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ABSTRACT. The quantization error (QE) from Self-Organizing Map (SOM) output after learning is exploited in these 
studies. SOM learning is applied on time series of spatial contrast images with variable relative amount of white and dark 
pixel contents, as in monochromatic medical images or satellite images. It is proven that the QE from the SOM output 
after learning provides a reliable indicator of potentially critical changes in images across time. The QE increases linearly 
with the variability in spatial contrast contents of images across time when contrast intensity is kept constant. The hitherto 
unsuspected capacity of this metric to capture even the smallest changes in large bodies of image time series after using 
ultra-fast SOM learning is illustrated on examples from SOM learning studies on computer generated images, MRI image 
time series, and satellite image time series. Linear trend analysis of the changes in QE as a function of the time an image 
of a given series was taken gives proof of the statistical reliability of this metric as an indicator of local change. It is shown 
that the QE is correlated with significant clinical, demographic, and environmental data from the same reference time 
period during which test image series were recorded. The findings show that the QE from SOM, which is easily 
implemented and requires computation times no longer than a few minutes for a given image series of 20 to 25, is useful 
for a fast analysis of whole series of image data when the goal is to provide an instant statistical decision relative to 
change/no change between images. 
KEYWORDS. Self-Organizing Map (SOM), quantization error, image time series, spatial contrast, variability, change 
detection. 

Introduction 

This work deals with a fast computational approach to change detection in complex images. The 
approach exploits the previously ignored potential of a change indicator, provided in the output data of 
the Self-Organizing Map (SOM), a well-documented computational analysis tool introduced many 
years ago by Teuvo Kohonen [1, 2]. SOM is a biologically inspired artificial neural network 
architecture that learns in an non-supervised way to detect spatial contrast variations in images. The 
artificial neurons possess some of the functional properties of visual neurons found in the mammalian 
cortex [3-6], such as sensitivity to spatial extent of contrast and contrast intensity in complex images. 
The architecture of SOM is relatively simple compared with other machine learning algorithms [1, 2], 
and the user decides about the number of neurons, and their selectivity to a given polarity of 
monochromatic contrast or colour. 

The output of SOM is expressed in terms of the final synaptic weight of the neurons after learning, 
and their quantization error (QE), which is a measure of variance. It is this latter, the QE, that will be 
exploited here in this thesis to show that it constitutes a statistically reliable indicator of the smallest, 
potentially critical local change across images of a time series. SOM is easily implemented and the 
computation times for generating SOM output on large data sets with 20 or more images in a time 
series are ultra-fast, i.e. between 60 and 250 seconds for an image series. 
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After a general overview of SOM and its functional principles, we describe a series of proof-of-
concept studies on computer generated images. On the basis of statistical regression analysis, it will be 
shown that the QE from the SOM output after learning displays a statistically significant sensitivity to 
systematic variations in the spatial extent of contrast in images of a series when the intensity of 
contrast is constant, and a statistically significant sensitivity to systematic variations in the intensity of 
contrast in the images when their spatial extent is constant. These results show that the QE from the 
SOM output reliably reflects two of the major functional characteristics of detection by natural visual 
systems as found in primates and other superior mammals. A vast body of literature from the 
neurosciences has shown that these functional properties are critical aspects of visual detection and 
analysis [7-16]. Simulations on random dot images with variations in the size of a single local dot are 
described, showing that the QE from the SOM output after learning consistently signals these very 
small changes. 

