calls to a server-side functional equivalent of the OCI35. This
API can be pictured as that which implements the familiar client-side OCI at the
receiving end of the Oracle Net protocol. It therefore supports an equivalent set
of operations. PL/SQL code which uses any of its three methods for issuing
SQL is implemented in roughly the same way with calls at run time to the server-
side OCI. This means that the same notion of cursor with which the programmer
who uses client-side OCI is familiar supports the discussion of the run-time
processing of the SQL statements issued by database PL/SQL. In particular, the
initialization parameters like Open_Cursors and Session_Cached_Cursors have the
same significance for the SQL issued by database PL/SQL as they do for SQL
issued by client programs using the OCI directly, using ODBC, or using the
JDBC driver (in either its thick or thin versions).

A further part of the covert domain of discourse concerns the shared pool.
Sometimes the session-independent structures that are characterized by facts
exposed in the v$SqlArea and v$Sql views are referred to, albeit inaccurately, as
cursors36.

The terms of art

Here, then, are the terms of art37:

• sharable SQL structure

This is the object that lives in the shared pool and whose metadata is exposed
in the v$SqlArea and v$Sql views. A sharable SQL structure lives on beyond the

34. A Google search for “term of art” turns up the following nice definition and discussion from
Everything2.com: A word or phrase used by practitioners in a field of endeavour which has a precise and
typically quite technical meaning within the context of the field of endeavour. Terms of art allow practitioners in
a field to communicate with each other concisely and unambiguously. Inventing suitable yet totally new words to
be used as terms of art is often quite difficult. Consequently, the words which become terms of art often also have
non-field-specific meanings. This can create and/or reinforce communication barriers between a field's
practitioners and non-practitioners...

35. OCI stands for the Oracle Call Interface.

36. You hear this, for example, in turns of phrase like “cursor sharing” and “child cursor”.
Doing SQL from PL/SQL: Best and Worst Practices page 18

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
http://www.google.com/search?q=%22term+of+art%22
http://www.everything2.com/index.pl?node_id=1673786


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
lifetime of the session that created it and can be used by other sessions concur-
rently.

The reuse of a sharable SQL structure is possible only when the SQL statement
text is identical and when other so-called sharing criteria (most notably that an
identifier in the SQL statement denotes the same object) are satisfied38. The
term belongs, therefore, in the covert domain: the implementation of PL/SQL
and, in fact, the implementation of any environment that supports the
processing of SQL statements. Of course, reusing a sharable SQL structure
improves performance; this fact is the reason behind one of the most famous
best practice principles for SQL processing from all environments:

Principle_7
Avoid using concatenated literals in a dynamically created SQL statement;
rather, use placeholders in place of literals, and then at run time bind the values
that would have been literals. This maximizes the reuse of
sharable SQL structures.

• session cursor

This is the object that lives in a session’s memory39, that dies, therefore, with
the session, and whose metadata is exposed in the v$Open_Cursor view; it
supports an individual session’s SQL processing.

This term, too, belongs, in the covert domain; and, again, any client (of which
PL/SQL is just one example) that issues a SQL statement uses a session cursor.
A session cursor is associated with a exactly one sharable SQL structure; but a
sharable SQL structure may have several session cursors associated with it. A session
cursor is also an object of potential re-use. When a client finishes processing a
particular SQL statement, the session cursor that supported this processing is not
destroyed; rather it is marked as soft closed and is retained in a least-recently-used
cache40. A client’s call to parse a SQL statement is implemented by searching
first in the cache of soft closed session cursors. The search uses the same criteria as
the search for a sharable SQL structure reuse candidate in the shared pool:
identity of the SQL statement text and identity of its meaning41. Only if no
match is found is the shared pool searched for a matching sharable SQL structure
to be used as the basis for a new session cursor. The search in the shared pool is

37. It helps to think of implicit, explicit, and cursor as words in a foreign language, and to forget any
associations that their English meanings might have. Especially, it helps to think of phrases like
implicit cursor and explicit cursor as foreign idioms with no direct translation into English; the
concern must be only with the meaning and the correct usage of these phrases. The discipline
is not, after all, unusual. The US English word freeway suggests that there might be no charge
for using one; but freeways where a toll is levied are not uncommon.

38. The reuse is limited to these kinds of SQL statement: select, insert, update, delete, merge, and
anonymous PL/SQL block. It is in these, and only these, kinds that a placeholder is legal.

39. This is usually referred to as the PGA but should, for accuracy, be called the UGA.

40. session cursors are cached only when the Cursor_Space_For_Time is set to true.

41. PL/SQL uses on optimized version of this approach, based on the source text location of the
PL/SQL statement that occasions the parse call, that narrows the search space to just one item.

When using dynamic SQL, avoid 
literals in the SQL statement. Instead, 
bind the intended values to 
placeholders.
Doing SQL from PL/SQL: Best and Worst Practices page 19

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
the so-called soft parse, and the re-usability of soft closed session cursors is an optimi-
zation that avoids the cost of the soft parse. In the worst case, no match will be
found in the shared pool — and in this case the so-called hard parse creates an
appropriate new sharable SQL structure that in turn becomes the basis for a new
session cursor.

The Open_Cursors initialization parameter sets the maximum number of session
cursors that can exist in the open state concurrently in one session. The
Session_Cached_Cursors initialization parameter sets the maximum number of
session cursors that can be in the soft closed state concurrently in one session42.
Under pressure, a soft closed session cursor may be destroyed to make space for a
newly soft closed one or for a newly opened session cursor.

• implicit cursor

This term denotes a session cursor that supports the SQL processing that
implements the family of embedded SQL constructs and native dynamic SQL
constructs where, in terms of overt PL/SQL language constructs and
concepts, there is, quite simply, no cursor to be seen. It is the PL/SQL run-
time system, reflecting the analysis done by the PL/SQL compiler, that
manages the session cursor without the help of explicit language constructs that
specify operations like open, parse, bind, execute, fetch, and close. The term belongs,
therefore, in the covert domain.

We hear the term used informally to denote any example in the family of
cursor-less PL/SQL constructs for executing SQL, but we encourage caution
with this use. Paradoxically, another similar sounding term of art,
implicit cursor attribute, belongs in the overt domain of PL/SQL’s syntax and
semantics. We will defer its definition until we define its cousin, the
explicit cursor attribute. Code_1, Code_2, and Code_3 show examples of cursor-less
PL/SQL constructs for embedded SQL; and Code_8, Code_10, Code_18, and
Code_19 show examples of cursor-less PL/SQL constructs for
native dynamic SQL, which always implies the use of execute immediate.

• explicit cursor

While the words suggest that this might be the natural opposite of an
implicit cursor this is not the case43. An explicit cursor is a specific PL/SQL
language feature — and the term belongs, therefore, firmly in the overt
domain. The identifier Cur_Proc, declared in the spec of package Pkg1 in
Code_20, denotes an explicit cursor.

42. Open_Cursors sets a functionality limit; it must acknowledge the number of session cursors that an
application might need to have concurrently active. Session_Cached_Cursors, in contrast, governs
a classic space against performance trade-off.

43. You have, earlier, been warned to expect this!

-- Code_20 Explicit_Cursor_vs_Cursor_Variable.sql
package Pkg1 is
  type Result_t is record(PK t.PK%type, v1 t.v1%type);
  cursor Cur_Proc(PK in t.PK%type) return Result_t;
  ...
end Pkg1;
Doing SQL from PL/SQL: Best and Worst Practices page 20

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
Cur_Proc is defined in the body of package Pkg1 in Code_21.

Code_22 shows how the explicit cursor Cur_Proc might be used. The construct is
called a explicit cursor for loop.

An explicit cursor cannot be defined using dynamic SQL; embedded SQL is the
only possibility.

Critically, though the programmer invents the name of an explicit cursor, this is
not a variable: it cannot be used as an actual argument in a subprogram
invocation; nor can it be returned by a function. In this way, it is very much like
a procedure44 — and it shares other similarities: it can be forward declared,
and the declaration and the definition can be split between a package and its
body; and it can have formal parameters. We shall see, however, that there is
never a good reason to write code that takes advantage of this possibility. (A
function whose return a ref cursor can always be used as an alternative and, as
shall be seen, has some advantages.)

• ref cursor

This is a PL/SQL-only datatype45 declared, for example, as is Cur_t in Code_23
or in Code_24. A ref cursor may be used to declare a variable, a formal parameter
for a subprogram, or a function’s return value. It may not be used to declare
the datatype of the element of a collection or the field of a record. There are
exactly two kinds of ref cursor: a weak ref cursor and a strong ref cursor.

• cursor variable

This is a variable whose datatype is based on a ref cursor. All of the terms
ref cursor, weak ref cursor, strong ref cursor, and cursor variable describe PL/SQL
language features and so they belong in the overt domain. When Cur is a
cursor variable, it can be used in the open Cur for PL/SQL statement which is
used to associate a select statement with the cursor variable. The association can

44. It might have been better had the construct been named cursor subprogram.

45. Strictly speaking, the keyword cursor here denotes a datatype constructor — just as does, for
example, record(...), or table of boolean index by pls_integer. The keyword ref is distinct and denotes
the fact that quantities whose datatype is ref cursor obey reference semantics. It is very unusual
in this way in this way. Normally, quantities in PL/SQL obey value semantics. There is a tiny
number of other quantities that obey reference semantics; one example is permanent lob
locators (which are a rule unto themselves).

-- Code_21 Explicit_Cursor_vs_Cursor_Variable.sql
package body Pkg1 is
  cursor Cur_Proc(PK in t.PK%type) return Result_t is
    select    a.PK, a.v1
    from      t a
    where     a.PK > Cur_Proc.PK
    order by  a.PK;
  ...
end Pkg1;

-- Code_22 Explicit_Cursor_vs_Cursor_Variable.sql
for r in Pkg1.Cur_Proc(PK=>Some_Value)loop
  Process_Record(r);
end loop;
Doing SQL from PL/SQL: Best and Worst Practices page 21

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
made using either embedded SQL or native dynamic SQL. Cur can also be
used as the source for a fetch statement46.

A cursor variable may not be declared at global level in a package spec or body.

• strong ref cursor

This is a datatype declared, for example, as is Strong_Cur_t in Code_23.

A strong ref cursor is specific about the number and the datatypes of the select list
items that its select statement must define. A cursor variable whose datatype is a
strong ref cursor can be opened only using embedded SQL. 

• weak ref cursor

This is a datatype declared, for example, as is Weak_Cur_t in Code_24.

A weak ref cursor is agnostic about the number and the datatypes of the select list
items that its select statement must define. A cursor variable whose datatype is a
weak ref cursor can be opened using either embedded SQL or
native dynamic SQL47.

The spec of package Pkg2 in Code_25, declares the function New_Cursor(),
parameterized in just the same way as the explicit cursor declared in Pkg1 in
Code_20, that is designed to give a value to a cursor variable.

46. The ref cursor and the cursor variable were introduced into PL/SQL later than the explicit cursor to
overcome the latter’s restrictions. Had history been different, and had the ref cursor and the
cursor variable been introduced first (and had the batched bulk fetch constructs been supported
from the beginning), it would very unlikely that a project to introduce the explicit cursor would
have been justified.

47. Using a cursor variable whose datatype is a strong ref cursor has the small advantage that you will
get a compile-time error rather than a run-time error in the case that you attempt to fetch into
a record or a set of scalars that don’t match the shape of the select list. Otherwise, it has no benefit
and brings a minor source text maintenance cost. Starting in Oracle9i Database,
package Standard declares the weak ref cursor type Sys_RefCursor; using this saves some typing
and communicates its meaning immediately to readers.

-- Code_23 Explicit_Cursor_vs_Cursor_Variable.sql
  type Result_t is record(PK t.PK%type, v1 t.v1%type);
  type Strong_Cur_t is ref cursor return Result_t;

-- Code_24 Explicit_Cursor_vs_Cursor_Variable.sql
  type Weak_Cur_t is ref cursor;

-- Code_25 Explicit_Cursor_vs_Cursor_Variable.sql
package Pkg2 is
  type Result_t is record(PK t.PK%type, v1 t.v1%type);

  type Cur_t is ref cursor
    $if $$Embedded $then return Result_t;
    $else ;
    $end

  function New_Cursor(
    PK in t.PK%type)
    return Cur_t;
  ...
end Pkg2;
Doing SQL from PL/SQL: Best and Worst Practices page 22

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
The body of package Pkg2 in Code_26, defines the function.48.

Code_25 and Code_26 use conditional compilation49 to emphasize the small
differences, and the large similarities, between the two ways to open the
cursor variable.

48. There is hardly ever a reason, in real code, to use native dynamic SQL with a SQL statement
whose text is declared using a constant when the kind of the statement is select, insert, update, delete,
merge or anonymous PL/SQL block. As mentioned earlier, a possible reason is that a
to-be-referenced table or PL/SQL unit doesn’t exist at compile time but is created, somehow,
before the code runs. Unless the code is an install script, the use case that seems to suggest this
approach should be examined very carefully.

49. Conditional compilation was introduced in Oracle Database 10g Release 2. The identifier
Embedded is called a CC Flag and its value is obtained in the source text by writing $$Embedded
(a so-called inquiry directive); its value is set by commands like this (before create or replace):

or this (for an existing package body Pkg):

-- Code_26 Explicit_Cursor_vs_Cursor_Variable.sql
package body Pkg2 is
  function New_Cursor(
    PK in t.PK%type)
    return Cur_t
  is
    Cur_Var Cur_t;
  begin

    open Cur_Var for
      $if $$Embedded $then
        select    a.PK, a.v1
        from      t a
        where     a.PK > New_Cursor.PK
        order by  a.PK;
      $else
        '
          select    a.PK, a.v1
          from      t a
          where     a.PK > :b1
          order by  a.PK'
        using in New_Cursor.PK;
      $end

    return Cur_Var;
  end New_Cursor;
  ...
end Pkg2;

alter session set Plsql_CCflags = 'Embedded:true'

alter package Pkg compile
  Plsql_CCflags = 'Embedded:false'
  reuse settings
Doing SQL from PL/SQL: Best and Worst Practices page 23

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
Code_27 shows how the cursor variable Cur_Var, initialized using New_Cursor(),
might be used. The loop construct is called an infinite cursor fetch loop50.

The infinite cursor fetch loop (in Code_27), though functionally equivalent to the
explicit cursor for loop (in Code_22), is undoubtedly more verbose. The
infinite cursor fetch loop can be used both with a cursor variable and an explicit cursor;
but the explicit cursor for loop can be used only with an explicit cursor. Moreover,
from Oracle Database 10g, the explicit cursor for loop is significantly faster than
the infinite cursor fetch loop. This is because the optimizing compiler is able safely
to implement the former, under the covers, using array fetching51. Such an
optimization is unsafe for the latter because the optimizer cannot always prove
that other interleaved fetches do not happen from the same explicit cursor or
cursor variable elsewhere in the code52. However, we shall see that all this is of
no practical interest because neither approach is ever preferred to
batched bulk fetch (see Code_29) or entire bulk fetch (see Code_32 and Code_33).

• identified cursor

Because the source text of an infinite cursor fetch loop is identical for both an
explicit cursor; and a cursor variable, and because (as we shall see in Code_29 and
Code_34) there are other constructs that have this property, it is useful to have
a term of art for the superclass of explicit cursor and cursor variable. In fact, there
is no such term — so this paper will introduce the term identified cursor for
precisely that purpose. This then allows a nice formulation of the distinction
between a cursor-less PL/SQL construct, which is supported under the covers
by an implicit cursor and a construct that uses an identified cursor where the
programmer invents an identifier for either an explicit cursor or a cursor variable
and, to some extent at least, instructs the PL/SQL system how to manage the
supporting session cursor.

50. Notice that the explicit cursor for loop is legal only for an explicit cursor but that the
infinite cursor fetch loop is legal for both a explicit cursor and a cursor variable. However, as we shall
see, this is of no practical interest.

51. Here, “array fetching” refers to the programming technique in server-side OCI.

52. The limitation that the optimizer cannot prove that other interleaved fetches do not happen
from the same explicit cursor or cursor variable elsewhere in the code reflects the optimizer
technology currently in use (i.e. in Oracle Database 11g).

