
The OpenACC R©
1

Application Programming Interface2

Version 3.23

OpenACC-Standard.org4

November, 20215

The OpenACC R© API

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright,6

no part of this document may be reproduced, stored in, or introduced into a retrieval system, or transmitted in any form7

or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express8

written permission of the authors.9

c© 2011-2021 OpenACC-Standard.org. All rights reserved.10

2

The OpenACC R© API

Contents11

1. Introduction 912

1.1. Scope . 913

1.2. Execution Model . 914

1.3. Memory Model . 1115

1.4. Language Interoperability . 1216

1.5. Runtime Errors . 1317

1.6. Conventions used in this document . 1318

1.7. Organization of this document . 1419

1.8. References . 1420

1.9. Changes from Version 1.0 to 2.0 . 1621

1.10. Corrections in the August 2013 document . 1722

1.11. Changes from Version 2.0 to 2.5 . 1723

1.12. Changes from Version 2.5 to 2.6 . 1924

1.13. Changes from Version 2.6 to 2.7 . 1925

1.14. Changes from Version 2.7 to 3.0 . 2026

1.15. Changes from Version 3.0 to 3.1 . 2127

1.16. Changes from Version 3.1 to 3.2 . 2228

1.17. Topics Deferred For a Future Revision . 2429

2. Directives 2730

2.1. Directive Format . 2731

2.2. Conditional Compilation . 2832

2.3. Internal Control Variables . 2833

2.3.1. Modifying and Retrieving ICV Values . 2834

2.4. Device-Specific Clauses . 2935

2.5. Compute Constructs . 3036

2.5.1. Parallel Construct . 3037

2.5.2. Serial Construct . 3138

2.5.3. Kernels Construct . 3239

2.5.4. Compute Construct Restrictions . 3340

2.5.5. Compute Construct Errors . 3441

2.5.6. if clause . 3442

2.5.7. self clause . 3443

2.5.8. async clause . 3444

2.5.9. wait clause . 3445

2.5.10. num gangs clause . 3446

2.5.11. num workers clause . 3547

2.5.12. vector length clause . 3548

2.5.13. private clause . 3549

2.5.14. firstprivate clause . 3550

2.5.15. reduction clause . 3551

2.5.16. default clause . 3652

2.6. Data Environment . 3753

2.6.1. Variables with Predetermined Data Attributes 3754

3

The OpenACC R© API

2.6.2. Variables with Implicitly Determined Data Attributes 3755

2.6.3. Data Regions and Data Lifetimes . 3956

2.6.4. Data Structures with Pointers . 3957

2.6.5. Data Construct . 4058

2.6.6. Enter Data and Exit Data Directives . 4159

2.6.7. Reference Counters . 4360

2.6.8. Attachment Counter . 4461

2.7. Data Clauses . 4462

2.7.1. Data Specification in Data Clauses . 4563

2.7.2. Data Clause Actions . 4664

2.7.3. Data Clause Errors . 4965

2.7.4. deviceptr clause . 4966

2.7.5. present clause . 5067

2.7.6. copy clause . 5068

2.7.7. copyin clause . 5169

2.7.8. copyout clause . 5170

2.7.9. create clause . 5271

2.7.10. no create clause . 5372

2.7.11. delete clause . 5373

2.7.12. attach clause . 5474

2.7.13. detach clause . 5475

2.8. Host Data Construct . 5476

2.8.1. use device clause . 5577

2.8.2. if clause . 5578

2.8.3. if present clause . 5579

2.9. Loop Construct . 5580

2.9.1. collapse clause . 5781

2.9.2. gang clause . 5782

2.9.3. worker clause . 5983

2.9.4. vector clause . 5984

2.9.5. seq clause . 5985

2.9.6. independent clause . 6086

2.9.7. auto clause . 6087

2.9.8. tile clause . 6088

2.9.9. device type clause . 6089

2.9.10. private clause . 6190

2.9.11. reduction clause . 6191

2.10. Cache Directive . 6592

2.11. Combined Constructs . 6593

2.12. Atomic Construct . 6794

2.13. Declare Directive . 7195

2.13.1. device resident clause . 7296

2.13.2. create clause . 7297

2.13.3. link clause . 7398

2.14. Executable Directives . 7499

2.14.1. Init Directive . 74100

2.14.2. Shutdown Directive . 75101

2.14.3. Set Directive . 76102

4

The OpenACC R© API

2.14.4. Update Directive . 78103

2.14.5. Wait Directive . 80104

2.14.6. Enter Data Directive . 80105

2.14.7. Exit Data Directive . 80106

2.15. Procedure Calls in Compute Regions . 80107

2.15.1. Routine Directive . 80108

2.15.2. Global Data Access . 83109

2.16. Asynchronous Behavior . 83110

2.16.1. async clause . 84111

2.16.2. wait clause . 85112

2.16.3. Wait Directive . 85113

2.17. Fortran Specific Behavior . 86114

2.17.1. Optional Arguments . 86115

2.17.2. Do Concurrent Construct . 87116

3. Runtime Library 89117

3.1. Runtime Library Definitions . 89118

3.2. Runtime Library Routines . 90119

3.2.1. acc get num devices . 90120

3.2.2. acc set device type . 90121

3.2.3. acc get device type . 91122

3.2.4. acc set device num . 92123

3.2.5. acc get device num . 92124

3.2.6. acc get property . 93125

3.2.7. acc init . 94126

3.2.8. acc shutdown . 94127

3.2.9. acc async test . 95128

3.2.10. acc wait . 96129

3.2.11. acc wait async . 97130

3.2.12. acc wait any . 99131

3.2.13. acc get default async . 99132

3.2.14. acc set default async . 100133

3.2.15. acc on device . 100134

3.2.16. acc malloc . 101135

3.2.17. acc free . 101136

3.2.18. acc copyin and acc create . 102137

3.2.19. acc copyout and acc delete . 103138

3.2.20. acc update device and acc update self . 105139

3.2.21. acc map data . 107140

3.2.22. acc unmap data . 107141

3.2.23. acc deviceptr . 108142

3.2.24. acc hostptr . 108143

3.2.25. acc is present . 109144

3.2.26. acc memcpy to device . 110145

3.2.27. acc memcpy from device . 111146

3.2.28. acc memcpy device . 112147

3.2.29. acc attach and acc detach . 112148

3.2.30. acc memcpy d2d . 113149

5

The OpenACC R© API

4. Environment Variables 117150

4.1. ACC DEVICE TYPE . 117151

4.2. ACC DEVICE NUM . 117152

4.3. ACC PROFLIB . 117153

5. Profiling and Error Callback Interface 119154

5.1. Events . 119155

5.1.1. Runtime Initialization and Shutdown . 120156

5.1.2. Device Initialization and Shutdown . 120157

5.1.3. Enter Data and Exit Data . 121158

5.1.4. Data Allocation . 121159

5.1.5. Data Construct . 122160

5.1.6. Update Directive . 122161

5.1.7. Compute Construct . 122162

5.1.8. Enqueue Kernel Launch . 123163

5.1.9. Enqueue Data Update (Upload and Download) 123164

5.1.10. Wait . 123165

5.1.11. Error Event . 124166

5.2. Callbacks Signature . 124167

5.2.1. First Argument: General Information . 125168

5.2.2. Second Argument: Event-Specific Information 126169

5.2.3. Third Argument: API-Specific Information 131170

5.3. Loading the Library . 132171

5.3.1. Library Registration . 133172

5.3.2. Statically-Linked Library Initialization 134173

5.3.3. Runtime Dynamic Library Loading . 134174

5.3.4. Preloading with LD PRELOAD . 135175

5.3.5. Application-Controlled Initialization . 136176

5.4. Registering Event Callbacks . 136177

5.4.1. Event Registration and Unregistration . 136178

5.4.2. Disabling and Enabling Callbacks . 138179

5.5. Advanced Topics . 139180

5.5.1. Dynamic Behavior . 139181

5.5.2. OpenACC Events During Event Processing 140182

5.5.3. Multiple Host Threads . 140183

6. Glossary 143184

A. Recommendations for Implementers 149185

A.1. Target Devices . 149186

A.1.1. NVIDIA GPU Targets . 149187

A.1.2. AMD GPU Targets . 149188

A.1.3. Multicore Host CPU Target . 150189

A.2. API Routines for Target Platforms . 150190

A.2.1. NVIDIA CUDA Platform . 150191

A.2.2. OpenCL Target Platform . 151192

A.3. Recommended Options . 152193

A.3.1. C Pointer in Present clause . 152194

6

The OpenACC R© API

A.3.2. Automatic Data Attributes . 152195

7

The OpenACC R© API

8

The OpenACC R© API 1.1. Scope

1. Introduction196

This document describes the compiler directives, library routines, and environment variables that197

collectively define the OpenACCTM Application Programming Interface (OpenACC API) for writ-198

ing parallel programs in C, C++, and Fortran that run identified regions in parallel on multicore199

CPUs or attached accelerators. The method described provides a model for parallel programming200

that is portable across operating systems and various types of multicore CPUs and accelerators. The201

directives extend the ISO/ANSI standard C, C++, and Fortran base languages in a way that allows202

a programmer to migrate applications incrementally to parallel multicore and accelerator targets203

using standards-based C, C++, or Fortran.204

The directives and programming model defined in this document allow programmers to create appli-205

cations capable of using accelerators without the need to explicitly manage data or program transfers206

between a host and accelerator or to initiate accelerator startup and shutdown. Rather, these details207

are implicit in the programming model and are managed by the OpenACC API-enabled compilers208

and runtime environments. The programming model allows the programmer to augment informa-209

tion available to the compilers, including specification of data local to an accelerator, guidance on210

mapping of loops for parallel execution, and similar performance-related details.211

1.1 Scope212

This OpenACC API document covers only user-directed parallel and accelerator programming,213

where the user specifies the regions of a program to be targeted for parallel execution. The remainder214

of the program will be executed sequentially on the host. This document does not describe features215

or limitations of the host programming environment as a whole; it is limited to specification of loops216

and regions of code to be executed in parallel on a multicore CPU or an accelerator.217

This document does not describe automatic detection of parallel regions or automatic offloading218

of regions of code to an accelerator by a compiler or other tool. This document does not describe219

splitting loops or code regions across multiple accelerators attached to a single host. While future220

compilers may allow for automatic parallelization or automatic offloading, or parallelizing across221

multiple accelerators of the same type, or across multiple accelerators of different types, these pos-222

sibilities are not addressed in this document.223

1.2 Execution Model224

The execution model targeted by OpenACC API-enabled implementations is host-directed execu-225

tion with an attached parallel accelerator, such as a GPU, or a multicore host with a host thread that226

initiates parallel execution on the multiple cores, thus treating the multicore CPU itself as a device.227

Much of a user application executes on a host thread. Compute intensive regions are offloaded to an228

accelerator or executed on the multiple host cores under control of a host thread. A device, either229

an attached accelerator or the multicore CPU, executes parallel regions, which typically contain230

work-sharing loops, kernels regions, which typically contain one or more loops that may be exe-231

cuted as kernels, or serial regions, which are blocks of sequential code. Even in accelerator-targeted232

regions, the host thread may orchestrate the execution by allocating memory on the accelerator de-233

vice, initiating data transfer, sending the code to the accelerator, passing arguments to the compute234

region, queuing the accelerator code, waiting for completion, transferring results back to the host,235

9

The OpenACC R© API 1.2. Execution Model

and deallocating memory. In most cases, the host can queue a sequence of operations to be executed236

on a device, one after the other.237

Most current accelerators and many multicore CPUs support two or three levels of parallelism.238

Most accelerators and multicore CPUs support coarse-grain parallelism, which is fully parallel exe-239

cution across execution units. There may be limited support for synchronization across coarse-grain240

parallel operations. Many accelerators and some CPUs also support fine-grain parallelism, often241

implemented as multiple threads of execution within a single execution unit, which are typically242

rapidly switched on the execution unit to tolerate long latency memory operations. Finally, most243

accelerators and CPUs also support SIMD or vector operations within each execution unit. The244

execution model exposes these multiple levels of parallelism on a device and the programmer is245

required to understand the difference between, for example, a fully parallel loop and a loop that246

is vectorizable but requires synchronization between statements. A fully parallel loop can be pro-247

grammed for coarse-grain parallel execution. Loops with dependences must either be split to allow248

coarse-grain parallel execution, or be programmed to execute on a single execution unit using fine-249

grain parallelism, vector parallelism, or sequentially.250

OpenACC exposes these three levels of parallelism via gang, worker, and vector parallelism. Gang251

parallelism is coarse-grain. A number of gangs will be launched on the accelerator. Worker paral-252

lelism is fine-grain. Each gang will have one or more workers. Vector parallelism is for SIMD or253

vector operations within a worker.254

When executing a compute region on a device, one or more gangs are launched, each with one or255

more workers, where each worker may have vector execution capability with one or more vector256

lanes. The gangs start executing in gang-redundant mode (GR mode), meaning one vector lane of257

one worker in each gang executes the same code, redundantly. When the program reaches a loop258

or loop nest marked for gang-level work-sharing, the program starts to execute in gang-partitioned259

mode (GP mode), where the iterations of the loop or loops are partitioned across gangs for truly260

parallel execution, but still with only one worker per gang and one vector lane per worker active.261

When only one worker is active, in either GR or GP mode, the program is in worker-single mode262

(WS mode). When only one vector lane is active, the program is in vector-single mode (VS mode).263

If a gang reaches a loop or loop nest marked for worker-level work-sharing, the gang transitions to264

worker-partitioned mode (WP mode), which activates all the workers of the gang. The iterations265

of the loop or loops are partitioned across the workers of this gang. If the same loop is marked for266

both gang-partitioning and worker-partitioning, then the iterations of the loop are spread across all267

the workers of all the gangs. If a worker reaches a loop or loop nest marked for vector-level work-268

sharing, the worker will transition to vector-partitioned mode (VP mode). Similar to WP mode, the269

transition to VP mode activates all the vector lanes of the worker. The iterations of the loop or loops270

will be partitioned across the vector lanes using vector or SIMD operations. Again, a single loop271

may be marked for one, two, or all three of gang, worker, and vector parallelism, and the iterations272

of that loop will be spread across the gangs, workers, and vector lanes as appropriate.273

The program starts executing with a single initial host thread, identified by a program counter and274

its stack. The initial host thread may spawn additional host threads, using OpenACC or another275

mechanism, such as with the OpenMP API. On a device, a single vector lane of a single worker of a276

single gang is called a device thread. When executing on an accelerator, a parallel execution context277

is created on the accelerator and may contain many such threads.278

The user should not attempt to implement barrier synchronization, critical sections, or locks across279

any of gang, worker, or vector parallelism. The execution model allows for an implementation that280

10

The OpenACC R© API 1.3. Memory Model

executes some gangs to completion before starting to execute other gangs. This means that trying281

to implement synchronization between gangs is likely to fail. In particular, a barrier across gangs282

cannot be implemented in a portable fashion, since all gangs may not ever be active at the same time.283

Similarly, the execution model allows for an implementation that executes some workers within a284

gang or vector lanes within a worker to completion before starting other workers or vector lanes,285

or for some workers or vector lanes to be suspended until other workers or vector lanes complete.286

This means that trying to implement synchronization across workers or vector lanes is likely to fail.287

In particular, implementing a barrier or critical section across workers or vector lanes using atomic288

operations and a busy-wait loop may never succeed, since the scheduler may suspend the worker or289

vector lane that owns the lock, and the worker or vector lane waiting on the lock can never complete.290

Some devices, such as a multicore CPU, may also create and launch additional compute regions,291

allowing for nested parallelism. In that case, the OpenACC directives may be executed by a host292

thread or a device thread. This specification uses the term local thread or local memory to mean the293

thread that executes the directive, or the memory associated with that thread, whether that thread294

executes on the host or on the accelerator. The specification uses the term local device to mean the295

device on which the local thread is executing.296

Most accelerators can operate asynchronously with respect to the host thread. Such devices have one297

or more activity queues. The host thread will enqueue operations onto the device activity queues,298

such as data transfers and procedure execution. After enqueuing the operation, the host thread can299

continue execution while the device operates independently and asynchronously. The host thread300

may query the device activity queue(s) and wait for all the operations in a queue to complete.301

Operations on a single device activity queue will complete before starting the next operation on the302

same queue; operations on different activity queues may be active simultaneously and may complete303

in any order.304

1.3 Memory Model305

The most significant difference between a host-only program and a host+accelerator program is that306

the memory on an accelerator may be discrete from host memory. This is the case with most current307

GPUs, for example. In this case, the host thread may not be able to read or write device memory308

directly because it is not mapped into the host thread’s virtual memory space. All data movement309

between host memory and accelerator memory must be performed by the host thread through system310

calls that explicitly move data between the separate memories, typically using direct memory access311

(DMA) transfers. Similarly, the accelerator may not be able to read or write host memory; though312

this is supported by some accelerators, it may incur significant performance penalty.313

The concept of discrete host and accelerator memories is very apparent in low-level accelerator314

programming languages such as CUDA or OpenCL, in which data movement between the memories315

can dominate user code. In the OpenACC model, data movement between the memories can be316

implicit and managed by the compiler, based on directives from the programmer. However, the317

programmer must be aware of the potentially discrete memories for many reasons, including but318

not limited to:319

• Memory bandwidth between host memory and accelerator memory determines the level of320

compute intensity required to effectively accelerate a given region of code.321

• The user should be aware that a discrete accelerator memory is usually significantly smaller322

than the host memory, prohibiting offloading regions of code that operate on very large323

amounts of data.324

11

The OpenACC R© API 1.4. Language Interoperability

• Data in host memory may only be accessible on the host; data in accelerator memory may325

only be accessible on that accelerator. Explicitly transferring pointer values between host and326

accelerator memory is not advised. Dereferencing pointers to host memory on an accelerator327

or dereferencing pointers to accelerator memory on the host is likely to result in a runtime328

error or incorrect results on such targets.329

OpenACC exposes the discrete memories through the use of a device data environment. Device data330

has an explicit lifetime, from when it is allocated or created until it is deleted. If a device shares331

memory with the local thread, its device data environment will be shared with the local thread. In332

that case, the implementation need not create new copies of the data for the device and no data333

movement need be done. If a device has a discrete memory and shares no memory with the local334

thread, the implementation will allocate space in device memory and copy data between the local335

memory and device memory, as appropriate. The local thread may share some memory with a336

device and also have some memory that is not shared with that device. In that case, data in shared337

memory may be accessed by both the local thread and the device. Data not in shared memory will338

be copied to device memory as necessary.339

Some accelerators implement a weak memory model. In particular, they do not support memory340

coherence between operations executed by different threads; even on the same execution unit, mem-341

ory coherence is only guaranteed when the memory operations are separated by an explicit memory342

fence. Otherwise, if one thread updates a memory location and another reads the same location, or343

two threads store a value to the same location, the hardware may not guarantee the same result for344

each execution. While a compiler can detect some potential errors of this nature, it is nonetheless345

possible to write a compute region that produces inconsistent numerical results.346

Similarly, some accelerators implement a weak memory model for memory shared between the347

host and the accelerator, or memory shared between multiple accelerators. Programmers need to348

be very careful that the program uses appropriate synchronization to ensure that an assignment or349

modification by a thread on any device to data in shared memory is complete and available before350

that data is used by another thread on the same or another device.351

Some current accelerators have a software-managed cache, some have hardware managed caches,352

and most have hardware caches that can be used only in certain situations and are limited to read-353

only data. In low-level programming models such as CUDA or OpenCL languages, it is up to the354

programmer to manage these caches. In the OpenACC model, these caches are managed by the355

compiler with hints from the programmer in the form of directives.356

1.4 Language Interoperability357

The specification supports programs written using OpenACC in two or more of Fortran, C, and358

C++ languages. The parts of the program in any one base language will interoperate with the parts359

written in the other base languages as described here. In particular:360

• Data made present in one base language on a device will be seen as present by any base361

language.362

• A region that starts and ends in a procedure written in one base language may directly or363

indirectly call procedures written in any base language. The execution of those procedures364

are part of the region.365

12

The OpenACC R© API 1.5. Runtime Errors

1.5 Runtime Errors366

Common runtime errors are noted in this document. When one of these runtime errors is issued, one367

or more error callback routines are called by the program. Error conditions are noted throughout368

Chapter 2 Directives and Chapter 3 Runtime Library along with the error code that gets set for the369

error callback.370

A list of error codes appears in Section 5.2.2. Since device actions may occur asynchronously,371

some errors may occur asynchronously as well. In such cases, the error callback routines may not372

be called immediately when the error occurs, but at some point later when the error is detected373

during program execution. In situations when more than one error may occur or has occurred,374

any one of the errors may be issued and different implementations may issue different errors. An375

acc_error_system error may be issued at any time if the current device becomes unavailable376

due to underlying system issues.377

The default error callback routine may print an error message and halt program execution. The ap-378

plication can register one or more additional error callback routines, to allow a failing application to379

release resources or to cleanly shut down a large parallel runtime with many threads and processes.380

See Chapter 5 Profiling and Error Callback Interface. The error callback mechanism is not intended381

for error recovery. There is no support for restarting or retrying an OpenACC program, construct, or382

API routine after an error condition has been detected and an error callback routine has been called.383

1.6 Conventions used in this document384

Some terms are used in this specification that conflict with their usage as defined in the base lan-385

guages. When there is potential confusion, the term will appear in the Glossary.386

Keywords and punctuation that are part of the actual specification will appear in typewriter font:387

#pragma acc388

Italic font is used where a keyword or other name must be used:389

#pragma acc directive-name390

For C and C++, new-line means the newline character at the end of a line:391

#pragma acc directive-name new-line392

Optional syntax is enclosed in square brackets; an option that may be repeated more than once is393

followed by ellipses:394

#pragma acc directive-name [clause [[,] clause]. . .] new-line395

In this spec, a var (in italics) is one of the following:396

• a variable name (a scalar, array, or composite variable name);397

• a subarray specification with subscript ranges;398

• an array element;399

• a member of a composite variable;400

• a common block name between slashes.401

13

The OpenACC R© API 1.8. References

Not all options are allowed in all clauses; the allowable options are clarified for each use of the term402

var. Unnamed common blocks (blank commons) are not permitted and common blocks of the same403

name must be of the same size in all scoping units as required by the Fortran standard.404

To simplify the specification and convey appropriate constraint information, a pqr-list is a comma-405

separated list of pqr items. For example, an int-expr-list is a comma-separated list of one or more406

integer expressions, and a var-list is a comma-separated list of one or more vars. The one exception407

is clause-list, which is a list of one or more clauses optionally separated by commas.408

#pragma acc directive-name [clause-list] new-line409

For C/C++, unless otherwise specified, each expression inside of the OpenACC clauses and direc-410

tive arguments must be a valid assignment-expression. This avoids ambiguity between the comma411

operator and comma-separated list items.412

In this spec, a do loop (in italics) is the do construct as defined by the Fortran standard. The do-stmt413

of the do construct must conform to one of the following forms:414

do [label] do-var = lb, ub [, incr]415

do concurrent [label] concurrent-header [concurrent-locality]416

The do-var is a variable name and the lb, ub, incr are scalar integer expressions. A do concurrent417

is treated as if defining a loop for each index in the concurrent-header.418

An italicized true is used for a condition that evaluates to nonzero in C or C++, or .true. in419

Fortran. An italicized false is used for a condition that evaluates to zero in C or C++, or .false.420

in Fortran.421

1.7 Organization of this document422

The rest of this document is organized as follows:423

Chapter 2 Directives, describes the C, C++, and Fortran directives used to delineate accelerator424

regions and augment information available to the compiler for scheduling of loops and classification425

of data.426

Chapter 3 Runtime Library, defines user-callable functions and library routines to query the accel-427

erator features and control behavior of accelerator-enabled programs at runtime.428

Chapter 4 Environment Variables, defines user-settable environment variables used to control be-429

havior of accelerator-enabled programs at runtime.430

Chapter 5 Profiling and Error Callback Interface, describes the OpenACC interface for tools that431

can be used for profile and trace data collection.432

Chapter 6 Glossary, defines common terms used in this document.433

Appendix A Recommendations for Implementers, gives advice to implementers to support more434

portability across implementations and interoperability with other accelerator APIs.435

1.8 References436

Each language version inherits the limitations that remain in previous versions of the language in437

this list.438

14

The OpenACC R© API 1.8. References

• American National Standard Programming Language C, ANSI X3.159-1989 (ANSI C).439

• ISO/IEC 9899:1999, Information Technology – Programming Languages – C, (C99).440

• ISO/IEC 9899:2011, Information Technology – Programming Languages – C, (C11).441

The use of the following C11 features may result in unspecified behavior.442

– Threads443

– Thread-local storage444

– Parallel memory model445

– Atomic446

• ISO/IEC 9899:2018, Information Technology – Programming Languages – C, (C18).447

The use of the following C18 features may result in unspecified behavior.448

– Thread related features449

• ISO/IEC 14882:1998, Information Technology – Programming Languages – C++.450

• ISO/IEC 14882:2011, Information Technology – Programming Languages – C++, (C++11).451

The use of the following C++11 features may result in unspecified behavior.452

– Extern templates453

– copy and rethrow exceptions454

– memory model455

– atomics456

– move semantics457

– std::thread458

– thread-local storage459

• ISO/IEC 14882:2014, Information Technology – Programming Languages – C++, (C++14).460

• ISO/IEC 14882:2017, Information Technology – Programming Languages – C++, (C++17).461

• ISO/IEC 1539-1:2004, Information Technology – Programming Languages – Fortran – Part462

1: Base Language, (Fortran 2003).463

• ISO/IEC 1539-1:2010, Information Technology – Programming Languages – Fortran – Part464