On the basis of this body of proof of concept, it is postulated that the QE from the SOM output after 
learning provides a statistically reliable indicator of smallest and changes in image series that may be 
undetectable by human natural vision. It allows for the automatic detection of changes in the spatial 
extent of contrast across images, working on minimally preprocessed images to ensure that contrast 
intensity does not vary between images of a time series. This is applied here to series of medical (MRI) 
images [21-30] with small invisible local increases in lesion contents are submitted to SOM to show 
the usefulness of the QE approach for a fast processing of medical image data when the first problem 
to be addressed is to decide whether a clinically critical image contrast in a medical region of interest 
(mROI) relative to a lesion or a tumor is likely to have changed with time, either in the direction of 
local increase (the patient's condition is getting worse) or in the direction of local decrease (the 
patient's condition is getting better). Then, the QE approach is applied to extracts from time series of 
satellite images of the Nevada Desert and Las Vegas City, USA. The original images for a reference 
time period between 1984 and 2008 were taken from NASA's Landsat database and fed into minimal 
preprocessing to eliminate variations in contrast intensity. It will be shown that the QE from SOM 
output reliably reflects critical structural changes in the landscapes of specific geographic regions of 
interest (gROI), such as Las Vegas City, the residential suburbia of Las Vegas in the North and the 
region of Lake Mead, which is an artificial reservoir enclosed by the Hoover Dam that collects water 
from the Colorado River, providing sustenance in water supply to the whole of Nevada and beyond 
[31]. While the originally monotonous desert landscapes of the gROI Las Vegas City and the 
residential North underwent major restructuration in the years of the reference time period from which 
the image time series were taken, resulting in the progressive increase in landscape variability due to 
man-mad building structures and developments, the landscape of the gROI Lake Mead became 
increasingly arid during the same time period, with water levels of Lake Mead progressively dwindling 
away over the years due to global climate change. These two opposite trends are reliably reflected by 
the corresponding variations in the QE from the SOM output after neural learning, for the different 
image time series corresponding to the different gROI. Linear trend analyses and correlation statistics 
are provided to further highlight important links between man-induced changes and demographic data 
[32] on the one hand, and between the natural phenomenon of drought and water level statistics from 
the Hoover Dam Control Room on the other.  

The detection and characterization of critical changes in objects, event scenes, or public spaces of 
the natural or the built environment reflected by changes in image time series such as computer 
generated image data, photographs, medical images, or remotely sensed image data may be of 
considerable importance for swift decision making in various fields including the medical, human and 
environmental safety, policy making for risk mitigation, or public awareness campaigns. The context 
of emergency places a premium on fast automatic techniques for discriminating between changed and 
unchanged contents in large image time series, and computational methods of change detection in 
image data exploiting different types of transforms and algorithms have been developed previously by 
others [33-51] to meet this challenge. Existing methods have been reviewed previously in excellent 
papers by [33] and [34]. Known computations include Otsu's algorithm [35], Kapur's algorithm [36], 
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and various other procedures such as pixel-based change detection, image differencing, automated 
thresholding, image rationing, regression analysis on image data, the least-square method for change 
detection, change vector analysis, median filtering, background filtering, and fuzzy logic algorithms 
[37-51]. The scope of any of these methods is limited by the specific goal pursued. In general terms, 
change detection consists of identifying differences in the state of an object or phenomenon by 
observing it at different times and implies being able to quantify change(s) due to the effect of time on 
that given object or phenomenon. In image change detection this involves being able to reveal critical 
changes through analysis of discrete data sets drawn from image time series. Major applications of 
change detection concern medical and remotely sensed data. Both are obtained by reliable methods of 
image acquisition to provide image time series through repetitive coverage at short intervals with 
consistent image quality, as shown previously [33, 51, 52].  

The Self-Organizing Map (SOM) 

The Self Organizing Map (SOM) is a neural network architecture [1, 2] inspired by the functional 
architecture of sensory neurons identified in the central nervous system (cortex) of mammals[3-6]. The 
neural learning procedure is unsupervised with specific self-organizing dynamics that do not require 
error correction as do supervised learning algorithms. SOM produces a lower-dimension representation 
of the input space and for each input vector, a competitive winner-take-all learning algorithm [1, 2] 
achieves the lower-dimension visualization of the input data. SOMs are typically applied as feature 
classifiers of input data starting from an initially random feature map. The input data are recursively 
fed into the learning procedure to optimize the final map into a stable representation of features and 
regions of interest (ROI). Each region of the map can be considered in terms of a specific feature class 
of the input space. Whenever the synaptic weights associated with a node of the map match the input 
vector, that specific map area is selectively optimized to more closely resemble the data of the class the 
input vector belongs to. From an initial distribution of random weights, over thousands of iterations, 
SOM progressively sets up a map of stable representations of image regions or ROI. Each 
corresponding region of the final map is a feature classifier and one can think of the graphical output as 
a certain type of feature map of the input space. 