-- Code_27 Explicit_Cursor_vs_Cursor_Variable.sql
declare
  Cur_Var Pkg2.Cur_t :=
    Pkg2.New_Cursor(PK=>Some_Value);
  r Pkg2.Result_t;
begin
  loop
    fetch Cur_Var into r;
    exit when Cur_Var%NotFound;
    Process_Record(r);
  end loop;
  close Cur_Var;
end;
Doing SQL from PL/SQL: Best and Worst Practices page 24

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
• DBMS_Sql numeric cursor

This is the return value of the function DBMS_Sql.Open_Cursor() and it can be
assigned to an ordinary variable (say, Cur) of datatype number (or a subtype of
number like integer). When you have finished processing the SQL statement, you
call DBMS_Sql.Close_Cursor() using Cur as the actual value for its in out formal
parameter, c. Provided that on calling it, Cur denotes an existing open
DBMS_Sql numeric cursor, this will set Cur to null. You can discover if the
current value of Cur denotes an open DBMS_Sql numeric cursor by calling
DBMS_Sql.Is_Open(). Every subprogram in the DBMS_Sql API has an in
formal parameter for which the actual value must be a an existing open
DBMS_Sql numeric cursor except for Open_Cursor(), which returns such a value,
and Close_Cursor(), where the parameter mode is in out. Calling any of these
with a value of Cur that does not denote an existing open
DBMS_Sql numeric cursor causes the error ORA-29471: DBMS_SQL access
denied; once this error has occurred in a session, all subsequent calls to any
subprogram in the DBMS_Sql API causes the same error53.

The Open_Cursor() function has two overloads. The first has no formal
parameters; the second overload, new in Oracle Database 11g, has one formal:
Security_Level with allowed values 1 and 2. When Security_Level = 2, the
Current_User and the enabled roles must be the same54 for all calls to the the
DBMS_Sql API as they were for the most recent call to Parse(). When
Security_Level = 1, the Current_User and the enabled roles must be the same for
calls to Bind_Variable(), Execute(), and Execute_And_Fetch() as they were for the
most recent call to Parse(), but calls to Define_Column(), Define_Array(),
Fetch_Rows(), and so on are unrestricted. This paper recommends encapsulating
calls to the the DBMS_Sql API in a producer PL/SQL unit (see “Approaches for
producer/consumer modularization” on page 41). The following best practice
principle follows from that recommendation:

Principle_8
Always use the overload of the DBMS_Sql.Parse() that has the formal
parameter Security_Level 55 and always call it with the actual value 2 to insist
that all operations on the DBMS_Sql numeric cursor are done with the same
Current_User and enabled roles.

53. This is new behavior in Oracle Database 11g. The purpose is to inoculate against so-called
scanning attacks that attempt to hijack an open DBMS_Sql numeric cursor and, for example, re-
bind and re-execute in order to see restricted data.

54. More carefully, the enabled roles must be the same as, or a superset of, the enabled roles at the
time of the most recent Parse() call.

55. Enhancement request 6620451 asks for a compiler warning when the overload of the
DBMS_Sql.Parse() that has no formal parameters is used.

Always open a 
DBMS_Sql numeric cursor with
DBMS_Sql.Parse(Security_Level=>2);
Doing SQL from PL/SQL: Best and Worst Practices page 25

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
• explicit cursor attribute

When Cur is either an explicit cursor or a cursor variable, then these reflectors56 are
available: Cur%IsOpen (returns boolean), Cur%NotFound (returns boolean)57, and
Cur%RowCount (returns integer). Unless Cur%IsOpen is true, then an attempt to
reference the other explicit cursor attributes fails58. Because both an explicit cursor
and a cursor variable may be opened only for a select statement, then the
meanings of Cur%RowCount and Cur%NotFound are obvious: the former gives
the total number of rows fetched to date during the lifetime of the cursor; and
the latter remains true until all rows have been fetched. We shall see that if the
programmer adopts the approaches for processing SQL statements that this
document recommends, then for all common use cases Cur%RowCount and
Cur%NotFound are of no practical interest. Cur%IsOpen is potentially useful in
an exception handler as Code_28 shows59.

• implicit cursor attribute

These reflectors report information about the execution of the current, or
most-recently finished if none is current, SQL statement for which an
implicit cursor is used. Because an implicit cursor supports, among other things, the
execute immediate statement, this statement may be of any kind. Here is the list of
scalar reflectors: Sql%IsOpen, Sql%NotFound 60, Sql%RowCount. They return the
same datatypes and have the same meanings as the correspondingly named
explicit cursor attributes. (Because SQL is a reserved word in PL/SQL, there is no
risk of confusion between the implicit cursor attributes and their
explicit cursor attribute counterparts.) However, precisely because an implicit cursor
is managed by the PL/SQL system, it is never interesting to observe
Sql%IsOpen; its existence is just a curiosity. Perhaps surprisingly (but in fact for
the same reason — that an implicit cursor is managed by the PL/SQL system)
both Sql%NotFound and Sql%RowCount can be referenced when Sql%IsOpen is
false. Sql%NotFound is always equal to Sql%RowCount = 0 and so, for that
reason, can be forgotten. Sql%RowCount reports the number of rows affected
by the latest select, insert, update, delete, or merge statement. However, it is never
interesting for a select statement because other, more direct, methods give the

56. They behave like functions: they can be used in expressions but not as assignment targets.

57. There is also Cur%Found, but it isn’t worth mentioning because its value is always equal to
not Cur%NotFound and it is hardly ever used. (If Cur%NotFound is null, then Cur%Found is also
null.)

58. The error is ORA-01001: invalid cursor.

59. When a cursor variable goes out of scope, the PL/SQL run-time system looks after closing it.
However, it cannot harm to attend to this safety measure explicitly in an exception handler. It
is simpler always to do this than it is to reason about whether or not the measure is needed.

60. Of course, there is also Sql%Found whose value is always equal to not Sql%NotFound.

-- Code_28 RC_Producer_Consumer.sql
if Cur_Var%IsOpen then
  close Cur_Var;
end if;
Doing SQL from PL/SQL: Best and Worst Practices page 26

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
same answer — as will be seen. Sql%RowCount is always zero after statements
of other kinds, and is never interesting there.

Here is the list of non-scalar reflectors: Sql%Bulk_RowCount,
Sql%Bulk_Exceptions. Each is interesting in connection with the
forall statement, and only there. The forall statement supports these, and only
these, kinds of SQL statement: insert, update, delete, and merge.
Sql%Bulk_RowCount is a collection, indexed by a numeric datatype, whose
element datatype is pls_integer. It reports the number of rows affected by each
iteration of the forall statement; the index is the iteration number, running
consecutively from 1 to the Count() of the collection that was used to drive the
statement. Sql%Bulk_Exceptions is interesting only when save exceptions is used in
the forall statement, and can be accessed only in an exception handler for the
Bulk_Errors exception, ORA-24381. It is a collection, indexed by pls_integer,
whose element datatype is a based on a record; the first field is Error_Index and
the second field is Error_Number, both pls_integer. The index runs consecutively
from 1 to however many iterations of the forall statement caused an exception.
Error_Index is the iteration number, in the range from 1 to the Count() of the
collection that was used to drive the statement. Error_Number is equal to the
Oracle error number corresponding to the exception (as would be used in the
Pragma Exception_Init statement) multiplied by -161.

Each new execution of a SQL statement by a method that uses an implicit cursor
overwrites the values that the implicit cursor attributes reported for the previous
such SQL statement. This fact is the reason for the following best practice
principle:

Principle_9
When the approaches that this paper recommends are followed, the only
useful explicit cursor attribute is Cur%IsOpen. There is never a need to use the
other explicit cursor attributes. The only scalar implicit cursor attribute of interest is
Sql%RowCount. Always observe this in the PL/SQL statement that immediately
follows the statement that executes the SQL statement of interest using an
implicit cursor. The same rationale holds for the Sql%Bulk_RowCount collection.
Sql%Bulk_Exceptions must be used only in the exception handler for the
Bulk_Errors exception; place this in a block statement that has the forall statement
as the only statement in its executable section.

Summary

We now have the firm foundation of carefully defined terms of art with which to
answer the questions that were listed at the start of this section.

• In answer to “Question 0: In what domains of discourse is the term cursor used, and does
it mean the same thing in each domain?”, the term is used in two distinct domains:
the overt (PL/SQL’s syntax and semantics) and the covert (PL/SQL’s runt-
time implementation). In a bigger picture, the term is also used in discussing

61. The fact that Error_Number is a positive number confuses some users. It’s best seen as a bug
that will never be fixed because of the number of extant programs that would be broken by
such a behavior change.

The only explicit cursor attribute you 
need to use is Cur%IsOpen.
The only implicit cursor attributes 
you need are Sql%RowCount, 
Sql%Bulk_RowCount, and 
Sql%Bulk_Exceptions.
Doing SQL from PL/SQL: Best and Worst Practices page 27

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
the syntax and semantics of other environments that support the processing of
SQL statement — but these are of no interest in this paper62.

• In answer to “Question 1: Who manages the cursor (opening it, parsing the
SQL statement, and so on through to closing it) — the programmer or the
PL/SQL system?”, there is a set of cursor-less PL/SQL constructs where the
PL/SQL system determines how to manage the session cursor that supports the
SQL statement without any language constructs that command how to do this.
In such cases, the session cursor is called an implicit cursor. (The junior
programmer who writes code in conformance with an application architecture
that someone else has invented, might survive for years without even hearing
the word cursor.) In the other cases (and in embedded SQL and
native dynamic SQL, these are always for select statements) the programmer
uses one of two explicit language constructs to determine the management of
the session cursor. The constructs are the explicit cursor and the cursor variable. Of
course, with the the DBMS_Sql API, the programmer micromanages the session
cursor by using subprograms that map more-or-less one-to-one to the cursor
management primitives exposed by the OCI.

• In answer to “Question 2: Does the cursor have a programmer-defined identifier, and if it
has, how can this be used?”, the cursor-less PL/SQL constructs tautologically do
not allow programmer-defined identifiers but for an explicit cursor, a
cursor variable, and a DBMS_Sql numeric cursor, the programmer invents an
identifier. The identifier for an explicit cursor is like the identifier for a
subprogram: it cannot be used in assignments (which implies that it can’t be
used as a subprogram’s formal parameter). In contrast, the identifiers for a
cursor variable and for a DBMS_Sql numeric cursor can be used in assignments and
as formal parameters for subprograms.

• In answer to “Question 3: Is the cursor opened using embedded SQL,
native dynamic SQL, or the DBMS_Sql API?”, an implicit cursor is managed in
response to certain kinds of embedded SQL and native dynamic SQL
statements but never as a consequence of using the DBMS_Sql API. An
explicit cursor is associated only with an embedded SQL select statement. A
cursor variable may be opened for either an embedded SQL select statement or a
native dynamic SQL select statement. A DBMS_Sql numeric cursor can, of course,
be used for any kind of SQL statement.

Finally in this section, notice that cursor63 by itself is not a useful term of art; on
the contrary, without qualification, it has no meaning — unless, that is, the
immediately surrounding sentences use the proper term of art so that the

62. The SQL*Plus scripting language supports the command VARIABLE Cur REFCURSOR to allow
:Cur to be written as a placeholder for a cursor variable in SQL statement command.

63. The reason for choosing the word cursor is obvious: it runs along a result set and holds the
current position. At the time the term came into use (recall that, at this paper’s date,
Oracle Corporation is celebrating 30 years of history) visual display units (the green-screen
representation of a 80-characters wide scrollable teletype roll) needed a similar notion for the
current character position and adopted the same term cursor. The term belongs to the
discussion of the processing a select statement — but it has been extended to denote, with more
or less precision, any structure that is involved in the processing of any kind of SQL statement.
Doing SQL from PL/SQL: Best and Worst Practices page 28

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
unqualified cursor is a useful elision to avoid indigestible prose. This leads to the
following best practice principle:

Principle_10
When discussing a PL/SQL program, and this includes discussing it with
oneself, commenting it, and writing its external documentation, aim to avoid
the unqualified use of “cursor”. Rather, use the appropriate term of art: session
cursor, implicit cursor, explicit cursor, cursor variable, or DBMS_Sql numeric cursor. The
discipline will improve the quality of your thought and will probably, therefore,
improve the quality of your programs.

Learn the terms of art: session 

cursor, implicit cursor, 
explicit cursor, cursor variable, and 
DBMS_Sql numeric cursor. Use them  
carefully and don’t abbreviate them.
Doing SQL from PL/SQL: Best and Worst Practices page 29

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
APPROACHES FOR SELECT STATEMENTS

This section capitalizes unashamedly on the assumption that the reader has
general familiarity with the subject matter and treats the optimal approaches in
detail, even if the notions are sometimes regarded (wrongly, as will be seen) as
difficult; it touches only in passing on non-optimal approaches which, for
historical reasons, are regarded as easier.

Selecting many rows — unbounded result set

One common use for database PL/SQL programs is in the batch preparation of
reports where each row (and its associated details) of a very large table needs to
be processed. In such scenarios, each row can be processed in isolation.

All PL/SQL application developers who program using Oracle Database come,
sooner or later, to understand that SQL and PL/SQL are executed by different
virtual machines. This means that when a PL/SQL subprogram executes a
SQL statement there is at least one, and possibly many, so-called context
switches from the PL/SQL virtual machine, to the SQL virtual machine, and
back to the PL/SQL virtual machine. The context switch is accompanied by a
representation change for data because PL/SQL uses a format that is optimized
for in-memory use and SQL uses a format that is optimized for on-disk use. The
context switch inevitably incurs a cost; performance, therefore, can be improved
by minimizing the number of context switches that occur during the execution
of a SQL statement64.

Oracle8i Database (by now, ancient history65) introduced the PL/SQL
constructs for bulk SQL — so the constructs are now supported in every
supported version of Oracle Database. For a select statement, these allow many,
and in the limit all, result rows to be fetched with a single context switch. There
is no reason, in code intended for production use, to prefer PL/SQL’s non-bulk
constructs when executing a select statement that returns many rows66.

64. The context switch discussion might seem uncomfortable; but it is worth remembering that
any alternative suffers much worse from the same effect. Consider how a client-side program,
written for example in C or Java, executes SQL. There is here, too, necessarily a context switch.
But it is more dramatic: the round-trip, which for the PL/SQL-to-SQL context switch takes
place within the address space of a single executable program, here takes place between distinct
programs running on different machines and is mediated by yet other programs that
implement the network communication; and the data representation is sometimes transformed
twice (between the client program’s representation and the on-wire representation, and
between the on-wire and SQL’s on-disk representation).

65. The PL/SQL User’s Guide and Reference, Release 8.1.6 is still available online from the
Oracle Technology Network website. Its publication date is 1999.

66. Everyone who is fluent in PL/SQL uses it frequently for generating disposable ad hoc reports.
In such write-once, use-a-few-times cases, the implicit cursor for loop shown in Code_2 is a fair
approach because it takes slightly less effort to program than the bulk approach shown in
Code_29.
Doing SQL from PL/SQL: Best and Worst Practices page 30

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
Programming the fetch loop

Of course, the target into which many rows are to be fetched must be a
collection. The most natural way to model this is to use a collection of records
whose fields correspond to the select list items. Code_29 shows an example.

Notice that, when the requirements document informs the programmer that the
result set from the query used to open the cursor Cur can be arbitrarily big, the
programmer cannot safely fetch all the results in a single context switch. Rather,
they must be fetched in batches whose maximum size can be safely set at
compile time — and the use of the limit clause requests this.

Some programmers don’t immediately understand how to specify the exit
criterion and are tempted to test Cur%NotFound. This is inappropriate because, to
their surprise, it first becomes false when the fetch statement still does get rows, but
when the number of fetched rows is less than the batchsize. The size of the last,
and partial, batch is very likely to be nonzero. Therefore, exiting when
Cur%NotFound is false will, in general, silently cause buggy behavior67. The
appropriate quantity to test is, therefore, the number of rows fetched this time:
Results.Count(). While it is self-evidently correct to place
exit when Results.Count() < 1; immediately after the fetch statement, this will, in
general, mean that one more fetch is attempted than is strictly needed. Code_29
shows a correct approach that avoids that tiny cost. It does, of course, carry the
burden of ensuring correct behavior when the total number of rows happens to
be an integral multiple of the batchsize. Usually, though, the results processing is
driven by a 1..Results.Count() loop, and then the correctness comes for free.