1: Base Language, (Fortran 2008).465

The use of the following Fortran 2008 features may result in unspecified behavior.466

– Coarrays467

– Simply contiguous arrays rank remapping to rank>1 target468

– Allocatable components of recursive type469

– Polymorphic assignment470

15

The OpenACC R© API 1.9. Changes from Version 1.0 to 2.0

• ISO/IEC 1539-1:2018, Information Technology – Programming Languages – Fortran – Part471

1: Base Language, (Fortran 2018).472

The use of the following Fortran 2018 features may result in unspecified behavior.473

– Interoperability with C474

∗ C functions declared in ISO Fortran binding.h475

∗ Assumed rank476

– All additional parallel/coarray features477

• OpenMP Application Program Interface, version 5.0, November 2018478

• NVIDIA CUDATM C Programming Guide, version 11.1.1, October 2020479

• The OpenCL Specification, version 2.2, Khronos OpenCL Working Group, July 2019480

• INCITS INCLUSIVE TERMINOLOGY GUIDELINES, version 2021.06.07, InterNational Com-481

mittee for Information Technology Standards, June 2021482

1.9 Changes from Version 1.0 to 2.0483

• _OPENACC value updated to 201306484

• default(none) clause on parallel and kernels directives485

• the implicit data attribute for scalars in parallel constructs has changed486

• the implicit data attribute for scalars in loops with loop directives with the independent487

attribute has been clarified488

• acc_async_sync and acc_async_noval values for the async clause489

• Clarified the behavior of the reduction clause on a gang loop490

• Clarified allowable loop nesting (gang may not appear inside worker, which may not ap-491

pear within vector)492

• wait clause on parallel, kernels and update directives493

• async clause on the wait directive494

• enter data and exit data directives495

• Fortran common block names may now appear in many data clauses496

• link clause for the declare directive497

• the behavior of the declare directive for global data498

• the behavior of a data clause with a C or C++ pointer variable has been clarified499

• predefined data attributes500

• support for multidimensional dynamic C/C++ arrays501

• tile and auto loop clauses502

• update self introduced as a preferred synonym for update host503

16

The OpenACC R© API 1.10. Corrections in the August 2013 document

• routine directive and support for separate compilation504

• device_type clause and support for multiple device types505

• nested parallelism using parallel or kernels region containing another parallel or kernels re-506

gion507

• atomic constructs508

• new concepts: gang-redundant, gang-partitioned; worker-single, worker-partitioned; vector-509

single, vector-partitioned; thread510

• new API routines:511

– acc_wait, acc_wait_all instead of acc_async_wait and acc_async_wait_all512

– acc_wait_async513

– acc_copyin, acc_present_or_copyin514

– acc_create, acc_present_or_create515

– acc_copyout, acc_delete516

– acc_map_data, acc_unmap_data517

– acc_deviceptr, acc_hostptr518

– acc_is_present519

– acc_memcpy_to_device, acc_memcpy_from_device520

– acc_update_device, acc_update_self521

• defined behavior with multiple host threads, such as with OpenMP522

• recommendations for specific implementations523

• clarified that no arguments are allowed on the vector clause in a parallel region524

1.10 Corrections in the August 2013 document525

• corrected the atomic capture syntax for C/C++526

• fixed the name of the acc_wait and acc_wait_all procedures527

• fixed description of the acc_hostptr procedure528

1.11 Changes from Version 2.0 to 2.5529

• The _OPENACC value was updated to 201510; see Section 2.2 Conditional Compilation.530

• The num_gangs, num_workers, and vector_length clauses are now allowed on the531

kernels construct; see Section 2.5.3 Kernels Construct.532

• Reduction on C++ class members, array elements, and struct elements are explicitly disal-533

lowed; see Section 2.5.15 reduction clause.534

• Reference counting is now used to manage the correspondence and lifetime of device data;535

see Section 2.6.7 Reference Counters.536

17

The OpenACC R© API 1.11. Changes from Version 2.0 to 2.5

• The behavior of the exit data directive has changed to decrement the dynamic reference537

counter. A new optional finalize clause was added to set the dynamic reference counter538

to zero. See Section 2.6.6 Enter Data and Exit Data Directives.539

• The copy, copyin, copyout, and create data clauses were changed to behave like540

present_or_copy, etc. The present_or_copy, pcopy, present_or_copyin,541

pcopyin, present_or_copyout, pcopyout, present_or_create, and pcreate542

data clauses are no longer needed, though will be accepted for compatibility; see Section 2.7543

Data Clauses.544

• Reductions on orphaned gang loops are explicitly disallowed; see Section 2.9 Loop Construct.545

• The description of the loop auto clause has changed; see Section 2.9.7 auto clause.546

• Text was added to the private clause on a loop construct to clarify that a copy is made547

for each gang or worker or vector lane, not each thread; see Section 2.9.10 private clause.548

• The description of the reduction clause on a loop construct was corrected; see Sec-549

tion 2.9.11 reduction clause.550

• A restriction was added to the cache clause that all references to that variable must lie within551

the region being cached; see Section 2.10 Cache Directive.552

• Text was added to the private and reduction clauses on a combined construct to clarify553

that they act like private and reduction on the loop, not private and reduction554

on the parallel or reduction on the kernels; see Section 2.11 Combined Constructs.555

• The declare create directive with a Fortran allocatable has new behavior; see Sec-556

tion 2.13.2 create clause.557

• New init, shutdown, set directives were added; see Section 2.14.1 Init Directive, 2.14.2558

Shutdown Directive, and 2.14.3 Set Directive.559

• A new if_present clause was added to the update directive, which changes the behavior560

when data is not present from a runtime error to a no-op; see Section 2.14.4 Update Directive.561

• The routine bind clause definition changed; see Section 2.15.1 Routine Directive.562

• An acc routine without gang/worker/vector/seq is now defined as an error; see563

Section 2.15.1 Routine Directive.564

• A new default(present) clause was added for compute constructs; see Section 2.5.16565

default clause.566

• The Fortran header file openacc_lib.h is no longer supported; the Fortran module openacc567

should be used instead; see Section 3.1 Runtime Library Definitions.568

• New API routines were added to get and set the default async queue value; see Section 3.2.13569

acc get default async and 3.2.14 acc set default async.570

• The acc_copyin, acc_create, acc_copyout, and acc_delete API routines were571

changed to behave like acc_present_or_copyin, etc. The acc_present_or_ names572

are no longer needed, though will be supported for compatibility. See Sections 3.2.18 and fol-573

lowing.574

18

The OpenACC R© API 1.12. Changes from Version 2.5 to 2.6

• Asynchronous versions of the data API routines were added; see Sections 3.2.18 and follow-575

ing.576

• A new API routine added, acc_memcpy_device, to copy from one device address to577

another device address; see Section 3.2.26 acc memcpy to device.578

• A new OpenACC interface for profile and trace tools was added;579

see Chapter 5 Profiling and Error Callback Interface.580

1.12 Changes from Version 2.5 to 2.6581

• The _OPENACC value was updated to 201711.582

• A new serial compute construct was added. See Section 2.5.2 Serial Construct.583

• A new runtime API query routine was added. acc_get_property may be called from584

the host and returns properties about any device. See Section 3.2.6.585

• The text has clarified that if a variable is in a reduction which spans two or more nested loops,586

each loop directive on any of those loops must have a reduction clause that contains the587

variable; see Section 2.9.11 reduction clause.588

• An optional if or if_present clause is now allowed on the host_data construct. See589

Section 2.8 Host Data Construct.590

• A new no_create data clause is now allowed on compute and data constructs. See Sec-591

tion 2.7.10 no create clause.592

• The behavior of Fortran optional arguments in data clauses and in routine calls has been593

specified; see Section 2.17.1 Optional Arguments.594

• The descriptions of some of the Fortran versions of the runtime library routines were simpli-595

fied; see Section 3.2 Runtime Library Routines.596

• To allow for manual deep copy of data structures with pointers, new attach and detach be-597

havior was added to the data clauses, new attach and detach clauses were added, and598

matching acc_attach and acc_detach runtime API routines were added; see Sections599

2.6.4, 2.7.12-2.7.13 and 3.2.29.600

• The Intel Coprocessor Offload Interface target and API routine sections were removed from601

the Section A Recommendations for Implementers, since Intel no longer produces this prod-602

uct.603

1.13 Changes from Version 2.6 to 2.7604

• The _OPENACC value was updated to 201811.605

• The specification allows for hosts that share some memory with the device but not all memory.606

The wording in the text now discusses whether local thread data is in shared memory (memory607

shared between the local thread and the device) or discrete memory (local thread memory that608

is not shared with the device), instead of shared-memory devices and non-shared memory609

devices. See Sections 1.3 Memory Model and 2.6 Data Environment.610

• The text was clarified to allow an implementation that treats a multicore CPU as a device,611

either an additional device or the only device.612

19

The OpenACC R© API 1.14. Changes from Version 2.7 to 3.0

• The readonly modifier was added to the copyin data clause and cache directive. See613

Sections 2.7.7 and 2.10.614

• The term local device was defined; see Section 1.2 Execution Model and the Glossary.615

• The term var is used more consistently throughout the specification to mean a variable name,616

array name, subarray specification, array element, composite variable member, or Fortran617

common block name between slashes. Some uses of var allow only a subset of these options,618

and those limitations are given in those cases.619

• The self clause was added to the compute constructs; see Section 2.5.7 self clause.620

• The appearance of a reduction clause on a compute construct implies a copy clause for621

each reduction variable; see Sections 2.5.15 reduction clause and 2.11 Combined Constructs.622

• The default(none) and default(present) clauses were added to the data con-623

struct; see Section 2.6.5 Data Construct.624

• Data is defined to be present based on the values of the structured and dynamic reference625

counters; see Section 2.6.7 Reference Counters and the Glossary.626

• The interaction of the acc_map_data and acc_unmap_data runtime API calls on the627

present counters is defined; see Section 2.7.2, 3.2.21, and 3.2.22.628

• A restriction clarifying that a host_data construct must have at least one use_device629

clause was added.630

• Arrays, subarrays and composite variables are now allowed in reduction clauses; see631

Sections 2.9.11 reduction clause and 2.5.15 reduction clause.632

• Changed behavior of ICVs to support nested compute regions and host as a device semantics.633

See Section 2.3.634

1.14 Changes from Version 2.7 to 3.0635

• Updated _OPENACC value to 201911.636

• Updated the normative references to the most recent standards for all base languages. See637

Section 1.8.638

• Changed the text to clarify uses and limitations of the device_type clause and added639

examples; see Section 2.4.640

• Clarified the conflict between the implicit copy clause for variables in a reduction clause641

and the implicit firstprivate for scalar variables not in a data clause but used in a642

parallel or serial construct; see Sections 2.5.1 and 2.5.2.643

• Required at least one data clause on a data construct, an enter data directive, or an exit644

data directive; see Sections 2.6.5 and 2.6.6.645

• Added text describing how a C++ lambda invoked in a compute region and the variables646

captured by the lambda are handled; see Section 2.6.2.647

• Added a zeromodifier to create and copyout data clauses that zeros the device memory648

after it is allocated; see Sections 2.7.8 and 2.7.9.649

20

The OpenACC R© API 1.15. Changes from Version 3.0 to 3.1

• Added a new restriction on the loop directive allowing only one of the seq, independent,650

and auto clauses to appear; see Section 2.9.651

• Added a new restriction on the loop directive disallowing a gang, worker, or vector652

clause to appear if a seq clause appears; see Section 2.9.653

• Allowed variables to be modified in an atomic region in a loop where the iterations must654

otherwise be data independent, such as loops with a loop independent clause or a loop655

directive in a parallel construct; see Sections 2.9.2, 2.9.3, 2.9.4, and 2.9.6.656

• Clarified the behavior of the auto and independent clauses on the loop directive; see657

Sections 2.9.7 and 2.9.6.658

• Clarified that an orphaned loop construct, or a loop construct in a parallel construct659

with no auto or seq clauses is treated as if an independent clause appears; see Sec-660

tion 2.9.6.661

• For a variable in a reduction clause, clarified when the update to the original variable is662

complete, and added examples; see Section 2.9.11.663

• Clarified that a variable in an orphaned reduction clause must be private; see Section 2.9.11.664

• Required at least one clause on a declare directive; see Section 2.13.665

• Added an if clause to init, shutdown, set, and wait directives; see Sections 2.14.1,666

2.14.2, 2.14.3, and 2.16.3.667

• Required at least one clause on a set directive; see Section 2.14.3.668

• Added a devnum modifier to the wait directive and clause to specify a device to which the669

wait operation applies; see Section 2.16.3.670

• Allowed a routine directive to include a C++ lambda name or to appear before a C++671

lambda definition, and defined implicit routine directive behavior when a C++ lambda is672

called in a compute region or an accelerator routine; see Section 2.15.673

• Added runtime API routine acc_memcpy_d2d for copying data directly between two de-674

vice arrays on the same or different devices; see Section 3.2.30.675

• Defined the values for the acc_construct_t and acc_device_api enumerations for676

cross-implementation compatibility; see Sections 5.2.2 and 5.2.3.677

• Changed the return type of acc_set_cuda_stream from int (values were not specified)678

to void; see Section A.2.1.679

• Edited and expanded Section 1.17 Topics Deferred For a Future Revision.680

1.15 Changes from Version 3.0 to 3.1681

• Updated _OPENACC value to 202011.682

• Clarified that Fortran blank common blocks are not permitted and that same-named common683

blocks must have the same size. See Section 1.6.684

• Clarified that a parallel construct’s block is considered to start in gang-redundant mode685

even if there’s just a single gang. See Section 2.5.1.686

21

The OpenACC R© API 1.16. Changes from Version 3.1 to 3.2

• Added support for the Fortran BLOCK construct. See Sections 2.5.1, 2.5.3, 2.6.1, 2.6.5, 2.8,687

2.13, and 6.688

• Defined the serial construct in terms of the parallel construct to improve readability.689

Instead of defining it in terms of clauses num_gangs(1) num_workers(1)690

vector_length(1), defined the serial construct as executing with a single gang of a691

single worker with a vector length of one. See Section 2.5.2.692

• Consolidated compute construct restrictions into a new section to improve readability. See693

Section 2.5.4.694

• Clarified that a default clause may appear at most once on a compute construct. See695

Section 2.5.16.696

• Consolidated discussions of implicit data attributes on compute and combined constructs into697

a separate section. Clarified the conditions under which each data attribute is implied. See698

Section 2.6.2.699

• Added a restriction that certain loop reduction variables must have explicit data clauses on700

their parent compute constructs. This change addresses portability across existing OpenACC701

implementations. See Sections 2.6.2 and A.3.2.702

• Restored the OpenACC 2.5 behavior of the present, copy, copyin, copyout, create,703

no_create, delete data clauses at exit from a region, or on an exit data directive, as704

applicable, and create clause at exit from an implicit data region where a declare di-705

rective appears, and acc_copyout, acc_delete routines, such that no action is taken if706

the appropriate reference counter is zero, instead of a runtime error being issued if data is not707

present. See Sections 2.7.5, 2.7.6, 2.7.7, 2.7.8, 2.7.9, 2.7.10, 2.7.11, 2.13.2, and 3.2.19.708

• Clarified restrictions on loop forms that can be associated with loop constructs, including709

the case of C++ range-based for loops. See Section 2.9.710

• Specified where gang clauses are implied on loop constructs. This change standardizes711

behavior of existing OpenACC implementations. See Section 2.9.2.712

• Corrected C/C++ syntax for atomic capture with a structured block. See Section 2.12.713

• Added the behavior of the Fortran do concurrent construct. See Section 2.17.2.714

• Changed the Fortran run-time procedures: acc_device_property has been renamed to715

acc_device_property_kind and acc_get_property uses a different integer kind716

for the result. See Section 3.2.717

• Added or changed argument names for the Runtime Library routines to be descriptive and718

consistent. This mostly impacts Fortran programs, which can pass arguments by name. See719

Section 3.2.720

• Replaced composite variable by aggregate variable in reduction, default, and private721

clauses and in implicitly determined data attributes; the new wording also includes Fortran722

character and allocatable/pointer variables. See glossary in Section 6.723

1.16 Changes from Version 3.1 to 3.2724

• Updated _OPENACC value to 202111.725

22

The OpenACC R© API 1.16. Changes from Version 3.1 to 3.2

• Modified specification to comply with INCITS standard for inclusive terminology.726

• The text was changed to state that certain runtime errors, when detected, result in a call to the727

current runtime error callback routines. See Section 1.5.728

• An ambiguity issue with the C/C++ comma operator was resolved. See Section 1.6.729

• The terms true and false were defined and used throughout to shorten the descriptions. See730

Section 1.6.731

• Implicitly determined data attributes on compute constructs were clarified. See Section 2.6.2.732

• Clarified that the default(none) clause applies to scalar variables. See Section 2.6.2.733

• The async, wait, and device_type clauses may be specified on data constructs. See734

Section 2.6.5.735

• The behavior of data clauses and data API routines with a null pointer in the clause or as a736

routine argument is defined. See Sections 2.7.5-2.7.11, 2.8.1, and 3.2.16-3.2.30.737

• Precision issues with the loop trip count calculation were clarified. See Section 2.9.738

• Text in Section 2.16 was moved and reorganized to improve clarity and reduce redundancy.739

• Some runtime routine descriptions were expanded and clarified. See Section 3.2.740

• The acc_init_device and acc_shutdown_device routines were added to initialize741

and shut down individual devices. See Section 3.2.7 and Section 3.2.8.742

• Some runtime routine sections were reorganized and combined into a single section to sim-743

plify maintenance and reduce redundant text:744

– The sections for four acc_async_test routines were combined into a single section.745

See Section 3.2.9.746

– The sections for four acc_wait routines were combined into a single section. See747

Section 3.2.10.748

– The sections for four acc_wait_async routines were combined into a single section.749

See Section 3.2.11.750

– The two sections for acc_copyin and acc_create were combined into a single751

section. See Section 3.2.18.752

– The two sections for acc_copyout and acc_delete were combined into a single753

section. See Section 3.2.19.754

– The two sections for acc_update_self and acc_update_device were com-755

bined into a single section. See Section 3.2.20.756

– The two sections for acc_attach and acc_detach were combined into a single757

section. See Section 3.2.29.758

• Added runtime API routine acc_wait_any. See section 3.2.12.759

• The descriptions of the async and async_queue fields of acc_callback_info were760

clarified. See Section 5.2.1.761

23

The OpenACC R© API 1.17. Topics Deferred For a Future Revision

1.17 Topics Deferred For a Future Revision762

The following topics are under discussion for a future revision. Some of these are known to be763

important, while others will depend on feedback from users. Readers who have feedback or want764

to participate may send email to feedback@openacc.org. No promises are made or implied that all765

these items will be available in a future revision.766

• Directives to define implicit deep copy behavior for pointer-based data structures.767

• Defined behavior when data in data clauses on a directive are aliases of each other.768

• Clarifying when data becomes present or not present on the device for enter data or exit769

data directives with an async clause.770

• Clarifying the behavior of Fortran pointer variables in data clauses.771

• Allowing Fortran pointer variables to appear in deviceptr clauses.772

• Support for attaching C/C++ pointers that point to an address past the end of a memory region.773

• Fully defined interaction with multiple host threads.774

• Optionally removing the synchronization or barrier at the end of vector and worker loops.775

• Allowing an if clause after a device_type clause.776

• A shared clause (or something similar) for the loop directive.777

• Better support for multiple devices from a single thread, whether of the same type or of778

different types.779

• An auto construct (by some name), to allow kernels-like auto-parallelization behavior780

inside parallel constructs or accelerator routines.781

• A begin declare . . .end declare construct that behaves like putting any global vari-782

ables declared inside the construct in a declare clause.783

• Defining the behavior of additional parallelism constructs in the base languages when used784

inside a compute construct or accelerator routine.785

• Optimization directives or clauses, such as an unroll directive or clause.786

• Extended reductions.787

• Fortran bindings for all the API routines.788

• A linear clause for the loop directive.789

• Allowing two or more of gang, worker, vector, or seq clause on an acc routine790

directive.791

• Requiring the implementation to imply an acc routine directive for procedures called792

within a compute construct or accelerator routine.793

• A single list of all devices of all types, including the host device.794

• A memory allocation API for specific types of memory, including device memory, host pinned795

memory, and unified memory.796

24

mailto:feedback@openacc.org

The OpenACC R© API 1.17. Topics Deferred For a Future Revision

• Allowing non-contiguous Fortran array sections as arguments to some Runtime API routines,797

such as acc_update_device.798

• Bindings to other languages.799

25

The OpenACC R© API 1.17. Topics Deferred For a Future Revision

26

The OpenACC R© API 2.1. Directive Format

2. Directives800

This chapter describes the syntax and behavior of the OpenACC directives. In C and C++, Open-801

ACC directives are specified using the #pragma mechanism provided by the language. In Fortran,802

OpenACC directives are specified using special comments that are identified by a unique sentinel.803

Compilers will typically ignore OpenACC directives if support is disabled or not provided.804

2.1 Directive Format805

In C and C++, OpenACC directives are specified with the #pragma mechanism. The syntax of an806

OpenACC directive is:807

#pragma acc directive-name [clause-list] new-line808

Each directive starts with #pragma acc. The remainder of the directive follows the C and C++809

conventions for pragmas. Whitespace may be used before and after the #; whitespace may be810

required to separate words in a directive. Preprocessing tokens following the #pragma acc are811

subject to macro replacement. Directives are case-sensitive.812

In Fortran, OpenACC directives are specified in free-form source files as813

!$acc directive-name [clause-list]814

The comment prefix (!) may appear in any column, but may only be preceded by whitespace (spaces815

and tabs). The sentinel (!$acc) must appear as a single word, with no intervening whitespace.816

Line length, whitespace, and continuation rules apply to the directive line. Initial directive lines817

must have whitespace after the sentinel. Continued directive lines must have an ampersand (&) as818

the last nonblank character on the line, prior to any comment placed in the directive. Continuation819

directive lines must begin with the sentinel (possibly preceded by whitespace) and may have an820

ampersand as the first non-whitespace character after the sentinel. Comments may appear on the821

same line as a directive, starting with an exclamation point and extending to the end of the line. If822

the first nonblank character after the sentinel is an exclamation point, the line is ignored.823

In Fortran fixed-form source files, OpenACC directives are specified as one of824

!$acc directive-name [clause-list]825

c$acc directive-name [clause-list]826

*$acc directive-name [clause-list]827

The sentinel (!acc, cacc, or *$acc) must occupy columns 1-5. Fixed form line length,828

whitespace, continuation, and column rules apply to the directive line. Initial directive lines must829

have a space or zero in column 6, and continuation directive lines must have a character other than830

a space or zero in column 6. Comments may appear on the same line as a directive, starting with an831

exclamation point on or after column 7 and continuing to the end of the line.832

In Fortran, directives are case-insensitive. Directives cannot be embedded within continued state-833

ments, and statements must not be embedded within continued directives. In this document, free834

form is used for all Fortran OpenACC directive examples.835

Only one directive-name can appear per directive, except that a combined directive name is consid-836

ered a single directive-name. The order in which clauses appear is not significant unless otherwise837

27

The OpenACC R© API 2.3. Internal Control Variables

specified. Clauses may be repeated unless otherwise specified. Some clauses have an argument that838

can contain a list.839

2.2 Conditional Compilation840

The _OPENACC macro name is defined to have a value yyyymm where yyyy is the year and mm is841

the month designation of the version of the OpenACC directives supported by the implementation.842

This macro must be defined by a compiler only when OpenACC directives are enabled. The version843

described here is 202111.844

2.3 Internal Control Variables845

An OpenACC implementation acts as if there are internal control variables (ICVs) that control the846

behavior of the program. These ICVs are initialized by the implementation, and may be given847

values through environment variables and through calls to OpenACC API routines. The program848

can retrieve values through calls to OpenACC API routines.849

The ICVs are:850

• acc-current-device-type-var - controls which type of device is used.851

• acc-current-device-num-var - controls which device of the selected type is used.852

• acc-default-async-var - controls which asynchronous queue is used when none appears in an853

async clause.854

2.3.1 Modifying and Retrieving ICV Values855

The following table shows environment variables or procedures to modify the values of the internal856

control variables, and procedures to retrieve the values:857

ICV Ways to modify values Way to retrieve value

acc-current-device-type-var acc_set_device_type acc_get_device_type

set device_type

init device_type

ACC_DEVICE_TYPE

acc-current-device-num-var acc_set_device_num acc_get_device_num

set device_num

init device_num

ACC_DEVICE_NUM

acc-default-async-var acc_set_default_async acc_get_default_async

set default_async

858

The initial values are implementation-defined. After initial values are assigned, but before any859

OpenACC construct or API routine is executed, the values of any environment variables that were860

set by the user are read and the associated ICVs are modified accordingly. There is one copy of861

each ICV for each host thread that is not generated by a compute construct. For threads that are862

generated by a compute construct the initial value for each ICV is inherited from the local thread.863

The behavior for each ICV is as if there is a copy for each thread. If an ICV is modified, then a864

unique copy of that ICV must be created for the modifying thread.865

28

The OpenACC R© API 2.4. Device-Specific Clauses

2.4 Device-Specific Clauses866

OpenACC directives can specify different clauses or clause arguments for different devices using867

the device_type clause. Clauses that precede any device_type clause are default clauses.868

Clauses that follow a device_type clause up to the end of the directive or up to the next869

device_type clause are device-specific clauses for the device types specified in the device_type870

argument. For each directive, only certain clauses may be device-specific clauses. If a directive has871

at least one device-specific clause, it is device-dependent, and otherwise it is device-independent.872