1.1. SOM neural learning: winner takes all 

The vector space of the SOM is by definition Euclidean [1, 2], and the central idea behind the 
principles of Self-Organizing mapping is that every input data item shall be matched to the closest 
fitting neuron of the neural map, called the winner (as denoted by Mc in Figure 1). The winning 
neurons for the corresponding regions are progressively modified on that principle until they optimally 
match the entire data set. The learning procedure follows the neurobiological principles of lateral 
inhibition [53] and the general rule of Hebbian synaptic learning [54]. On the other hand, since the 
spatial neighbourhood around the winners in the map is continuously modified during learning, a 
degree of local and differential ordering of the map is mathematically applied. This principle is called 
smoothing. The resulting local ordering effects will gradually be propagated across the entire SOM. 
The parameters in SOM models can be variable and depend on the type of learning algorithm 
implemented. The final goal of winner-take-all learning is to ensure that the final map output after 
learning stably represents critical similarities in the input data.  
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1.4. SOM output: the quantization error (QE) 

As an output of SOM associated with the final synaptic weights of neurons after learning, the 
quantization error (QE) is a statistical measure of variance. It has sometimes been used to evaluate the 
quality of SOMs, or to benchmark a series of SOMs with different parameters trained on one and the 
same dataset [1, 2, 27, 28]. In this thesis, we exploit the QE to a different and entirely novel purpose. 
The goal here is to benchmark a series of learnt datasets using a SOM with the same parameters. In 
other words, we use the same SOM, same map size, feature size, learning rate and neighborhood radius 
to analyze series of image datasets with clinical significance, or random-dot images, as shown later 
herein. The QE is obtained from the SOM output after learning and mathematically expresses the 
squared distance (usually the average Euclidean distance) between input data x and their corresponding 
so-called best matching units (BMU). Thus, the QE reflects the average distance between each data 
vector (X) and its BMU: 

ܧܳ ൌ 1 ܰ⁄ ∑ ฮ ௜ܺ െ ൫BMUሺ௜ሻ൯ฮ
ே
i=ଵ          (2) 

where N is the number of sample vectors x in the input data. 

The QE is a statistical measure of variance associated with the final synaptic weights of the SOM 
output after learning. It disregards map topology and alignment [28] and its calculation, like that of the 
final synaptic weights, results directly from the unsupervised learning procedure. On this basis, it is 
postulated that the QE reflects critical variations in the map-to-data matching process in a similar way 
as the statistical variance around a mean reflects the dispersion of the raw data around that mean. As 
for one and the same mean we can have differently dispersed raw data, we can have differently 
dispersed Euclidean distances between map nodes and the raw input data for one and the same final 
synaptic weight after learning. 

1.4. Hypothesis: the QE reflects critical spatial variations in image contrast 

In the case of image data for one and the same object, variations in the QE output from SOM could 
be due to small local differences in the distribution of spatial contrast across images of a time series. 
This possibility has been as far as we know not been explored before, yet, it opens new possibilities for 
the fast automatic processing of series of image data for which a quick decision about change or no 
change needs to be made. To provide the necessary proof of concept that validates the postulate here 
above, a series of test simulations on times series of computer generated images was performed to give 
proof that: 

  1. The QE from the SOM output after learning is sensitive in a statistically significant measure 
to the spatial extent of variation in local contrast regions across images when the intensity of contrast is 
constant. 

  2. The QE from the SOM output after learning is sensitive in a statistically significant measure 
to differences in the intensity of local contrast regions across images when the spatial extent of contrast 
is constant. 