The conclusion is that explicit cursor attributes are not useful in the implementation
of the batched bulk fetch.

A reasonable value for Batchsize is a couple of hundred, or several hundred68.
There is no reason to change this at run time, and so Batchsize is best declared as

67. Cur%RowCount is no help either; it is incremented with each successive fetch statement and
eventually is left equal to the total number of rows fetched over all batches. 

68. Experiments show that when the batchsize is just a few (say 3, or 5) then a small increase makes
a very big reduction in the time needed to process all the results; but that when it is a few
hundred, then diminishing returns are observed for further increases — even when the
increase is from a few hundred to a few thousand. You might want to experiment with this
yourself.

-- Code_29 Many_Row_Select.sql
-- Cur is already open here.
-- The fetch syntax is the same for
-- an explicit cursor and a cursor variable.
loop
  fetch Cur bulk collect into Results limit Batchsize;
  -- The for loop doesn't run when Results.Count() = 0
  for j in 1..Results.Count() loop
    Process_One_Record(Results(j));
  end loop;
  exit when Results.Count() < Batchsize;
end loop;
close Cur;
Doing SQL from PL/SQL: Best and Worst Practices page 31

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
a constant; correspondingly, the collection is best declared as a varray with a
maximum size equal to Batchsize. Code_30 shows the declaration69.

Opening the cursor

It is significant that there is no syntax to express the batched bulk fetch in a cursor-
less PL/SQL construct; the approach requires the use of an identified cursor.
Code_31 shows the three ways to establish the identified cursor Cur so that Code_29
is viable.

When the CC Flag Approach is 1, then Cur is established as an explicit cursor; when
Approach is 2, then it is established as a cursor variable and is opened using
embedded SQL; and when Approach is 3, then it is established as a cursor variable
and is opened using native dynamic SQL.

However, as the comment in Code_29 points out, the fetching code is identical
for these two kinds of cursor. This, of course, prompts the question “When is a
explicit cursor preferred, and when is a cursor variable preferred?” Recall that when
the use case requires dynamic SQL, then only a cursor variable can be used. So the
question is relevant only when the requirements can be met with
embedded SQL. This is the simple answer: use an explicit cursor in this case

69. Through Oracle Database 11g, PL/SQL has no convenient way to avoid the textual repetition
of the magic number 1000 in Code_30. (While a conditional compilation inquiry directive, for
example $$Batch_Size, could be used, this technique would bring the bigger disadvantage of
breaking the encapsulation that the PL/SQL unit that contains Code_30 seeks to provide.)

-- Code_30 Many_Row_Select.sql
Batchsize constant pls_integer := 1000;

type Result_t is record(PK t.PK%type, v1 t.v1%type);
type Results_t is varray(1000) of Result_t;
Results Results_t;

-- Code_31 Entire_Bulk_Fetch.sql
  ...
  $if $$Approach = 1 $then
    cursor Cur is
      select    a.PK, a.v1
      from      t a
      where     a.PK > b.Some_Value
      order by  a.PK;
  $elsif $$Approach = 2 or $$Approach = 3 $then
    Cur Sys_Refcursor;
    $if $$Approach = 3 $then
      Stmt constant varchar2(200) := '
        select    a.PK, a.v1
        from      t a
        where     a.PK > :b1
        order by  a.PK';
    $end
  $end
begin
  $if $$Approach = 1 $then
    open Cur;
  $elsif $$Approach = 2 $then
    open Cur for
      select    a.PK, a.v1
      from      t a
      where     a.PK > b.Some_Value
      order by  a.PK;
  $elsif $$Approach = 3 $then
    open Cur for Stmt using Some_Value;
  $end
  ...
Doing SQL from PL/SQL: Best and Worst Practices page 32

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
because the goal of declaring it and associating it with the intended
select statement is achieved with more compact code.

However, there are other considerations; but these are best discussed in the
context of concrete use cases. This is deferred to “Approaches for producer/consumer
modularization” on page 41.

The discussion in this section is summarized in this best practice principle:

Principle_11
When many rows are to be selected, and the result set may be arbitrarily big,
process them in batches by using fetch... bulk collect into with the limit clause
inside an infinite loop. Use a constant as the value for the limit clause to define the
batchsize; 1000 is a reasonable value. Fetch into a varray declared with the same
size. Don’t test the %NotFound cursor attribute to terminate the loop. Instead,
use exit when Results.Count() < Batchsize; as the last statement in the loop; ensure
correct processing in the edge case that the last fetch gets exactly zero rows.
When embedded SQL is sufficient, use an explicit cursor. When you need
native dynamic SQL, use a cursor variable.

Selecting many rows — bounded result set

Another common use for database PL/SQL programs to is fetch a master row
and all its associated detail rows. The canonical masters example is the Orders
table; and the canonical details example is the Order_Line_Items table. In the case
that these tables support the back-end of an internet shopping site, it is safe to
assert a maximum number of line items, say one thousand, that an order may
have and to implement a business rule to ensure that this is not exceeded70.
Should the batched bulk fetch approach be used with the recommended batchsize,
then there would never be more than one batch to fetch. Therefore, that
approach is unnecessary and, instead, the simpler entire bulk fetch can be used.

Code_32 shows an example using embedded SQL71.

70. It is very unlikely indeed that someone ordering books or DVDs on line would mange to fill
his shopping cart with 1,000 items. And, should that happen, it is even less likely that a polite
message saying “The shopping cart can’t hold more than 1,000 items. Please check out and
then start to fill another cart. You will receive a 10% discount on items in the next cart if you
order them today.” would result in much customer dissatisfaction or loss of business.

71. No attempt is made in this paper to invent realistic examples. We assume that the reader has
enough experience not to need this. Our focus is the various techniques for doing SQL from
PL/SQL — and we claim that neutral examples are more helpful than ones that clutter the
discussion with extraneous detail.

When you don’t know how many rows 
your query might get, use 
fetch... bulk collect into with the 
limit clause inside an infinite loop.

-- Code_32 Many_Row_Select.sql
declare
  Target_Varray_Too_Small exception;
  pragma Exception_Init(Target_Varray_Too_Small, -22165);
begin
  select             a.PK, a.v1
  bulk collect into  x.Results
  from               t a
  where              a.PK > x.Some_Value
  order by           a.PK;
exception when Target_Varray_Too_Small then
  Raise_Application_Error(-20000,
    'Fatal: Business Rule 12345 violated.');
end;
Doing SQL from PL/SQL: Best and Worst Practices page 33

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
The ORA-22165 error occurs when you attempt to access an element in a varray
using an index that is not in the range 1..<varray size>. It is useful, as a proactive
bug diagnosis technique, to write the entire bulk fetch statement in a tightly
surrounding block statement that provides a handler for this error.

Code_33 shows an example using native dynamic SQL.

Notice that each example uses a cursor-less PL/SQL construct. Just for the sake
of comparison, Code_34 shows the entire bulk fetch flavor that uses an
identified cursor, Cur.

The same code as is shown in Code_31 is used to establish Cur.

The total code volume required for the Code_34 approach is noticeably greater
than Code_32 or Code_33, to which these versions are functionally equivalent.
The theoretical difference is that the use of an identified cursor allows the code that
defines the select statement and the code that fetches from it to be split between
different modules. However, this paper claims, in “Approaches for producer/consumer
modularization” on page 41, that such a modularization scheme is, in general,
inappropriate.

Readers whose religion bans hard coded limits that, when exceeded cause fatal
errors, must simply always use batched bulk fetch72. However, they should not
forget the case that the select statement is designed, as Code_35 shows, specifically

72. Enhancement request 6616605 asks for a new PL/SQL compiler warning when entire bulk fetch
(in any of its three flavors, select... bulk collect into, execute immediate... bulk collect into, or
fetch... bulk collect into) is used.

-- Code_33 Many_Row_Select.sql
declare
  Stmt constant varchar2(200) := '
    select    a.PK, a.v1
    from      t a
    where     a.PK > :b1
    order by  a.PK';
  Target_Varray_Too_Small ...
begin
  execute immediate Stmt
    bulk collect into Results
    using Some_Value;
exception when Target_Varray_Too_Small then
  Raise_Application_Error(-20000,
    'Fatal: Business Rule 12345 violated.');
end;

-- Code_34 Entire_Bulk_Fetch.sql
-- Cur is already open here.
-- The fetch syntax is the same for
-- an explicit cursor and a cursor variable.
fetch Cur bulk collect into Results;
close Cur;
Doing SQL from PL/SQL: Best and Worst Practices page 34

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
to get the Nth slice of an unbounded result set. Here, at least, there is no doubt
that entire bulk fetch can be used safely.

We shall return to a discussion of the slicing of an unbounded result set in
“Approaches for producer/consumer modularization” on page 41.

The discussion in this section is summarized in this best practice principle:

Principle_12
When many rows are to be selected, and the result set can be safely assumed to
be of manageable maximum size, fetch all the rows in a single step. Use the
cursor-less PL/SQL constructs select... bulk collect into when embedded SQL is
possible, and execute immediate... bulk collect into when dynamic SQL is needed.
Fetch into a varray declared with the maximum size that you are prepared to
handle. Implement an exception handler for ORA-22165 to help bug
diagnosis.

Selecting many rows — select list or binding requirement
not known until run-time

It is common, when implementing information systems that support job
functions within organizations, to represent the main information entity as a
single database table with many columns. (Of course, there may also be various
detail tables.) An obvious example is a personnel system that records, for each
employee, the kinds of facts that the famous HR.Employees does. A common
requirement for such systems is to support an end-user query interface where a
match condition can be entered for any entity-attribute (which maps to a column
in the table), and where conditions can be left blank if they are not interesting.
Oracle Corporation has such an internal system and the query screen for this
functionality has about a dozen such fields. Because each of the attributes is a
text value (like last name, first name, job title, and so on) the conditions never
need to involve tests like “greater than” or “between” — but other similar
systems might have numeric attributes like salary where such tests were useful.
Even with the luxury that each test corresponds to a like predicate in the ultimate
select statement’s where clause, the number of distinct where clauses that the query
screen might require is very much too big73 to support each one with a
SQL statement whose text is fixed, and therefore whose binding requirement is
known, at compile- time.

73. For N columns, the number of distinct where clauses is equal to the sum of the number of ways
to choose 1 from N, to choose 2 from N, and so on, up to the number of ways to choose
(N-1) from N and N from N. This is 2N-1. For 12 columns, this is 4095.

-- Code_35 Rownum_Slice.sql
-- Set the lower and upper bound of the slice.
lb := Slice_Size*(Slice_No - 1) + 1;
ub := lb + Slice_Size - 1;

with Unbounded as (
  select    a.PK, a.v1, Rownum r
  from      t a
  order by  a.PK
  )
select             Unbounded.PK, Unbounded.v1
bulk collect into  b.Results
from               Unbounded
where              Unbounded.r between b.lb and b.ub;

When you do know how the maximum 
number of rows your query might get, 
use select... bulk collect into or 
execute immediate... bulk collect into 
to fetch all the rows in a single step.
Doing SQL from PL/SQL: Best and Worst Practices page 35

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
There is a large class of applications where, while the query screen does require
flexibility for choosing the criteria of interest, the display of the results is fixed by
the functional specification. For the implementation, this means that the select list
is known at compile time. For such use cases, while the DBMS_Sql API is
needed to support the binding, native dynamic SQL can be used to get the
results. (This is simpler to program and runs faster.) Code_36 shows the
approach74.

The critical feature of the use of the DBMS_Sql API for this use case is that it
allows facts that are first known at run time to determine the control flow and
the actual arguments for the invocation of Bind_Variable(). Such a scheme is
impossible with native dynamic SQL because the using clause (in either the
execute immediate... into statement or the open Cur for statement, when Cur is a
cursor variable) is frozen at compile time75.

Notice the use of the batched bulk fetch. The use case tends to indicate that the
result set will be unbounded.

The logic for building the SQL statement will be application specific. The
general plan is to test each in formal parameter that represents a user-entered
criterion. When it is not null, then text is appended to the SQL statement to
express the condition it denotes. The unit of appended text has the form

74. The approach depends on using the DBMS_Sql.To_Refcursor() function. This is new in
Oracle Database 11g. This could be useful also when the overall system architecture prefers
that the fetching is implemented in the database client even when knowledge of, and security
surrounding, the SQL statement are hidden in the database. That, of course, requires that the
database PL/SQL subprogram that the client calls has a return datatype based on ref cursor.
This is possible, now, even when the binding requires the DBMS_Sql API. However, we argue
in “Approaches for producer/consumer modularization” on page 41 that other approaches are usually
better.

-- Code_36 Many_Row_Select.sql
DBMS_Sql_Cur := DBMS_Sql.Open_Cursor(Security_Level=>2);

-- Build the select statement
...
DBMS_Sql.Parse(DBMS_Sql_Cur, Stmt, DBMS_Sql.Native);

-- More eleborate logic is needed when the values to be bound
-- are not all the same datatype.
for j in 1..No_Of_Placeholders loop
  DBMS_Sql.Bind_Variable(
    DBMS_Sql_Cur, ':b'||To_Char(j), Bind_Values(j));
end loop;
Dummy := DBMS_Sql.Execute(DBMS_Sql_Cur);

declare
  Cur_Var Sys_Refcursor :=
    DBMS_Sql.To_Refcursor(DBMS_Sql_Cur);
begin
  loop
    fetch Cur_Var bulk collect into Results limit Batchsize;
    for j in 1..Results.Count() loop
      Process_One_Record(Results(j));
    end loop;
    exit when Results.Count() < Batchsize;
  end loop;
  close Cur_Var;
end;
Doing SQL from PL/SQL: Best and Worst Practices page 36

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
and cn = :bm where cn is the denoted column and m is a runner that denotes the
ordinal value of the current condition. Code_37 Sketches the approach.

It is good practice, as has been explained, to represent the starting string for the
SQL statement with a constant76. The real logic would need to be more
complicated if the SQL statement should use = when a bare criterion is entered
and should use like when it contains wildcard characters (% and _). And it would
be yet more complicated if the columns of interest had a mixture of datatypes
like varchar2, number, and date. and if the user could specify inequality operators
(say, by choosing from a pop-up list).

Sometimes, and usually in connection with information systems that support job
functions within organizations, the requirements specification states that the user
must be able to configure which attributes are included in the report. For the
implementation, this means, of course, that the select list is not known at compile

75. We have seen cases where customers have attempted to overcome the fact that the using clause
is frozen at compile time by programatically generating and executing an anonymous
PL/SQL block that, in turn, uses native dynamic SQL. They usually feel so pleased with their
solution — that they have overcome a supposed limitation by building the using clause
programatically — that they fail to see that the ingenuity of the approach disguises its
shortcomings. The approach requires that the values which would be dynamically bound with
DBMS_Sql.Bind_Variable() be, instead, encoded as literals in the text of the anonymous
PL/SQL block. (To avoid that, you would need to execute the anonymous PL/SQL block using
the DBMS_Sql API, which would subvert the point of the device.) This, in turn, means that
each generated anonymous PL/SQL block will differ textually from the previous one; the
consequence, of course, is a hard parse for each execution.

We have even seen this approach proposed as a best practice. Be warned: it is a classic example
of a worst practice!

76. A popular device is to append where 1=1 to the constant text before starting the loop so that the
concatenation logic can be more straightforward.

-- Code_37 Build_Where_Clause.sql
for j in 1..User_Criteria.Count() loop
  if User_Criteria(j) is not null then
    No_Of_Placeholders := No_Of_Placeholders + 1;
    Stmt := Stmt||' and '||
      Column_Names(j)||' = :b'||To_Char(No_Of_Placeholders);
    Bind_Values(No_Of_Placeholders) := User_Criteria(j);
  end if;
end loop;
Doing SQL from PL/SQL: Best and Worst Practices page 37

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
time and so the the DBMS_Sql API must be used, too, used to get the results.
Code_38 sketches the approach.