The argument to the device_type clause is a comma-separated list of one or more device ar-873

chitecture name identifiers, or an asterisk. An asterisk indicates all device types that are not named874

in any other device_type clause on that directive. A single directive may have one or several875

device_type clauses. The device_type clauses may appear in any order.876

Except where otherwise noted, the rest of this document describes device-independent directives, on877

which all clauses apply when compiling for any device type. When compiling a device-dependent878

directive for a particular device type, the directive is treated as if the only clauses that appear are (a)879

the clauses specific to that device type and (b) all default clauses for which there are no like-named880

clauses specific to that device type. If, for any device type, the resulting directive is non-conforming,881

then the original directive is non-conforming.882

The supported device types are implementation-defined. Depending on the implementation and the883

compiling environment, an implementation may support only a single device type, or may support884

multiple device types but only one at a time, or may support multiple device types in a single885

compilation.886

A device architecture name may be generic, such as a vendor, or more specific, such as a partic-887

ular generation of device; see Appendix A Recommendations for Implementers for recommended888

names. When compiling for a particular device, the implementation will use the clauses associated889

with the device_type clause that specifies the most specific architecture name that applies for890

this device; clauses associated with any other device_type clause are ignored. In this context,891

the asterisk is the least specific architecture name.892

Syntax893

The syntax of the device_type clause is894

device_type(*)895

device_type(device-type-list)896

897

The device_type clause may be abbreviated to dtype.898

H H
899

Examples900

901

• On the following directive, worker appears as a device-specific clause for devices of type902

foo, but gang appears as a default clause and so applies to all device types, including foo.903

#pragma acc loop gang device_type(foo) worker904

29

The OpenACC R© API 2.5. Compute Constructs

• The first directive below is identical to the previous directive except that loop is replaced905

with routine. Unlike loop, routine does not permit gang to appear with worker,906

but both apply for device type foo, so the directive is non-conforming. The second directive907

below is conforming because gang there applies to all device types except foo.908

// non-conforming: gang and worker are not permitted together909

#pragma acc routine gang device_type(foo) worker910

911

// conforming: gang and worker apply to different device types912

#pragma acc routine device_type(foo) worker \913

device_type(*) gang914

• On the directive below, the value of num_gangs is 4 for device type foo, but it is 2 for all915

other device types, including bar. That is, foo has a device-specific num_gangs clause,916

so the default num_gangs clause does not apply to foo.917

!$acc parallel num_gangs(2) &918

!$acc device_type(foo) num_gangs(4) &919

!$acc device_type(bar) num_workers(8)920

• The directive below is the same as the previous directive except that num_gangs(2) has921

moved after device_type(*) and so now does not apply to foo or bar.922

!$acc parallel device_type(*) num_gangs(2) &923

!$acc device_type(foo) num_gangs(4) &924

!$acc device_type(bar) num_workers(8)925

N N926

927

2.5 Compute Constructs928

2.5.1 Parallel Construct929

Summary930

This fundamental construct starts parallel execution on the current device.931

Syntax932

In C and C++, the syntax of the OpenACC parallel construct is933

#pragma acc parallel [clause-list] new-line934

structured block935

936

and in Fortran, the syntax is937

!$acc parallel [clause-list]938

structured block939

!$acc end parallel940

or941

!$acc parallel [clause-list]942

block construct943

30

The OpenACC R© API 2.5. Compute Constructs

[!$acc end parallel]944

where clause is one of the following:945

async [(int-expr)]946

wait [(int-expr-list)]947

num_gangs(int-expr)948

num_workers(int-expr)949

vector_length(int-expr)950

device_type(device-type-list)951

if(condition)952

self [(condition)]953

reduction(operator : var-list)954

copy(var-list)955

copyin([readonly:] var-list)956

copyout([zero:] var-list)957

create([zero:] var-list)958

no_create(var-list)959

present(var-list)960

deviceptr(var-list)961

attach(var-list)962

private(var-list)963

firstprivate(var-list)964

default(none | present)965

Description966

When the program encounters an accelerator parallel construct, one or more gangs of workers967

are created to execute the accelerator parallel region. The number of gangs, and the number of968

workers in each gang and the number of vector lanes per worker remain constant for the duration of969

that parallel region. Each gang begins executing the code in the structured block in gang-redundant970

mode even if there is only a single gang. This means that code within the parallel region, but outside971

of a loop construct with gang-level worksharing, will be executed redundantly by all gangs.972

One worker in each gang begins executing the code in the structured block of the construct. Note:973

Unless there is a loop construct within the parallel region, all gangs will execute all the code within974

the region redundantly.975

If the async clause does not appear, there is an implicit barrier at the end of the accelerator parallel976

region, and the execution of the local thread will not proceed until all gangs have reached the end977

of the parallel region.978

The copy, copyin, copyout, create, no_create, present, deviceptr, and attach979

data clauses are described in Section 2.7 Data Clauses. The private and firstprivate980

clauses are described in Sections 2.5.13 and Sections 2.5.14. The device_type clause is de-981

scribed in Section 2.4 Device-Specific Clauses. Implicitly determined data attributes are described982

in Section 2.6.2. Restrictions are described in Section 2.5.4.983

2.5.2 Serial Construct984

31

The OpenACC R© API 2.5. Compute Constructs

Summary985

This construct defines a region of the program that is to be executed sequentially on the current986

device. The behavior of the serial construct is the same as that of the parallel construct987

except that it always executes with a single gang of a single worker with a vector length of one.988

Note: The serial construct may be used to execute sequential code on the current device,989

which removes the need for data movement when the required data is already present on the device.990

Syntax991

In C and C++, the syntax of the OpenACC serial construct is992

#pragma acc serial [clause-list] new-line993

structured block994

995

and in Fortran, the syntax is996

!$acc serial [clause-list]997

structured block998

!$acc end serial999

or1000

!$acc serial [clause-list]1001

block construct1002

[!$acc end serial]1003

where clause is as for the parallel construct except that the num_gangs, num_workers, and1004

vector_length clauses are not permitted.1005

2.5.3 Kernels Construct1006

Summary1007

This construct defines a region of the program that is to be compiled into a sequence of kernels for1008

execution on the current device.1009

Syntax1010

In C and C++, the syntax of the OpenACC kernels construct is1011

#pragma acc kernels [clause-list] new-line1012

structured block1013

1014

and in Fortran, the syntax is1015

!$acc kernels [clause-list]1016

structured block1017

!$acc end kernels1018

or1019

!$acc kernels [clause-list]1020

block construct1021

[!$acc end kernels]1022

32

The OpenACC R© API 2.5. Compute Constructs

where clause is one of the following:1023

async [(int-expr)]1024

wait [(int-expr-list)]1025

num_gangs(int-expr)1026

num_workers(int-expr)1027

vector_length(int-expr)1028

device_type(device-type-list)1029

if(condition)1030

self [(condition)]1031

copy(var-list)1032

copyin([readonly:] var-list)1033

copyout([zero:] var-list)1034

create([zero:] var-list)1035

no_create(var-list)1036

present(var-list)1037

deviceptr(var-list)1038

attach(var-list)1039

default(none | present)1040

Description1041

The compiler will split the code in the kernels region into a sequence of accelerator kernels. Typi-1042

cally, each loop nest will be a distinct kernel. When the program encounters a kernels construct,1043

it will launch the sequence of kernels in order on the device. The number and configuration of gangs1044

of workers and vector length may be different for each kernel.1045

If the async clause does not appear, there is an implicit barrier at the end of the kernels region,1046

and the local thread execution will not proceed until the entire sequence of kernels has completed1047

execution.1048

The copy, copyin, copyout, create, no_create, present, deviceptr, and attach1049

data clauses are described in Section 2.7 Data Clauses. The device_type clause is described1050

in Section 2.4 Device-Specific Clauses. Implicitly determined data attributes are described in Sec-1051

tion 2.6.2. Restrictions are described in Section 2.5.4.1052

2.5.4 Compute Construct Restrictions1053

The following restrictions apply to all compute constructs:1054

• A program may not branch into or out of a compute construct.1055

• A program must not depend on the order of evaluation of the clauses or on any side effects of1056

the evaluations.1057

• Only the async, wait, num_gangs, num_workers, and vector_length clauses1058

may follow a device_type clause.1059

• At most one if clause may appear. In Fortran, the condition must evaluate to a scalar logical1060

value; in C or C++, the condition must evaluate to a scalar integer value.1061

• At most one default clause may appear, and it must have a value of either none or1062

present.1063

33

The OpenACC R© API 2.5. Compute Constructs

2.5.5 Compute Construct Errors1064

• An acc_error_wrong_device_type error is issued if the compute construct was not1065

compiled for the current device type. This includes the case when the current device is the1066

host multicore.1067

• An acc_error_device_type_unavailable error is issued if no device of the cur-1068

rent device type is available.1069

• An acc_error_device_unavailable error is issued if the current device is not avail-1070

able.1071

• An acc_error_device_init error is issued if the current device cannot be initialized.1072

• An acc_error_execution error is issued if the execution of the compute construct on1073

the current device type fails and the failure can be detected.1074

• Explicit or implicitly determined data attributes can cause an error to be issued; see Sec-1075

tion 2.7.3.1076

• An async or wait clause can cause an error to be issued; see Sections 2.16.1 and 2.16.2.1077

See Section 5.2.2.1078

2.5.6 if clause1079

The if clause is optional.1080

When the condition in the if clause evaluates to true., the region will execute on the current device.1081

When the condition in the if clause evaluates to false, the local thread will execute the region.1082

2.5.7 self clause1083

The self clause is optional.1084

The self clause may have a single condition-argument. If the condition-argument is not present it1085

is assumed to evaluate to true. When both an if clause and a self clause appear and the condition1086

in the if clause evaluates to false, the self clause has no effect.1087

When the condition evaluates to true, the region will execute on the local device. When the condition1088

in the self clause evaluates to false, the region will execute on the current device.1089

2.5.8 async clause1090

The async clause is optional; see Section 2.16 Asynchronous Behavior for more information.1091

2.5.9 wait clause1092

The wait clause is optional; see Section 2.16 Asynchronous Behavior for more information.1093

2.5.10 num gangs clause1094

The num_gangs clause is allowed on the parallel and kernels constructs. The value of1095

the integer expression defines the number of parallel gangs that will execute the parallel region,1096

or that will execute each kernel created for the kernels region. If the clause does not appear, an1097

34

The OpenACC R© API 2.5. Compute Constructs

implementation-defined default will be used; the default may depend on the code within the con-1098

struct. The implementation may use a lower value than specified based on limitations imposed by1099

the target architecture.1100

2.5.11 num workers clause1101

The num_workers clause is allowed on the parallel and kernels constructs. The value1102

of the integer expression defines the number of workers within each gang that will be active after1103

a gang transitions from worker-single mode to worker-partitioned mode. If the clause does not1104

appear, an implementation-defined default will be used; the default value may be 1, and may be1105

different for each parallel construct or for each kernel created for a kernels construct. The1106

implementation may use a different value than specified based on limitations imposed by the target1107

architecture.1108

2.5.12 vector length clause1109

The vector_length clause is allowed on the parallel and kernels constructs. The value1110

of the integer expression defines the number of vector lanes that will be active after a worker transi-1111

tions from vector-single mode to vector-partitioned mode. This clause determines the vector length1112

to use for vector or SIMD operations. If the clause does not appear, an implementation-defined1113

default will be used. This vector length will be used for loop constructs annotated with the vector1114

clause, as well as loops automatically vectorized by the compiler. The implementation may use a1115

different value than specified based on limitations imposed by the target architecture.1116

2.5.13 private clause1117

The private clause is allowed on the parallel and serial constructs; it declares that a copy1118

of each item on the list will be created for each gang.1119

Restrictions1120

• See Section 2.17.1 Optional Arguments for discussion of Fortran optional arguments in private1121

clauses.1122

2.5.14 firstprivate clause1123

The firstprivate clause is allowed on the parallel and serial constructs; it declares that1124

a copy of each item on the list will be created for each gang, and that the copy will be initialized with1125

the value of that item on the local thread when a parallel or serial construct is encountered.1126

Restrictions1127

• See Section 2.17.1 Optional Arguments for discussion of Fortran optional arguments in1128

firstprivate clauses.1129

2.5.15 reduction clause1130

The reduction clause is allowed on the parallel and serial constructs. It specifies a1131

reduction operator and one or more vars. It implies copy clauses as described in Section 2.6.2. For1132

each reduction var, a private copy is created for each parallel gang and initialized for that operator.1133

At the end of the region, the values for each gang are combined using the reduction operator, and1134

the result combined with the value of the original var and stored in the original var. If the reduction1135

35

The OpenACC R© API 2.5. Compute Constructs

var is an array or subarray, the array reduction operation is logically equivalent to applying that1136

reduction operation to each element of the array or subarray individually. If the reduction var1137

is a composite variable, the reduction operation is logically equivalent to applying that reduction1138

operation to each member of the composite variable individually. The reduction result is available1139

after the region.1140

The following table lists the operators that are valid and the initialization values; in each case, the1141

initialization value will be cast into the data type of the var. For max and min reductions, the1142

initialization values are the least representable value and the largest representable value for that data1143

type, respectively. At a minimum, the supported data types include Fortran logical as well as1144

the numerical data types in C (e.g., _Bool, char, int, float, double, float _Complex,1145

double _Complex), C++ (e.g., bool, char, wchar_t, int, float, double), and Fortran1146

(e.g., integer, real, double precision, complex). However, for each reduction operator,1147

the supported data types include only the types permitted as operands to the corresponding operator1148

in the base language where (1) for max and min, the corresponding operator is less-than and (2) for1149

other operators, the operands and the result are the same type.1150

C and C++ Fortran

operator initialization

value

operator initialization

value

+ 0 + 0

* 1 * 1

max least max least

min largest min largest

& ˜0 iand all bits on

| 0 ior 0

ˆ 0 ieor 0

&& 1 .and. .true.

|| 0 .or. .false.

.eqv. .true.

.neqv. .false.

1151

Restrictions1152

• A var in a reduction clause must be a scalar variable name, an aggregate variable name,1153

an array element, or a subarray (refer to Section 2.7.1).1154

• If the reduction var is an array element or a subarray, accessing the elements of the array1155

outside the specified index range results in unspecified behavior.1156

• The reduction var may not be a member of a composite variable.1157

• If the reduction var is a composite variable, each member of the composite variable must be1158

a supported datatype for the reduction operation.1159

• See Section 2.17.1 Optional Arguments for discussion of Fortran optional arguments in1160

reduction clauses.1161

2.5.16 default clause1162

The default clause is optional. At most one default clause may appear. It adjusts what1163

data attributes are implicitly determined for variables used in the compute construct as described in1164

36

The OpenACC R© API 2.6. Data Environment

Section 2.6.2.1165

2.6 Data Environment1166

This section describes the data attributes for variables. The data attributes for a variable may be1167

predetermined, implicitly determined, or explicitly determined. Variables with predetermined data1168

attributes may not appear in a data clause that conflicts with that data attribute. Variables with1169

implicitly determined data attributes may appear in a data clause that overrides the implicit attribute.1170

Variables with explicitly determined data attributes are those which appear in a data clause on a1171

data construct, a compute construct, or a declare directive.1172

OpenACC supports systems with accelerators that have discrete memory from the host, systems1173

with accelerators that share memory with the host, as well as systems where an accelerator shares1174

some memory with the host but also has some discrete memory that is not shared with the host.1175

In the first case, no data is in shared memory. In the second case, all data is in shared memory.1176

In the third case, some data may be in shared memory and some data may be in discrete memory,1177

although a single array or aggregate data structure must be allocated completely in shared or discrete1178

memory. When a nested OpenACC construct is executed on the device, the default target device for1179

that construct is the same device on which the encountering accelerator thread is executing. In that1180

case, the target device shares memory with the encountering thread.1181

2.6.1 Variables with Predetermined Data Attributes1182

The loop variable in a C for statement or Fortran do statement that is associated with a loop1183

directive is predetermined to be private to each thread that will execute each iteration of the loop.1184

Loop variables in Fortran do statements within a compute construct are predetermined to be private1185

to the thread that executes the loop.1186

Variables declared in a C block or Fortran block construct that is executed in vector-partitioned1187

mode are private to the thread associated with each vector lane. Variables declared in a C block1188

or Fortran block construct that is executed in worker-partitioned vector-single mode are private to1189

the worker and shared across the threads associated with the vector lanes of that worker. Variables1190

declared in a C block or Fortran block construct that is executed in worker-single mode are private1191

to the gang and shared across the threads associated with the workers and vector lanes of that gang.1192

A procedure called from a compute construct will be annotated as seq, vector, worker, or1193

gang, as described Section 2.15 Procedure Calls in Compute Regions. Variables declared in seq1194

routine are private to the thread that made the call. Variables declared in vector routine are private1195

to the worker that made the call and shared across the threads associated with the vector lanes of1196

that worker. Variables declared in worker or gang routine are private to the gang that made the1197

call and shared across the threads associated with the workers and vector lanes of that gang.1198

2.6.2 Variables with Implicitly Determined Data Attributes1199

When implicitly determining data attributes on a compute construct, the following clauses are visi-1200

ble and variable accesses are exposed to the compute construct:1201

• Visible default clause: The nearest default clause appearing on the compute construct1202

or a lexically containing data construct.1203

• Visible data clause: Any data clause on the compute construct, a lexically containing data1204

37

The OpenACC R© API 2.6. Data Environment

construct, or a visible declare directive.1205

• Exposed variable access: Any access to the data or address of a variable at a point within the1206

compute construct where the variable is not private to a scope lexically enclosed within the1207

compute construct.1208

Note: In the argument of C’s sizeof operator, the appearance of a variable is not an exposed1209

access because neither its data nor its address is accessed. In the argument of a reduction1210

clause on an enclosed loop construct, the appearance of a variable that is not otherwise1211

privatized is an exposed access to the original variable.1212

On a compute or combined construct, if a variable appears in a reduction clause but no other1213

data clause, it is treated as if it also appears in a copy clause. Otherwise, for any variable, the1214

compiler will implicitly determine its data attribute on a compute construct if all of the following1215

conditions are met:1216

• There is no default(none) clause visible at the compute construct.1217

• An access to the variable is exposed to the compute construct.1218

• The variable does not appear in a data clause visible at the compute construct.1219

An aggregate variable will be treated as if it appears either:1220

• In a present clause if there is a default(present) clause visible at the compute con-1221

struct.1222

• In a copy clause otherwise.1223

A scalar variable will be treated as if it appears either:1224

• In a copy clause if the compute construct is a kernels construct.1225

• In a firstprivate clause otherwise.1226

Note: Any default(none) clause visible at the compute construct applies to both aggregate1227

and scalar variables. However, any default(present) clause visible at the compute construct1228

applies only to aggregate variables.1229

Restrictions1230

• If there is a default(none) clause visible at a compute construct, for any variable access1231

exposed to the compute construct, the compiler requires the variable to appear either in an1232

explicit data clause visible at the compute construct or in a firstprivate, private, or1233

reduction clause on the compute construct.1234

• If a scalar variable appears in a reduction clause on a loop construct that has a parent1235

parallel or serial construct, and if the reduction’s access to the original variable is1236

exposed to the parent compute construct, the variable must appear either in an explicit data1237

clause visible at the compute construct or in a firstprivate, private, or reduction1238

clause on the compute construct. Note: Implementations are encouraged to issue a compile-1239

time diagnostic when this restriction is violated to assist users in writing portable OpenACC1240

applications.1241

If a C++ lambda is called in a compute region and does not appear in a data clause, then it is1242

treated as if it appears in a copyin clause on the current construct. A variable captured by a1243

38

The OpenACC R© API 2.6. Data Environment

lambda is processed according to its data types: a pointer type variable is treated as if it appears1244

in a no_create clause; a reference type variable is treated as if it appears in a present clause;1245

for a struct or a class type variable, any pointer member is treated as if it appears in a no_create1246

clause on the current construct. If the variable is defined as global or file or function static, it must1247

appear in a declare directive.1248

2.6.3 Data Regions and Data Lifetimes1249

Data in shared memory is accessible from the current device as well as to the local thread. Such1250

data is available to the accelerator for the lifetime of the variable. Data not in shared memory must1251

be copied to and from device memory using data constructs, clauses, and API routines. A data1252

lifetime is the duration from when the data is first made available to the accelerator until it becomes1253

unavailable. For data in shared memory, the data lifetime begins when the data is allocated and1254

ends when it is deallocated; for statically allocated data, the data lifetime begins when the program1255

begins and does not end. For data not in shared memory, the data lifetime begins when it is made1256

present and ends when it is no longer present.1257

There are four types of data regions. When the program encounters a data construct, it creates a1258

data region.1259

When the program encounters a compute construct with explicit data clauses or with implicit data1260

allocation added by the compiler, it creates a data region that has a duration of the compute construct.1261

When the program enters a procedure, it creates an implicit data region that has a duration of the1262

procedure. That is, the implicit data region is created when the procedure is called, and exited when1263

the program returns from that procedure invocation. There is also an implicit data region associated1264

with the execution of the program itself. The implicit program data region has a duration of the1265

execution of the program.1266

In addition to data regions, a program may create and delete data on the accelerator using enter1267

data and exit data directives or using runtime API routines. When the program executes1268

an enter data directive, or executes a call to a runtime API acc_copyin or acc_create1269

routine, each var on the directive or the variable on the runtime API argument list will be made live1270

on accelerator.1271

2.6.4 Data Structures with Pointers1272

This section describes the behavior of data structures that contain pointers. A pointer may be a1273

C or C++ pointer (e.g., float*), a Fortran pointer or array pointer (e.g., real, pointer,1274

dimension(:)), or a Fortran allocatable (e.g., real, allocatable, dimension(:)).1275

When a data object is copied to device memory, the values are copied exactly. If the data is a data1276

structure that includes a pointer, or is just a pointer, the pointer value copied to device memory1277

will be the host pointer value. If the pointer target object is also allocated in or copied to device1278

memory, the pointer itself needs to be updated with the device address of the target object before1279

dereferencing the pointer in device memory.1280

An attach action updates the pointer in device memory to point to the device copy of the data1281

that the host pointer targets; see Section 2.7.2. For Fortran array pointers and allocatable arrays,1282

this includes copying any associated descriptor (dope vector) to the device copy of the pointer.1283

When the device pointer target is deallocated, the pointer in device memory should be restored1284

39

The OpenACC R© API 2.6. Data Environment

to the host value, so it can be safely copied back to host memory. A detach action updates the1285

pointer in device memory to have the same value as the corresponding pointer in local memory;1286

see Section 2.7.2. The attach and detach actions are performed by the copy, copyin, copyout,1287

create, attach, and detach data clauses (Sections 2.7.4-2.7.13), and the acc_attach and1288

acc_detach runtime API routines (Section 3.2.29). The attach and detach actions use attachment1289

counters to determine when the pointer in device memory needs to be updated; see Section 2.6.8.1290

2.6.5 Data Construct1291

Summary1292

The data construct defines vars to be allocated in the current device memory for the duration of1293

the region, whether data should be copied from local memory to the current device memory upon1294

region entry, and copied from device memory to local memory upon region exit.1295

Syntax1296

In C and C++, the syntax of the OpenACC data construct is1297

#pragma acc data [clause-list] new-line1298

structured block1299

and in Fortran, the syntax is1300

!$acc data [clause-list]1301

structured block1302

!$acc end data1303

or1304

!$acc data [clause-list]1305

block construct1306

[!$acc end data]1307

where clause is one of the following:1308

if(condition)1309

async [(int-expr)]1310

wait [(wait-argument)]1311

device_type(device-type-list)1312

copy(var-list)1313

copyin([readonly:]var-list)1314

copyout([zero:]var-list)1315

create([zero:]var-list)1316

no_create(var-list)1317

present(var-list)1318

deviceptr(var-list)1319

attach(var-list)1320

default(none | present)1321

Description1322

Data will be allocated in the memory of the current device and copied from local memory to device1323

memory, or copied back, as required. The data clauses are described in Section 2.7 Data Clauses.1324

40

The OpenACC R© API 2.6. Data Environment

Structured reference counters are incremented for data when entering a data region, and decre-1325

mented when leaving the region, as described in Section 2.6.7 Reference Counters. The device_type1326

clause is described in Section 2.4 Device-Specific Clauses.1327

Restrictions1328

• At least one copy, copyin, copyout, create, no_create, present, deviceptr,1329

attach, or default clause must appear on a data construct.1330

• Only the async and wait clauses may follow a device_type clause.1331

if clause1332

The if clause is optional; when there is no if clause, the compiler will generate code to allocate1333

space in the current device memory and move data from and to the local memory as required. When1334

an if clause appears, the program will conditionally allocate memory in and move data to and/or1335

from device memory. When the condition in the if clause evaluates to false, no device memory1336

will be allocated, and no data will be moved. When the condition evaluates to true, the data will be1337

allocated and moved as specified. At most one if clause may appear.1338

async clause1339

The async clause is optional; see Section 2.16 Asynchronous Behavior for more information.1340

Note: The async clause only affects operations directly associated with this particular data con-1341

struct, such as data transfers. Execution of the associated structured block or block construct remains1342

synchronous to the local thread. Nested OpenACC constructs, directives, and calls to runtime li-1343

brary routines do not inherit the async clause from this construct, and the programmer must take1344

care to not accidentally introduce race conditions related to asynchronous data transfers.1345

wait clause1346

The wait clause is optional; see Section 2.16 Asynchronous Behavior for more information.1347

default clause1348

The default clause is optional. At most one default clause may appear. It adjusts what data1349

attributes are implicitly determined for variables used in lexically contained compute constructs as1350

described in Section 2.6.2.1351

Errors1352

• See Section 2.7.3 for errors due to data clauses.1353

• See Sections 2.16.1 and 2.16.2 for errors due to async or wait clauses.1354

2.6.6 Enter Data and Exit Data Directives1355

Summary1356

An enter data directive may be used to define vars to be allocated in the current device memory1357

for the remaining duration of the program, or until an exit data directive that deallocates the data.1358