2. Proof of concept 

The goal of the following proof-of-concept study is to show that the QE varies consistently, reliably, 
and predictably with local variations in spatially distributed contrast signals in random-dot images, and 
in image series with regularly distributed spatial contrasts (geometric configurations). On the grounds 
of these systematic variations, it will be shown that the QE is a highly sensitive and reliable indicator 
of local and global image homogeneity: as images from a time series become more heterogeneous in 
spatial contents, the QE in the SOM output after learning consistently increases; conversely, as images 
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3. Change detection in time series of medical images  

In medicine, the annotation of image data is subject to considerable differences between individuals, 
even when they are highly specialized experts such as radiologists [21]. The analysis of medical 
images assisted by computer techniques therefore represents a highly complex challenge. Radiologists 
have to assess the progression of patients’ conditions on the basis of often hardly detectable, local 
changes in medical images. These are captured through various imaging techniques, such as magnetic 
resonance imaging (MRI), computerized tomography (CT), and positron emission tomography (PET), 
providing the radiologist with visual information about the state or progression of a given condition 
and helping to determine the course of treatment. Traditional methods for handling medical images 
involve direct visual inspection, which is by its nature subjective. Image science therefore has 
proposed methods for reducing subjectivity by introducing automated procedures. This involves 
various different image processing techniques aimed at identifying specific diagnostic regions, so-
called regions of interest, and specific features representing tumors and lesions. For example, to avoid 
time-consuming voxel-by-voxel comparison for detecting changes between two images, the images 
can be aligned and displacement fields may be computed for recovering apparent motion by using a 
non-rigid registration algorithm [22]. This and similar techniques focus on the detection of regions of 
interest, with tumors or evolving lesions. A computer algorithm compares multiple series of images to 
produce a map of the changes, and expert knowledge is then applied to that map in a series of post-
processing steps in order to generate a set of metrics describing the changes occurring in the images. 
During this process, domain-specific knowledge needs to be introduced, which attempts to reduce the 
impact of subjectivity by incorporating generic information an expert might use when annotating 
medical images manually. This, however, does not completely eliminate subjectivity.  

Other approaches [23, 24] have proposed a computational framework to enable comparison of MRI 
volumes based on gray-scale normalization, to determine quantitative tumor growth between 
successive time intervals. Specific tumor growth indices were computed, such as volume, maximum 
radius, and spherical radius. This approach also requires the initial manual segmentation of the images, 
which is a time-consuming task. Semi-automatically segmenting successive images and then aligning 
them on the basis of hierarchical registration schemes has also been proposed for measuring growth or 
shrinkage in local image details [25]. All these methods rely on the accuracy of segmentation and 
require manual annotation for classifying local changes in pathology of up to a few voxels. Other 
methods [26, 27] which combine input from a medical expert with a computational technique are more 
specifically aimed at difficult-to-detect brain tumor changes. These methods, again, involve a 
subjectivity factor which is problematic given the well-known inter-individual differences between 
experts [21]. Our SOM approach to the problem of change detection of time series of medical images 
considers the whole image as opposed to an image segment of a specific region of interest. Such an 
approach of direct analysis of the medical image as a whole has the advantage of not requiring manual 
benchmarking. The basic idea behind direct analysis is that there exists an intrinsic relationship 
between images with varying contents and their clinical significance, and that this relationship can be 
exploited directly without additional not necessarily reliable intermediate procedures of image 
processing. Compared to some of the traditional methods briefly reviewed here above, the method used 
here has a deeper meaning in the sense that it is close to the most natural approach to the problem. It 
directly targets the final outcome of change detection like a medical expert would, and thereby bridges 
the gap between machine learning and the classic medical image inspection approach of the human 
expert. A medical expert such as a radiologist explores imagers from a time-series as a whole and one 
by one to monitor the progression of a patient’s conditions. Like the SOM, he/she derives diagnostic 
information from this "natural" procedure to reach a decision on the likely progression or remission of 
a condition such as a tumor or lesion, thereby evaluating the likely progress of a patient’s state or 
response to therapy. This classic visual method of determining differences between one series of 
images to another can, however, fail to detect very small differences. This can be overcome by using 
fast SOM learning algorithms, generating quantization errors for rapid automatic change detection in 
medical image data.  
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Here, the power of QE to capture critical local changes is tested on time series of MRI images from 
a single patient before and after traumatic blunt force injury to the knee. In further simulations on MRI 
images to which Poisson noise or synthetic local lesion content were progressively added, it is shown 
that the QE consistently detects minimal changes in medical image data fast. It is suggested that the 
SOM algorithm generating the QE output data could be implemented to assist human experts such as 
radiologists in image-based decision making.  