We limit the ambition level of Code_38 to just a sketch because a complete
solution is voluminous. The fact that the select list items are in general of different
datatypes requires a very elaborate approach if targets of corresponding
datatypes are to be used. However, when the ultimate aim of the processing is to
prepare a human-readable report, the approach can be greatly simplified by
converting each select list item into a varchar2, ideally using appropriate To_Char()
function invocations in the select list. Now an index by pls_integer table whose
element datatype is the supplied DBMS_Sql.Varchar2_Table collection can be
used as the fetch target. This means that, once No_Of_Select_List_Items is known
(as a result of building the select list), then Define_Array() and Column_Value() can
be invoked in loops that apply the same operation to each select list item. Of
course, the comment “Process the results” implies tortuous programming; but
the logic is quite ordinary, and no longer has anything to do with the SQL
processing.

Notice that, here, the use of the DBMS_Sql API allows facts that are first known
at run time to determine the control flow and the actual arguments for the
invocation of Define_Array() and Column_Value(). Such a scheme is impossible
with native dynamic SQL because the into clause (in either the
execute immediate... into statement or the fetch... bulk collect into statement) is frozen
at compile time.

It is conceivable, though unlikely, that the requirements specified for an
application lead to an implementation design where the binding requirements are

-- Code_38 Many_Row_Select.sql
declare
  ...
  type Results_t is table of DBMS_Sql.Varchar2_Table
    index by pls_integer;
  Results Results_t;
begin
  -- Open the DBMS_Sql_Cur,
  -- build and parse the select statement,
  -- bind to the placeholders, and execute as in Code_36.
  -- This will set No_Of_Select_List_Items.
  ...
  loop
    -- Tell it to fill the target arrays
    -- from element #1 each time.
    for j in 1..No_Of_Select_List_Items loop
      DBMS_Sql.Define_Array(
        DBMS_Sql_Cur, j, Results(j), Batchsize, 1);
    end loop;

    Dummy := DBMS_Sql.Fetch_Rows(DBMS_Sql_Cur);

    for j in 1..No_Of_Select_List_Items loop
      -- Have to delete explicitly. NDS does it for you.
      Results(j).Delete();
      DBMS_Sql.Column_Value(DBMS_Sql_Cur, j, Results(j));
    end loop;

    for j in 1..Results(1).Count() loop
      -- Process the results.
      ...
    end loop;

    exit when Results(1).Count() < Batchsize;
  end loop;
  DBMS_Sql.Close_Cursor(DBMS_Sql_Cur);
end;
Doing SQL from PL/SQL: Best and Worst Practices page 38

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
known at compile time but the composition of the select list is not known until
run time. This allows native dynamic SQL to be used to open a cursor variable and
the DBMS_Sql API to be used only where it is needed — to handle the fetching
of the results. For completeness, Code_39 shows this approach.

Notice that if the user-interface is required to allow specifying the criteria by
which to order the results, this adds no further complexity because this has no
effect on the implementation of the binding (the order by clause will not use
placeholders) or of the fetching.

The discussion in this section is summarized in this best practice principle:

Principle_13
Avoid temptation to compose the where clause using literals — and especially
to concatenate a where clause which has been explicitly typed by the user. The
performance is likely to be noticeably worse than an approach that binds to
placeholders; and, with a directly typed where clause, it isn’t feasible to use
Sys.DBMS_Assert.Enquote_Literal() to inoculate against SQL injection. When
the binding requirement is not known until run time, use the DBMS_Sql API
to parse, bind, and execute the SQL statement. If the select list is known at
compile time, use To_Refcursor() to transform the DBMS_Sql numeric cursor to a
cursor variable and then use batched bulk fetch. If the select list is not known until
run time, use the DBMS_Sql API to fetch the results too. In the unlikely case
that the binding requirement is known at compile time but the select list is not
known until run time, use native dynamic SQL to open a cursor variable and
then use To_Cursor_Number() to transform the cursor variable to a
DBMS_Sql numeric cursor. Then use the DBMS_Sql API to fetch the results.

Selecting a single row

The obvious example of this use case is getting a row that is identified by its
primary key. However, it is perhaps less common than might at first be imagined:
if the row comes from a master table it is very likely that its associated details will
be required at the same time; and if the row comes from a detail table, it is very
likely that all rows for a particular master will be required at the same time.
Nevertheless, there are some use cases where just a single row is required.

-- Code_39 Many_Row_Select.sql
open Cur_Var for Stmt using Some_Value;
DBMS_Sql_Cur := DBMS_Sql.To_Cursor_Number(Cur_Var);

-- The fetch loop is identical to that shown in Code_38.
loop
  for ... loop
    DBMS_Sql.Define_Array(..., Results(j), ...);
  end loop;

  Dummy := DBMS_Sql.Fetch_Rows(DBMS_Sql_Cur);

  for ... loop
    ...
    DBMS_Sql.Column_Value(..., Results(j));
  end loop;

  for j in 1..Results(1).Count() loop
    -- Process the results.
    ...
  end loop;

  exit when Results(1).Count() < Batchsize;
end loop;

Use the the DBMS_Sql API when you 
don’t know the binding requirement 
of what the select list is until run time. 
If you do, at least, know the select list, 
use To_Refcursor() and then 
batched bulk fetch.
Doing SQL from PL/SQL: Best and Worst Practices page 39

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
Code_40 shows an example using embedded SQL.

Code_41 shows an example using native dynamic SQL.

Notice the symmetry between Code_40 and Code_32 and between Code_41 and
Code_33; each example uses a cursor-less PL/SQL construct. And, as with
Code_34 and again just for the sake of comparison, Code_42 shows the
entire bulk fetch flavor that uses an identified cursor, Cur.

Code_43 shows the three ways to establish the identified cursor Cur so that Code_42
is viable. It is very similar to that shown in Code_31 for the multirow case.

As with the multirow case, the total code volume required for the Code_42
approach is noticeably greater than Code_40 or Code_41, to which these versions
are functionally equivalent. The corresponding arguments apply77.

Notice that the very nature of a scenario where the binding requirement is not
known until run time determines that the query is likely to return more than one
row. So the DBMS_Sql API is never appropriate for the case where the

-- Code_40 Single_Row_Select.sql
select    a.PK, a.v1
into      b.The_Result
from      t a
where     a.PK = Some_Value;

-- Code_41 Single_Row_Select.sql
declare
  Stmt constant varchar2(200) := '
    select    a.PK, a.v1
    from      t a
    where     a.PK = :b1';
begin
  execute immediate Stmt
    into The_Result
    using Some_Value;

-- Code_42 Single_Row_Select.sql
-- Cur is already open here.
-- The fetch syntax is the same for
-- an explicit cursor and a cursor variable.
fetch Cur into The_Result;
close Cur;

-- Code_43 Single_Row_Select.sql
  $if $$Approach = 1 $then
    cursor Cur is
      select    a.PK, a.v1
      from      t a
      where     a.PK = b.Some_Value;
  $elsif $$Approach = 2 or $$Approach = 3 $then
    Cur Sys_Refcursor;
    $if $$Approach = 3 $then
      Stmt constant varchar2(200) := '
        select    a.PK, a.v1
        from      t a
        where     a.PK = :b1';
    $end
  $end
begin
  $if $$Approach = 1 $then
    open Cur;
  $elsif $$Approach = 2 $then
    open Cur for
      select    a.PK, a.v1
      from      t a
      where     a.PK = b.Some_Value;
  $elsif $$Approach = 3 $then
    open Cur for Stmt using Some_Value;
  $end
Doing SQL from PL/SQL: Best and Worst Practices page 40

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
No_Data_Found exception is regrettable and the Too_Many_Rows exception is
unexpected. The case where exactly one row is expected but the select list is not
known until run time seems so unlikely that, again, the DBMS_Sql API would
not be required.

The discussion in this section is summarized in this best practice principle:

Principle_14
When exactly one row is to be selected, fetch the row in a single step. Use the
cursor-less PL/SQL constructs select... into when embedded SQL is possible,
and execute immediate... into when dynamic SQL is needed. Take advantage of
the regrettable No_Data_Found exception and the unexpected Too_Many_Rows
exception.

Approaches for producer/consumer modularization

When designing the modularization of database PL/SQL programs, it is
common to choose to implement these two different kinds of processing in
different PL/SQL units:

• the execution of the SQL statements (for select, insert, update, delete, and merge,
lock table, commit or rollback)

• the processing of the data that is retrieved or used to make changes in tables.

When the discussion is limited to just the select operation (which is this major
section’s focus), then the producer/consumer metaphor applies nicely: ideally,
the producer is responsible for all the SQL and the consumer knows nothing of
it. We shall see, however, that such a clean distinction has too many practical
drawbacks (at least through Oracle Database 11g) to make it the recommended
approach when the consumer is outside of the database.

An obvious reason for at least some separation of duties is to enforce an access
control regime. Many business rules (for example, what kinds of data-dependent
changes are allowed, and how denormalizations are to be maintained) are most
safely and effectively implemented by limiting all access to table data to dedicated
data-access PL/SQL units. This is easily enforced by using definer’s rights
data-access PL/SQL units in the same schema as the tables and by implementing
the PL/SQL units that consume or prepare this data in other schemas. The
Execute privilege on the data-access PL/SQL units is granted to the other
schemas, but the Select, Insert, Update, and Delete privileges on the tables are not.
The same scheme is useful for access by clients of the database. This best
practice principle is self-evidently beneficial:

Principle_15
Create a dedicated schema, say Some_App_API, for an application to which
database clients will connect in order to access that application’s functionality.
Implement all the application’s database objects in schemas other than

77. Some users have a superstitious belief that fetch... into is to be preferred to select... into or
execute immediate... into for asserted reasons of performance and functionality. These reasons
don’t stand up to scrutiny: fetch... into performs worse than select... into and execute immediate... into;
and when the requirements are to get exactly one row using a unique key, the possibility of the
Too_Many_Rows exception is only helpful. Typically, the No_Data_Found exception, though
regrettable, is not unexpected; recovery is possible, and this should be programmed in a tightly
enclosing exception handler.

To get exactly one row,
use select... into or 
execute immediate... into.
Take advantage of No_Data_Found 
and Too_Many_Rows.

Expose your database application 
through a dedicated schema that has 
only private synonyms for the objects 
that define its API.
Doing SQL from PL/SQL: Best and Worst Practices page 41

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
Some_App_API, with closely guarded passwords, and limit the objects in
Some_App_API to just private synonyms. Create these synonyms for exactly
and only those of the application’s database objects that are intended to expose
its client API. Grant to Some_App_API only those privileges that are needed to
allow the intended access to these objects.

Many of Oracle Corporation’s major customers tighten the regime by adopting
this best practice principle:

Principle_16
Restrict the object types that Some_App_API’s private synonyms exposes to
just PL/SQL units. Hide all the tables in other schemas, and do not grant any
privileges on these to Some_App_API78.

When the task is to retrieve table data, how should the producer/consumer API
be designed? For a within-database modularization scheme, there are three
possibilities:

• Expose the declaration of a parameterized explicit cursor in a package spec and
hide its definition in the body. Let the client manage opening, fetching from,
and closing the cursor.

• Expose the declaration of a parameterized function whose return datatype is
based on ref cursor in a package spec and hide its definition in the body. Let the
client manage fetching from and closing the cursor variable to which the
function’s return is assigned.

• Expose the declaration of a function whose return datatype is designed to
represent the data that is to be retrieved in a package spec and hide its
definition in the body. The return datatype is naturally implemented as a record
(when the parameterization always denotes a single row), or as a collection of
records or an XML document when the parameterization denotes many rows.

For defining the API that the database exposes to a consumer outside of the
database, the first approach is viable only when the client is implemented in
PL/SQL — in other words, when it is Oracle Forms. It also suffers from the fact
that it supports only those query requirements that can be satisfied using
embedded SQL. It turns out that there is no need to prefer it even when the
consumer is inside the database, and so we shall give it no more attention.

The second approach is always viable for defining the API that the database
exposes to a consumer outside of the database. All client environments that
support the processing of SQL statements in Oracle Database include APIs that
support the execution of an anonymous PL/SQL block and in particular, they allow
an appropriate client datastructure to be bound to a placeholder that, were it
written as a variable in the block, would be declared as a cursor variable. In spite of
the fact the this approach (because the client needs to know something of SQL

78. This is nothing other than a specialization, for Oracle Database, of a universal best practice
principle of software engineering: decompose your system into modules; expose each module’s
functionality, at a carefully designed level of abstraction, with a clean API; and hide the
module’s implementation behind that API. In Oracle Database, PL/SQL subprograms
provide the means to define an API; and tables and the SQL statements that manipulate their
contents are clearly part of a module’s implementation, and should be hidden from clients to
the database.

Expose your database application 
through a PL/SQL API. Hide all the 
tables in schemas that the client to 
the database cannot reach.
Doing SQL from PL/SQL: Best and Worst Practices page 42

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
mechanics79 in order to implement the fetching from the ref cursor) arguably
breaks the theoretically ideal modularization concept, many customers prefer it
and use it successfully in mission-critical production code. They find the
theoretical ideal (which needs uses collections of ADTs) too cumbersome80.

The third approach needs some modification to make it generally viable for
defining the API that the database exposes to the client. Unfortunately, not all of
these APIs support the binding of an appropriate client datastructure to a
placeholder that plays the role of the actual argument in the invocation of a
subprogram where the corresponding formal parameter is a record or collection
of records. However, they all support binding when the target formal parameter is
an ADT81 or collection of ADTs. “Appendix C: alternative approaches to populating a
collection of records with the result of a select statement” on page 71 shows a few
constructs for this purpose. Notice that the choice of an XML document as the
return datatype is particularly interesting when the client’s purpose is to prepare a
human-readable report.

The third is the theoretically cleanest API design. The producer encapsulates
everything to do with the retrieval of the data and the consumer sees only the
data itself in a suitably specified representation.

It is interesting to review, in the context of this third approach, how to fetch an
unbounded result set first in the context of a stateful relationship between
consumer and producer and then in the case that the relationship is stateless82.

Stateful producer/consumer relationship

In the stateful case, where for example, the consumer and producer are
implemented as PL/SQL subprograms in packages in different schemas83, what
is the state, and who holds it? The state is, of course, the member of the result set
which is next to be fetched and it is held in the cursor variable84. However, through
Oracle Database 11g, a cursor variable may not be declared at global level in a
package spec or body85. The solution is that the producer must hand back a

79. In particular, the consumer needs to implement the equivalent of entire bulk fetch or
batched bulk fetch in its programming environment.

80. We will, nevertheless, explain how to implement this.

81. We use ADT in this paper as a convenient synonym for the result of create type... as object(...). It
is too confusing to refer to it as an object whose Object_Type is type and that is an object type rather
than a collection type!

82. Of course, the relationship is automatically stateful when the consumer is inside the database.
And it is often stateless when the consumer is outside the database.

83. These days, it is relatively uncommon to in a de novo project to build a user-facing application,
to choose an architecture where the user interface has a stateful connection to the database.
The norm, almost without exception, is to implement the user interface in a stateless HTML
browser. One notable exception is an IDE for database development, for example
Oracle Corporation’s Sql Developer.

84. Here we appreciate the metaphorical meaning of the term cursor.

85. There is no fundamental reason for this restriction. Enhancement request 6619359 asks to lift
it.
Doing SQL from PL/SQL: Best and Worst Practices page 43

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
handle to the state so that the consumer can hang onto it until all batches have
been processed86. Code_44 shows the spec of the Producer package.

And Code_45 shows its body.

Code_46 shows the Consumer procedure.