They also tell whether data should be copied from local memory to device memory at the enter1359

data directive, and copied from device memory to local memory at the exit data directive. The1360

dynamic range of the program between the enter data directive and the matching exit data1361

directive is the data lifetime for that data.1362

41

The OpenACC R© API 2.6. Data Environment

Syntax1363

In C and C++, the syntax of the OpenACC enter data directive is1364

#pragma acc enter data clause-list new-line1365

and in Fortran, the syntax is1366

!$acc enter data clause-list1367

where clause is one of the following:1368

if(condition)1369

async [(int-expr)]1370

wait [(wait-argument)]1371

copyin(var-list)1372

create([zero:]var-list)1373

attach(var-list)1374

In C and C++, the syntax of the OpenACC exit data directive is1375

#pragma acc exit data clause-list new-line1376

and in Fortran, the syntax is1377

!$acc exit data clause-list1378

where clause is one of the following:1379

if(condition)1380

async [(int-expr)]1381

wait [(wait-argument)]1382

copyout(var-list)1383

delete(var-list)1384

detach(var-list)1385

finalize1386

Description1387

At an enter data directive, data may be allocated in the current device memory and copied from1388

local memory to device memory. This action enters a data lifetime for those vars, and will make1389

the data available for present clauses on constructs within the data lifetime. Dynamic reference1390

counters are incremented for this data, as described in Section 2.6.7 Reference Counters. Pointers1391

in device memory may be attached to point to the corresponding device copy of the host pointer1392

target.1393

At an exit data directive, data may be copied from device memory to local memory and deal-1394

located from device memory. If no finalize clause appears, dynamic reference counters are1395

decremented for this data. If a finalize clause appears, the dynamic reference counters are set1396

to zero for this data. Pointers in device memory may be detached so as to have the same value as1397

the original host pointer.1398

The data clauses are described in Section 2.7 Data Clauses. Reference counting behavior is de-1399

scribed in Section 2.6.7 Reference Counters.1400

42

The OpenACC R© API 2.6. Data Environment

Restrictions1401

• At least one copyin, create, or attach clause must appear on an enter data direc-1402

tive.1403

• At least one copyout, delete, or detach clause must appear on an exit data direc-1404

tive.1405

if clause1406

The if clause is optional; when there is no if clause, the compiler will generate code to allocate or1407

deallocate space in the current device memory and move data from and to local memory. When an1408

if clause appears, the program will conditionally allocate or deallocate device memory and move1409

data to and/or from device memory. When the condition in the if clause evaluates to false, no1410

device memory will be allocated or deallocated, and no data will be moved. When the condition1411

evaluates to true, the data will be allocated or deallocated and moved as specified.1412

async clause1413

The async clause is optional; see Section 2.16 Asynchronous Behavior for more information.1414

wait clause1415

The wait clause is optional; see Section 2.16 Asynchronous Behavior for more information.1416

finalize clause1417

The finalize clause is allowed on the exit data directive and is optional. When no finalize1418

clause appears, the exit data directive will decrement the dynamic reference counters for vars1419

appearing in copyout and delete clauses, and will decrement the attachment counters for point-1420

ers appearing in detach clauses. If a finalize clause appears, the exit data directive will1421

set the dynamic reference counters to zero for vars appearing in copyout and delete clauses,1422

and will set the attachment counters to zero for pointers appearing in detach clauses.1423

Errors1424

• See Section 2.7.3 for errors due to data clauses.1425

• See Sections 2.16.1 and 2.16.2 for errors due to async or wait clauses.1426

2.6.7 Reference Counters1427

When device memory is allocated for data not in shared memory due to data clauses or OpenACC1428

API routine calls, the OpenACC implementation keeps track of that section of device memory and1429

its relationship to the corresponding data in host memory.1430

Each section of device memory is associated with two reference counters per device, a structured1431

reference counter and a dynamic reference counter. The structured and dynamic reference counters1432

are used to determine when to allocate or deallocate data in device memory. The structured reference1433

counter for a section of memory keeps track of how many nested data regions have been entered for1434

that data. The initial value of the structured reference counter for static data in device memory (in a1435

global declare directive) is one; for all other data, the initial value is zero. The dynamic reference1436

counter for a section of memory keeps track of how many dynamic data lifetimes are currently active1437

43

The OpenACC R© API 2.7. Data Clauses

in device memory for that section. The initial value of the dynamic reference counter is zero. Data1438

is considered present if the sum of the structured and dynamic reference counters is greater than1439

zero.1440

A structured reference counter is incremented when entering each data or compute region that con-1441

tain an explicit data clause or implicitly-determined data attributes for that section of memory, and1442

is decremented when exiting that region. A dynamic reference counter is incremented for each1443

enter data copyin or create clause, or each acc_copyin or acc_create API routine1444

call for that section of memory. The dynamic reference counter is decremented for each exit1445

data copyout or delete clause when no finalize clause appears, or each acc_copyout1446

or acc_delete API routine call for that section of memory. The dynamic reference counter will1447

be set to zero with an exit data copyout or delete clause when a finalize clause ap-1448

pears, or each acc_copyout_finalize or acc_delete_finalize API routine call for1449

the section of memory. The reference counters are modified synchronously with the local thread,1450

even if the data directives include an async clause. When both structured and dynamic reference1451

counters reach zero, the data lifetime in device memory for that data ends.1452

2.6.8 Attachment Counter1453

Since multiple pointers can target the same address, each pointer in device memory is associated1454

with an attachment counter per device. The attachment counter for a pointer is initialized to zero1455

when the pointer is allocated in device memory. The attachment counter for a pointer is set to one1456

whenever the pointer is attached to new target address, and incremented whenever an attach action1457

for that pointer is performed for the same target address. The attachment counter is decremented1458

whenever a detach action occurs for the pointer, and the pointer is detached when the attachment1459

counter reaches zero. This is described in more detail in Section 2.7.2 Data Clause Actions.1460

A pointer in device memory can be assigned a device address in two ways. The pointer can be1461

attached to a device address due to data clauses or API routines, as described in Section 2.7.21462

Data Clause Actions, or the pointer can be assigned in a compute region executed on that device.1463

Unspecified behavior may result if both ways are used for the same pointer.1464

Pointer members of structs, classes, or derived types in device or host memory can be overwritten1465

due to update directives or API routines. It is the user’s responsibility to ensure that the pointers1466

have the appropriate values before or after the data movement in either direction. The behavior of1467

the program is undefined if any of the pointer members are attached when an update of a composite1468

variable is performed.1469

2.7 Data Clauses1470

Data clauses may appear on the parallel construct, serial construct, kernels construct,1471

data construct, the enter data and exit data directives, and declare directives. In the1472

descriptions, the region is a compute region with a clause appearing on a parallel, serial, or1473

kernels construct, a data region with a clause on a data construct, or an implicit data region1474

with a clause on a declare directive. If the declare directive appears in a global context,1475

the corresponding implicit data region has a duration of the program. The list argument to each1476

data clause is a comma-separated collection of vars. On a declare directive, the list argument1477

of a copyin, create, device_resident, or link clause may include a Fortran common1478

block name enclosed within slashes. On any directive, for any clause except deviceptr and1479

present, the list argument may include a Fortran common block name enclosed within slashes1480

44

The OpenACC R© API 2.7. Data Clauses

if that common block name also appears in a declare directive link clause. In all cases, the1481

compiler will allocate and manage a copy of the var in the memory of the current device, creating a1482

visible device copy of that var, for data not in shared memory.1483

OpenACC supports accelerators with discrete memories from the local thread. However, if the1484

accelerator can access the local memory directly, the implementation may avoid the memory allo-1485

cation and data movement and simply share the data in local memory. Therefore, a program that1486

uses and assigns data on the host and uses and assigns the same data on the accelerator within a1487

data region without update directives to manage the coherence of the two copies may get different1488

answers on different accelerators or implementations.1489

Restrictions1490

• Data clauses may not follow a device_type clause.1491

• See Section 2.17.1 Optional Arguments for discussion of Fortran optional arguments in data1492

clauses.1493

2.7.1 Data Specification in Data Clauses1494

In C and C++, a subarray is an array name followed by an extended array range specification in1495

brackets, with start and length, such as1496

AA[2:n]1497

If the lower bound is missing, zero is used. If the length is missing and the array has known size, the1498

size of the array is used; otherwise the length is required. The subarray AA[2:n] means elements1499

AA[2], AA[3], . . . , AA[2+n-1].1500

In C and C++, a two dimensional array may be declared in at least four ways:1501

• Statically-sized array: float AA[100][200];1502

• Pointer to statically sized rows: typedef float row[200]; row* BB;1503

• Statically-sized array of pointers: float* CC[200];1504

• Pointer to pointers: float** DD;1505

Each dimension may be statically sized, or a pointer to dynamically allocated memory. Each of1506

these may be included in a data clause using subarray notation to specify a rectangular array:1507

• AA[2:n][0:200]1508

• BB[2:n][0:m]1509

• CC[2:n][0:m]1510

• DD[2:n][0:m]1511

Multidimensional rectangular subarrays in C and C++ may be specified for any array with any com-1512

bination of statically-sized or dynamically-allocated dimensions. For statically sized dimensions, all1513

dimensions except the first must specify the whole extent to preserve the contiguous data restriction,1514

discussed below. For dynamically allocated dimensions, the implementation will allocate pointers1515

in device memory corresponding to the pointers in local memory and will fill in those pointers as1516

appropriate.1517

45

The OpenACC R© API 2.7. Data Clauses

In Fortran, a subarray is an array name followed by a comma-separated list of range specifications1518

in parentheses, with lower and upper bound subscripts, such as1519

arr(1:high,low:100)1520

If either the lower or upper bounds are missing, the declared or allocated bounds of the array, if1521

known, are used. All dimensions except the last must specify the whole extent, to preserve the1522

contiguous data restriction, discussed below.1523

Restrictions1524

• In Fortran, the upper bound for the last dimension of an assumed-size dummy array must be1525

specified.1526

• In C and C++, the length for dynamically allocated dimensions of an array must be explicitly1527

specified.1528

• In C and C++, modifying pointers in pointer arrays during the data lifetime, either on the host1529

or on the device, may result in undefined behavior.1530

• If a subarray appears in a data clause, the implementation may choose to allocate memory for1531

only that subarray on the accelerator.1532

• In Fortran, array pointers may appear, but pointer association is not preserved in device mem-1533

ory.1534

• Any array or subarray in a data clause, including Fortran array pointers, must be a contiguous1535

section of memory, except for dynamic multidimensional C arrays.1536

• In C and C++, if a variable or array of composite type appears, all the data members of the1537

struct or class are allocated and copied, as appropriate. If a composite member is a pointer1538

type, the data addressed by that pointer are not implicitly copied.1539

• In Fortran, if a variable or array of composite type appears, all the members of that derived1540

type are allocated and copied, as appropriate. If any member has the allocatable or1541

pointer attribute, the data accessed through that member are not copied.1542

• If an expression is used in a subscript or subarray expression in a clause on a data construct,1543

the same value is used when copying data at the end of the data region, even if the values of1544

variables in the expression change during the data region.1545

2.7.2 Data Clause Actions1546

Most of the data clauses perform one or more the following actions. The actions test or modify one1547

or both of the structured and dynamic reference counters, depending on the directive on which the1548

data clause appears.1549

Present Increment Action1550

A present increment action is one of the actions that may be performed for a present (Sec-1551

tion 2.7.5), copy (Section 2.7.6), copyin (Section 2.7.7), copyout (Section 2.7.8), create1552

(Section 2.7.9), or no_create (Section 2.7.10) clause, or for a call to an acc_copyin or1553

acc_create (Section 3.2.18) API routine. See those sections for details.1554

A present increment action for a var occurs only when var is already present in device memory.1555

46

The OpenACC R© API 2.7. Data Clauses

A present increment action for a var increments the structured or dynamic reference counter for var.1556

Present Decrement Action1557

A present decrement action is one of the actions that may be performed for a present (Section1558

2.7.5), copy (Section 2.7.6), copyin (Section 2.7.7), copyout (Section 2.7.8), create (Sec-1559

tion 2.7.9), no_create (Section 2.7.10), or delete (Section 2.7.11) clause, or for a call to an1560

acc_copyout or acc_delete (Section 3.2.19) API routine. See those sections for details.1561

A present decrement action for a var occurs only when var is already present in device memory.1562

A present decrement action for a var decrements the structured or dynamic reference counter for1563

var, if its value is greater than zero. If the device memory associated with var was mapped to1564

the device using acc_map_data, the dynamic reference count may not be decremented to zero,1565

except by a call to acc_unmap_data. If the reference counter is already zero, its value is left1566

unchanged.1567

Create Action1568

A create action is one of the actions that may be performed for a copyout (Section 2.7.8) or1569

create (Section 2.7.9) clause, or for a call to an acc_create API routine (Section 3.2.18). See1570

those sections for details.1571

A create action for a var occurs only when var is not already present in device memory.1572

A create action for a var:1573

• allocates device memory for var; and1574

• sets the structured or dynamic reference counter to one.1575

Copyin Action1576

A copyin action is one of the actions that may be performed for a copy (Section 2.7.6) or copyin1577

(Section 2.7.7) clause, or for a call to an acc_copyin API routine (Section 3.2.18). See those1578

sections for details.1579

A copyin action for a var occurs only when var is not already present in device memory.1580

A copyin action for a var:1581

• allocates device memory for var;1582

• initiates a copy of the data for var from the local thread memory to the corresponding device1583

memory; and1584

• sets the structured or dynamic reference counter to one.1585

The data copy may complete asynchronously, depending on other clauses on the directive.1586

Copyout Action1587

A copyout action is one of the actions that may be performed for a copy (Section 2.7.6) or1588

copyout (Section 2.7.8) clause, or for a call to an acc_copyout API routine (Section 3.2.19).1589

See those sections for details.1590

47

The OpenACC R© API 2.7. Data Clauses

A copyout action for a var occurs only when var is present in device memory.1591

A copyout action for a var:1592

• performs an immediate detach action for any pointer in var;1593

• initiates a copy of the data for var from device memory to the corresponding local thread1594

memory; and1595

• deallocates device memory for var.1596

The data copy may complete asynchronously, depending on other clauses on the directive, in which1597

case the memory is deallocated when the data copy is complete.1598

Delete Action1599

A delete action is one of the actions that may be performed for a present (Section 2.7.5),1600

copyin (Section 2.7.7), create (Section 2.7.9), no_create (Section 2.7.10), or delete (Sec-1601

tion 2.7.11) clause, or for a call to an acc_deleteAPI routine (Section 3.2.19). See those sections1602

for details.1603

A delete action for a var occurs only when var is present in device memory.1604

A delete action for var:1605

• performs an immediate detach action for any pointer in var; and1606

• deallocates device memory for var.1607

Attach Action1608

An attach action is one of the actions that may be performed for a present (Section 2.7.5),1609

copy (Section 2.7.6), copyin (Section 2.7.7), copyout (Section 2.7.8), create (Section 2.7.9),1610

no_create (Section 2.7.10), or attach (Section 2.7.11) clause, or for a call to an acc_attach1611

API routine (Section 3.2.29). See those sections for details.1612

An attach action for a var occurs only when var is a pointer reference.1613

If the pointer var is in shared memory or is not present in the current device memory, or if the1614

address to which var points is not present in the current device memory, no action is taken. If the1615

attachment counter for var is nonzero and the pointer in device memory already points to the device1616

copy of the data in var, the attachment counter for the pointer var is incremented. Otherwise, the1617

pointer in device memory is attached to the device copy of the data by initiating an update for the1618

pointer in device memory to point to the device copy of the data and setting the attachment counter1619

for the pointer var to one. If the pointer is a null pointer, the pointer in device memory is updated to1620

have the same value. The update may complete asynchronously, depending on other clauses on the1621

directive. The implementation schedules pointer updates after any data copies due to copyin actions1622

that are performed for the same directive.1623

Detach Action1624

A detach action is one of the actions that may be performed for a present (Section 2.7.5),1625

copy (Section 2.7.6), copyin (Section 2.7.7), copyout (Section 2.7.8), create (Section 2.7.9),1626

no_create (Section 2.7.10), delete (Section 2.7.11), or detach (Section 2.7.11) clause, or1627

for a call to an acc_detach API routine (Section 3.2.29). See those sections for details.1628

48

The OpenACC R© API 2.7. Data Clauses

A detach action for a var occurs only when var is a pointer reference.1629

If the pointer var is in shared memory or is not present in the current device memory, or if the1630

attachment counter for var for the pointer is zero, no action is taken. Otherwise, the attachment1631

counter for the pointer var is decremented. If the attachment counter is decreased to zero, the1632

pointer is detached by initiating an update for the pointer var in device memory to have the same1633

value as the corresponding pointer in local memory. The update may complete asynchronously,1634

depending on other clauses on the directive. The implementation schedules pointer updates before1635

any data copies due to copyout actions that are performed for the same directive.1636

Immediate Detach Action1637

An immediate detach action is one of the actions that may be performed for a detach (Section1638

2.7.11) clause, or for a call to an acc_detach_finalize API routine (Section 3.2.29). See1639

those sections for details.1640

An immediate detach action for a var occurs only when var is a pointer reference and is present in1641

device memory.1642

If the attachment counter for the pointer is zero, the immediate detach action has no effect. Other-1643

wise, the attachment counter for the pointer set to zero and the pointer is detached by initiating an1644

update for the pointer in device memory to have the same value as the corresponding pointer in local1645

memory. The update may complete asynchronously, depending on other clauses on the directive.1646

The implementation schedules pointer updates before any data copies due to copyout actions that1647

are performed for the same directive.1648

2.7.3 Data Clause Errors1649

An error is issued for a var that appears in a copy, copyin, copyout, create, and delete1650

clause as follows:1651

• An acc_error_partly_present error is issued if part of var is present in the current1652

device memory but all of var is not.1653

• An acc_error_invalid_data_section error is issued if var is a Fortran subarray1654

with a stride that is not one.1655

• An acc_error_out_of_memory error is issued if the accelerator device does not have1656

enough memory for var.1657

An error is issued for a var that appears in a present clause as follows:1658

• An acc_error_not_present error is issued if var is not present in the current device1659

memory at entry to a data or compute construct.1660

• An acc_error_partly_present error is issued if part of var is present in the current1661

device memory but all of var is not.1662

See Section 5.2.2.1663

2.7.4 deviceptr clause1664

The deviceptr clause may appear on structured data and compute constructs and declare1665

directives.1666

49

The OpenACC R© API 2.7. Data Clauses

The deviceptr clause is used to declare that the pointers in var-list are device pointers, so the1667

data need not be allocated or moved between the host and device for this pointer.1668

In C and C++, the vars in var-list must be pointer variables.1669

In Fortran, the vars in var-list must be dummy arguments (arrays or scalars), and may not have the1670

Fortran pointer, allocatable, or value attributes.1671

For data in shared memory, host pointers are the same as device pointers, so this clause has no1672

effect.1673

2.7.5 present clause1674

The present clause may appear on structured data and compute constructs and declare di-1675

rectives. The present clause specifies that vars in var-list are in shared memory or are already1676

present in the current device memory due to data regions or data lifetimes that contain the construct1677

on which the present clause appears.1678

For each var in var-list, if var is in shared memory, no action is taken; if var is not in shared memory,1679

the present clause behaves as follows:1680

• At entry to the region:1681

– An attach action is performed if var is a pointer reference, and a present increment1682

action with the structured reference counter is performed if var is not a null pointer.1683

• At exit from the region:1684

– If the structured reference counter for var is zero, no action is taken.1685

– Otherwise, a detach action is performed if var is a pointer reference, and a present decrement1686

action with the structured reference counter is performed if var is not a null pointer. If1687

both structured and dynamic reference counters are zero, a delete action is performed.1688

The errors in Section 2.7.3 Data Clause Errors may be issued for this clause.1689

2.7.6 copy clause1690

The copy clause may appear on structured data and compute constructs and on declare direc-1691

tives.1692

For each var in var-list, if var is in shared memory, no action is taken; if var is not in shared memory,1693

the copy clause behaves as follows:1694

• At entry to the region:1695

– If var is present and is not a null pointer, a present increment action with the structured1696

reference counter is performed.1697

– If var is not present, a copyin action with the structured reference counter is performed.1698

– If var is a pointer reference, an attach action is performed.1699

• At exit from the region:1700

– If the structured reference counter for var is zero, no action is taken.1701

50

The OpenACC R© API 2.7. Data Clauses

– Otherwise, a detach action is performed if var is a pointer reference, and a present decrement1702

action with the structured reference counter is performed if var is not a null pointer. If1703

both structured and dynamic reference counters are zero, a copyout action is performed.1704

The errors in Section 2.7.3 Data Clause Errors may be issued for this clause.1705

For compatibility with OpenACC 2.0, present_or_copy and pcopy are alternate names for1706

copy.1707

2.7.7 copyin clause1708

The copyin clause may appear on structured data and compute constructs, on declare direc-1709

tives, and on enter data directives.1710

For each var in var-list, if var is in shared memory, no action is taken; if var is not in shared memory,1711

the copyin clause behaves as follows:1712

• At entry to a region, the structured reference counter is used. On an enter data directive,1713

the dynamic reference counter is used.1714

– If var is present and is not a null pointer, a present increment action with the appropriate1715

reference counter is performed.1716

– If var is not present, a copyin action with the appropriate reference counter is performed.1717

– If var is a pointer reference, an attach action is performed.1718

• At exit from the region:1719

– If the structured reference counter for var is zero, no action is taken.1720

– Otherwise, a detach action is performed if var is a pointer reference, and a present decrement1721

action with the structured reference counter is performed if var is not a null pointer. If1722

both structured and dynamic reference counters are zero, a delete action is performed.1723

If the optional readonly modifier appears, then the implementation may assume that the data1724

referenced by var-list is never written to within the applicable region.1725

The errors in Section 2.7.3 Data Clause Errors may be issued for this clause.1726

For compatibility with OpenACC 2.0, present_or_copyin and pcopyin are alternate names1727

for copyin.1728

An enter data directive with a copyin clause is functionally equivalent to a call to the acc_copyin1729

API routine, as described in Section 3.2.18.1730

2.7.8 copyout clause1731

The copyout clause may appear on structured data and compute constructs, on declare di-1732

rectives, and on exit data directives. The clause may optionally have a zero modifier if the1733

copyout clause appears on a structured data or compute construct.1734

For each var in var-list, if var is in shared memory, no action is taken; if var is not in shared memory,1735

the copyout clause behaves as follows:1736

• At entry to a region:1737

51

The OpenACC R© API 2.7. Data Clauses

– If var is present and is not a null pointer, a present increment action with the structured1738

reference counter is performed.1739

– If var is not present, a create action with the structured reference counter is performed.1740

If a zero modifier appears, the memory is zeroed after the create action.1741

– If var is a pointer reference, an attach action is performed.1742

• At exit from a region, the structured reference counter is used. On an exit data directive,1743

the dynamic reference counter is used.1744

– If the appropriate reference counter for var is zero, no action is taken.1745

– Otherwise, a detach action is performed if var is a pointer reference, and the reference1746

counter is updated if var is not a null pointer:1747

∗ On an exit data directive with a finalize clause, the dynamic reference1748

counter is set to zero.1749

∗ Otherwise, a present decrement action with the appropriate reference counter is1750

performed.1751

If both structured and dynamic reference counters are zero, a copyout action is per-1752

formed.1753

The errors in Section 2.7.3 Data Clause Errors may be issued for this clause.1754

For compatibility with OpenACC 2.0, present_or_copyout and pcopyout are alternate1755

names for copyout.1756

An exit data directive with a copyout clause and with or without a finalize clause is func-1757

tionally equivalent to a call to the acc_copyout_finalize or acc_copyout API routine,1758

respectively, as described in Section 3.2.19.1759

2.7.9 create clause1760

The create clause may appear on structured data and compute constructs, on declare direc-1761

tives, and on enter data directives. The clause may optionally have a zero modifier.1762

For each var in var-list, if var is in shared memory, no action is taken; if var is not in shared memory,1763

the create clause behaves as follows:1764

• At entry to a region, the structured reference counter is used. On an enter data directive,1765

the dynamic reference counter is used.1766

– If var is present and is not a null pointer, a present increment action with the appropriate1767

reference counter is performed.1768

– If var is not present and is not a null pointer, a create action with the appropriate refer-1769

ence counter is performed. If a zero modifier appears, the memory is zeroed after the1770

create action.1771

– If var is a pointer reference, an attach action is performed.1772

• At exit from the region:1773

– If the structured reference counter for var is zero, no action is taken.1774

52

The OpenACC R© API 2.7. Data Clauses

– Otherwise, a detach action is performed if var is a pointer reference, and a present decrement1775

action with the structured reference counter is performed if var is not a null pointer If1776

both structured and dynamic reference counters are zero, a delete action is performed.1777

The errors in Section 2.7.3 Data Clause Errors may be issued for this clause.1778

For compatibility with OpenACC 2.0, present_or_create and pcreate are alternate names1779

for create.1780

An enter data directive with a create clause is functionally equivalent to a call to the acc_create1781

API routine, as described in Section 3.2.18, except the directive may perform an attach action for a1782

pointer reference.1783

2.7.10 no create clause1784

The no_create clause may appear on structured data and compute constructs.1785

For each var in var-list, if var is in shared memory, no action is taken; if var is not in shared memory,1786

the no_create clause behaves as follows:1787

• At entry to the region:1788

– If var is present and is not a null pointer, a present increment action with the structured1789

reference counter is performed. If var is present and is a pointer reference, an attach1790

action is performed.1791

– If var is not present, no action is performed, and any device code in this construct will1792

use the local memory address for var.1793

• At exit from the region:1794

– If the structured reference counter for var is zero, no action is taken.1795

– Otherwise, a detach action is performed if var is a pointer reference, and a present decrement1796

action with the structured reference counter is performed if var is not a null pointer. If1797

both structured and dynamic reference counters are zero, a delete action is performed.1798