 3.1. Materials and methods 

A 16 by 16 SOM with an initial neighborhood radius of 5 and learning rate of 0.2 was set up for 
image learning. These initial values were obtained after testing SOM with different numbers of 
neurons to make sure that the cluster structures show sufficient resolution and statistical accuracy [28]. 
The learning process was started with vectors picked randomly from the image array as the initial 
values of the model vectors. Across the three SOM learning experiments, the parameters of the SOM 
were kept constant. 

In the first experiment, SOM was run on two sets of 20 images from a patient with a traumatic knee 
injury courtesy of CHU de Hautepierre, Strasbourg, France. The same acquisition parameters were 
used to acquire the image sets which consisted of time series of 20 MRI images each. The 40 original 
MRI images from these two time series are shown in the Supplementary Materials section. SOM was 
applied to the two time series of original images, taken on two separate dates, before and after blunt 
force traumatic injury. 

In the second experiment, artificial lesion content was added to these same images and SOM 
analysis was run on the modified images. In a previous study [52] original images were modified in a 
similar way by adding synthetically evolving pathological content of 1%, 5% and 22% volume growth 
prior to further analyses in terms of visual recognition experiments testing whether the artificial 
pathologies would be detected by medical expert. Here, we use SOM instead, which was not done in 
that previous study. On the first MRI time series, synthetic lesion content was added by adding higher 
contrast pixels locally to each original image to form a new set of images. Since the aim was to 
reinforce changes within the images between time series, the new set of images retained all the 
characteristics of the first set, except for an additional lesion content, which was uniformly positioned 
in the 20 images of a series, Thereby, introducing synthetic lesion contents ensures that the differences 
between sets of images are not influenced by external factors like location of camera, lighting, the 
patient's position on the MRI machine and so forth. Furthermore, the spatial extent of the introduced 
lesion content is known. Here, it was a 44 by 26 pixels elliptic shape with 72 by 72 dpi gray-scale 
resolution. 

To test another, maybe less arbitrary, way of adding synthetic lesion contents to original medical 
images, a Poisson frequency distribution was added to each image of the two MRI time series. 
Examples are shown here below (Figure 8). Poisson noise may be preferred to adding digital noise 
such as pixels for the generation of synthetic impurities because Poisson noise is mathematically 
correlated with the contrast intensity of each pixel in the image. The process produces a sample image 
from a Poisson distribution for each pixel of the original image. The same Poisson distribution 
parameters were applied to both time series. By its nature, the Poisson method populates the image 
with noise in proportion to existing pixels. 
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The QE distributions were submitted to one-way analysis of variance (ANOVA), which signaled 
that differences in QE from SOM run on the two image series is statistically significant (t (1, 38) = 
3.336; p<.01). This significant difference in the QE distributions directly reflects the clinical 
significance of the image differences between the first and the second visit, in other words the effects 
of blunt force traumatic injury on the image series. 

The results from SOM on the image series with added artificial lesion content similarly produced 
systematic increase in the QE between original image series and processed image series. These QE 
distributions (Figure 10) were also submitted to one-way analysis of variance (ANOVA). The 
differences between the QE distributions for the two series are also, as would be expected, statistically 
significant (t (1, 38) = 5.61; p< .01 and t (1, 38) = 2.18; p<.05 respectively). 