If you can be certain that there will never be a requirement to use
native dynamic SQL, then you could instead use an explicit cursor declared at top

86. This is a very common paradigm. It is used by, for example, DBMS_Sql and by Utl_File.

-- Code_44 RC_Producer_Consumer.sql
package Producer is
  type Result_t is record(PK t.PK%type, v1 t.v1%type);
  type Results_t is table of Result_t index by pls_integer;
  function The_Results(
    Some_Value in t.PK%type,
    Cur_Var in out Sys_Refcursor)
    return Results_t;
end Producer;

-- Code_45 RC_Producer_Consumer.sql
package body Producer is
  function The_Results(
    Some_Value in t.PK%type,
    Cur_Var in out Sys_Refcursor)
    return Results_t
  is
    Stmt constant varchar2(200) := '
      select    a.PK, a.v1
      from      t a
      where     a.PK > :b1
      order by  a.PK';
    Batchsize constant pls_integer := 1000;
    Results Results_t;
  begin
    if Cur_Var is null then
      open Cur_Var for Stmt using Some_Value;
    end if;

    fetch Cur_Var bulk collect into Results limit Batchsize;

    if Results.Count() < Batchsize then
      close Cur_Var;
      Cur_Var := null;
    end if;

    return Results;

  exception when others then
    if Cur_Var%IsOpen then
      close Cur_Var;
    end if;
    raise;
  end The_Results;
end Producer;

-- Code_46 RC_Producer_Consumer.sql
procedure Consumer is
  Some_Value constant t.PK%type := 0;
  Cur_Var Sys_Refcursor := null;
  Results Producer.Results_t;
begin
  loop
    Results := Producer.The_Results(Some_Value, Cur_Var);
    for j in 1..Results.Count() loop
      ...
    end loop;
    exit when Cur_Var is null;
  end loop;
end Consumer;
Doing SQL from PL/SQL: Best and Worst Practices page 44

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
level in the package body87. This would simplify the design because the
consumer would not need to “hold on” to the ref cursor between calls to the
producer. I chose to use a ref cursor because the approach works both for
embedded SQL and for native dynamic SQL. Of course, if the requirements
forced the use of the DBMS_Sql API, then the design of the producer might
need to be radically different. Here, the state is the number that was returned by
Open_Cursor() and this can easily be held in a variable declared at top level in the
body of the producer package. Apart from the fact that, again, the consumer
would not need to “hold on” to the ref cursor between calls, the consumer would
be agnostic about these difference in the implementation of the producer. A
defensive design might expose a ref cursor at the API for all three methods to
implement the producer and simply let it have no significance when the
implementation used an explicit cursor or the DBMS_Sql API88.

Stateless producer/consumer relationship

In Oracle Database applications that implement the user interface in a stateless
HTML browser, it is very common to show query results in batches with “next
page” and “previous page” buttons or with buttons that allow an immediate
jump to the Nth page. The architecture implies that each page view request is
satisfied by a call from the midleware to the database. This database call is
serviced by a different session than serviced the call for the previous page
view89. This means, then, that the query that gets the required page must simply
be parameterized to do just that. Unlike in the stateful regime, it can’t carry on
from where it had got to last time. Code_35 shows how such a query is written. It
is a perfect match for the entire bulk fetch approach.

The discussion in this section is summarized in this best practice principle:

Principle_17
Define the producer/consumer API as a function whose return datatype
represents the data that is produced. Hide everything to do with the SQL
processing, including the fetching, in the producer module. When the query
parameterization specifies exactly one row, use a record or ADT with the same
shape as the select list. In this case, use one of the cursor-less
PL/SQL constructs select... into or execute immediate... into depending on the
requirement for dynamic SQL. When the query parameterization specifies
many rows, use a collection of records or a collection of ADTs. In this case, use
entire bulk fetch when this is certain to be safe; this allows the use of one of the
cursor-less PL/SQL constructs select... bulk collect into or
execute immediate... bulk collect into. If entire bulk fetch is unsafe, use batched bulk fetch
when the producer/consumer relationship is stateful. This requires a
identified cursor. If embedded SQL if sufficient, then use an explicit cursor declare

87. Notice that none of the approaches shown in this paper have capitalized on the ability to
separate the declaration of an explicit cursor in the package specification from its definition in
the package body.

88. Recall, too, the existence from Oracle Database 11g, of the DBMS_Sql.To_Refcursor() function.
Provided that the composition of the select list is known at compile time, more straightforward
fetch code can be written using native dynamic SQL.

89. This paradigm deliberately relinquishes the classical preference to see read-consistent query
results.

Define the producer/consumer API as 
a function whose return datatype 
represents the desired data. Hide all 
the SQL processing in the producer 
module. That way, the consumer is 
immune to an implementation change 
that a requirements change might 
cause. Simply parameterize the 
producer function as you would 
parameterize the query.  This 
approach accommodates getting the 
rows in batches or getting all the 
rows in one call — where this might 
be a slice.
Doing SQL from PL/SQL: Best and Worst Practices page 45

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
at global level in the body of the producer package. This will hold state across
the calls from the consumer to get each batch. If dynamic SQL is needed, use a
cursor variable. Pass this back to the consumer with each batch of results so that
the consumer can hold on to it. When the producer/consumer relationship is
stateless, use result set slicing. Implement the delivery of each slice with
entire bulk fetch. If requirements dictate it, use the DBMS_Sql API and hide all
of the code that uses this in the producer module.

Oracle Database 11g brings the PL/SQL function result cache. Briefly, the
programmer uses the keyword result_cache (in the same syntax spot where authid is
used) to hint that, for every distinct combination of actual arguments with which
the function is invoked, the return value should be cached to save the cost of
recomputing it on a subsequent invocation with the same actual arguments. The
cache is accessible to all sessions. Significantly, the return datatype may be based
on a record or an ADT or a collection of one of these. This is the PL/SQL flavor
of memoization90, tailored for the case that the calculation of function’s return
value relies upon data retrieved from tables. The declarative relies_on clause lets
the programmer list the tables whose contents affect the function’s result. If
changes are committed to any of these tables, then the cached results for the
function are purged. When the producer function returns a single row or a small
number of rows, and when the table data on which the function relies changes
infrequently, performance can be significantly improved by marking the function
with result_cache. A very obvious application of this is the function that returns
the mapping between a surrogate primary key and the corresponding
human-readable unique key for populating a list of values user-interface control.

90. The technique is well known in software engineering. Wikipedia provides an account that starts
like this: In computing, memoization is an optimization technique used primarily to speed up computer
programs... coined by Donald Michie in 1968... A memoized function “remembers” the results corresponding
to some set of specific inputs. Subsequent calls with remembered inputs return the remembered result rather than
recalculating it...
Doing SQL from PL/SQL: Best and Worst Practices page 46

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
http://en.wikipedia.org/wiki/Memoization


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
APPROACHES FOR INSERT, UPDATE, DELETE, AND MERGE 
STATEMENTS

It is relatively common that user interaction requires a single row insert, update,
delete, or merge, so this use case is treated first. Unlike for select, these operations,
for the multirow case, need never be supported for an unbounded number of
rows. Because the data that represents the intended operation arises first in
PL/SQL datastructures, it can be batched appropriately for the bulk multirow
operation.

The code illustrations in this section use embedded SQL and, as we shall see, the
statements are always singleton cursor-less PL/SQL constructs; there is no
possibility to use an identified cursor and so the operations all use an implicit cursor.
This means that the transition, should the use case require it, to
native dynamic SQL is relatively mechanical. This is discussed briefly in “Using
native dynamic SQL for insert, update, delete, and merge” on page 57. We don’t discuss
the use of the DBMS_Sql API for these kinds of SQL statement; rather, we show
how this can be avoided in use cases where your first reaction might be to believe
that it is needed91. 

Single row operation

The challenge that the single row scenario presents, for insert and update, is to
handle that case that values are specified for only some of the columns.

Single row insert

Code_47 shows two possible cases for insert.

Consider the design and implementation of a procedure Insert_Row_Into_T() with
the declaration92 shown in Code_48.

The discussion in “Selecting many rows — select list or binding requirement not known
until run-time” on page 35 showed that, with about a dozen columns, each of
which may or not be mentioned in the SQL statement, there is a combinatorial
explosion: very many more than 1,000 distinct embedded SQL statements would

91. Anyone who has mastered the use of the DBMS_Sql API for select statements where the
binding requirement or the composition of the select list are unknown until run time will find
using it for insert, update, delete, or merge statements no harder.

92. You might wonder why every formal that corresponds to a column for which the value is
optional has a partner boolean to indicate if it was specified. Why not just test in the procedure
to see if the parameter was defaulted by testing if it is null? The answer is that, in general, it’s
possible that null might be the deliberately intended value.

-- Code_47 Insert_Single_Row.sql
insert into t(PK, n1) values (b.PK, b.n1);
...
insert into t(PK, v1) values (b.PK, b.v1);

-- Code_48 Insert_Single_Row.sql
procedure Insert_Row_Into_T(
  PK in t.PK%type,
  n1 in t.n1%type := null,
  n1_Specified in boolean := false,
  ...
  v1 in t.v1%type := null,
  v1_Specified in boolean := false,
  ...)
  authid Current_User;
Doing SQL from PL/SQL: Best and Worst Practices page 47

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
be needed to meet all possible cases. Of course, just as with the select statement
for which the binding requirement isn’t known at compile time, it would be
possible to use the the DBMS_Sql API. But recall the best practice principle (see
page 17) that instructs you to avoid this when there’s a good alternative. The
alternative in this case is to use a statement that specifies every column value and
that uses the column default values for those columns that are not specified.

Oracle9i Database Release 2 introduced support for using a record as a bind
argument in embedded SQL. This allows a compact approach to this challenge.
Code_49 shows one way to access the default values93/ 94.

This approach, though, has the disadvantage that two PL/SQL to SQL to
PL/SQL context switches95 are needed when one ought to be sufficient. A
better way to obtain the default values is to use a record type that defines them.
Programmers sometimes forget that the anonymous t%rowtype and,
correspondingly, items like t.PK%type do not inherit column constraints and
default values from the table96. However, this need not be a problem if a
discipline is followed when building the application’s installation and
patch/upgrade scripts. Code_81 (on page 73) shows the approach that was used
for the test table t that is used for the examples in this paper. This suggests the
following best practice principle:

Principle_18
Maintain a package that exposes a record type declaration for each of the
application’s tables. The declaration must repeat the specification of column
name, datatype, constraint, and default value that characterizes the table.

93. It might be more efficient to return the Rowid, but this would prevent the use of a record.

94. You might be tempted to write returning row into A_Record. This syntax is not supported.
Enhancement request 6621878 asks that it be.

95. See “Selecting many rows — unbounded result set” on page 30.

96. The reasons for this are rather subtle. For example, a schema level table may have a column
with a not null constraint that doesn’t have a default value. (You get an error on insert if you
don’t provide a value.) But PL/SQL insists that a not null variable or record field has a default.
Other complexities would arise if the table column a had a check constraint.

-- Code_49 Insert_Single_Row.sql
insert into  t(PK)
values       (PK)
returning    PK, n1, n2, v1, v2
into         New_Row;

if n1_Specified then
  New_Row.n1 := n1;
end if;
...
update  t
set     row = New_Row
where   t.PK = New_Row.PK;

For each application table, maintain a 
template record type that defines the 

same constraints and defaults.
Doing SQL from PL/SQL: Best and Worst Practices page 48

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
With the template record type in place, Code_49 can be rewritten as Code_50.

Single row update

Code_51 shows two possible cases for update.

Consider the design and implementation of a procedure Insert_Row_Into_T() with
the declaration97 shown in Code_52.

Of course, an implementation that tried to use embedded SQL statements like
those shown in Code_51 would suffer from a combinatorial explosion. One
approach, in the same spirit as Code_49, is to retrieve the intended new row into a
record, to change only the specified fields, and then to use update... set row...
Code_53 shows this98.

97. The reason for declaring n1_Specified and so on as integer will soon be clear.

98. Code_53 uses a version of Update_T_Row() where n1_Specified and so on are boolean.

-- Code_50 Insert_Single_Row.sql
  New_Row Tmplt.T_Rowtype;
begin
  New_Row.PK := PK;

  if n1_Specified then
    New_Row.n1 := n1;
  end if;
  ...
  insert into t values New_Row;

-- Code_51 Update_Single_Row.sql
update  t a
set     a.n1 = b.n1
where   a.PK = b.PK;
...
update  t a
set     a.v1 = b.v1
where   a.PK = b.PK;

-- Code_52 Update_Single_Row.sql
procedure Update_T_Row(
  PK in t.PK%type,
  n1 in t.n1%type := null,
  n1_Specified in integer := 0,
  ...
  v1 in t.v1%type := null,
  v1_Specified in integer := 0
  ...)
  authid Current_User;

-- Code_53 Update_Single_Row.sql
select  * into The_Row from t a
where   a.PK = Update_T_Row.PK
for update;

if n1_Specified then
  The_Row.n1 := n1;
end if;
...
update t a set row = The_Row where a.PK = Update_T_Row.PK;
Doing SQL from PL/SQL: Best and Worst Practices page 49

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
Code_54 shows an approach99 that avoids the double PL/SQL to SQL to
PL/SQL context switch.

The reason the n1_Specified and so on are declared as integer is now clear: SQL
does not understand the boolean datatype.

Single row delete

A single row must be identified by a unique key, so the dilemma of a binding
requirement that isn’t known until run time doesn’t arise. For completeness,
Code_55 shows an example. (It is sometimes required to keep an audit of all the
values in to deleted row).

Single row merge

Support for the merge statement was added to SQL in Oracle9i Database and
embedded SQL automatically inherited this support100. Its declared purpose is
to select rows, from a source table, for update or insert into different destination
table with a compatible shape. The choice is made according to the identity of
values between pairs of named columns in the source and destination tables. The
functionality, for obvious reasons, is sometimes informally called “upsert”. This
section shows how you can use the merge statement in PL/SQL to upsert a row
represented as PL/SQL variables.

It helps to start with a pure SQL example. Suppose that table t1 has exactly the
same column definition as table t and has some rows whose value of PK are
represented in t and some where this is not the case. Code_56 shows the SQL
statement101 that will update the rows in t with a matching PK value using the

99. We have not yet done a performance study. The theoretical penalty is that the approach shown
in Code_53, and that shown in Code_54, touch every field when they need not. However, the
alternative that avoid this disadvantage, using the the DBMS_Sql API, brings its own
performance disadvantages.

100. Oracle9i Database brought the so-called common SQL parser to the PL/SQL compiler. In
earlier releases, there were cases of statements in the class that embedded SQL supports that
caused a PL/SQL compilation error. The workaround, no longer necessary of course, was to
use dynamic SQL for those kinds of statement.

101. It helps to use the SQL*Plus command SET SQLBLANKLINES ON so that the readability of long
statements like this can be improved by interleaving blank lines.

-- Code_54 Update_Single_Row.sql
update  t a
set     a.n1 = case n1_Specified
                  when 0 then a.n1
                  else        Update_T_Row.n1
                end,
        a.v1 = case v1_Specified
                  when 0 then a.v1
                  else        Update_T_Row.v1
                end
where   a.PK = Update_T_Row.PK;

-- Code_55 Update_Single_Row.sql
  Old_Row t%rowtype;
begin
  delete     from t a
  where      a.PK = b.PK
  returning  a.PK, a.n1, a.n2, a.v1, a.v2
  into       Old_Row;
Doing SQL from PL/SQL: Best and Worst Practices page 50

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
values that these matching rows have in t1 and that will simply insert the
remaining rows from t1 where PK doesn’t match.

The syntax seems to be verbose. But recall that the source and destination tables
need not have the same column names. There is no shorthand for the common
case that Code_56 illustrates.

Of course, the SQL shown in Code_56 can be made into a legal PL/SQL
embedded SQL statement simply by adding a trailing semicolon. But to be
useful, it must correspond to a SQL statement that uses placeholders — and,
famously, a placeholder is not legal in the place of an identifier. The regular SQL
statement shown in Code_57102 gives the clue.

102. The statement illustrates the impossibility of inventing rules that can guarantee the
comfortable formatting of SQL statements. I tried to improve it using the with clause as I did
in Code_35 but couldn’t find the syntax.