2.7.11 delete clause1799

The delete clause may appear on exit data directives.1800

For each var in var-list, if var is in shared memory, no action is taken; if var is not in shared memory,1801

the delete clause behaves as follows:1802

• If the dynamic reference counter for var is zero, no action is taken.1803

• Otherwise, a detach action is performed if var is a pointer reference, and the dynamic refer-1804

ence counter is updated if var is not a null pointer:1805

– On an exit data directive with a finalize clause, the dynamic reference counter1806

is set to zero.1807

– Otherwise, a present decrement action with the dynamic reference counter is performed.1808

If var is a pointer reference, a detach action is performed. If both structured and dynamic1809

reference counters are zero, a delete action is performed.1810

53

The OpenACC R© API 2.8. Host Data Construct

An exit data directive with a delete clause and with or without a finalize clause is func-1811

tionally equivalent to a call to the acc_delete_finalize or acc_delete API routine, re-1812

spectively, as described in Section 3.2.19.1813

The errors in Section 2.7.3 Data Clause Errors may be issued for this clause.1814

2.7.12 attach clause1815

The attach clause may appear on structured data and compute constructs and on enter data1816

directives. Each var argument to an attach clause must be a C or C++ pointer or a Fortran variable1817

or array with the pointer or allocatable attribute.1818

For each var in var-list, if var is in shared memory, no action is taken; if var is not in shared memory,1819

the attach clause behaves as follows:1820

• At entry to a region or at an enter data directive, an attach action is performed.1821

• At exit from the region, a detach action is performed.1822

2.7.13 detach clause1823

The detach clause may appear on exit data directives. Each var argument to a detach clause1824

must be a C or C++ pointer or a Fortran variable or array with the pointer or allocatable1825

attribute.1826

For each var in var-list, if var is in shared memory, no action is taken; if var is not in shared memory,1827

the detach clause behaves as follows:1828

• If there is a finalize clause on the exit data directive, an immediate detach action is1829

performed.1830

• Otherwise, a detach action is performed.1831

2.8 Host Data Construct1832

Summary1833

The host_data construct makes the address of data in device memory available on the host.1834

Syntax1835

In C and C++, the syntax of the OpenACC host_data construct is1836

#pragma acc host_data clause-list new-line1837

structured block1838

and in Fortran, the syntax is1839

!$acc host_data clause-list1840

structured block1841

!$acc end host_data1842

or1843

!$acc host_data clause-list1844

block construct1845

[!$acc end host_data]1846

54

The OpenACC R© API 2.9. Loop Construct

where clause is one of the following:1847

use_device(var-list)1848

if(condition)1849

if_present1850

Description1851

This construct is used to make the address of data in device memory available in host code.1852

Restrictions1853

• A var in a use_device clause must be the name of a variable or array.1854

• At least one use_device clause must appear.1855

• At most one if clause may appear. In Fortran, the condition must evaluate to a scalar logical1856

value; in C or C++, the condition must evaluate to a scalar integer value.1857

• See Section 2.17.1 Optional Arguments for discussion of Fortran optional arguments in1858

use_device clauses.1859

2.8.1 use device clause1860

The use_device clause tells the compiler to use the current device address of any var in var-list1861

in code within the construct. In particular, this may be used to pass the device address of var to1862

optimized procedures written in a lower-level API. If var is a null pointer, the same value is used1863

for the device address. Otherwise, when there is no if_present clause, and either there is no1864

if clause or the condition in the if clause evaluates to true, the var in var-list must be present in1865

the accelerator memory due to data regions or data lifetimes that contain this construct. For data in1866

shared memory, the device address is the same as the host address.1867

2.8.2 if clause1868

The if clause is optional. When an if clause appears and the condition evaluates to false, the1869

compiler will not replace the addresses of any var in code within the construct. When there is no if1870

clause, or when an if clause appears and the condition evaluates to true, the compiler will replace1871

the addresses as described in the previous subsection.1872

2.8.3 if present clause1873

When an if_present clause appears on the directive, the compiler will only replace the address1874

of any var which appears in var-list that is present in the current device memory.1875

2.9 Loop Construct1876

Summary1877

The OpenACC loop construct applies to a loop which must immediately follow this directive. The1878

loop construct can describe what type of parallelism to use to execute the loop and declare private1879

vars and reduction operations.1880

55

The OpenACC R© API 2.9. Loop Construct

Syntax1881

In C and C++, the syntax of the loop construct is1882

#pragma acc loop [clause-list] new-line1883

for loop1884

In Fortran, the syntax of the loop construct is1885

!$acc loop [clause-list]1886

do loop1887

where clause is one of the following:1888

collapse(n)1889

gang [(gang-arg-list)]1890

worker [([num:]int-expr)]1891

vector [([length:]int-expr)]1892

seq1893

independent1894

auto1895

tile(size-expr-list)1896

device_type(device-type-list)1897

private(var-list)1898

reduction(operator:var-list)1899

where gang-arg is one of:1900

[num:]int-expr1901

static:size-expr1902

and gang-arg-list may have at most one num and one static argument,1903

and where size-expr is one of:1904

*1905

int-expr1906

1907

Some clauses are only valid in the context of a kernels construct; see the descriptions below.1908

An orphaned loop construct is a loop construct that is not lexically enclosed within a compute1909

construct. The parent compute construct of a loop construct is the nearest compute construct that1910

lexically contains the loop construct.1911

A loop construct is data-independent if it has an independent clause that is determined explic-1912

itly, implicitly, or from an auto clause. A loop construct is sequential if it has a seq clause that1913

is determined explicitly or from an auto clause.1914

When do-loop is a do concurrent, the OpenACC loop construct applies to the loop for each1915

index in the concurrent-header. The loop construct can describe what type of parallelism to use1916

to execute all the loops, and declares all indices appearing in the concurrent-header to be implicitly1917

private. If the loop construct that is associated with do concurrent is combined with a compute1918

construct then concurrent-locality is processed as follows: variables appearing in a local are treated1919

as appearing in a private clause; variables appearing in a local init are treated as appearing in a1920

56

The OpenACC R© API 2.9. Loop Construct

firstprivate clause; variables appearing in a shared are treated as appearing in a copy clause;1921

and a default(none) locality spec implies a default(none) clause on the compute construct. If1922

the loop construct is not combined with a compute construct, the behavior is implementation-1923

defined.1924

Restrictions1925

• Only the collapse, gang, worker, vector, seq, independent, auto, and tile1926

clauses may follow a device_type clause.1927

• The int-expr argument to the worker and vector clauses must be invariant in the kernels1928

region.1929

• A loop associated with a loop construct that does not have a seq clause must be written to1930

meet all of the following conditions:1931

– The loop variable must be of integer, C/C++ pointer, or C++ random-access iterator1932

type.1933

– The loop variable must monotonically increase or decrease in the direction of its termi-1934

nation condition.1935

– The loop trip count must be computable in constant time when entering the loop con-1936

struct.1937

For a C++ range-based for loop, the loop variable identified by the above conditions is the1938

internal iterator, such as a pointer, that the compiler generates to iterate the range. It is not the1939

variable declared by the for loop.1940

• Only one of the seq, independent, and auto clauses may appear.1941

• A gang, worker, or vector clause may not appear if a seq clause appears.1942

• A tile and collapse clause may not appear on loop that is associated with do concurrent.1943

2.9.1 collapse clause1944

The collapse clause is used to specify how many tightly nested loops are associated with the1945

loop construct. The argument to the collapse clause must be a constant positive integer expres-1946

sion. If no collapse clause appears, only the immediately following loop is associated with the1947

loop construct.1948

If more than one loop is associated with the loop construct, the iterations of all the associated loops1949

are all scheduled according to the rest of the clauses. The trip count for all loops associated with1950

the collapse clause must be computable and invariant in all the loops. The particular integer1951

type used to compute the trip count for the collapsed loops is implementation defined. However, the1952

integer type used for the trip count has at least the precision of each loop variable of the associated1953

loops.1954

It is implementation-defined whether a gang, worker or vector clause on the construct is ap-1955

plied to each loop, or to the linearized iteration space.1956

2.9.2 gang clause1957

When the parent compute construct is a parallel construct, or on an orphaned loop construct,1958

the gang clause specifies that the iterations of the associated loop or loops are to be executed in1959

57

The OpenACC R© API 2.9. Loop Construct

parallel by distributing the iterations among the gangs created by the parallel construct. A1960

loop construct with the gang clause transitions a compute region from gang-redundant mode to1961

gang-partitioned mode. The number of gangs is controlled by the parallel construct; only the1962

static argument is allowed. The loop iterations must be data independent, except for vars which1963

appear in a reduction clause or which are modified in an atomic region. The region of a loop1964

with the gang clause may not contain another loop with the gang clause unless within a nested1965

compute region.1966

When the parent compute construct is a kernels construct, the gang clause specifies that the1967

iterations of the associated loop or loops are to be executed in parallel across the gangs. An argument1968

with no keyword or with the num keyword is allowed only when the num_gangs does not appear1969

on the kernels construct. If an argument with no keyword or an argument after the num keyword1970

appears, it specifies how many gangs to use to execute the iterations of this loop. The region of a1971

loop with the gang clause may not contain another loop with a gang clause unless within a nested1972

compute region.1973

The scheduling of loop iterations to gangs is not specified unless the static modifier appears as1974

an argument. If the static modifier appears with an integer expression, that expression is used1975

as a chunk size. If the static modifier appears with an asterisk, the implementation will select a1976

chunk size. The iterations are divided into chunks of the selected chunk size, and the chunks are1977

assigned to gangs starting with gang zero and continuing in round-robin fashion. Two gang loops1978

in the same parallel region with the same number of iterations, and with static clauses with the1979

same argument, will assign the iterations to gangs in the same manner. Two gang loops in the1980

same kernels region with the same number of iterations, the same number of gangs to use, and with1981

static clauses with the same argument, will assign the iterations to gangs in the same manner.1982

A gang clause without arguments is implied on a data-independent loop construct without an1983

explicit gang clause if the following conditions hold while ignoring gang, worker, and vector1984

clauses on any sequential loop constructs:1985

• This loop construct’s parent compute construct, if any, is not a kernels construct.1986

• An explicit gang clause would be permitted on this loop construct.1987

• For every lexically enclosing data-independent loop construct, either an explicit gang clause1988

would not be permitted on the enclosing loop construct, or the enclosing loop construct1989

lexically encloses a compute construct that lexically encloses this loop construct.1990

Note: As a performance optimization, the implementation might select different levels of paral-1991

lelism for a loop construct than specified by explicitly or implicitly determined clauses as long1992

as it can prove program semantics are preserved. In particular, the implementation must consider1993

semantic differences between gang-redundant and gang-partitioned mode. For example, in a series1994

of tightly nested, data-independent loop constructs, implementations often move gang-partitioning1995

from one loop construct to another without affecting semantics.1996

Note: If the auto or device_type clause appears on a loop construct, it is the programmer’s1997

responsibility to ensure that program semantics are the same regardless of whether the auto clause1998

is treated as independent or seq and regardless of the device type for which the program is1999

compiled. In particular, the programmer must consider the effect on both explicitly and implicitly2000

determined gang clauses and thus on gang-redundant and gang-partitioned mode. Examples in2001

Section 2.9.11 demonstrate this issue for the auto clause.2002

58

The OpenACC R© API 2.9. Loop Construct

2.9.3 worker clause2003

When the parent compute construct is a parallel construct, or on an orphaned loop construct,2004

the worker clause specifies that the iterations of the associated loop or loops are to be executed2005

in parallel by distributing the iterations among the multiple workers within a single gang. A loop2006

construct with a worker clause causes a gang to transition from worker-single mode to worker-2007

partitioned mode. In contrast to the gang clause, the worker clause first activates additional2008

worker-level parallelism and then distributes the loop iterations across those workers. No argu-2009

ment is allowed. The loop iterations must be data independent, except for vars which appear in2010

a reduction clause or which are modified in an atomic region. The region of a loop with the2011

worker clause may not contain a loop with the gang or worker clause unless within a nested2012

compute region.2013

When the parent compute construct is a kernels construct, the worker clause specifies that the2014

iterations of the associated loop or loops are to be executed in parallel across the workers within2015

a single gang. An argument is allowed only when the num_workers does not appear on the2016

kernels construct. The optional argument specifies how many workers per gang to use to execute2017

the iterations of this loop. The region of a loop with the worker clause may not contain a loop2018

with a gang or worker clause unless within a nested compute region.2019

All workers will complete execution of their assigned iterations before any worker proceeds beyond2020

the end of the loop.2021

2.9.4 vector clause2022

When the parent compute construct is a parallel construct, or on an orphaned loop construct,2023

the vector clause specifies that the iterations of the associated loop or loops are to be executed2024

in vector or SIMD mode. A loop construct with a vector clause causes a worker to transition2025

from vector-single mode to vector-partitioned mode. Similar to the worker clause, the vector2026

clause first activates additional vector-level parallelism and then distributes the loop iterations across2027

those vector lanes. The operations will execute using vectors of the length specified or chosen for2028

the parallel region. The loop iterations must be data independent, except for vars which appear in2029

a reduction clause or which are modified in an atomic region. The region of a loop with the2030

vector clause may not contain a loop with the gang, worker, or vector clause unless within2031

a nested compute region.2032

When the parent compute construct is a kernels construct, the vector clause specifies that the2033

iterations of the associated loop or loops are to be executed with vector or SIMD processing. An2034

argument is allowed only when the vector_length does not appear on the kernels construct.2035

If an argument appears, the iterations will be processed in vector strips of that length; if no argument2036

appears, the implementation will choose an appropriate vector length. The region of a loop with the2037

vector clause may not contain a loop with a gang, worker, or vector clause unless within a2038

nested compute region.2039

All vector lanes will complete execution of their assigned iterations before any vector lane proceeds2040

beyond the end of the loop.2041

2.9.5 seq clause2042

The seq clause specifies that the associated loop or loops are to be executed sequentially by the2043

accelerator. This clause will override any automatic parallelization or vectorization.2044

59

The OpenACC R© API 2.9. Loop Construct

2.9.6 independent clause2045

The independent clause tells the implementation that the loop iterations must be data indepen-2046

dent, except for vars which appear in a reduction clause or which are modified in an atomic2047

region. This allows the implementation to generate code to execute the iterations in parallel with no2048

synchronization.2049

A loop construct with no auto or seq clause is treated as if it has the independent clause2050

when it is an orphaned loop construct or its parent compute construct is a parallel construct.2051

Note2052

• It is likely a programming error to use the independent clause on a loop if any iteration2053

writes to a variable or array element that any other iteration also writes or reads, except for2054

vars which appear in a reduction clause or which are modified in an atomic region.2055

• The implementation may be restricted in the levels of parallelism it can apply by the presence2056

of loop constructs with gang, worker, or vector clauses for outer or inner loops.2057

2.9.7 auto clause2058

The auto clause specifies that the implementation must analyze the loop and determine whether the2059

loop iterations are data-independent. If it determines that the loop iterations are data-independent,2060

the implementation must treat the auto clause as if it is an independent clause. If not, or if it2061

is unable to make a determination, it must treat the auto clause as if it is a seq clause, and it must2062

ignore any gang, worker, or vector clauses on the loop construct.2063

When the parent compute construct is a kernels construct, a loop construct with no independent2064

or seq clause is treated as if it has the auto clause.2065

2.9.8 tile clause2066

The tile clause specifies that the implementation should split each loop in the loop nest into two2067

loops, with an outer set of tile loops and an inner set of element loops. The argument to the tile2068

clause is a list of one or more tile sizes, where each tile size is a constant positive integer expression2069

or an asterisk. If there are n tile sizes in the list, the loop construct must be immediately followed2070

by n tightly-nested loops. The first argument in the size-expr-list corresponds to the innermost loop2071

of the n associated loops, and the last element corresponds to the outermost associated loop. If the2072

tile size is an asterisk, the implementation will choose an appropriate value. Each loop in the nest2073

will be split or strip-mined into two loops, an outer tile loop and an inner element loop. The trip2074

count of the element loop will be limited to the corresponding tile size from the size-expr-list. The2075

tile loops will be reordered to be outside all the element loops, and the element loops will all be2076

inside the tile loops.2077

If the vector clause appears on the loop construct, the vector clause is applied to the element2078

loops. If the gang clause appears on the loop construct, the gang clause is applied to the tile2079

loops. If the worker clause appears on the loop construct, the worker clause is applied to the2080

element loops if no vector clause appears, and to the tile loops otherwise.2081

2.9.9 device type clause2082

The device_type clause is described in Section 2.4 Device-Specific Clauses.2083

60

The OpenACC R© API 2.9. Loop Construct

2.9.10 private clause2084

The private clause on a loop construct specifies that a copy of each item in var-list will be2085

created. If the body of the loop is executed in vector-partitioned mode, a copy of the item is created2086

for each thread associated with each vector lane. If the body of the loop is executed in worker-2087

partitioned vector-single mode, a copy of the item is created for and shared across the set of threads2088

associated with all the vector lanes of each worker. Otherwise, a copy of the item is created for and2089

shared across the set of threads associated with all the vector lanes of all the workers of each gang.2090

Restrictions2091

• See Section 2.17.1 Optional Arguments for discussion of Fortran optional arguments in private2092

clauses.2093

2.9.11 reduction clause2094

The reduction clause specifies a reduction operator and one or more vars. For each reduction2095

var, a private copy is created in the same manner as for a private clause on the loop construct,2096

and initialized for that operator; see the table in Section 2.5.15 reduction clause. After the loop, the2097

values for each thread are combined using the specified reduction operator, and the result combined2098

with the value of the original var and stored in the original var. If the original var is not private,2099

this update occurs by the end of the compute region, and any access to the original var is undefined2100

within the compute region. Otherwise, the update occurs at the end of the loop. If the reduction2101

var is an array or subarray, the reduction operation is logically equivalent to applying that reduction2102

operation to each array element of the array or subarray individually. If the reduction var is a com-2103

posite variable, the reduction operation is logically equivalent to applying that reduction operation2104

to each member of the composite variable individually.2105

If a variable is involved in a reduction that spans multiple nested loops where two or more of those2106

loops have associated loop directives, a reduction clause containing that variable must appear2107

on each of those loop directives.2108

Restrictions2109

• A var in a reduction clause must be a scalar variable name, an aggregate variable name,2110

an array element, or a subarray (refer to Section 2.7.1).2111

• Reduction clauses on nested constructs for the same reduction var must have the same reduc-2112

tion operator.2113

• Every var in a reduction clause appearing on an orphaned loop construct must be private.2114

• The restrictions for a reduction clause on a compute construct listed in in Section 2.5.152115

reduction clause also apply to a reduction clause on a loop construct.2116

• See Section 2.17.1 Optional Arguments for discussion of Fortran optional arguments in2117

reduction clauses.2118

• See Section 2.6.2 Variables with Implicitly Determined Data Attributes for a restriction re-2119

quiring certain loop reduction variables to have explicit data clauses on their parent compute2120

constructs.2121

H H
2122

61

The OpenACC R© API 2.9. Loop Construct

Examples2123

2124

• x is not private at the loop directive below, so its reduction normally updates x at the end2125

of the parallel region, where gangs synchronize. When possible, the implementation might2126

choose to partially update x at the loop exit instead, or fully if num_gangs(1) were added2127

to the parallel directive. However, portable applications cannot rely on such early up-2128

dates, so accesses to x are undefined within the parallel region outside the loop.2129

int x = 0;2130

#pragma acc parallel copy(x)2131

{2132

// gang-shared x undefined2133

#pragma acc loop gang worker vector reduction(+:x)2134

for (int i = 0; i < I; ++i)2135

x += 1; // vector-private x modified2136

// gang-shared x undefined2137

} // gang-shared x updated for gang/worker/vector reduction2138

// x = I2139

• x is private at each of the innermost two loop directives below, so each of their reductions2140

updates x at the loop’s exit. However, x is not private at the outer loop directive, so its2141

reduction updates x by the end of the parallel region instead.2142

int x = 0;2143

#pragma acc parallel copy(x)2144

{2145

// gang-shared x undefined2146

#pragma acc loop gang reduction(+:x)2147

for (int i = 0; i < I; ++i) {2148

#pragma acc loop worker reduction(+:x)2149

for (int j = 0; j < J; ++j) {2150

#pragma acc loop vector reduction(+:x)2151

for (int k = 0; k < K; ++k) {2152

x += 1; // vector-private x modified2153

} // worker-private x updated for vector reduction2154

} // gang-private x updated for worker reduction2155

}2156

// gang-shared x undefined2157

} // gang-shared x updated for gang reduction2158

// x = I * J * K2159

• At each loop directive below, x is private and y is not private due to the data clauses on2160

the parallel directive. Thus, each reduction updates x at the loop exit, but each reduction2161

updates y by the end of the parallel region instead.2162

int x = 0, y = 0;2163

#pragma acc parallel firstprivate(x) copy(y)2164

{2165

// gang-private x = 0; gang-shared y undefined2166

62

The OpenACC R© API 2.9. Loop Construct

#pragma acc loop seq reduction(+:x,y)2167

for (int i = 0; i < I; ++i) {2168

x += 1; y += 2; // loop-private x and y modified2169

} // gang-private x updated for seq reduction (trivial reduction)2170

// gang-private x = I; gang-shared y undefined2171

#pragma acc loop worker reduction(+:x,y)2172

for (int i = 0; i < I; ++i) {2173

x += 1; y += 2; // worker-private x and y modified2174

} // gang-private x updated for worker reduction2175

// gang-private x = 2 * I; gang-shared y undefined2176

#pragma acc loop vector reduction(+:x,y)2177

for (int i = 0; i < I; ++i) {2178

x += 1; y += 2; // vector-private x and y modified2179

} // gang-private x updated for vector reduction2180

// gang-private x = 3 * I; gang-shared y undefined2181

} // gang-shared y updated for gang/seq/worker/vector reductions2182

// x = 0; y = 3 * I * 22183

• The examples below are equivalent. That is, the reduction clause on the combined con-2184

struct applies to the loop construct but implies a copy clause on the parallel construct. Thus,2185

x is not private at the loop directive, so the reduction updates x by the end of the parallel2186

region.2187

int x = 0;2188

#pragma acc parallel loop worker reduction(+:x)2189

for (int i = 0; i < I; ++i) {2190

x += 1; // worker-private x modified2191

} // gang-shared x updated for gang/worker reduction2192

// x = I2193

2194

int x = 0;2195

#pragma acc parallel copy(x)2196

{2197

// gang-shared x undefined2198

#pragma acc loop worker reduction(+:x)2199

for (int i = 0; i < I; ++i) {2200

x += 1; // worker-private x modified2201

}2202

// gang-shared x undefined2203

} // gang-shared x updated for gang/worker reduction2204

// x = I2205

• If the implementation treats the auto clause below as independent, the loop executes in2206

gang-partitioned mode and thus examines every element of arr once to compute arr’s max-2207

imum. However, if the implementation treats auto as seq, the gangs redundantly compute2208

arr’s maximum, but the combined result is still arr’s maximum. Either way, because x is2209

not private at the loop directive, the reduction updates x by the end of the parallel region.2210

int x = 0;2211

const int *arr = /*array of I values*/;2212

63

The OpenACC R© API 2.9. Loop Construct

#pragma acc parallel copy(x)2213

{2214

// gang-shared x undefined2215

#pragma acc loop auto gang reduction(max:x)2216

for (int i = 0; i < I; ++i) {2217

// complex loop body2218

x = x < arr[i] ? arr[i] : x; // gang or loop-private x modified2219

}2220

// gang-shared x undefined2221

} // gang-shared x updated for gang or gang/seq reduction2222

// x = arr maximum2223

• The following example is the same as the previous one except that the reduction operator is2224

now +. While gang-partitioned mode sums the elements of arr once, gang-redundant mode2225

sums them once per gang, producing a result many times arr’s sum. This example shows2226

that, for some reduction operators, combining auto, gang, and reduction is typically2227

non-portable.2228

int x = 0;2229

const int *arr = /*array of I values*/;2230

#pragma acc parallel copy(x)2231

{2232

// gang-shared x undefined2233

#pragma acc loop auto gang reduction(+:x)2234

for (int i = 0; i < I; ++i) {2235

// complex loop body2236

x += arr[i]; // gang or loop-private x modified2237

}2238

// gang-shared x undefined2239

} // gang-shared x updated for gang or gang/seq reduction2240

// x = arr sum possibly times number of gangs2241

• At the following loop directive, x and z are private, so the loop reductions are not across2242

gangs even though the loop is gang-partitioned. Nevertheless, the reduction clause on the2243

loop directive is important as the loop is also vector-partitioned. These reductions are only2244

partial reductions relative to the full set of values computed by the loop, so the reduction2245

clause is needed on the parallel directive to reduce across gangs.2246

int x = 0, y = 0;2247

#pragma acc parallel copy(x) reduction(+:x,y)2248

{2249

int z = 0;2250

#pragma acc loop gang vector reduction(+:x,z)2251

for (int i = 0; i < I; ++i) {2252

x += 1; z += 2; // vector-private x and z modified2253

} // gang-private x and z updated for vector reduction (trivial 1-gang reduction)2254

y += z; // gang-private y modified2255

} // gang-shared x and y updated for gang reduction2256

// x = I; y = I * 22257

64

The OpenACC R© API 2.10. Cache Directive

N N2258

2259

2.10 Cache Directive2260

Summary2261

The cache directive may appear at the top of (inside of) a loop. It specifies array elements or2262

subarrays that should be fetched into the highest level of the cache for the body of the loop.2263