The results from SOM run on the original MRI image series with and without Poisson noise are also 
shown here below (Figure 11). Adding Poisson noise to the original MRI images produces differences 
in the QE distributions that are, again, statistically significant (t (1, 38) = 20.76; p< .001 f and t (1, 38) 
= 9.68; p< .01 for series 1 and 2 and their modified versions, respectively). It is thus shown that adding 
Poisson noise to the original MRI images from the two series produces very similar results to those 
obtained from image series with added pixel contents to simulate artificial lesion growth. 
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testing a simple method of fast and almost instant change detection that can be applied to ANY output 
image generated by ANY of the different biomedical imaging approaches. By this virtue, the simple 
method described here has the potential to aid human observer performance faced with any imaging 
data, and to help sharpen medical expertise and decision making [18, 99, 100, 101]. How QE output 
data may indicate critical change across image contents when compared with human detection using 
the same image material is discussed in detail in previous work from our group [18, 19] in the light of 
concepts from signal detection theory [17, 99]. 

The results from the series of simulations described in this chapter here suggest that the QE from 
SOM analysis seems well-tailored for fast change detection in large bodies of medical images from 
patients. It allows the automatic detection of subtle but significant changes in time series of images 
likely to reflect growing or receding lesions. In clinical practice, finding evidence for subtle growth 
through visual inspection of serial imaging can be very difficult. This is especially true for scans taken 
at relatively short intervals (less than a year). Visual inspection often misses the slow evolution 
because the change may be obscured by variations in body position, slice position, or intensity profile 
between scans, for example [52, 55-57]. In some cases, the change can be too small to be noticed. 
Surgeons and oncologists frequently compute the change in tumor volume by comparing the 
measurements from consecutive scans. When the change in tumor volume is too small and hence 
difficult to detect between two sequential scans, radiologists tend to compare the most recent scan with 
the earliest available image to find any visible evidence for an evolution of the tumor. The resulting 
analysis does, however, not reflect the current development of the tumor but rather a retrospective 
perspective of tumor evolution, as pointed out earlier [52, 55-75]. This study here addresses this 
problem, as fast SOM could be easily implemented to aid clinicians in deciding about treatment. The 
process of executing the code to determine the QE distribution for a series of twenty images takes 
about 40 seconds. This involves reading the DICOM images from a folder, running the SOM and 
determining the QE for each image, displaying the image on the screen and saving the QE value in a 
text file. In summary, whenever the QE from SOM on a patient's medical images taken at consecutive 
times rises, it is a potential indication that lesions or other pathological changes of the organ under 
study may be developing, while a decrease of the QE may indicate that a pathology is receding. To the 
best of our knowledge, our approach is the first to automatically detect potentially critical local 
changes in a patient by comparing images taken from subsequent clinical visits without relying on 
visual inspection or manual annotations. The SOM method detects these changes rapidly with a 
minimal computation time using consecutive images of an organ without having to rely on derived 
image qualities as is the case for image subtraction methods, for example [55, 56]. The SOM method 
also represents a clear advantage compared with monitoring a condition, for example cancer 
progression or remission, using manual segmentation techniques on each image from an MRI 
sequence, which is prohibitively time consuming. 

In the human and environmental sciences, time-series of satellite images may reveal important data 
about changes in environmental conditions and natural or urban landscape structures that are of 
potential interest to citizens, historians, or policymakers. In the next section, we will show how the QE 
from SOM ran on extracts of satellite images for specific geographic regions of interest (gROI) can be 
used to detect relevant changes. 

4. Change detection in time series of satellite images 

Here, the Self Organized Map output in terms of the QE of the final synaptic weights after learning 
is applied for fast detection of critical changes in satellite images of specific gROI. These simulations 
are run on extracts of image time series of Las Vegas and its nearby surroundings in the Nevada Desert 
(USA), generated across the years 1984-2008, a period of major restructuration of the urban landscape 
of Las Vegas City and, at the same time, specific modifications of the natural landscape due to global 
climate change. As shown in the previous chapters, the QE from the SOM output is a reliable measure 
of variability in local image contents. In the present work, statistical trend analysis is used to show how 
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the QE from SOM run on specific geographic regions of interest extracted from satellite images can be 
exploited for visualizing structural change across time at a glance, highlighting significantly correlated 
demographic data for a specific time period.  