-- Code_56 Merge_Basics.sql
merge into  t Dest
using       t1 Source
on          (Dest.PK = Source.PK)

when matched then update set
  Dest.n1 = Source.n1,
  Dest.n2 = Source.n2,
  Dest.v1 = Source.v1,
  Dest.v2 = Source.v2

when not matched then insert values (
  Source.PK,
  Source.n1,
  Source.n2,
  Source.v1,
  Source.v2)

-- Code_57 Merge_Basics.sql
merge into  t Dest
using       (select
                 1      PK,
                51      n1,
               101      n2,
               'new v1' v1,
               'new v2' v2
             from Dual) Source
on          (Dest.PK = Source.PK)

when matched then update set
  Dest.n1 = Source.n1,
  Dest.n2 = Source.n2,
  Dest.v1 = Source.v1,
  Dest.v2 = Source.v2

when not matched then insert values (
  Source.PK,
  Source.n1,
  Source.n2,
  Source.v1,
  Source.v2)
Doing SQL from PL/SQL: Best and Worst Practices page 51

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
It’s easy now to see103 how to use this device in a PL/SQL unit where the source
row is presented, after some processing, in the record Result; Code_58 shows how.

For comparison, Code_59 shows how the same “upsert” requirement could be
met without using the merge statement.

Code_59 seems more attractive than Code_58 because it enjoys the benefit that
using a record brings for code maintenance in the face of table format changes.
However, a performance experiment will show that the “official” merge approach
is substantially faster. Most people are prepared to pay some maintenance cost
for correct code which performs better than correct code which takes less effort
to write. That leads to the following best practice principle:

Principle_19
When you have an “upsert” requirement, use merge rather than implementing
update... set row... and providing an exception handler for Dup_Val_On_Index
that implements the corresponding insert.

103. It may be easy to see, but it isn’t effortless to write the syntax! However, the semantic power
(and therefore performance) that this gives is worth the effort.

-- Code_58 Merge_Vs_Hand_Implemented_Upsert_Performance.sql
  Result t%rowtype;
begin
  ...
  merge into  t Dest
  using       (select
                  Result.PK PK,
                  Result.n1 n1,
                  ...,
                  Result.v1 v1,
                  ...
              from Dual d) Source
  on          (Dest.PK = Source.PK)

  when matched then update set
    Dest.n1 = Source.n1,
    ...,
    Dest.v1 = Source.v1,
    ...

  when not matched then insert values (
    Source.PK,
    Source.n1,
    ...,
    Source.v1,
    ...);

-- Code_59 Merge_Vs_Hand_Implemented_Upsert_Performance.sql
  Result t%rowtype;
begin
  ...
  begin
    insert into t values Result;
  exception when Dup_Val_On_Index then
    update  t a
    set     row = b.Result
    where   a.PK = b.Result.PK;
  end;

Use merge for an “upsert” 
requirement.
Don’t use update... set row... together 
with insert in an exception handler.
Doing SQL from PL/SQL: Best and Worst Practices page 52

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
Multirow operation

It is common that a PL/SQL unit computes a stream of values that might be
used to execute a particular insert, update, delete, or merge statement many times in
succession. Beginners might write code like Code_60 shows.

Oracle8i Database introduced the forall statement to improve the efficiency of
repeated insert, update, delete, and merge104 statements. Code_61 shows how Code_60
is rewritten to use it.

The efficiency improvement comes because, when the number of elements in
the collections that are bound is N, the implementation of the forall statement
manages each of the N implied executions of the SQL statement in a single
PL/SQL to SQL to PL/SQL context switch105 rather than the N switches that
Code_60 causes. The improvement is typically by a factor of several times; any
trivial experiment shows this.

The most important thing to say about the forall statement is simple: use it. There
is quite simply no reason not to. Code_61 is no harder to write or to understand
than is Code_60. Nor is its expressivity any less. Code_61, for example, can be
trivially rewritten to use the set row syntax with a record bind. And the
performance benefit is huge.

104. The merge statement wasn’t introduced until Oracle9i Database; from its introduction, it has
been supported by the forall statement.

105. See “Selecting many rows — unbounded result set” on page 30.

-- Code_60 Forall.sql
for ... loop
  ...
  PK := ...
  n1 := ...
  ...
  update  t a
  set     a.n1 = b.n1, ...
  where   a.PK = b.PK;
end loop;

-- Code_61 Forall.sql
for ... loop
  ...
  PKs(j) := ...
  n1s(j) := ...
  ...
end loop;

forall j in 1..PKs.Count() loop
  update  t a
  set     a.n1 = b.n1s(j), ...
  where   a.PK = b.PKs(j);
Doing SQL from PL/SQL: Best and Worst Practices page 53

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
Handling exceptions caused when executing the forall statement

Code_62 shows how to modify the single row approach shown in Code_60 to let
execution continue if a particular iteration causes a regrettable, but not
unexpected, exception.

The_Exceptions is an index by pls_integer table whose element is a record with one
field to hold the number of each iteration that caused an exception and another
field to hold the error code. An exception other than Dup_Val_On_Index, for
example an out of space error, would by design (because, in the bigger picture,
only this one is considered recoverable) bubble up for a higher layer to handle
appropriately.

Code_63 shows how to modify the bulk approach shown in Code_61 to let
execution continue if a particular iteration causes an exception.

You might not see the loop that copies from the predefined Sql%Bulk_Exceptions
collection to the local The_Exceptions collection in real code. Code_63 is written
this way just to make the point that the information content of
Sql%Bulk_Exceptions in the bulk approach is the same as that of the
hand-populated The_Exceptions in the single row approach.

Notice a subtle semantic difference. The single row approach allowed a handler
that would catch only Dup_Val_On_Index. The use of save exceptions in the bulk

-- Code_62 Forall.sql
for ... loop
  ...
  PK := j;
  n1 := j;
  ...
  begin
    update  t a
    set     a.n1 = b.n1, ...
    where   a.PK = b.PK;
  exception
    when Dup_Val_On_Index then
      n := n + 1;
      The_Exceptions(n).Error_Index := j;
      The_Exceptions(n).Error_Code := SqlErrm();
    when ... then
      ...
  end;
end loop;

-- Code_63 Forall.sql
for ... loop
  ...
  PKs(j) := ...
  n1s(j) := ...
  ...
end loop;

declare
  Bulk_Errors exception;
  pragma Exception_Init(Bulk_Errors, -24381);
begin
  forall j in 1..PKs.Count() save exceptions
    update  t a
    set     a.n1 = b.n1s(j), ...
    where   a.PK = b.PKs(j);
exception
  when Bulk_Errors then
    for j in 1..Sql%Bulk_Exceptions.Count() loop
      The_Exceptions(j).Error_Index :=
        Sql%Bulk_Exceptions(j).Error_Index;
      The_Exceptions(j).Error_Code := 
        -Sql%Bulk_Exceptions(j).Error_Code;
    end loop;
end;
Doing SQL from PL/SQL: Best and Worst Practices page 54

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
approach acts like using a when others handler — which is actually implemented by
catching ORA-24381. If the design says that only Dup_Val_On_Index is
recoverable, then you must traverse the Sql%Bulk_Exceptions in the handler for
ORA-24381 and deliberately raise a new exception when a value of Error_Code is
found other than the one that corresponds to Dup_Val_On_Index.

Digression: DML Error Logging

DML Error Logging was introduced in Oracle Database 10g Release 2. By using
special syntax in, for example, an insert statement, you can request that if
particular row causes an error (a varchar2 value might be bigger that its target
field can hold), then the offending row is skipped and the operation continues
quietly with the next row. Furthermore, information about the skipped row will
be written (in an autonomous transaction) to the table that you nominate for that
purpose.

The feature was introduced with a particular scenario in mind: the use of
insert... select... to bulk load a table from a source with known dirty data106 — data
that could either be discarded or fixed up manually after its detection and then
used in a second round of loading. It brings a noticeable performance benefit
with respect to the hand-coded approach that uses PL/SQL to step through the
source rows in an implicit cursor for loop, inserting each into the target table, and
dealing with exceptions as they occur. This hand-coded approach can be
optimized by using batched bulk fetch and a forall statement for the insert. (An
example of this kind of approach is shown in Code_68 on page 59.) Even with
such an optimization, the approach that skips bad data using
DML Error Logging is noticeable faster, and, as a single SQL statement, much
easier to program, than the PL/SQL approach.

This observation has led to some developers to think that DML Error Logging
should be recommended as a generic alternative, in code which for other reasons
already is written to use PL/SQL and in particular to use a forall statement, as an
alternative to using the save exceptions clause and implementing a handler for
ORA-24381. A more cautious recommendation is to consider carefully the
purpose of the forall statement and especially what action is to be taken when an
attempted insert, update, delete (or merge) is attempted.

Notice that there’s a semantic difference between the two approaches that you
observe, typically, more with update and delete than with insert. This is because a
common use of the forall statement with insert is to insert a single row from a
source PL/SQL collection in each iteration; but a common use with update and
delete is to affect many rows with each iteration. The granularity of failure with
the forall statement is the iteration. But the granularity of failure with
DML Error Logging is the single row. Neither paradigm is universally better
than the other; the appropriate choice is determined by the particular
requirements. Notice, too, that DML Error Logging commits failed data into a
table that must be considered to be one of an application’s ordinary objects. The
scheme doesn’t have an intrinsic notion of the session. So in a multiuser
application (in contrast to an administrator-driven bulk load), that notion would
have to be introduced by a suitable custom-designed tagging mechanism. That
would imply the need for custom-designed housekeeping for the contents of the

106. A canonical use case presents data from a foreign system, on the filesystem, as an external
table.
Doing SQL from PL/SQL: Best and Worst Practices page 55

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
errors table. A further consideration is that DML Error Logging cannot handle
every kind of error. For example, it cannot handle violated deferred constraints,
Out-of-space errors, or an update or merge operation that raises a unique
constraint or index violation.

Referencing fields of a record in the forall statement

Oracle Database 11g brings the end to a restriction that some programmers have
complained bitterly about. Consider Code_64.

In earlier versions, this code fails to compile, causing the error PLS-00436:
implementation restriction: cannot reference fields of BULK In-BIND table of records. The
workaround had to be to use a separate collection of scalars for each table
column. Code_68 (see page 59) shows how Code_64 has to be written in earlier
versions of Oracle Database.

Bulk merge

It is tempting to apply the same reasoning to “bulkifying” the single row merge
statement as we used to transform the single insert, update, and delete using the
forall statement. Code_65 shows the code this would produce.

Consider, though, how the merge statement is described: its purpose is to select
rows, from a source table, for update or insert into different destination table. We

-- Code_64 PLS_00436_Lifted.sql
loop
  fetch Cur bulk collect into Results limit Batchsize;

  for j in 1..Results.Count() loop
    ...
  end loop;

  forall j in 1..Results.Count()
    update t a
    set    a.v1 = b.Results(j).v1
    where  Rowid = b.Results(j).Rowid;

  exit when Results.Count() < Batchsize;
end loop;

-- Code_65 Merge_One_Shot_Vs_Forall_Merge_Performance.sql
  type Results_t is table of t%rowtype index by pls_integer;
  Results Results_t;
begin
  ...
  forall j in 1..Results.Count()
    merge into  t Dest
    using       (select
                    Results(j).PK PK,
                    Results(j).n1 n1,
                    ...,
                    Results(j).v1 v1,
                    ...
                from Dual d) Source
    on          (Dest.PK = Source.PK)

    when matched then update set
      Dest.n1 = Source.n1,
      ...,
      Dest.v1 = Source.v1,
      ...

    when not matched then insert values (
      Source.PK,
      Source.n1,
      ...,
      Source.v1,
      ...);
Doing SQL from PL/SQL: Best and Worst Practices page 56

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
can take advantage of this if we remember that the table operator can be used
with a PL/SQLvariable whose datatype is a collection of objects — provided, that
is, that the object datatype and the collection datatype are defined at schema level.
Code_66 shows the SQL*Plus script that would do this.

This understanding lets us express the purpose of Code_65 rather differently in
Code_67.

Code_65 asks for its SQL statement to be rebound and re-executed many times.
But Code_67 asks for its SQL statement to be bound and executed just once. Not
surprisingly, then, it is faster. It does, though, require slightly different
programming to populate the table of objects that it does to populate the table of
records — but the difference is cosmetic rather than fundamental.

The discussion in this section is summarized in this best practice principle:

Principle_20
Always use the forall statement for repetitive execution of a particular insert,
update, or delete statement in preference to the equivalent single-row approach.
Use the keyword save exceptions and provide a handler for ORA-24381 when
you can continue safely after a particular iteration fails. For bulk merge, use the
table operator with a collection of objects to represent the to-be-merged rows.

Using native dynamic SQL for insert, update, delete, and merge

The transformation of working code which uses embedded SQL to use
native dynamic SQL instead is relatively mechanical. You always use the
execute immediate statement. The embedded SQL text is replaced with a string
variable107 holding the same text that has placeholders instead of the PL/SQL
variables; this is used with execute immediate; binding is achieved with the
using clause; and the output of a SQL statement’s returning clause is captured using
out binds. (You never use the into clause.) The only point to note is that

-- Code_66 Merge_One_Shot_Vs_Forall_Merge_Performance.sql
create type Result_t is object(
  PK number,
  n1 number,
  ...
  v1 varchar2(30),
  ...)
/
create type Results_t is table of Result_t
/

-- Code_67 Merge_One_Shot_Vs_Forall_Merge_Performance.sql
  Results Results_t;
begin
  ...
  merge into  t Dest
  using       (select * from table(Results)) Source
  on          (Dest.PK = Source.PK)

  when matched then update set
    Dest.n1 = Source.n1,
    ...,
    Dest.v1 = Source.v1,
    ...

  when not matched then insert values (
    Source.PK,
    Source.n1,
    ...,
    Source.v1,
    ...);

Use the forall statement rather than 
repeating a single-row statement. 
Handle ORA-24381 when it’s safe to 
skip over a failed iteration. For bulk 
merge, use the table operator with a 
collection of objects.
Doing SQL from PL/SQL: Best and Worst Practices page 57

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
embedded SQL that uses the set row syntax has no counterpart in
native dynamic SQL; rather, you have to mention each record field explicitly.

107. The operand of execute immediate is very likely to be a varchar2. However, Oracle Database 11g
brought the possibility that it might be a clob. This is useful for the programmatic generation
of PL/SQL units whose source text exceeds the 32k capacity limit for a varchar2. In earlier
releases, exceeding this limit meant rewriting your code to use the DBMS_Sql API.
Doing SQL from PL/SQL: Best and Worst Practices page 58

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
SOME USE CASES

This section examines some commonly occurring scenarios and discusses the
best approach to implement the requirements.

Changing table data in response to query results

Various scenarios arise where table data needs to be transformed in bulk —
either in place, or into a new table. Sometimes, the data in the source table needs
to be distributed between more than one destination table108. Sometimes, the
required rules cannot be expressed using only SQL expressions in update
statements or insert into... select ... from... statements. Code_68 shows how
batched bulk fetch and the forall statement can be used together for this kind of
processing.

Of course, when the transformation is trivial and can be expressed using a
PL/SQL function, then a simpler approach is possible. Code_69 implements
exactly the same effect as Code_68.

It isn’t necessary, even, to use a PL/SQL subprogram to issue the update
statement in Code_69, but this might be useful if the subprogram is part of the
API that hides direct SQL access to the table(s). However, Code_68 is just an
illustration of the technique. There are transformations that cannot be expressed
as is this one in Code_69.

108. This scenario arises particularly in connection with the upgrade of an application from one
version to the next. Sometimes, the vendor needs to change the design of the application’s
tables in order to add functionality or to improve performance. For example, an upgrade might
add a column that holds a denormalization. The upgrade script would need to populate such
a column in bulk.

-- Code_68 Batched_Bulk_Fetch_With_Forall_Update.sql
  cursor Cur is
    select Rowid, a.v1 from t a for update;

  type Rowids_t is varray(1000) of Rowid;
  Rowids Rowids_t;

  type vs_t is varray(1000) of t.v1%type;
  vs vs_t;

  Batchsize constant pls_integer := 1000;
begin
  ...
  loop
    fetch Cur bulk collect into Rowids, vs limit Batchsize;
    for j in 1..Rowids.Count() loop
      -- This is a trivial example.
      vs(j) := f(vs(j));
    end loop;
    forall j in 1..Rowids.Count()
      update  t a
      set     a.v1 = b.vs(j)
      where   Rowid = b.Rowids(j);
    exit when Rowids.Count() < Batchsize;
  end loop;

-- Code_69 Batched_Bulk_Fetch_With_Forall_Update.sql
...
update t set v1 = f(v1);
Doing SQL from PL/SQL: Best and Worst Practices page 59

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
It is interesting to compare the performance of Code_68 and Code_69: does
Code_68, as an approach, itself bring an automatic performance penalty? It seems
not too109.