Syntax2264

In C and C++, the syntax of the cache directive is2265

#pragma acc cache([readonly:]var-list) new-line2266

In Fortran, the syntax of the cache directive is2267

!$acc cache([readonly:]var-list)2268

A var in a cache directive must be a single array element or a simple subarray. In C and C++,2269

a simple subarray is an array name followed by an extended array range specification in brackets,2270

with start and length, such as2271

arr[lower:length]2272

where the lower bound is a constant, loop invariant, or the for loop variable plus or minus a2273

constant or loop invariant, and the length is a constant.2274

In Fortran, a simple subarray is an array name followed by a comma-separated list of range specifi-2275

cations in parentheses, with lower and upper bound subscripts, such as2276

arr(lower:upper,lower2:upper2)2277

The lower bounds must be constant, loop invariant, or the do loop variable plus or minus a constant2278

or loop invariant; moreover the difference between the corresponding upper and lower bounds must2279

be a constant.2280

If the optional readonly modifier appears, then the implementation may assume that the data2281

referenced by any var in that directive is never written to within the applicable region.2282

Restrictions2283

• If an array element or subarray is listed in a cache directive, all references to that array2284

during execution of that loop iteration must not refer to elements of the array outside the2285

index range specified in the cache directive.2286

• See Section 2.17.1 Optional Arguments for discussion of Fortran optional arguments in cache2287

directives.2288

2.11 Combined Constructs2289

Summary2290

The combined OpenACC parallel loop, serial loop, and kernels loop constructs are2291

shortcuts for specifying a loop construct nested immediately inside a parallel, serial, or2292

kernels construct. The meaning is identical to explicitly specifying a parallel, serial, or2293

kernels construct containing a loop construct. Any clause that is allowed on a parallel or2294

65

The OpenACC R© API 2.12. Atomic Construct

loop construct is allowed on the parallel loop construct; any clause allowed on a serial or2295

loop construct is allowed on a serial loop construct; and any clause allowed on a kernels2296

or loop construct is allowed on a kernels loop construct.2297

Syntax2298

In C and C++, the syntax of the parallel loop construct is2299

#pragma acc parallel loop [clause-list] new-line2300

for loop2301

In Fortran, the syntax of the parallel loop construct is2302

!$acc parallel loop [clause-list]2303

do loop2304

[!$acc end parallel loop]2305

The associated structured block is the loop which must immediately follow the directive. Any of2306

the parallel or loop clauses valid in a parallel region may appear.2307

In C and C++, the syntax of the serial loop construct is2308

#pragma acc serial loop [clause-list] new-line2309

for loop2310

In Fortran, the syntax of the serial loop construct is2311

!$acc serial loop [clause-list]2312

do loop2313

[!$acc end serial loop]2314

The associated structured block is the loop which must immediately follow the directive. Any of2315

the serial or loop clauses valid in a serial region may appear.2316

In C and C++, the syntax of the kernels loop construct is2317

#pragma acc kernels loop [clause-list] new-line2318

for loop2319

In Fortran, the syntax of the kernels loop construct is2320

!$acc kernels loop [clause-list]2321

do loop2322

[!$acc end kernels loop]2323

The associated structured block is the loop which must immediately follow the directive. Any of2324

the kernels or loop clauses valid in a kernels region may appear.2325

A private or reduction clause on a combined construct is treated as if it appeared on the2326

loop construct. In addition, a reduction clause on a combined construct implies a copy clause2327

as described in Section 2.6.2.2328

Restrictions2329

• The restrictions for the parallel, serial, kernels, and loop constructs apply.2330

66

The OpenACC R© API 2.12. Atomic Construct

2.12 Atomic Construct2331

Summary2332

An atomic construct ensures that a specific storage location is accessed and/or updated atomically,2333

preventing simultaneous reading and writing by gangs, workers, and vector threads that could result2334

in indeterminate values.2335

Syntax2336

In C and C++, the syntax of the atomic constructs is:2337

#pragma acc atomic [atomic-clause] new-line2338

expression-stmt2339

or:2340

#pragma acc atomic capture new-line2341

structured block2342

Where atomic-clause is one of read, write, update, or capture. The expression-stmt is an2343

expression statement with one of the following forms:2344

If the atomic-clause is read:2345

v = x;2346

If the atomic-clause is write:2347

x = expr;2348

If the atomic-clause is update or no clause appears:2349

x++;2350

x--;2351

++x;2352

--x;2353

x binop= expr;2354

x = x binop expr;2355

x = expr binop x;2356

If the atomic-clause is capture:2357

v = x++;2358

v = x--;2359

v = ++x;2360

v = --x;2361

v = x binop= expr;2362

v = x = x binop expr;2363

v = x = expr binop x;2364

The structured-block is a structured block with one of the following forms:2365

{v = x; x binop= expr;}2366

{x binop= expr; v = x;}2367

{v = x; x = x binop expr;}2368

{v = x; x = expr binop x;}2369

67

The OpenACC R© API 2.12. Atomic Construct

{x = x binop expr; v = x;}2370

{x = expr binop x; v = x;}2371

{v = x; x = expr;}2372

{v = x; x++;}2373

{v = x; ++x;}2374

{++x; v = x;}2375

{x++; v = x;}2376

{v = x; x--;}2377

{v = x; --x;}2378

{--x; v = x;}2379

{x--; v = x;}2380

In the preceding expressions:2381

• x and v (as applicable) are both l-value expressions with scalar type.2382

• During the execution of an atomic region, multiple syntactic occurrences of x must designate2383

the same storage location.2384

• Neither of v and expr (as applicable) may access the storage location designated by x.2385

• Neither of x and expr (as applicable) may access the storage location designated by v.2386

• expr is an expression with scalar type.2387

• binop is one of +, *, -, /, &, ˆ, |, <<, or >>.2388

• binop, binop=, ++, and -- are not overloaded operators.2389

• The expression x binop expr must be mathematically equivalent to x binop (expr). This2390

requirement is satisfied if the operators in expr have precedence greater than binop, or by2391

using parentheses around expr or subexpressions of expr.2392

• The expression expr binop x must be mathematically equivalent to (expr) binop x. This2393

requirement is satisfied if the operators in expr have precedence equal to or greater than binop,2394

or by using parentheses around expr or subexpressions of expr.2395

• For forms that allow multiple occurrences of x, the number of times that x is evaluated is2396

unspecified.2397

In Fortran the syntax of the atomic constructs is:2398

!$acc atomic read2399

capture-statement2400

[!$acc end atomic]2401

or2402

!$acc atomic write2403

write-statement2404

[!$acc end atomic]2405

or2406

!$acc atomic [update]2407

update-statement2408

68

The OpenACC R© API 2.12. Atomic Construct

[!$acc end atomic]2409

or2410

!$acc atomic capture2411

update-statement2412

capture-statement2413

!$acc end atomic2414

or2415

!$acc atomic capture2416

capture-statement2417

update-statement2418

!$acc end atomic2419

or2420

!$acc atomic capture2421

capture-statement2422

write-statement2423

!$acc end atomic2424

where write-statement has the following form (if atomic-clause is write or capture):2425

x = expr2426

where capture-statement has the following form (if atomic-clause is capture or read):2427

v = x2428

and where update-statement has one of the following forms (if atomic-clause is update, capture,2429

or no clause appears):2430

x = x operator expr2431

x = expr operator x2432

x = intrinsic procedure name(x, expr-list)2433

x = intrinsic procedure name(expr-list, x)2434

In the preceding statements:2435

• x and v (as applicable) are both scalar variables of intrinsic type.2436

• x must not be an allocatable variable.2437

• During the execution of an atomic region, multiple syntactic occurrences of x must designate2438

the same storage location.2439

• None of v, expr, and expr-list (as applicable) may access the same storage location as x.2440

• None of x, expr, and expr-list (as applicable) may access the same storage location as v.2441

• expr is a scalar expression.2442

• expr-list is a comma-separated, non-empty list of scalar expressions. If intrinsic procedure name2443

refers to iand, ior, or ieor, exactly one expression must appear in expr-list.2444

69

The OpenACC R© API 2.12. Atomic Construct

• intrinsic procedure name is one of max, min, iand, ior, or ieor. operator is one of +,2445

*, -, /, .and., .or., .eqv., or .neqv..2446

• The expression x operator expr must be mathematically equivalent to x operator (expr).2447

This requirement is satisfied if the operators in expr have precedence greater than operator,2448

or by using parentheses around expr or subexpressions of expr.2449

• The expression expr operator x must be mathematically equivalent to (expr) operator x.2450

This requirement is satisfied if the operators in expr have precedence equal to or greater than2451

operator, or by using parentheses around expr or subexpressions of expr.2452

• intrinsic procedure name must refer to the intrinsic procedure name and not to other program2453

entities.2454

• operator must refer to the intrinsic operator and not to a user-defined operator. All assign-2455

ments must be intrinsic assignments.2456

• For forms that allow multiple occurrences of x, the number of times that x is evaluated is2457

unspecified.2458

An atomic construct with the read clause forces an atomic read of the location designated by x.2459

An atomic construct with the write clause forces an atomic write of the location designated by2460

x.2461

An atomic construct with the update clause forces an atomic update of the location designated2462

by x using the designated operator or intrinsic. Note that when no clause appears, the semantics2463

are equivalent to atomic update. Only the read and write of the location designated by x are2464

performed mutually atomically. The evaluation of expr or expr-list need not be atomic with respect2465

to the read or write of the location designated by x.2466

An atomic construct with the capture clause forces an atomic update of the location designated2467

by x using the designated operator or intrinsic while also capturing the original or final value of2468

the location designated by x with respect to the atomic update. The original or final value of the2469

location designated by x is written into the location designated by v depending on the form of the2470

atomic construct structured block or statements following the usual language semantics. Only2471

the read and write of the location designated by x are performed mutually atomically. Neither the2472

evaluation of expr or expr-list, nor the write to the location designated by v, need to be atomic with2473

respect to the read or write of the location designated by x.2474

For all forms of the atomic construct, any combination of two or more of these atomic constructs2475

enforces mutually exclusive access to the locations designated by x. To avoid race conditions, all2476

accesses of the locations designated by x that could potentially occur in parallel must be protected2477

with an atomic construct.2478

Atomic regions do not guarantee exclusive access with respect to any accesses outside of atomic re-2479

gions to the same storage location x even if those accesses occur during the execution of a reduction2480

clause.2481

If the storage location designated by x is not size-aligned (that is, if the byte alignment of x is not a2482

multiple of the size of x), then the behavior of the atomic region is implementation-defined.2483

Restrictions2484

• All atomic accesses to the storage locations designated by x throughout the program are2485

required to have the same type and type parameters.2486

70

The OpenACC R© API 2.13. Declare Directive

• Storage locations designated by x must be less than or equal in size to the largest available2487

native atomic operator width.2488

2.13 Declare Directive2489

Summary2490

A declare directive is used in the declaration section of a Fortran subroutine, function, block2491

construct, or module, or following a variable declaration in C or C++. It can specify that a var is to2492

be allocated in device memory for the duration of the implicit data region of a function, subroutine2493

or program, and specify whether the data values are to be transferred from local memory to device2494

memory upon entry to the implicit data region, and from device memory to local memory upon exit2495

from the implicit data region. These directives create a visible device copy of the var.2496

Syntax2497

In C and C++, the syntax of the declare directive is:2498

#pragma acc declare clause-list new-line2499

In Fortran the syntax of the declare directive is:2500

!$acc declare clause-list2501

where clause is one of the following:2502

copy(var-list)2503

copyin([readonly:]var-list)2504

copyout(var-list)2505

create(var-list)2506

present(var-list)2507

deviceptr(var-list)2508

device_resident(var-list)2509

link(var-list)2510

The associated region is the implicit region associated with the function, subroutine, or program in2511

which the directive appears. If the directive appears in the declaration section of a Fortran module2512

subprogram, for a Fortran common block, or in a C or C++ global or namespace scope, the associated2513

region is the implicit region for the whole program. The copy, copyin, copyout, present,2514

and deviceptr data clauses are described in Section 2.7 Data Clauses.2515

Restrictions2516

• A declare directive must be in the same scope as the declaration of any var that appears2517

in the clauses of the directive or any scope within a C or C++ function or Fortran function,2518

subroutine, or program.2519

• At least one clause must appear on a declare directive.2520

• A var in a declare declare must be a variable or array name, or a Fortran common block2521

name between slashes.2522

• A var may appear at most once in all the clauses of declare directives for a function,2523

subroutine, program, or module.2524

• In Fortran, assumed-size dummy arrays may not appear in a declare directive.2525

71

The OpenACC R© API 2.13. Declare Directive

• In Fortran, pointer arrays may appear, but pointer association is not preserved in device mem-2526

ory.2527

• In a Fortran module declaration section, only create, copyin, device_resident, and2528

link clauses are allowed.2529

• In C or C++ global or namespace scope, only create, copyin, deviceptr,2530

device_resident and link clauses are allowed.2531

• C and C++ extern variables may only appear in create, copyin, deviceptr,2532

device_resident and link clauses on a declare directive.2533

• In C or C++, the link clause must appear at global or namespace scope or the arguments2534

must be extern variables. In Fortran, the link clause must appear in a module declaration2535

section, or the arguments must be common block names enclosed in slashes.2536

• In C or C++, a longjmp call in the region must return to a setjmp call within the region.2537

• In C++, an exception thrown in the region must be handled within the region.2538

• See Section 2.17.1 Optional Arguments for discussion of Fortran optional dummy arguments2539

in data clauses, including device_resident clauses.2540

2.13.1 device resident clause2541

Summary2542

The device_resident clause specifies that the memory for the named variables should be2543

allocated in the current device memory and not in local memory. The host may not be able to access2544

variables in a device_resident clause. The accelerator data lifetime of global variables or2545

common blocks that appear in a device_resident clause is the entire execution of the program.2546

In Fortran, if the variable has the Fortran allocatable attribute, the memory for the variable will2547

be allocated in and deallocated from the current device memory when the host thread executes2548

an allocate or deallocate statement for that variable, if the current device is a non-shared2549

memory device. If the variable has the Fortran pointer attribute, it may be allocated or deallocated2550

by the host in the current device memory, or may appear on the left hand side of a pointer assignment2551

statement, if the right hand side variable itself appears in a device_resident clause.2552

In Fortran, the argument to a device_resident clause may be a common block name enclosed2553

in slashes; in this case, all declarations of the common block must have a matching2554

device_resident clause. In this case, the common block will be statically allocated in de-2555

vice memory, and not in local memory. The common block will be available to accelerator routines;2556

see Section 2.15 Procedure Calls in Compute Regions.2557

In a Fortran module declaration section, a var in a device_resident clause will be available to2558

accelerator subprograms.2559

In C or C++ global scope, a var in a device_resident clause will be available to accelerator2560

routines. A C or C++ extern variable may appear in a device_resident clause only if the2561

actual declaration and all extern declarations are also followed by device_resident clauses.2562

2.13.2 create clause2563

For data in shared memory, no action is taken.2564

72

The OpenACC R© API 2.13. Declare Directive

For data not in shared memory, the create clause on a declare directive behaves as follows,2565

for each var in var-list:2566

• At entry to an implicit data region where the declare directive appears:2567

– If var is present, a present increment action with the structured reference counter is2568

performed. If var is a pointer reference, an attach action is performed.2569

– Otherwise, a create action with the structured reference counter is performed. If var is2570

a pointer reference, an attach action is performed.2571

• At exit from an implicit data region where the declare directive appears:2572

– If the structured reference counter for var is zero, no action is taken.2573

– Otherwise, a present decrement action with the structured reference counter is per-2574

formed. If var is a pointer reference, a detach action is performed. If both structured2575

and dynamic reference counters are zero, a delete action is performed.2576

If the declare directive appears in a global context, then the data in var-list is statically allocated2577

in device memory and the structured reference counter is set to one.2578

In Fortran, if a variable var in var-list has the Fortran allocatable or pointer attribute, then:2579

• An allocate statement for var will allocate memory in both local memory as well as in the2580

current device memory, for a non-shared memory device, and the dynamic reference counter2581

will be set to one.2582

• A deallocate statement for var will deallocate memory from both local memory as well2583

as the current device memory, for a non-shared memory device, and the dynamic reference2584

counter will be set to zero. If the structured reference counter is not zero, a runtime error is2585

issued.2586

In Fortran, if a variable var in var-list has the Fortran pointer attribute, then it may appear on the2587

left hand side of a pointer assignment statement, if the right hand side variable itself appears in a2588

create clause.2589

Errors2590

• In Fortran, an acc_error_present error is issued at a deallocate statement if the struc-2591

tured reference counter is not zero.2592

See Section 5.2.2.2593

2.13.3 link clause2594

The link clause is used for large global host static data that is referenced within an accelerator2595

routine and that should have a dynamic data lifetime on the device. The link clause specifies that2596

only a global link for the named variables should be statically created in accelerator memory. The2597

host data structure remains statically allocated and globally available. The device data memory will2598

be allocated only when the global variable appears on a data clause for a data construct, compute2599

construct, or enter data directive. The arguments to the link clause must be global data. A2600

declare link clause must be visible everywhere the global variables or common block variables2601

are explicitly or implicitly used in a data clause, compute construct, or accelerator routine. The2602

global variable or common block variables may be used in accelerator routines. The accelerator2603

73

The OpenACC R© API 2.14. Executable Directives

data lifetime of variables or common blocks that appear in a link clause is the data region that2604

allocates the variable or common block with a data clause, or from the execution of the enter2605

data directive that allocates the data until an exit data directive deallocates it or until the end2606

of the program.2607

2.14 Executable Directives2608

2.14.1 Init Directive2609

Summary2610

The init directive initializes the runtime for the given device or devices of the given device type.2611

This can be used to isolate any initialization cost from the computational cost, when collecting2612

performance statistics. If no device type appears all devices will be initialized. An init directive2613

may be used in place of a call to the acc_init or acc_init_device runtime API routine, as2614

described in Section 3.2.7.2615

Syntax2616

In C and C++, the syntax of the init directive is:2617

#pragma acc init [clause-list] new-line2618

In Fortran the syntax of the init directive is:2619

!$acc init [clause-list]2620

where clause is one of the following:2621

device_type (device-type-list)2622

device_num (int-expr)2623

if(condition)2624

2625

device type clause2626

The device_type clause specifies the type of device that is to be initialized in the runtime. If the2627

device_type clause appears, then the acc-current-device-type-var for the current thread is set to2628

the argument value. If no device_num clause appears then all devices of this type are initialized.2629

device num clause2630

The device_num clause specifies the device id to be initialized. If the device_num clause2631

appears, then the acc-current-device-num-var for the current thread is set to the argument value. If2632

no device_type clause appears, then the specified device id will be initialized for all available2633

device types.2634

if clause2635

The if clause is optional; when there is no if clause, the implementation will generate code to2636

perform the initialization unconditionally. When an if clause appears, the implementation will2637

generate code to conditionally perform the initialization only when the condition evaluates to true.2638

74

The OpenACC R© API 2.14. Executable Directives

Restrictions2639

• This directive may only appear in code executed on the host.2640

• If the directive is called more than once without an intervening acc_shutdown call or2641

shutdown directive, with a different value for the device type argument, the behavior is2642

implementation-defined.2643

• If some accelerator regions are compiled to only use one device type, using this directive with2644

a different device type may produce undefined behavior.2645

Errors2646

• An acc_error_device_type_unavailable error is issued if a device_type clause2647

appears and no device of that device type is available, or if no device_type clause appears2648

and no device of the current device type is available.2649

• An acc_error_device_unavailable error is issued if a device_num clause ap-2650

pears and the int-expr is not a valid device number or that device is not available, or if no2651

device_num clause appears and the current device is not available.2652

• An acc_error_device_init error is issued if the device cannot be initialized.2653

See Section 5.2.2.2654

2.14.2 Shutdown Directive2655

Summary2656

The shutdown directive shuts down the connection to the given device or devices of the given2657

device type, and frees any associated runtime resources. This ends all data lifetimes in device2658

memory, which effectively sets structured and dynamic reference counters to zero. A shutdown2659

directive may be used in place of a call to the acc_shutdown or acc_shutdown_device2660

runtime API routine, as described in Section 3.2.8.2661

Syntax2662

In C and C++, the syntax of the shutdown directive is:2663

#pragma acc shutdown [clause-list] new-line2664

In Fortran the syntax of the shutdown directive is:2665

!$acc shutdown [clause-list]2666

where clause is one of the following:2667

device_type (device-type-list)2668

device_num (int-expr)2669

if(condition)2670

2671

device type clause2672

The device_type clause specifies the type of device that is to be disconnected from the runtime.2673

If no device_num clause appears then all devices of this type are disconnected.2674

75

The OpenACC R© API 2.14. Executable Directives

device num clause2675

The device_num clause specifies the device id to be disconnected.2676

If no clauses appear then all available devices will be disconnected.2677

if clause2678

The if clause is optional; when there is no if clause, the implementation will generate code2679

to perform the shutdown unconditionally. When an if clause appears, the implementation will2680

generate code to conditionally perform the shutdown only when the condition evaluates to true.2681

Restrictions2682

• This directive may only appear in code executed on the host.2683

Errors2684

• An acc_error_device_type_unavailable error is issued if a device_type clause2685

appears and no device of that device type is available,2686

• An acc_error_device_unavailable error is issued if a device_num clause ap-2687

pears and the int-expr is not a valid device number or that device is not available.2688

• An acc_error_device_shutdown error is issued if there is an error shutting down the2689

device.2690

See Section 5.2.2.2691

2.14.3 Set Directive2692

Summary2693

The set directive provides a means to modify internal control variables using directives. Each form2694

of the set directive is functionally equivalent to a matching runtime API routine.2695

Syntax2696

In C and C++, the syntax of the set directive is:2697

#pragma acc set [clause-list] new-line2698

In Fortran the syntax of the set directive is:2699

!$acc set [clause-list]2700

where clause is one of the following2701

default_async (int-expr)2702

device_num (int-expr)2703

device_type (device-type-list)2704

if(condition)2705

default async clause2706

The default_async clause specifies the asynchronous queue that should be used if no queue ap-2707

pears and changes the value of acc-default-async-var for the current thread to the argument value.2708

If the value is acc_async_default, the value of acc-default-async-var will revert to the ini-2709

tial value, which is implementation-defined. A set default_async directive is functionally2710

76

The OpenACC R© API 2.14. Executable Directives

equivalent to a call to the acc_set_default_async runtime API routine, as described in Sec-2711

tion 3.2.14.2712

device num clause2713

The device_num clause specifies the device number to set as the default device for accelerator2714

regions and changes the value of acc-current-device-num-var for the current thread to the argument2715

value. If the value of device_num argument is negative, the runtime will revert to the default be-2716

havior, which is implementation-defined. A set device_num directive is functionally equivalent2717

to the acc_set_device_num runtime API routine, as described in Section 3.2.4.2718

device type clause2719

The device_type clause specifies the device type to set as the default device type for accelerator2720

regions and sets the value of acc-current-device-type-var for the current thread to the argument2721

value. If the value of the device_type argument is zero or the clause does not appear, the2722

selected device number will be used for all attached accelerator types. A set device_type2723

directive is functionally equivalent to a call to the acc_set_device_type runtime API routine,2724

as described in Section 3.2.2.2725

if clause2726

The if clause is optional; when there is no if clause, the implementation will generate code to2727

perform the set operation unconditionally. When an if clause appears, the implementation will2728

generate code to conditionally perform the set operation only when the condition evaluates to true.2729

Restrictions2730

• This directive may only appear in code executed on the host.2731

• Passing default_async the value of acc_async_noval has no effect.2732

• Passing default_async the value of acc_async_sync will cause all asynchronous2733

directives in the default asynchronous queue to become synchronous.2734

• Passing default_async the value of acc_async_default will restore the default2735

asynchronous queue to the initial value, which is implementation-defined.2736

• At least one default_async, device_num, or device_type clause must appear.2737

• Two instances of the same clause may not appear on the same directive.2738

Errors2739

• An acc_error_device_type_unavailable error is issued if a device_type clause2740

appears, and no device of that device type is available.2741

• An acc_error_device_unavailable error is issued if a device_num clause ap-2742

pears, and the int-expr is not a valid device number.2743

• An acc_error_invalid_async error is issued if a default_async clause appears,2744

and the int-expr is not a valid async-argument.2745

See Section 5.2.2.2746

77

The OpenACC R© API 2.14. Executable Directives

2.14.4 Update Directive2747

Summary2748

The update directive is used during the lifetime of accelerator data to update vars in local memory2749

with values from the corresponding data in device memory, or to update vars in device memory with2750

values from the corresponding data in local memory.2751

Syntax2752

In C and C++, the syntax of the update directive is:2753

#pragma acc update clause-list new-line2754

In Fortran the syntax of the update data directive is:2755

!$acc update clause-list2756

where clause is one of the following:2757

async [(int-expr)]2758

wait [(wait-argument)]2759

device_type(device-type-list)2760

if(condition)2761

if_present2762

self(var-list)2763

host(var-list)2764

device(var-list)2765

Multiple subarrays of the same array may appear in a var-list of the same or different clauses on2766

the same directive. The effect of an update clause is to copy data from device memory to local2767

memory for update self, and from local memory to device memory for update device. The2768

updates are done in the order in which they appear on the directive.2769

Restrictions2770

• At least one self, host, or device clause must appear on an update directive.2771

self clause2772

The self clause specifies that the vars in var-list are to be copied from the current device memory2773

to local memory for data not in shared memory. For data in shared memory, no action is taken. An2774

update directive with the self clause is equivalent to a call to the acc_update_self routine,2775

described in Section 3.2.20.2776

host clause2777

The host clause is a synonym for the self clause.2778

device clause2779

The device clause specifies that the vars in var-list are to be copied from local memory to the cur-2780

rent device memory, for data not in shared memory. For data in shared memory, no action is taken.2781