The detection and characterization of critical changes in public spaces of the natural or the built 
environment reflected by changes in image time series such as photographs or remotely sensed image 
data may be of considerable importance for risk mitigation policies and public awareness. This places a 
premium on fast automatic techniques for discriminating between changed and unchanged contents in 
large image time series, and computational methods of change detection in image data including 
remotely sensed data, exploiting different types of transforms and algorithms, have been developed to 
meet this challenge. Existing methods have been reviewed previously in excellent papers by [33] and 
[34]. Known computations include Otsu's algorithm [35], Kapur's algorithm [36], and various other 
procedures such as pixel-based change detection, image differencing, automated thresholding, image 
rationing, regression analysis on image data, the least-square method for change detection, change 
vector analysis, median filtering, background filtering, and fuzzy logic algorithms [37-47]. The scope 
of any of these methods is limited by the specific goal pursued. As pointed out previously, image 
change detection involves being able to reveal critical changes through analysis of discrete data sets 
drawn from image time series. One of the major applications concerns remotely sensed data obtained 
from Earth-orbiting satellites. These provide image time series through repetitive coverage at short 
intervals with consistent image quality [33].  

Here, extracts from satellite images representing specific geographic regions of interest of Las 
Vegas County were used as input to SOM. After preprocessing to ensure equivalence in scale and 
contrast intensity of the extracted images within a time series, the image input is exploited directly 
without additional or intermediate procedures of analysis. To control for differences in intensity across 
images of a given time series, a transform is applied before running SOM on each extracted image of a 
time series. Then, the QE output distributions from SOM on adequately preprocessed extracts from 
satellite images of Las Vegas County generated across the years 1984-2008 are examined. The satellite 
image extracts correspond to three distinct gROI: Las Vegas City Center, Lake Mead and its close 
surroundings in the Nevada Desert, and the residential North of Las Vegas. The reference time period 
chosen for this study here (1984-2008) is of particular interest because of major structural changes in 
the urban landscape of Las Vegas City and the residential North during that period, and the gradual 
dwindling of nearby Lake Mead's water levels due to the effects of global climate change. We use 
statistical trend analysis to prove that:  

  1) the QE distributions from the SOM on the different images corresponding to the gROI under 
study reliably reflect these critical changes across the years. 

  2) the QE output is significantly correlated with the most relevant demographic data for the 
same reference time period. 

4.1. Materials and methods  

The images used for analysis of geographic regions of interest by SOM were extracted from time-
lapse animations of Las Vegas City and Lake Mead, Nevada, from 1984-2008, as captured by NASA 
Landsat sensors.  
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for land cover change detection and detection of other changes in natural landscapes (erosion, aridity, 
flooding etc.), there have been outstanding achievements over the years in the following  

  1) multi-temporal image generation 

  2) radiometric calibration 

which had as a result that there is no longer much need for geometric correction of the satellite 
images. Previously, a standard geographic coordinate system was typically selected for images of 
interest to identify geometric ground control points on the satellite image and on the corresponding 
geographic coordinate system to derive a geometric relation between the two [102-113]. Nowadays, 
the satellite images are of a constant quality across time series and reflect geographic locations and 
relative distances between them much more reliably. Also, the imagery is not any more so much 
affected by climatic conditions. 