Finally, we should consider how the naïve, single row approach looks and
performs. Code_70 shows it.

There is no doubt that Code_70 is more concise than Code_68. But, it is
noticeably slower110.

A variation on Code_70 might use an explicit cursor, Cur, and the where current of Cur
construct. For completeness, Code_71 shows this.

Code_72 shows the SQL statements that the PL/SQL compiler generates111

from the source code shown in Code_71.

This shows that the where current of Cur construct is no more than syntax sugar for
what Code_70 achieves by selecting the Rowid explicitly. It has no counterpart in
bulk constructs, but that is in no way a drawback112.

Here, then, is the best practice principle:

Principle_21
When many rows need to be transformed using an approach that can be

109. You might like to try your own experiments on your own data.

110. Our tests, using a table with 2,000,000 rows, showed that Code_68 and Code_69 used the same
CPU time — measured with DBMS_Utility.Get_CPU_Time() — to within the measurement
accuracy of a few percent. However, Code_70 was slower by a factor of 1.5x.

111. Code_72 is discovered using a query like this:

Code_5 has been formatted by hand to make it easier to read.

-- Code_70 Batched_Bulk_Fetch_With_Forall_Update.sql
for r in (select Rowid, a.v1 from t a for update) loop
  r.v1 := f(r.v1);
  update t a set a.v1 = r.v1
  where Rowid = r.Rowid;
end loop;

-- Code_71 Batched_Bulk_Fetch_With_Forall_Update.sql
  cursor Cur is
    select a.v1 from t a for update;
  v1 t.v1%type;
begin
  open Cur;
  loop
    fetch Cur into v1;
    exit when Cur%NotFound;
    v1 := f(v1);
    update  t a
    set     a.v1 = v1
    where   current of Cur;
  end loop;
  close Cur;

select   Sql_Text
from     v$Sql
where    Lower(Sql_Text) not like '%v$sql%'
and     (Lower(Sql_Text) like 'select%a.v1%from%t%' or
         Lower(Sql_Text) like 'update%t%a%set%')

-- Code_72 Batched_Bulk_Fetch_With_Forall_Update.sql
SELECT A.V1 FROM T A FOR UPDATE
UPDATE T A SET A.V1 = V1 WHERE ROWID = :B1

Don’t be afraid to get rows with 
batched bulk fetch, process them in 
PL/SQL, and to put each batch back 
with a forall statement. The approach 
carries no noticeable performance 
cost compared to using a PL/SQL 
function directly in a SQL statement.
Doing SQL from PL/SQL: Best and Worst Practices page 60

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
expressed only in PL/SQL, retrieve them with batched bulk fetch, process them,
and use the results of each batch with a forall statement — either to update the
source rows, using the Rowid, or to insert to different table(s). If needed, the
approach can be combined with merge. The approach itself, compared to using
a PL/SQL function directly in a suitable SQL statement, brings no noticeable
performance penalty.

Number of in list items unknown until run time

If, for some relatively improbable reasons, you need a query whose where clause
uses an in list with, say, exactly five items, then you can write the embedded SQL
statement without noticing the challenge that will present itself later when the
requirements change to reflect the more probable use case. Code_73 shows this
unlikely statement.

Code_74 expresses the intention of the far more likely statement.

The problem is immediately apparent: we cannot bear to write an explicit
reference to each element in a collection using a literal for the index value — and
even if we could, the text would become unmanageably voluminous113. Rather,
we need a syntax that expresses the notion “all the elements in this collection,
however many that might be”. Such a syntax exists and is supported in
embedded SQL; Code_75 shows it.

112. In general, it is risky to rely on the constancy of Rowid. For example, following an
alter table... shrink command, the Rowid for a row with a particular primary key might change as
a consequence of the row movement. However, there is no risk during the interval between a
issuing a select... for update and the commit or rollback that ends that transaction because an
attempted alter table... shrink from another session will wait until the present one ends its
transaction.

113. You might hard code 1,000 such explicitly indexed elements and then at run time, set as many
elements as you need to the intended values and the remainder to null. This has the correct
semantics because a test for equality with null has the same effect as an equality test that fails.

-- Code_73 Runtime_In_List.sql
select             a.PK, a.v1
bulk collect into  b.Results
from               t a
where              a.v1 in (b.p1, b.p2, b.p3, b.p4, b.p5);

-- Code_74 Runtime_In_List.sql
select             a.PK, a.v1
bulk collect into  b.Results
from               t a
where              a.v1 in (b.ps(1), b.ps(2), b.ps(3),
                            b.ps(4), b.ps(5), b.ps(6),
                            b.ps(7), b.ps(8), b.ps(9),
                            ...                       );

-- Code_75 Runtime_In_List.sql
  ps Strings_t;
begin
  select             a.PK, a.v1
  bulk collect into  b.Results
  from               t a
  where              a.v1 in (select  Column_Value
                              from    table(b.ps));
Doing SQL from PL/SQL: Best and Worst Practices page 61

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
However, this seems to be relatively little known, possibly because it uses the
table operator114. The datatype of ps must be declared at schema level. Code_76
shows the SQL*Plus script that creates it.

It is not uncommon for programmers who don’t know about the table operator
to satisfy the functionality requirement by building the text of the SQL statement
at run time. Either they use literal values and execute the statement with
native dynamic SQL, or they use placeholders and then are forced to execute the
statement with the DBMS_Sql API to accommodate the fact the the binding
requirement isn’t known until run time. Both these workarounds are shocking
examples of worst practice115. (We have heard of other programmers who have
first inserted the in list values into a global temporary table so that the intended
query can be expressed as a join to that.) The best practice principle, then, is
obvious:

Principle_22
When you need the functionality of an in list whose element count is not
known until run time, populate a collection, whose datatype must be defined at
schema level, with the values and then use “where x in (select Column_Value from
table(The_Values))”. Don’t even consider alternative approaches.

114. The use of the table operator is explained in the section Manipulating Individual Collection Elements
with SQL in the Object-Relational Developer’s Guide. The PL/SQL Language Reference
book mentions it, with no explanation, only in the PL/SQL Language Elements section.

115. The native dynamic SQL approach leads to a proliferation of distinct statement texts and
therefor causes excessive hard parses. (In naïve hands, it also exposes a risk for SQL injection.)
Using the the DBMS_Sql API reduces the number of hard parses, but N hard parses when one
is sufficient is still N-1 too many.

-- Code_76 Runtime_In_List.sql
create type Strings_t is table of varchar2(30)
/

Use “where x in (select 

Column_Value from 

table(The_Values))” for the 
functionality of an in list whose 
element count you don’t know until 
Doing SQL from PL/SQL: Best and Worst Practices page 62

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
CONCLUSION

The first section of the paper, Embedded SQL, native dynamic SQL and the
DBMS_Sql API on page 5, presented a straightforward review of the vast
apparatus for doing SQL from PL/SQL and it attempted to clarify, by
introducing some new terminology, notions that users often find to be rather
confusing116.

The remaining expository sections, Approaches for select statements on page 30 and
Approaches for insert, update, delete, and merge statements on page 47, deliberately took a
different stance. Their aim was to identify and recommend a subset of the
available functionality that is small enough to hold in a coherent mental model
and yet rich enough for most practical purposes. This is bound to be something
of a compromise. One who understood absolutely everything about how to do
SQL from PL/SQL (and, with that, understood the history of introduction of
features), and who had a huge practical experience of having used every
technique to advantage in a real-world application, is best placed to choose the
perfect technique for a particular challenge in a new project. But such people are
not the intended readers of this paper!

Rather, this paper is intended for readers who need to write acceptably
performant code with a reasonable uniformity of approach so that others may
easily understand and maintain it. Of course, correctness is a non-negotiable
goal. We argue that the chances of correctness are hugely increased, over a set of
programs with largely similar intent, when the variety of programming
techniques used is relatively small, and when these techniques are matched to
requirements in a uniform way.

We hope that the paper has achieved its goal of helping such readers.

Bryn Llewellyn,
PL/SQL Product Manager, Oracle Headquarters
bryn.llewellyn@oracle.com
21-September-2008

116. The reason for this confusion is not least because of terminology which Oracle Corporation
has introduced organically and somewhat myopically over the many years of PL/SQL’s
history.
Doing SQL from PL/SQL: Best and Worst Practices page 63

mailto:bryn.llewellyn@oracle.com
http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
APPENDIX A:
CHANGE HISTORY

19-September-2008

• First published version.

21-September-2008

• Rewording the best practice principle about the choice of authid. Correcting
minor errors in response to feedback from colleagues.
Doing SQL from PL/SQL: Best and Worst Practices page 64

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
APPENDIX B:
SUMMARY OF BEST PRACTICE PRINCIPLES

This appendix collects the best practice principles that have been advocated in
this paper. An unattributed programmers’ axiom has it that rules exists to serve,
not to enslave117. A much more sensible suggestion is listed here as the first
(meta) principle.

Principle_0: Do not deviate from any of the following principles without first
discussing, with a more experienced PL/SQL programmer, the use case that
seems to warrant such deviation.

Principle_1: When writing an embedded SQL statement, always establish an
alias for each from list item and always qualify each column with the
appropriate alias. Always qualify the name of every identifier that you intend
the be resolved in the current PL/SQL unit with the name of the block in
which it is declared. If this is a block statement, give it a name using a label.
The names of the aliases and the PL/SQL bocks must all be different. This
inoculates against name capture when the referenced tables are changed and,
as a consequence, increases the likelihood that the fine-grained dependency
analysis will conclude that the PL/SQL unit need not be invalidated.
(page 9)

Principle_2: Use the constant keyword in the declaration of any variable that
is not changed after its initialization. Following this principle has no penalty
because the worst that can happen is that code that attempts to change a
constant will fail to compile — and this error will sharpen the programmer’s
thinking. The principle has a clear advantage for readability and correctness.
(page 11)

Principle_3: Always specify the authid property explicitly in every
PL/SQL unit; choose between definer’s rights and invoker’s rights after a
careful analysis of the purpose of the unit. (page 12)

117. A variation on this theme adds paradox by saying “All rules were meant to be broken — including
this one”.

Seek approval from an experienced 
colleague before disobeying any of 
the following best practice principles

In embedded SQL, dot-qualify each 
column name with the from list item 
alias. Dot-qualify each PL/SQL 
identifier with the name of the name 
of the block that declares it.

Declare every PL/SQL variable with 
the constant keyword unless the 
block intends to change it.

Always specify the authid property 
explicitly. Decide carefully between 
Current_User and Definer.
Doing SQL from PL/SQL: Best and Worst Practices page 65

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
Principle_4: References to objects that Oracle Corporation ships with
Oracle Database should be dot-qualified with the Owner. (This is frequently,
but not always, Sys.) This preserves the intended meaning even if a local
object, whose name collides with that of the intended object, is created in
the schema which will be current when name resolution is done. (page 13)

Principle_5: Strive always to use only SQL statements whose text is fixed at
compile time. For select, insert, update, delete, merge, or lock table
statements, use embedded SQL. For other kinds of statement, use
native dynamic SQL. When the SQL statement text cannot be fixed at
compile time, strive to use a fixed syntax template and limit the run-time
variation to the provision of names. (This implies using placeholders and
making the small effort to program the binding.) For the names of schema
objects and within-object identifiers like column names, use
Sys.DBMS_Assert.Simple_Sql_Name(). If exceptional requirements
mandate the use of a literal value rather than a placeholder, use
Sys.DBMS_Assert.Enquote_Literal(). For other values (like, for example, the
value for NLS_Date_Format in Code_8) construct it programatically in
response to parameterized user input. (page 15)

Principle_6: For dynamic SQL, always use native dynamic SQL except when
its functionality is insufficient; only then, use the DBMS_Sql API. For select,
insert, update, delete, and merge statements, native dynamic SQL is
insufficient when the SQL statement has placeholders or select list items
that are not known at compile time. For other kinds of SQL statement,
native dynamic SQL is insufficient when the operation is to be done in a
remote database. (page 17)

Principle_7: Avoid using concatenated literals in a dynamically created
SQL statement; rather, use placeholders in place of literals, and then at run
time bind the values that would have been literals. This maximizes the reuse
of sharable SQL structures. (page 19)

Principle_8: Always use the overload of the DBMS_Sql.Parse() that has the
formal parameter Security_Level  and always call it with the actual value 2 to
insist that all operations on the DBMS_Sql numeric cursor are done with the
same Current_User and enabled roles. (page 25)

Use the Owner to dot-qualify the 
names of objects that ship with 
Oracle Database.

Strive to use SQL statements whose 
text is fixed at compile time. When 
you cannot, use a fixed template. 
Bind to placeholders. Use 
DBMS_Assert to make concatenated 
SQL identifiers safe.

For dynamic SQL, aim to use 
native dynamic SQL. Only when you 
cannot, use the DBMS_Sql API.

When using dynamic SQL, avoid 
literals in the SQL statement. Instead, 
bind the intended values to 
placeholders.

Always open a 
DBMS_Sql numeric cursor with 
DBMS_Sql.Parse(Security_Level=>2);
Doing SQL from PL/SQL: Best and Worst Practices page 66

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
Principle_9: When the approaches that this paper recommends are followed,
the only useful explicit cursor attribute is Cur%IsOpen. There is never a
need to use the other explicit cursor attributes. The only scalar
implicit cursor attribute of interest is Sql%RowCount. Always observe this
in the PL/SQL statement that immediately follows the statement that
executes the SQL statement of interest using an implicit cursor. The same
rationale holds for the Sql%Bulk_RowCount collection.
Sql%Bulk_Exceptions must be used only in the exception handler for the
Bulk_Errors exception; place this in a block statement that has the
forall statement as the only statement in its executable section. (page 27)

Principle_10: When discussing a PL/SQL program, and this includes
discussing it with oneself, commenting it, and writing its external
documentation, aim to avoid the unqualified use of “cursor”. Rather, use the
appropriate term of art: session cursor, implicit cursor, explicit cursor,
cursor variable, or DBMS_Sql numeric cursor. The discipline will improve
the quality of your thought and will probably, therefore, improve the quality
of your programs. (page 29)

Principle_11: When many rows are to be selected, and the result set may be
arbitrarily big, process them in batches by using fetch... bulk collect into with
the limit clause inside an infinite loop. Use a constant as the value for the
limit clause to define the batchsize; 1000 is a reasonable value. Fetch into a
varray declared with the same size. Don’t test the %NotFound cursor
attribute to terminate the loop. Instead, use
exit when Results.Count() < Batchsize; as the last statement in the loop;
ensure correct processing in the edge case that the last fetch gets exactly zero
rows. When embedded SQL is sufficient, use an explicit cursor. When you
need native dynamic SQL, use a cursor variable. (page 33)

Principle_12: When many rows are to be selected, and the result set can be
safely assumed to be of manageable maximum size, fetch all the rows in a
single step. Use the cursor-less PL/SQL constructs select... bulk collect into
when embedded SQL is possible, and execute immediate... bulk collect into
when dynamic SQL is needed. Fetch into a varray declared with the
maximum size that you are prepared to handle. Implement an exception
handler for ORA-22165 to help bug diagnosis. (page 35)

The only explicit cursor attribute you 
need to use is Cur%IsOpen. The only 
implicit cursor attributes you need 
are Sql%RowCount, 
Sql%Bulk_RowCount, and 
Sql%Bulk_Exceptions.

Learn the terms of art: session 
cursor, implicit cursor, explicit cursor, 
cursor variable, and 
DBMS_Sql numeric cursor. Use them 
carefully and don’t abbreviate them.

When you don’t know how many rows 
your query might get, use 
fetch... bulk collect into with the 
limit clause inside an infinite loop.