An update directive with the device clause is equivalent to a call to the acc_update_device2782

routine, described in Section 3.2.20.2783

78

The OpenACC R© API 2.14. Executable Directives

if clause2784

The if clause is optional; when there is no if clause, the implementation will generate code to2785

perform the updates unconditionally. When an if clause appears, the implementation will generate2786

code to conditionally perform the updates only when the condition evaluates to true.2787

async clause2788

The async clause is optional; see Section 2.16 Asynchronous Behavior for more information.2789

wait clause2790

The wait clause is optional; see Section 2.16 Asynchronous Behavior for more information.2791

if present clause2792

When an if_present clause appears on the directive, no action is taken for a var which appears2793

in var-list that is not present in the current device memory.2794

Restrictions2795

• The update directive is executable. It must not appear in place of the statement following2796

an if, while, do, switch, or label in C or C++, or in place of the statement following a logical2797

if in Fortran.2798

• If no if_present clause appears on the directive, each var in var-list must be present in2799

the current device memory.2800

• Only the async and wait clauses may follow a device_type clause.2801

• At most one if clause may appear. In Fortran, the condition must evaluate to a scalar logical2802

value; in C or C++, the condition must evaluate to a scalar integer value.2803

• Noncontiguous subarrays may appear. It is implementation-specific whether noncontiguous2804

regions are updated by using one transfer for each contiguous subregion, or whether the non-2805

contiguous data is packed, transferred once, and unpacked, or whether one or more larger2806

subarrays (no larger than the smallest contiguous region that contains the specified subarray)2807

are updated.2808

• In C and C++, a member of a struct or class may appear, including a subarray of a member.2809

Members of a subarray of struct or class type may not appear.2810

• In C and C++, if a subarray notation is used for a struct member, subarray notation may not2811

be used for any parent of that struct member.2812

• In Fortran, members of variables of derived type may appear, including a subarray of a mem-2813

ber. Members of subarrays of derived type may not appear.2814

• In Fortran, if array or subarray notation is used for a derived type member, array or subarray2815

notation may not be used for a parent of that derived type member.2816

• See Section 2.17.1 Optional Arguments for discussion of Fortran optional arguments in self,2817

host, and device clauses.2818

79

The OpenACC R© API 2.15. Procedure Calls in Compute Regions

Errors2819

• An acc_error_not_present error is issued if no if_present clause appears and2820

any var in a device or self clause is not present on the current device.2821

• An acc_error_partly_present error is issued if part of var is present in the current2822

device memory but all of var is not.2823

• An async or wait clause can cause an error to be issued; see Sections 2.16.1 and 2.16.2.2824

See Section 5.2.2.2825

2.14.5 Wait Directive2826

See Section 2.16 Asynchronous Behavior for more information.2827

2.14.6 Enter Data Directive2828

See Section 2.6.6 Enter Data and Exit Data Directives for more information.2829

2.14.7 Exit Data Directive2830

See Section 2.6.6 Enter Data and Exit Data Directives for more information.2831

2.15 Procedure Calls in Compute Regions2832

This section describes how routines are compiled for an accelerator and how procedure calls are2833

compiled in compute regions. See Section 2.17.1 Optional Arguments for discussion of Fortran2834

optional arguments in procedure calls inside compute regions.2835

2.15.1 Routine Directive2836

Summary2837

The routine directive is used to tell the compiler to compile a given procedure or a C++ lambda2838

for an accelerator as well as for the host. In a file or routine with a procedure call, the routine2839

directive tells the implementation the attributes of the procedure when called on the accelerator.2840

Syntax2841

In C and C++, the syntax of the routine directive is:2842

#pragma acc routine clause-list new-line2843

#pragma acc routine(name) clause-list new-line2844

In C and C++, the routine directive without a name may appear immediately before a function2845

definition, a C++ lambda, or just before a function prototype and applies to that immediately fol-2846

lowing function or prototype. The routine directive with a name may appear anywhere that a2847

function prototype is allowed and applies to the function or the C++ lambda in that scope with that2848

name, but must appear before any definition or use of that function.2849

In Fortran the syntax of the routine directive is:2850

!$acc routine clause-list2851

!$acc routine(name) clause-list2852

80

The OpenACC R© API 2.15. Procedure Calls in Compute Regions

In Fortran, the routine directive without a name may appear within the specification part of a2853

subroutine or function definition, or within an interface body for a subroutine or function in an2854

interface block, and applies to the containing subroutine or function. The routine directive with2855

a name may appear in the specification part of a subroutine, function or module, and applies to the2856

named subroutine or function.2857

A C or C++ function or Fortran subprogram compiled with the routine directive for an accelera-2858

tor is called an accelerator routine.2859

If an accelerator routine is a C++ lambda, the associated function will be compiled for both the2860

accelerator and the host.2861

If a lambda is called in a compute region and it is not an accelerator routine, then the lambda is2862

treated as if its name appears in the name list of a routine directive with seq clause. If lambda2863

is defined in an accelerator routine that has a nohost clause then the lambda is treated as if its2864

name appears in the name list of a routine directive with a nohost clause.2865

The clause is one of the following:2866

gang2867

worker2868

vector2869

seq2870

bind(name)2871

bind(string)2872

device_type(device-type-list)2873

nohost2874

A gang, worker, vector, or seq clause specifies the level of parallelism in the routine.2875

gang clause2876

The gang clause specifies that the procedure contains, may contain, or may call another procedure2877

that contains a loop with a gang clause. A call to this procedure must appear in code that is2878

executed in gang-redundant mode, and all gangs must execute the call. For instance, a procedure2879

with a routine gang directive may not be called from within a loop that has a gang clause.2880

Only one of the gang, worker, vector and seq clauses may appear for each device type.2881

worker clause2882

The worker clause specifies that the procedure contains, may contain, or may call another pro-2883

cedure that contains a loop with a worker clause, but does not contain nor does it call another2884

procedure that contains a loop with the gang clause. A loop in this procedure with an auto clause2885

may be selected by the compiler to execute in worker or vector mode. A call to this procedure2886

must appear in code that is executed in worker-single mode, though it may be in gang-redundant2887

or gang-partitioned mode. For instance, a procedure with a routine worker directive may be2888

called from within a loop that has the gang clause, but not from within a loop that has the worker2889

clause. Only one of the gang, worker, vector, and seq clauses may appear for each device2890

type.2891

81

The OpenACC R© API 2.15. Procedure Calls in Compute Regions

vector clause2892

The vector clause specifies that the procedure contains, may contain, or may call another pro-2893

cedure that contains a loop with the vector clause, but does not contain nor does it call another2894

procedure that contains a loop with either a gang or worker clause. A loop in this procedure with2895

an auto clause may be selected by the compiler to execute in vector mode, but not worker2896

mode. A call to this procedure must appear in code that is executed in vector-single mode, though2897

it may be in gang-redundant or gang-partitioned mode, and in worker-single or worker-partitioned2898

mode. For instance, a procedure with a routine vector directive may be called from within2899

a loop that has the gang clause or the worker clause, but not from within a loop that has the2900

vector clause. Only one of the gang, worker, vector, and seq clauses may appear for each2901

device type.2902

seq clause2903

The seq clause specifies that the procedure does not contain nor does it call another procedure that2904

contains a loop with a gang, worker, or vector clause. A loop in this procedure with an auto2905

clause will be executed in seq mode. A call to this procedure may appear in any mode. Only one2906

of the gang, worker, vector and seq clauses may appear for each device type.2907

bind clause2908

The bind clause specifies the name to use when calling the procedure on a device other than the2909

host. If the name is specified as an identifier, it is called as if that name were specified in the2910

language being compiled. If the name is specified as a string, the string is used for the procedure2911

name unmodified. A bind clause on a procedure definition behaves as if it had appeared on a2912

declaration by changing the name used to call the function on a device other than the host; however,2913

the procedure is not compiled for the device with either the original name or the name in the bind2914

clause.2915

If there is both a Fortran bind and an acc bind clause for a procedure definition then a call on the2916

host will call the Fortran bound name and a call on another device will call the name in the bind2917

clause.2918

device type clause2919

The device_type clause is described in Section 2.4 Device-Specific Clauses.2920

nohost clause2921

The nohost tells the compiler not to compile a version of this procedure for the host. All calls2922

to this procedure must appear within compute regions. If this procedure is called from other pro-2923

cedures, those other procedures must also have a matching routine directive with the nohost2924

clause.2925

Restrictions2926

• Only the gang, worker, vector, seq and bind clauses may follow a device_type2927

clause.2928

• At least one of the (gang, worker, vector, or seq) clauses must appear on the construct.2929

If the device_type clause appears on the routine directive, a default level of parallelism2930

82

The OpenACC R© API 2.16. Asynchronous Behavior

clause must appear before the device_type clause, or a level of parallelism clause must2931

appear following each device_type clause on the directive.2932

• In C and C++, function static variables are not supported in functions to which a routine2933

directive applies.2934

• In Fortran, variables with the save attribute, either explicitly or implicitly, are not supported2935

in subprograms to which a routine directive applies.2936

• A bind clause may not bind to a routine name that has a visible bind clause.2937

• If a function or subroutine has a bind clause on both the declaration and the definition then2938

they both must bind to the same name.2939

2.15.2 Global Data Access2940

C or C++ global, file static, or extern variables or array, and Fortran module or common block vari-2941

ables or arrays, that are used in accelerator routines must appear in a declare directive in a create,2942

copyin, device_resident or link clause. If the data appears in a device_resident2943

clause, the routine directive for the procedure must include the nohost clause. If the data ap-2944

pears in a link clause, that data must have an active accelerator data lifetime by virtue of appearing2945

in a data clause for a data construct, compute construct, or enter data directive.2946

2.16 Asynchronous Behavior2947

This section describes the async clause, the wait clause, the wait directive, and the behavior of2948

programs that use asynchronous data movement, compute regions, and asynchronous API routines.2949

In this section and throughout the specification, the term async-argument means a nonnegative2950

scalar integer expression (int for C or C++, integer for Fortran), or one of the special values2951

acc_async_noval or acc_async_sync, as defined in the C header file and the Fortran2952

openacc module. The special values are negative values, so as not to conflict with a user-specified2953

nonnegative async-argument. An async-argument is used in async clauses, wait clauses, wait2954

directives, and as an argument to various runtime routines.2955

The async-value of an async-argument is2956

• acc_async_sync if async-argument has a value equal to the special value acc_async_sync,2957

• the value of acc-default-async-var if async-argument has a value equal to the special value2958

acc_async_noval,2959

• the value of the async-argument, if it is nonnegative,2960

• implementation-defined, otherwise.2961

The async-value is used to select the activity queue to which the clause or directive or API routine2962

refers. The properties of the current device and the implementation will determine how many actual2963

activity queues are supported, and how the async-value is mapped onto the actual activity queues.2964

Two asynchronous operations on the same device with the same async-value will be enqueued2965

onto the same activity queue, and therefore will be executed on the device in the order they are2966

encountered by the local thread. Two asynchronous operations with different async-values may be2967

enqueued onto different activity queues, and therefore may be executed on the device in either order2968

or concurrently relative to each other. If there are two or more host threads executing and sharing the2969

83

The OpenACC R© API 2.16. Asynchronous Behavior

same device, asynchronous operations on any thread with the same async-value will be enqueued2970

onto the same activity queue. If the threads are not synchronized with respect to each other, the2971

operations may be enqueued in either order and therefore may execute on the device in either order.2972

Asynchronous operations enqueued to difference devices may execute in any order or may execute2973

concurrently, regardless of the async-value used for each.2974

If a compute construct, data directive, or runtime API call has an async-value of acc_async_sync,2975

the associated operations are executed on the activity queue associated with the async-value2976

acc_async_sync, and the local thread will wait until the associated operations have completed2977

before executing the code following the construct or directive. If a data construct has an async-2978

value of acc_async_sync, the associated operations are executed on the activity queue associ-2979

ated with the async-value acc_async_sync, and the local thread will wait until the associated2980

operations that occur upon entry of the construct have completed before executing the code of the2981

construct’s structured block or block construct, and after that, will wait until the associated opera-2982

tions that occur upon exit of the construct have completed before executing the code following the2983

construct.2984

If a compute construct, data directive, or runtime API call has an async-value other than2985

acc_async_sync, the associated operations are executed on the activity queue associated with2986

that async-value and the associated operations may be processed asynchronously while the local2987

thread continues executing the code following the construct or directive. If a data construct has an2988

async-value other than acc_async_sync, the associated operations are executed on the activity2989

queue associated with that async-value, and the associated operations that occur upon entry of the2990

construct may be processed asynchronously while the local thread continues executing the code2991

of the construct’s structured block or block construct, and after that, the associated operations that2992

occur upon exit of the construct may be processed asynchronously while the local thread continues2993

executing the code following the construct.2994

In this section and throughout the specification, the term wait-argument, means:2995

[devnum : int-expr :] [queues :] async-argument-list2996

If a devnum modifier appears in the wait-argument then the associated device is the device with2997

that device number of the current device type. If no devnum modifier appears then the associated2998

device is the current device.2999

Each async-argument is associated with an async-value. The async-values select the associated3000

activity queue or queues on the associated device. If there is no async-argument-list, the associated3001

activity queues are all activity queues for the associated device.3002

The queues modifier within a wait-argument is optional to improve clarity of the expression list.3003

2.16.1 async clause3004

The async clause may appear on a parallel, serial, kernels, or data construct, or an3005

enter data, exit data, update, or wait directive. In all cases, the async clause is optional.3006

The async clause may have a single async-argument, as defined above. If the async clause does3007

not appear, the behavior is as if the async-argument is acc_async_sync. If the async clause3008

appears with no argument, the behavior is as if the async-argument is acc_async_noval. The3009

async-value for a construct or directive is defined in Section 2.16.3010

84

The OpenACC R© API 2.16. Asynchronous Behavior

Errors3011

• An acc_error_invalid_async error is issued if an async clause with an argument3012

appears on any directive and the argument is not a valid async-argument.3013

See Section 5.2.2.3014

2.16.2 wait clause3015

The wait clause may appear on a parallel, serial, or kernels, or data construct, or3016

an enter data, exit data, or update directive. In all cases, the wait clause is optional.3017

When there is no wait clause, the associated operations may be enqueued or launched or executed3018

immediately on the device.3019

If there is an argument to the wait clause, it must be a wait-argument, the associated device and3020

activity queues are as specified in the wait-argument; see Section 2.16. If there is no argument to3021

the wait clause, the associated device is the current device and associated activity queues are all3022

activity queues. The associated operations may not be launched or executed until all operations3023

already enqueued up to this point by this thread on the associated asynchronous device activity3024

queues have completed. Note: One legal implementation is for the local thread to wait until the3025

operations already enqueued on the associated asynchronous device activity queues have completed;3026

another legal implementation is for the local thread to enqueue the associated operations in such a3027

way that they will not start until the operations already enqueued on the associated asynchronous3028

device activity queues have completed.3029

Errors3030

• An acc_error_device_unavailable error is issued if a wait clause appears on any3031

directive with a devnum modifier and the associated int-expr is not a valid device number.3032

• An acc_error_invalid_async error is issued if a wait clause appears on any direc-3033

tive with a queues modifier or no modifier and any value in the associated list is not a valid3034

async-argument.3035

See Section 5.2.2.3036

2.16.3 Wait Directive3037

Summary3038

The wait directive causes the local thread or operations enqueued onto a device activity queue on3039

the current device to wait for completion of asynchronous operations.3040

Syntax3041

In C and C++, the syntax of the wait directive is:3042

#pragma acc wait [(wait-argument)] [clause-list] new-line3043

In Fortran the syntax of the wait directive is:3044

!$acc wait [(wait-argument)] [clause-list]3045

where clause is:3046

async [(async-argument)]3047

if(condition)3048

85

The OpenACC R© API 2.17. Fortran Specific Behavior

If it appears, the wait-argument is as defined in Section 2.16, and the associated device and activity3049

queues are as specified in the wait-argument. If there is no wait-argument clause, the associated3050

device is the current device and associated activity queues are all activity queues.3051

If there is no async clause, the local thread will wait until all operations enqueued by this thread3052

onto each of the associated device activity queues for the associated device have completed. There3053

is no guarantee that all the asynchronous operations initiated by other threads onto those queues will3054

have completed without additional synchronization with those threads.3055

If there is an async clause, no new operation may be launched or executed on the activity queue3056

associated with the async-argument on the current device until all operations enqueued up to this3057

point by this thread on the activity queues associated with the wait-argument have completed. Note:3058

One legal implementation is for the local thread to wait for all the associated activity queues; another3059

legal implementation is for the thread to enqueue a synchronization operation in such a way that3060

no new operation will start until the operations enqueued on the associated activity queues have3061

completed.3062

The if clause is optional; when there is no if clause, the implementation will generate code to3063

perform the wait operation unconditionally. When an if clause appears, the implementation will3064

generate code to conditionally perform the wait operation only when the condition evaluates to true.3065

A wait directive is functionally equivalent to a call to one of the acc_wait, acc_wait_async,3066

acc_wait_all, or acc_wait_all_async runtime API routines, as described in Sections 3.2.103067

and 3.2.11.3068

Errors3069

• An acc_error_device_unavailable error is issued if a devnum modifier appears3070

and the int-expr is not a valid device number.3071

• An acc_error_invalid_async error is issued if a queues modifier or no modifier3072

appears and any value in the associated list is not a valid async-argument.3073

See Section 5.2.2.3074

2.17 Fortran Specific Behavior3075

2.17.1 Optional Arguments3076

This section refers to the Fortran intrinsic function PRESENT. A call to the Fortran intrinsic function3077

PRESENT(arg) returns .true., if arg is an optional dummy argument and an actual argument3078

for arg was present in the argument list of the call site. This should not be confused with the3079

OpenACC present data clause.3080

The appearance of a Fortran optional argument arg as a var in any of the following clauses has no3081

effect at runtime if PRESENT(arg) is .false.:3082

• in data clauses on compute and data constructs;3083

• in data clauses on enter data and exit data directives;3084

• in data and device_resident clauses on declare directives;3085

• in use_device clauses on host_data directives;3086

• in self, host, and device clauses on update directives.3087

86

The OpenACC R© API 2.17. Fortran Specific Behavior

The appearance of a Fortran optional argument arg in the following situations may result in unde-3088

fined behavior if PRESENT(arg) is .false. when the associated construct is executed:3089

• as a var in private, firstprivate, and reduction clauses;3090

• as a var in cache directives;3091

• as part of an expression in any clause or directive.3092

A call to the Fortran intrinsic function PRESENT behaves the same way in a compute construct or3093

an accelerator routine as on the host. The function call PRESENT(arg)must return the same value3094

in a compute construct as PRESENT(arg) would outside of the compute construct. If a Fortran3095

optional argument arg appears as an actual argument in a procedure call in a compute construct3096

or an accelerator routine, and the associated dummy argument subarg also has the optional3097

attribute, then PRESENT(subarg) returns the same value as PRESENT(subarg) would when3098

executed on the host.3099

2.17.2 Do Concurrent Construct3100

This section refers to the Fortran do concurrent construct that is a form of do construct. When3101

do concurrent appears without a loop construct in a kernels construct it is treated as if it is3102

annotated with loop auto. If it appears in a parallel construct or an accelerator routine then3103

it is treated as if it is annotated with loop independent.3104

87

The OpenACC R© API 2.17. Fortran Specific Behavior

88

The OpenACC R© API 3.1. Runtime Library Definitions

3. Runtime Library3105

This chapter describes the OpenACC runtime library routines that are available for use by program-3106

mers. Use of these routines may limit portability to systems that do not support the OpenACC API.3107

Conditional compilation using the _OPENACC preprocessor variable may preserve portability.3108

This chapter has two sections:3109

• Runtime library definitions3110

• Runtime library routines3111

There are four categories of runtime routines:3112

• Device management routines, to get the number of devices, set the current device, and so on.3113

• Asynchronous queue management, to synchronize until all activities on an async queue are3114

complete, for instance.3115

• Device test routine, to test whether this statement is executing on the device or not.3116

• Data and memory management, to manage memory allocation or copy data between memo-3117

ries.3118

3.1 Runtime Library Definitions3119

In C and C++, prototypes for the runtime library routines described in this chapter are provided in3120

a header file named openacc.h. All the library routines are extern functions with “C” linkage.3121

This file defines:3122

• The prototypes of all routines in the chapter.3123

• Any datatypes used in those prototypes, including an enumeration type to describe the sup-3124

ported device types.3125

• The values of acc_async_noval, acc_async_sync, and acc_async_default.3126

In Fortran, interface declarations are provided in a Fortran module named openacc. The openacc3127

module defines:3128

• The integer parameter openacc_versionwith a value yyyymm where yyyy and mm are the3129

year and month designations of the version of the Accelerator programming model supported.3130

This value matches the value of the preprocessor variable _OPENACC.3131

• Interfaces for all routines in the chapter.3132

• Integer parameters to define integer kinds for arguments to and return values for those rou-3133

tines.3134

• Integer parameters to describe the supported device types.3135

• Integer parameters to define the values of acc_async_noval, acc_async_sync, and3136

acc_async_default.3137

89

The OpenACC R© API 3.2. Runtime Library Routines

Many of the routines accept or return a value corresponding to the type of device. In C and C++, the3138

datatype used for device type values is acc_device_t; in Fortran, the corresponding datatype3139

is integer(kind=acc_device_kind). The possible values for device type are implemen-3140

tation specific, and are defined in the C or C++ include file openacc.h and the Fortran module3141

openacc. Five values are always supported: acc_device_none, acc_device_default,3142

acc_device_host, acc_device_not_host, and acc_device_current. For other val-3143

ues, look at the appropriate files included with the implementation, or read the documentation for3144

the implementation. The value acc_device_default will never be returned by any function;3145

its use as an argument will tell the runtime library to use the default device type for that implemen-3146

tation.3147

3.2 Runtime Library Routines3148

In this section, for the C and C++ prototypes, pointers are typed h_void* or d_void* to desig-3149

nate a host memory address or device memory address, when these calls are executed on the host,3150

as if the following definitions were included:3151

#define h_void void3152

#define d_void void3153

Restrictions3154

Except for acc_on_device, these routines are only available on the host.3155

3.2.1 acc get num devices3156

Summary3157

The acc_get_num_devices routine returns the number of available devices of the given type.3158

Format3159

C or C++:3160

int acc_get_num_devices(acc_device_t dev_type);3161

Fortran:3162

integer function acc_get_num_devices(dev_type)3163

integer(acc_device_kind) :: dev_type3164

Description3165

The acc_get_num_devices routine returns the number of available devices of device type3166

dev_type. If device type dev_type is not supported or no device of dev_type is available,3167

this routine returns zero.3168

3.2.2 acc set device type3169

Summary3170

The acc_set_device_type routine tells the runtime which type of device to use when exe-3171

cuting a compute region and sets the value of acc-current-device-type-var. This is useful when the3172

implementation allows the program to be compiled to use more than one type of device.3173

90

The OpenACC R© API 3.2. Runtime Library Routines

Format3174

C or C++:3175

void acc_set_device_type(acc_device_t dev_type);3176

Fortran:3177

subroutine acc_set_device_type(dev_type)3178

integer(acc_device_kind) :: dev_type3179

Description3180

A call to acc_set_device_type is functionally equivalent to a set device_type(dev_type)3181

directive, as described in Section 2.14.3. This routine tells the runtime which type of device to use3182

among those available and sets the value of acc-current-device-type-var for the current thread to3183

dev_type.3184

Restrictions3185

• If some compute regions are compiled to only use one device type, the result of calling this3186

routine with a different device type may produce undefined behavior.3187

Errors3188

• An acc_error_device_type_unavailable error is issued if device type dev_type3189

is not supported or no device of dev_type is available.3190

See Section 5.2.2.3191

3.2.3 acc get device type3192

Summary3193

The acc_get_device_type routine returns the value of acc-current-device-type-var, which is3194

the device type of the current device. This is useful when the implementation allows the program to3195

be compiled to use more than one type of device.3196

Format3197

C or C++:3198

acc_device_t acc_get_device_type(void);3199

Fortran:3200

function acc_get_device_type()3201

integer(acc_device_kind) :: acc_get_device_type3202

Description3203

The acc_get_device_type routine returns the value of acc-current-device-type-var for the3204

current thread to tell the program what type of device will be used to run the next compute region, if3205

one has been selected. The device type may have been selected by the program with a runtime API3206

call or a directive, by an environment variable, or by the default behavior of the implementation; see3207

the table in Section 2.3.1.3208

Restrictions3209

• If the device type has not yet been selected, the value acc_device_none may be returned.3210