In recent studies [114], up-to-date change detection methods applied to satellite images have been 
generally categorized as either supervised or unsupervised, according to the nature of data processing. 
The former is based on a supervised classification method, which requires the availability of a ground 
truth in order to derive a suitable training set for the learning process of classifiers. The latter approach, 
which is adopted here in this fast SOM approach, performs change detection by making a direct 
comparison of multi-temporal images from a series considered without incorporating any additional 
information. Others [114] have previously proposed a technique for unsupervised change detection in 
multi-temporal satellite images using principal component analysis (PCA) and k-means clustering. 
Therein, the difference between two image is partitioned into h times h non-overlapping blocks. Ortho-
normal eigenvectors are extracted through PCA from h times h non-overlapping blocks and set to 
create an eigenvector space. Each pixel in the difference image is represented by an S-dimensional 
feature vector, which is the projection of h times h the difference image data onto the generated 
eigenvector space. Change detection is then achieved by partitioning the feature vector space into two 
clusters using k-means clustering with k = 2, and then assigning each pixel to one of the two clusters 
using the minimum Euclidean distance between pixels' feature vectors and mean feature vectors of 
clusters. Although this statistical method has proven effective for change detection at the pixel level, 
which makes it possibly as sensitive to small changes as is the unsupervised method proposed and 
tested here in this thesis, it involves pixel-by-pixel computation of local differences between no more 
than two images by algorithms that are much more time consuming than these of SOM.  

In the SOM approach used here, a whole series of 20 or more images are compared at the pixel 
level, generating QE output sensitive to change at the pixel level for entire dataset in a few minutes and 
thereby allowing to decide instantly (change/no change) about presence or absence of smallest 
localized changes across images of the whole time series. There is, to our knowledge, no other method 
capable of providing such an instant result at this level of analysis. A global localization of changed 
area is achieved here by selecting specific gROI where change is suspected. Finer analyses relative to 
exact pixel-by-pixel locations of change in remotely sensed data using SOM for feature mapping, 
which is the more classic approach [115, 116, 117, 118] can be run subsequently for a specific time if 
necessary. On the example of the gROI of Lake Mead selected here in this study, a decision maker 
might be alerted by the QE evolution in the data shown, and then decide he/she needs finer analyses for 
a specific year and region at the Lake to implement appropriate policies for risk mitigation at that 
location. Then, SOM approaches as described in [115, 116, 117, 118] would be adequate methods of 
choice.  

The QE belongs to a type of quality measures that have been used to benchmark different SOMs 
trained on the same dataset [119], convergence criteria [120], or to assess the fault tolerance of SOM 
[121]. In our work, we have used QE to realize a generalized measure of variation across data in a 
series of datasets using SOM learning with exactly the same parameters. In other words, we use the 
same SOM, same map size, feature size, learning rate and neighbourhood radius to analyze series of 
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image datasets with clinical significance, random-dot images, or remotely sensed image data as shown 
here. The QE is derived after subjecting an image to the self-organizing map algorithm analysis and by 
calculating the squared distance (usually, the standard Euclidean distance) between an input data x and 
its corresponding centroid, the so-called “best matching unit". Since this is easy to implement, fast, and 
reliable for what it is supposed to provide, an instant criterion for decision about change/no change in a 
whole series of images, it represents indeed a promising and non-expensive technique for the automatic 
tracking and harvesting of landscape-change information from large bodies of image data on the basis 
of, in principle, ready-to-use simulations. Such information relative to critical changes in 
environmental conditions and natural or urban landscape structures can, as shown here, be instantly 
correlated with other relevant demographic data which are of potential interest to citizens, historians, or 
policymakers. 

Conclusions 

Here, we have given a large body of proof of the relative power of the QE from SOM output by 
showing that the metric is sensitive to spatial extents of local image contrasts at constant intensity. 
Applied here to medical images and adequately preprocessed extracts from satellite images, the QE 
output from SOM reliably reflects spatial variability in image ROI corresponding to a specific ROI. 
The QE provides a statistically significant indicator of potentially important change in image contents 
across time which may reflect a critical evolution of man-induced and natural phenomena in these 
geographic regions of interest. Once again, it has to be pointed out that the major advantage of the 
method is the fast computation time and the fact that it can deal with a whole series of 20 or more 
images at a time. After some minimal preprocessing to control for equivalence in spatial scale and 
contrast intensity of images of a given image series, it takes hardly more than a minute to run SOM on 
a time series of 25 images, for example.  
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