When you do know how the maximum 
number of rows your query might get, 
use select... bulk collect into or 
execute immediate... bulk collect into 
to fetch all the rows in a single step.
Doing SQL from PL/SQL: Best and Worst Practices page 67

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
Principle_13: Avoid temptation to compose the where clause using literals —
and especially to concatenate a where clause which has been explicitly typed
by the user. The performance is likely to be noticeably worse than an
approach that binds to placeholders; and, with a directly typed where clause,
it isn’t feasible to use Sys.DBMS_Assert.Enquote_Literal() to inoculate
against SQL injection. When the binding requirement is not known until run
time, use the DBMS_Sql API to parse, bind, and execute the SQL statement.
If the select list is known at compile time, use To_Refcursor() to transform
the DBMS_Sql numeric cursor to a cursor variable and then use
batched bulk fetch. If the select list is not known until run time, use the
DBMS_Sql API to fetch the results too. In the unlikely case that the binding
requirement is known at compile time but the select list is not known until
run time, use native dynamic SQL to open a cursor variable and then use
To_Cursor_Number() to transform the cursor variable to a
DBMS_Sql numeric cursor. Then use the DBMS_Sql API to fetch the
results. (page 39)

Principle_14: When exactly one row is to be selected, fetch the row in a single
step. Use the cursor-less PL/SQL constructs select... into when
embedded SQL is possible, and execute immediate... into when
dynamic SQL is needed. Take advantage of the regrettable No_Data_Found
exception and the unexpected Too_Many_Rows exception. (page 41)

Principle_15: Create a dedicated schema, say Some_App_API, for an
application to which database clients will connect in order to access that
application’s functionality. Implement all the application’s database objects in
schemas other than Some_App_API, with closely guarded passwords, and
limit the objects in Some_App_API to just private synonyms. Create these
synonyms for exactly and only those of the application’s database objects
that are intended to expose its client API. Grant to Some_App_API only
those privileges that are needed to allow the intended access to these objects.
(page 41)

Principle_16: Restrict the object types that Some_App_API’s private
synonyms exposes to just PL/SQL units. Hide all the tables in other
schemas, and do not grant any privileges on these to Some_App_API.
(page 42)

Use the the DBMS_Sql API when you 
don’t know the binding requirement 
of what the select list is until run time. 
If you do, at least, know the select list, 
use To_Refcursor() and then 
batched bulk fetch.

To get exactly one row, use 
select... into or 
execute immediate... into. Take 
advantage of No_Data_Found and 
Too_Many_Rows.

Expose your database application 
through a dedicated schema that has 
only private synonyms for the objects 
that define its API.

Expose your database application 
through a PL/SQL API. Hide all the 
tables in schemas that the client to 
the database cannot reach.
Doing SQL from PL/SQL: Best and Worst Practices page 68

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
Principle_17: Define the producer/consumer API as a function whose return
datatype represents the data that is produced. Hide everything to do with the
SQL processing, including the fetching, in the producer module. When the
query parameterization specifies exactly one row, use a record or ADT with
the same shape as the select list. In this case, use one of the cursor-less
PL/SQL constructs select... into or execute immediate... into depending on
the requirement for dynamic SQL. When the query parameterization
specifies many rows, use a collection of records or a collection of ADTs. In
this case, use entire bulk fetch when this is certain to be safe; this allows the
use of one of the cursor-less PL/SQL constructs select... bulk collect into or
execute immediate... bulk collect into. If entire bulk fetch is unsafe, use
batched bulk fetch when the producer/consumer relationship is stateful.
This requires a identified cursor. If embedded SQL if sufficient, then use an
explicit cursor declare at global level in the body of the producer package.
This will hold state across the calls from the consumer to get each batch. If
dynamic SQL is needed, use a cursor variable. Pass this back to the
consumer with each batch of results so that the consumer can hold on to it.
When the producer/consumer relationship is stateless, use result set slicing.
Implement the delivery of each slice with entire bulk fetch. If requirements
dictate it, use the DBMS_Sql API and hide all of the code that uses this in
the producer module. (page 45)

Principle_18: Maintain a package that exposes a record type declaration for
each of the application’s tables. The declaration must repeat the specification
of column name, datatype, constraint, and default value that characterizes
the table. (page 48)

Principle_19: When you have an “upsert” requirement, use merge rather than
implementing update... set row... and providing an exception handler for
Dup_Val_On_Index that implements the corresponding insert. (page 52)

Principle_20: Always use the forall statement for repetitive execution of a
particular insert, update, or delete statement in preference to the equivalent
single-row approach. Use the keyword save exceptions and provide a
handler for ORA-24381 when you can continue safely after a particular
iteration fails. For bulk merge, use the table operator with a collection of
objects to represent the to-be-merged rows. (page 57)

Define the producer/consumer API as 
a function whose return datatype 
represents the desired data. Hide all 
the SQL processing in the producer 
module. That way, the consumer is 
immune to an implementation change 
that a requirements change might 
cause. Simply parameterize the 
producer function as you would 
parameterize the query. This 
approach accommodates getting the 
rows in batches or getting all the 
rows in one call — where this might 
be a slice.

For each application table, maintain a 
template record type that defines the 
same constraints and defaults.

Use merge for an “upsert” 
requirement. Don’t use 
update... set row... together with 
insert in an exception handler.

Use the forall statement rather than 
repeating a single-row statement. 
Handle ORA-24381 when it’s safe to 
skip over a failed iteration. For bulk 
merge, use the table operator with a 
collection of objects.
Doing SQL from PL/SQL: Best and Worst Practices page 69

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
Principle_21: When many rows need to be transformed using an approach
that can be expressed only in PL/SQL, retrieve them with
batched bulk fetch, process them, and use the results of each batch with a
forall statement — either to update the source rows, using the Rowid, or to
insert to different table(s). If needed, the approach can be combined with
merge. The approach itself, compared to using a PL/SQL function directly
in a suitable SQL statement, brings no noticeable performance penalty.
(page 60)

Principle_22: When you need the functionality of an in list whose element
count is not known until run time, populate a collection, whose datatype
must be defined at schema level, with the values and then use “where x in
(select Column_Value from table(The_Values))”. Don’t even consider
alternative approaches. (page 62)

Don’t be afraid to get rows with 
batched bulk fetch, process them in 
PL/SQL, and to put each batch back 
with a forall statement. The approach 
carries no noticeable performance 
cost compared to using a PL/SQL 
function directly in a SQL statement.

Use “where x in (select 
Column_Value from 
table(The_Values))” for the 
functionality of an in list whose 
element count you don’t know until 
Doing SQL from PL/SQL: Best and Worst Practices page 70

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
APPENDIX C:
ALTERNATIVE APPROACHES TO POPULATING A COLLECTION OF 
RECORDS WITH THE RESULT OF A SELECT STATEMENT

Code_77 shows the most obvious approach: the results are bulk fetched into a
collection of records and then the values are copied in an explicit loop into a
collection of ADTs with the same shape.

Code_78 shows a more compact approach that dispenses with the need for the
interim collection of records by constructing the required ADT as a select list
element which can then be bulk fetched directly into the collection of ADTs.
Surprisingly, though, this approach is noticeably slower than that shown in
Code_77.

Code_79 shows a more compact approach that constructs the required collection
of ADTs directly in SQL as a select list element in a single row which can then be
fetched directly. This approach is about the same speed as that shown in
Code_77.

The quickest two approaches are, in turn, noticeably slower than simply fetching
into a collection of records and then processing the results in that representation.
However, this, through Oracle Database 11g, is the price that must be paid in
order to expose the database through just a PL/SQL API so that an arbitrary
client can use it.

-- Code_77 Cast_Multiset_Test.sql
select PK, n1, n2, v1, v2
bulk collect into Records
from t
order by PK;

Objects.Extend(Records.Count());
for j in 1..Records.Count() loop
  Objects(j) := Object_t(
    Records(j).PK,
    Records(j).n1,
    Records(j).n2,
    Records(j).v1,
    Records(j).v2);
end loop;

-- Code_78 Cast_Multiset_Test.sql
select Object_t(PK, n1, n2, v1, v2)
bulk collect into Objects
from t
order by PK;

-- Code_79 Cast_Multiset_Test.sql
select cast(multiset(
    select Object_t(PK, n1, n2, v1, v2)
    from t
    order by PK)
  as Objects_t)
  into Objects
  from Dual;
Doing SQL from PL/SQL: Best and Worst Practices page 71

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
APPENDIX D:
CREATING THE TEST USER USR, AND
THE TEST TABLE USR.T(PK NUMBER, V1 VARCHAR2(30), ...)

Code_80 shows a convenient SQL*Plus script to start any ad hoc experiment in
your own test database.

Notice that by remaining connected as Sys, ad hoc queries against views like
DBA_Objects, v$Sql, and v$Parameter and commands like alter system are possible
without any fuss. Of course, you should do this only in a disposable database118.
Do be careful when using this device, though. Depending on the purpose of the
experiment that the SQL*Plus script will implement, the convenience of being
able to access all objects may confuse the observations. This is most
conspicuously the case in an experiment whose purpose is to investigate, or
illustrate, the behavior of invoker’s rights PL/SQL units.

118. I make a cold backup of any freshly created database and write a script to shutdown the
database, restore this, and startup the database. It takes only a couple of minutes to run on my
developers’ size Intel/Linux machine. The ability quickly and reliably to restore a clean test
environment is hugely liberating when contemplating potentially dangerous experiments to
test or confirm one’s understanding of how things work.

-- Code_80 Cr_Usr.sql
CONNECT Sys/p@111 AS SYSDBA
declare
  User_Does_Not_Exist exception;
  pragma Exception_Init(User_Does_Not_Exist, -01918);
begin
  begin
    execute immediate 'drop user Usr cascade';
  exception when User_Does_Not_Exist then null; end;
  execute immediate '
    grant Create Session, Resource to Usr identified by p';
end;
/
alter session set Current_Schema = Usr
/

Doing SQL from PL/SQL: Best and Worst Practices page 72

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
Code_81 shows a procedure that creates a convenient test table, t, with a
parameterized number of rows. It’s very useful for performance testing to be
able to test the code quickly on a small dataset and then time it on a big set.

The procedure also creates a package that exposes the record type T_Rowtype with
the same shape as table t and carrying the same constraints and default values.
The is useful for, for example, inserting a new row into t using embedded SQL
when only some of the values are specified. (A variable declared using t%rowtype
doesn’t pick up constraints and default values from the table.) This is used to
advantage in the code shown in“Single row insert” on page 47.

Some might argue the procedure Create_Table_T() would be improved by
declaring the repeated strings like “PK number” and the default values in varchar2
constants. It is left as is in this paper to make it easier to read. Other approaches
are possible. For example, a PL/SQL subprogram could create the record
template package for each of a list of tables, by accessing columns like
Column_Name, Data_Type, and Data_Default from the All_Tab_Cols catalog view.
Keeping everything in step would be the concern of the installation and
patch/upgrade scripts for the application.

-- Code_81 Cr_Usr.sql
procedure Usr.Create_Table_T(No_Of_Batches in pls_integer)
  authid Current_User
is
  Batchsize constant pls_integer := 1000;
  No_Of_Rows constant pls_integer := Batchsize*No_Of_Batches;
  n integer := 0;

  type PKs_t is table of number       index by pls_integer; PKs Pks_t;
  type n1s_t is table of number       index by pls_integer; n1s n1s_t;
  type n2s_t is table of number       index by pls_integer; n2s n2s_t;
  type v1s_t is table of varchar2(30) index by pls_integer; v1s v1s_t;
  type v2s_t is table of varchar2(30) index by pls_integer; v2s v2s_t;
begin
  declare
    Table_Does_Not_Exist exception;
    pragma Exception_Init(Table_Does_Not_Exist, -00942);
  begin
    execute immediate 'drop table Usr.t';
  exception when Table_Does_Not_Exist then null; end;

  execute immediate '
    create table Usr.t(
      PK number                      not null,
      n1 number       default 11     not null,
      n2 number       default 12     not null,
      v1 varchar2(30) default ''v1'' not null,
      v2 varchar2(30) default ''v2'' not null)';

  execute immediate '
    create or replace package Usr.Tmplt is
      type T_Rowtype is record(
        PK number        not null := 0,
        n1 number        not null := 11,
        n2 number        not null := 12,
        v1 varchar2(30)  not null := ''v1'',
        v2 varchar2(30)  not null := ''v2'');
    end Tmplt;';

  for j in 1..No_Of_Batches loop
    for j in 1..Batchsize loop
      n := n + 1;
      PKs(j) := n;
      n1s(j) := n*n;
      n2s(j) := n1s(j)*n;
      v1s(j) := n1s(j);
      v2s(j) := n2s(j);
    end loop;
    forall j in 1..Batchsize
      execute immediate '
        insert into  Usr.t(PK,     n1,     n2,     v1,     v2)
        values            (:PK,    :n1,    :n2,    :v1,    :v2)'
        using              PKs(j), n1s(j), n2s(j), v1s(j), v2s(j);
  end loop;

  execute immediate
    'alter table Usr.t add constraint t_PK primary key(PK)';
end Create_Table_T;
Doing SQL from PL/SQL: Best and Worst Practices page 73

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


21-September-2008 www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf
The procedure has to use dynamic SQL for the insert statement, even though the
statement text is fixed at compile time, because the target table for the insert does
not exist at compile time.
Doing SQL from PL/SQL: Best and Worst Practices page 74

http://www.oracle.com/technology/tech/pl_sql/pdf/doing_sql_from_plsql.pdf


Doing SQL from PL/SQL: Best and Worst Practices
September 2008
Bryn Llewellyn, PL/SQL Product Manager, Oracle Headquarters

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
oracle.com

Copyright © 2008, Oracle. All rights reserved.

This document is provided for information purposes only and the 
contents hereof are subject to change without notice.

This document is not warranted to be error-free, nor subject to any 
other warranties or conditions, whether expressed orally or implied in 
law, including implied warranties and conditions of merchantability  or 
fitness for a particular purpose. We specifically disclaim any liability 
with respect to this document and no contractual obligations are 
formed either directly or indirectly by this document. This document 
may not be reproduced or transmitted in any form or by any means, 
electronic or mechanical, for any purpose, without our prior written 
permission.

Oracle, JD Edwards, PeopleSoft, and Retek are registered trademarks 
of Oracle Corporation and/or its affiliates. Other names may be 
trademarks of their respective owners.


	Abstract
	Introduction
	Caveat
	Periodic revision of this paper

	Embedded SQL, native dynamic SQL and the DBMS_Sql API
	Embedded SQL
	Resolution of names in embedded SQL statements.
	Name capture, fine grained dependency tracking, and defensive programming
	Ultimately, all SQL issued by a PL/SQL program is dynamic SQL
	Embedded SQL is more expressive than some programmers realize

	Native dynamic SQL
	The DBMS_Sql API
	Cursor taxonomy
	Questions addressed by the cursor taxonomy
	The terms of art
	• sharable SQL structure
	• session cursor
	• implicit cursor
	• explicit cursor
	• ref cursor
	• cursor variable
	• strong ref cursor
	• weak ref cursor
	• identified cursor
	• DBMS_Sql numeric cursor
	• explicit cursor attribute
	• implicit cursor attribute

	Summary


	Approaches for select statements
	Selecting many rows — unbounded result set
	Programming the fetch loop
	Opening the cursor

	Selecting many rows — bounded result set
	Selecting many rows — select list or binding requirement not known until run-time
	Selecting a single row
	Approaches for producer/consumer modularization
	Stateful producer/consumer relationship
	Stateless producer/consumer relationship


	Approaches for insert, update, delete, and merge statements
	Single row operation
	Single row insert
	Single row update
	Single row delete
	Single row merge

	Multirow operation
	Handling exceptions caused when executing the forall statement
	Digression: DML Error Logging
	Referencing fields of a record in the forall statement
	Bulk merge

	Using native dynamic SQL for insert, update, delete, and merge

	Some use cases
	Changing table data in response to query results
	Number of in list items unknown until run time

	Conclusion
	Appendix A: Change History
	Appendix B: Summary of best practice principles
	Appendix C: alternative approaches to populating a collection of records with the result of a select statement
	Appendix D: Creating the test user Usr, and the test table Usr.t(PK number, v1 varchar2(30), ...)