91

The OpenACC R© API 3.2. Runtime Library Routines

3.2.4 acc set device num3211

Summary3212

The acc_set_device_num routine tells the runtime which device to use and sets the value of3213

acc-current-device-num-var.3214

Format3215

C or C++:3216

void acc_set_device_num(int dev_num, acc_device_t dev_type);3217

Fortran:3218

subroutine acc_set_device_num(dev_num, dev_type)3219

integer :: dev_num3220

integer(acc_device_kind) :: dev_type3221

Description3222

A call to acc_set_device_num is functionally equivalent to a set device_type(dev_type)3223

device_num(dev_num) directive, as described in Section 2.14.3. This routine tells the runtime3224

which device to use among those available of the given type for compute or data regions in the cur-3225

rent thread and sets the value of acc-current-device-num-var to dev_num. If the value of dev_num3226

is negative, the runtime will revert to its default behavior, which is implementation-defined. If the3227

value of the dev_type is zero, the selected device number will be used for all device types. Calling3228

acc_set_device_num implies a call to acc_set_device_type(dev_type).3229

Errors3230

• An acc_error_device_type_unavailable error is issued if device type dev_type3231

is not supported or no device of dev_type is available.3232

• An acc_error_device_unavailable error is issued if the value of dev_num is not3233

a valid device number.3234

See Section 5.2.2.3235

3.2.5 acc get device num3236

Summary3237

The acc_get_device_num routine returns the value of acc-current-device-num-var for the cur-3238

rent thread.3239

Format3240

C or C++:3241

int acc_get_device_num(acc_device_t dev_type);3242

Fortran:3243

integer function acc_get_device_num(dev_type)3244

integer(acc_device_kind) :: dev_type3245

Description3246

The acc_get_device_num routine returns the value of acc-current-device-num-var for the cur-3247

rent thread. If there are no devices of device type dev_type or if device type dev_type is not3248

supported, this routine returns -1.3249

92

The OpenACC R© API 3.2. Runtime Library Routines

3.2.6 acc get property3250

Summary3251

The acc_get_property and acc_get_property_string routines return the value of a3252

device-property for the specified device.3253

Format3254

C or C++:

size_t acc_get_property(int dev_num,

acc_device_t dev_type,

acc_device_property_t property);

const

char* acc_get_property_string(int dev_num,

acc_device_t dev_type,

acc_device_property_t property);3255

Fortran:

function acc_get_property(dev_num, dev_type, property)

subroutine acc_get_property_string(dev_num, dev_type,&

property, string)3256

use iso_c_binding, only: c_size_t3257

integer, value :: dev_num3258

integer(acc_device_kind), value :: dev_type3259

integer(acc_device_property_kind), value :: property3260

integer(c_size_t) :: acc_get_property3261

character*(*) :: string3262

Description3263

The acc_get_property and acc_get_property_string routines return the value of the3264

property. dev_num and dev_type specify the device being queried. If dev_type has the3265

value acc_device_current, then dev_num is ignored and the value of the property for the3266

current device is returned. property is an enumeration constant, defined in openacc.h, for3267

C or C++, or an integer parameter, defined in the openacc module, for Fortran. Integer-valued3268

properties are returned by acc_get_property, and string-valued properties are returned by3269

acc_get_property_string. In Fortran, acc_get_property_string returns the result3270

into the string argument.3271

The supported values of property are given in the following table.3272

property return type return value

acc_property_memory integer size of device memory in bytes

acc_property_free_memory integer free device memory in bytes

acc_property_shared_memory_support

integer nonzero if the specified device sup-

ports sharing memory with the local

thread

acc_property_name string device name

acc_property_vendor string device vendor

acc_property_driver string device driver version

3273

An implementation may support additional properties for some devices.3274

93

The OpenACC R© API 3.2. Runtime Library Routines

Restrictions3275

• acc_get_propertywill return 0 and acc_get_property_stringwill return a null3276

pointer (in C or C++) or a blank string (in Fortran) in the following cases:3277

– If device type dev_type is not supported or no device of dev_type is available.3278

– If the value of dev_num is not a valid device number for device type dev_type.3279

– If the value of property is not one of the known values for that query routine, or that3280

property has no value for the specified device.3281

3.2.7 acc init3282

Summary3283

The acc_init and acc_init_device routines initialize the runtime for the specified device3284

type and device number. This can be used to isolate any initialization cost from the computational3285

cost, such as when collecting performance statistics.3286

Format3287

C or C++:3288

void acc_init(acc_device_t dev_type);3289

void acc_init_device(int dev_num, acc_device_t dev_type);3290

Fortran:3291

subroutine acc_init(dev_type)3292

subroutine acc_init_device(dev_num, dev_type)3293

integer :: dev_num3294

integer(acc_device_kind) :: dev_type3295

Description3296

A call to acc_init or acc_init_device is functionally equivalent to an init directive with3297

matching dev_type and dev_num arguments, as described in Section 2.14.1. dev_type must3298

be one of the defined accelerator types. dev_num must be a valid device number of the device type3299

dev_type. These routines also implicitly call acc_set_device_type(dev_type). In the3300

case of acc_init_device, acc_set_device_num(dev_num) is also called.3301

If a program initializes one or more devices without an intervening shutdown directive or3302

acc_shutdown call to shut down those same devices, no action is taken.3303

Errors3304

• An acc_error_device_type_unavailable error is issued if device type dev_type3305

is not supported or no device of dev_type is available.3306

• An acc_error_device_unavailable error is issued if dev_num is not a valid device3307

number.3308

See Section 5.2.2.3309

3.2.8 acc shutdown3310

94

The OpenACC R© API 3.2. Runtime Library Routines

Summary3311

The acc_shutdown and acc_shutdown_device routines shut down the connection to spec-3312

ified devices and free up any related resources in the runtime. This ends all data lifetimes in device3313

memory for the device or devices that are shut down, which effectively sets structured and dynamic3314

reference counters to zero.3315

Format3316

C or C++:3317

void acc_shutdown(acc_device_t dev_type);3318

void acc_shutdown_device(int dev_num, acc_device_t dev_type);3319

Fortran:3320

subroutine acc_shutdown(dev_type)3321

subroutine acc_shutdown_device(dev_num, dev_type)3322

integer :: dev_num3323

integer(acc_device_kind) :: dev_type3324

Description3325

A call to acc_shutdown or acc_shutdown_device is functionally equivalent to a shutdown3326

directive, with matching dev_type and dev_num arguments, as described in Section 2.14.2.3327

dev_type must be one of the defined accelerator types. dev_num must be a valid device number3328

of the device type dev_type. acc_shutdown routine disconnects the program from all devices3329

of device type dev_type. The acc_shutdown_device routine disconnects the program from3330

dev_num of type dev_type. Any data that is present in the memory of a device that is shut down3331

is immediately deallocated.3332

Restrictions3333

• This routine may not be called while a compute region is executing on a device of type3334

dev_type.3335

• If the program attempts to execute a compute region on a device or to access any data in the3336

memory of a device that was shut down, the behavior is undefined.3337

• If the program attempts to shut down the acc_device_host device type, the behavior is3338

undefined.3339

Errors3340

• An acc_error_device_type_unavailable error is issued if device type dev_type3341

is not supported or no device of dev_type is available.3342

• An acc_error_device_unavailable error is issued if dev_num is not a valid device3343

number.3344

• An acc_error_device_shutdown error is issued if there is an error shutting down the3345

device.3346

See Section 5.2.2.3347

3.2.9 acc async test3348

Summary3349

The acc_async_test routines test for completion of all associated asynchronous operations for3350

a single specified async queue or for all async queues on the current device or on a specified device.3351

95

The OpenACC R© API 3.2. Runtime Library Routines

Format3352

C or C++:3353

int acc_async_test(int wait_arg);3354

int acc_async_test_device(int wait_arg, int dev_num);3355

int acc_async_test_all(void);3356

int acc_async_test_all_device(int dev_num);3357

Fortran:3358

logical function acc_async_test(wait_arg)3359

logical function acc_async_test_device(wait_arg, dev_num)3360

logical function acc_async_test_all()3361

logical function acc_async_test_all_device(dev_num)3362

integer(acc_handle_kind) :: wait_arg3363

integer :: dev_num3364

Description3365

wait_argmust be an async-argument as defined in Section 2.16 Asynchronous Behavior. dev_num3366

must be a valid device number of the current device type.3367

The behavior of the acc_async_test routines is:3368

• If there is no dev_num argument, it is treated as if dev_num is the current device number.3369

• If any asynchronous operations initiated by this host thread on device dev_num either on3370

async queue wait_arg (if there is a wait_arg argument), or on any async queue (if there3371

is no wait_arg argument) have not completed, a call to the routine returns false.3372

• If all such asynchronous operations have completed, or there are no such asynchronous op-3373

erations, a call to the routine returns true. A return value of true is no guarantee that asyn-3374

chronous operations initiated by other host threads have completed.3375

Errors3376

• An acc_error_invalid_async error is issued if wait_arg is not a valid async-3377

argument value.3378

• An acc_error_device_unavailable error is issued if dev_num is not a valid device3379

number.3380

See Section 5.2.2.3381

3.2.10 acc wait3382

Summary3383

The acc_wait routines wait for completion of all associated asynchronous operations on a single3384

specified async queue or on all async queues on the current device or on a specified device.3385

Format3386

C or C++:3387

void acc_wait(int wait_arg);3388

void acc_wait_device(int wait_arg, int dev_num);3389

void acc_wait_all(void);3390

void acc_wait_all_device(int dev_num);3391

96

The OpenACC R© API 3.2. Runtime Library Routines

Fortran:3392

subroutine acc_wait(wait_arg)3393

subroutine acc_wait_device(wait_arg, dev_num)3394

subroutine acc_wait_all()3395

subroutine acc_wait_all_device(dev_num)3396

integer(acc_handle_kind) :: wait_arg3397

integer :: dev_num3398

Description3399

A call to an acc_wait routine is functionally equivalent to a wait directive as follows, see Sec-3400

tion 2.16.3:3401

• acc_wait to a wait(wait_arg) directive.3402

• acc_wait_device to a wait(devnum:dev_num, queues:wait_arg) directive.3403

• acc_wait_all to a wait directive with no wait-argument.3404

• acc_wait_all_device to a wait(devnum:dev_num) directive.3405

wait_argmust be an async-argument as defined in Section 2.16 Asynchronous Behavior. dev_num3406

must be a valid device number of the current device type.3407

The behavior of the acc_wait routines is:3408

• If there is no dev_num argument, it is treated as if dev_num is the current device number.3409

• The routine will not return until all asynchronous operations initiated by this host thread on3410

device dev_num either on async queue wait_arg (if there is a wait_arg argument) or3411

on all async queues (if there is no wait_arg argument) have completed.3412

• If two or more threads share the same accelerator, there is no guarantee that matching asyn-3413

chronous operations initiated by other threads have completed.3414

For compatibility with OpenACC version 1.0, acc_waitmay also be spelled acc_async_wait,3415

and acc_wait_all may also be spelled acc_async_wait_all.3416

Errors3417

• An acc_error_invalid_async error is issued if wait_arg is not a valid async-3418

argument value.3419

• An acc_error_device_unavailable error is issued if dev_num is not a valid device3420

number.3421

See Section 5.2.2.3422

3.2.11 acc wait async3423

Summary3424

The acc_wait_async routines enqueue a wait operation on one async queue of the current3425

device or a specified device for the operations previously enqueued on a single specified async3426

queue or on all other async queues.3427

97

The OpenACC R© API 3.2. Runtime Library Routines

Format3428

C or C++:

void acc_wait_async(int wait_arg, int async_arg);

void acc_wait_device_async(int wait_arg, int async_arg,

int dev_num);3429

void acc_wait_all_async(int async_arg);3430

void acc_wait_all_device_async(int async_arg, int dev_num);3431

Fortran:3432

subroutine acc_wait_async(wait_arg, async_arg)3433

subroutine acc_wait_device_async(wait_arg, async_arg, dev_num)3434

subroutine acc_wait_all_async(async_arg)3435

subroutine acc_wait_all_device_async(async_arg, dev_num)3436

integer(acc_handle_kind) :: wait_arg, async_arg3437

integer :: dev_num3438

Description3439

A call to an acc_wait_async routine is functionally equivalent to a wait async(async_arg)3440

directive as follows, see Section 2.16.3:3441

• A call to acc_wait_async is functionally equivalent to a wait(wait_arg)3442

async(async_arg) directive.3443

• A call to acc_wait_device_async is functionally equivalent to a wait(devnum:3444

dev_num, queues:wait_arg) async(async_arg) directive.3445

• A call to acc_wait_all_async is functionally equivalent to a wait async(async_arg)3446

directive with no wait-argument.3447

• A call to acc_wait_all_device_async is functionally equivalent to a3448

wait(devnum:dev_num) async(async_arg) directive.3449

async_arg and wait_arg must must be async-arguments, as defined in3450

Section 2.16 Asynchronous Behavior. dev_num must be a valid device number of the current3451

device type.3452

The behavior of the acc_wait_async routines is:3453

• If there is no dev_num argument, it is treated as if dev_num is the current device number.3454

• The routine will enqueue a wait operation on the async queue associated with async_arg3455

for the current device which will wait for operations initiated on the async queue wait_arg3456

of device dev_num (if there is a wait_arg argument), or for each async queue of device3457

dev_num (if there is no wait_arg argument).3458

See Section 2.16 Asynchronous Behavior for more information.3459

Errors3460

• An acc_error_invalid_async error is issued if either async_arg or wait_arg is3461

not a valid async-argument value.3462

• An acc_error_device_unavailable error is issued if dev_num is not a valid device3463

number.3464

See Section 5.2.2.3465

98

The OpenACC R© API 3.2. Runtime Library Routines

3.2.12 acc wait any3466

Summary3467

The acc_wait_any and acc_wait_any_device routines wait for any of the specified asyn-3468

chronous queues to complete all pending operations on the current device or the specified device3469

number, respectively. Both routines return the queue’s index in the provided array of asynchronous3470

queues.3471

Format3472

C or C++:3473

int acc_wait_any(int count, int wait_arg[]);3474

int acc_wait_any_device(int count, int wait_arg[], int dev_num);3475

Fortran:3476

integer function acc_wait_any(count, wait_arg)3477

integer function acc_wait_any_device(count, wait_arg, dev_num)3478

integer :: count, dev_num3479

integer(acc_handle_kind) :: wait_arg(count)3480

Description3481

wait_arg is an array of async-arguments as defined in Section 2.16 and count is a nonneg-3482

ative integer indicating the array length. If there is no dev_num argument, it is treated as if3483

dev_num is the current device number. Otherwise, dev_num must be a valid device number3484

of the current device type. A call to any of these routines returns an index i associated with3485

a wait_arg[i] that is not acc_async_sync and meets the conditions that would evalu-3486

ate acc_async_test_device(wait_arg[i], dev_num) to true. If all the elements in3487

wait_arg are equal to acc_async_sync or count is equal to 0, these routines return -1.3488

Otherwise, the return value is an integer in the range of 0 ≤ i < count in C or C++ and3489

1 ≤ i ≤ count in Fortran.3490

Errors3491

• An acc_error_invalid_argument error is issued if count is a negative number.3492

• An acc_error_invalid_async error is issued if any element encountered in wait_arg3493

is not a valid async-argument value.3494

• An acc_error_device_unavailable error is issued if dev_num is not a valid device3495

number.3496

See Section 5.2.2.3497

3.2.13 acc get default async3498

Summary3499

The acc_get_default_async routine returns the value of acc-default-async-var for the cur-3500

rent thread.3501

Format3502

C or C++:3503

int acc_get_default_async(void);3504

99

The OpenACC R© API 3.2. Runtime Library Routines

Fortran:3505

function acc_get_default_async()3506

integer(acc_handle_kind) :: acc_get_default_async3507

Description3508

The acc_get_default_async routine returns the value of acc-default-async-var for the cur-3509

rent thread, which is the asynchronous queue used when an async clause appears without an3510

async-argument or with the value acc_async_noval.3511

3.2.14 acc set default async3512

Summary3513

The acc_set_default_async routine tells the runtime which asynchronous queue to use3514

when an async clause appears with no queue argument.3515

Format3516

C or C++:3517

void acc_set_default_async(int async_arg);3518

Fortran:3519

subroutine acc_set_default_async(async_arg)3520

integer(acc_handle_kind) :: async_arg3521

Description3522

A call to acc_set_default_async is functionally equivalent to a set default_async(async_arg)3523

directive, as described in Section 2.14.3. This acc_set_default_async routine tells the3524

runtime to place any directives with an async clause that does not have an async-argument or3525

with the special acc_async_noval value into the asynchronous activity queue associated with3526

async_arg instead of the default asynchronous activity queue for that device by setting the value3527

of acc-default-async-var for the current thread. The special argument acc_async_defaultwill3528

reset the default asynchronous activity queue to the initial value, which is implementation-defined.3529

Errors3530

• An acc_error_invalid_async error is issued if async_arg is not a valid async-3531

argument value.3532

See Section 5.2.2.3533

3.2.15 acc on device3534

Summary3535

The acc_on_device routine tells the program whether it is executing on a particular device.3536

Format3537

C or C++:3538

int acc_on_device(acc_device_t dev_type);3539

Fortran:3540

logical function acc_on_device(dev_type)3541

integer(acc_device_kind) :: dev_type3542

100

The OpenACC R© API 3.2. Runtime Library Routines

Description3543

The acc_on_device routine may be used to execute different paths depending on whether the3544

code is running on the host or on some accelerator. If the acc_on_device routine has a compile-3545

time constant argument, the call evaluates at compile time to a constant. dev_type must be one3546

of the defined accelerator types.3547

The behavior of the acc_on_device routine is:3548

• If dev_type is acc_device_host, then outside of a compute region or accelerator rou-3549

tine, or in a compute region or accelerator routine that is executed on the host CPU, a call to3550

this routine will evaluate to true; otherwise, it will evaluate to false.3551

• If dev_type is acc_device_not_host, the result is the negation of the result with3552

argument acc_device_host.3553

• If dev_type is an accelerator device type, then in a compute region or routine that is ex-3554

ecuted on a device of that type, a call to this routine will evaluate to true; otherwise, it will3555

evaluate to false.3556

• The result with argument acc_device_default is undefined.3557

3.2.16 acc malloc3558

Summary3559

The acc_malloc routine allocates space in the current device memory.3560

Format3561

C or C++:3562

d_void* acc_malloc(size_t bytes);3563

Description3564

The acc_malloc routine may be used to allocate space in the current device memory. Pointers3565

assigned from this routine may be used in deviceptr clauses to tell the compiler that the pointer3566

target is resident on the device. In case of an allocation error or if bytes has the value zero,3567

acc_malloc returns a null pointer.3568

3.2.17 acc free3569

Summary3570

The acc_free routine frees memory on the current device.3571

Format3572

C or C++:3573

void acc_free(d_void* data_dev);3574

Description3575

The acc_free routine will free previously allocated space in the current device memory; data_dev3576

should be a pointer value that was returned by a call to acc_malloc. If data_dev is a null3577

pointer, no operation is performed.3578

101

The OpenACC R© API 3.2. Runtime Library Routines

3.2.18 acc copyin and acc create3579

Summary3580

The acc_copyin and acc_create routines test to see if the argument is in shared memory3581

or already present in the current device memory; if not, they allocate space in the current device3582

memory to correspond to the specified local memory, and the acc_copyin routines copy the data3583

to that device memory.3584

Format3585

C or C++:3586

d_void* acc_copyin(h_void* data_arg, size_t bytes);3587

d_void* acc_create(h_void* data_arg, size_t bytes);3588

3589

void acc_copyin_async(h_void* data_arg, size_t bytes,3590

int async_arg);3591

void acc_create_async(h_void* data_arg, size_t bytes,3592

int async_arg);3593

3594

Fortran:3595

subroutine acc_copyin(data_arg [, bytes])3596

subroutine acc_create(data_arg [, bytes])3597

3598

subroutine acc_copyin_async(data_arg [, bytes], async_arg)3599

subroutine acc_create_async(data_arg [, bytes], async_arg)3600

3601

type(*), dimension(..) :: data_arg3602

integer :: bytes3603

integer(acc_handle_kind) :: async_arg3604

Description3605

A call to an acc_copyin or acc_create routine is similar to an enter data directive with3606

a copyin or create clause, respectively, as described in Sections 2.7.7 and 2.7.9, except that3607

no attach action is performed for a pointer reference. In C/C++, data_arg is a pointer to the3608

data, and bytes specifies the data size in bytes; the associated data section starts at the address3609

in data_arg and continues for bytes bytes. The synchronous routines return a pointer to the3610

allocated device memory, as with acc_malloc. In Fortran, two forms are supported. In the first,3611

data_arg is a variable or a contiguous array section; the associated data section starts at the3612

address of, and continues to the end of the variable or array section. In the second, data_arg3613

is a variable or array element and bytes is the length in bytes; the associated data section starts3614

at the address of the variable or array element and continues for bytes bytes. For the _async3615

versions of these routines, async_arg must be an async-argument as defined in Section 2.163616

Asynchronous Behavior.3617

The behavior of these routines for the associated data section is:3618

• If the data section is in shared memory, no action is taken. The C/C++ synchronous acc_copyin3619

and acc_create routines return the incoming pointer.3620

• If the data section is present in the current device memory, the routines perform a present increment3621

action with the dynamic reference counter. The C/C++ synchronous acc_copyin and3622

102

The OpenACC R© API 3.2. Runtime Library Routines

acc_create routines return a pointer to the existing device memory.3623

• Otherwise:3624

– The acc_copyin routines perform a copyin action with the dynamic reference counter.3625

– The acc_create routines perform a create action with the dynamic reference counter.3626

The C/C++ synchronous acc_copyin and acc_create routines return a pointer to the3627

newly allocated device memory.3628

This data may be accessed using the present data clause. Pointers assigned from the C/C++3629

synchronous acc_copyin and acc_create routines may be used in deviceptr clauses to3630

tell the compiler that the pointer target is resident on the device.3631

The synchronous versions will not return until the memory has been allocated and any data transfers3632

are complete.3633

The _async versions of these routines will perform any data transfers asynchronously on the async3634

queue associated with async_arg. The routine may return before the data has been transferred;3635

see Section 2.16 Asynchronous Behavior for more details. The data will be treated as present in3636

the current device memory even if the data has not been allocated or transferred before the routine3637

returns.3638

For compatibility with OpenACC 2.0, acc_present_or_copyin and acc_pcopyin are al-3639

ternate names for acc_copyin, and acc_present_or_create and acc_pcreate are al-3640

ternate names for acc_create.3641

Errors3642

• An acc_invalid_null_pointer error is issued if data_arg is a null pointer and3643

bytes is nonzero.3644

• An acc_error_partly_present error is issued if part of the data section is already3645

present in the current device memory but all of the data section is not.3646

• An acc_error_invalid_data_section error is issued if data_arg is an array sec-3647

tion that is not contiguous (in Fortran).3648

• An acc_error_out_of_memory error is issued if the accelerator device does not have3649

enough memory for the data.3650

• An acc_error_invalid_async error is issued if async_arg is not a valid async-3651

argument value.3652

See Section 5.2.2.3653

3.2.19 acc copyout and acc delete3654

Summary3655

The acc_copyout and acc_delete routines test to see if the argument is in shared memory;3656

if not, the argument must be present in the current device memory. The acc_copyout routines3657

copy data from device memory to the corresponding local memory, and both acc_copyout and3658

acc_delete routines deallocate that space from the device memory.3659

103

The OpenACC R© API 3.2. Runtime Library Routines

Format3660

C or C++:3661

void acc_copyout(h_void* data_arg, size_t bytes);3662

void acc_delete (h_void* data_arg, size_t bytes);3663

3664

void acc_copyout_finalize(h_void* data_arg, size_t bytes);3665

void acc_delete_finalize (h_void* data_arg, size_t bytes);3666

3667

void acc_copyout_async(h_void* data_arg, size_t bytes,3668

int async_arg);3669

void acc_delete_async (h_void* data_arg, size_t bytes,3670

int async_arg);3671

3672

void acc_copyout_finalize_async(h_void* data_arg, size_t bytes,3673

int async_arg);3674

void acc_delete_finalize_async (h_void* data_arg, size_t bytes,3675

int async_arg);3676

3677

Fortran:3678

subroutine acc_copyout(data_arg [, bytes])3679

subroutine acc_delete (data_arg [, bytes])3680

3681

subroutine acc_copyout_finalize(data_arg [, bytes])3682

subroutine acc_delete_finalize (data_arg [, bytes])3683

3684

subroutine acc_copyout_async(data_arg [, bytes], async_arg)3685

subroutine acc_delete_async (data_arg [, bytes], async_arg)3686

3687

subroutine acc_copyout_finalize_async(data_arg [, bytes], &3688

async_arg)3689

subroutine acc_delete_finalize_async (data_arg [, bytes], &3690

async_arg)3691

3692

type(*), dimension(..) :: data_arg3693

integer :: bytes3694

integer(acc_handle_kind) :: async_arg3695

Description3696

A call to an acc_copyout or acc_delete routine is similar to an exit data directive3697

with a copyout or delete clause, respectively, and a call to an acc_copyout_finalize3698

or acc_delete_finalize routine is similar to an exit data finalize directive with a3699

copyout or delete clause, respectively, as described in Section 2.7.8 and 2.7.11, except that no3700

detach action is performed for a pointer reference. The arguments and the associated data section3701

are as for acc_copyin.3702

The behavior of these routines for the associated data section is:3703

• If the data section is in shared memory, no action is taken.3704

104

The OpenACC R© API 3.2. Runtime Library Routines

• If the dynamic reference counter for the data section is zero, no action is taken.3705

• Otherwise, the dynamic reference counter is updated:3706

– The acc_copyout and acc_delete) routines perform a present decrement action3707

with the dynamic reference counter.3708

– The acc_copyout_finalize or acc_delete_finalize routines set the dy-3709

namic reference counter to zero.3710

If both reference counters are then zero:3711

– The acc_copyout routines perform a copyout action.3712

– The acc_delete routines perform a delete action.3713

The synchronous versions will not return until the data has been completely transferred and the3714

memory has been deallocated.3715

The _async versions of these routines will perform any associated data transfers asynchronously3716

on the async queue associated with async_arg. The routine may return before the data has been3717

transferred or deallocated; see Section 2.16 Asynchronous Behavior for more details. Even if the3718

data has not been transferred or deallocated before the routine returns, the data will be treated as not3719

present in the current device memory if both reference counters are zero.3720

Errors3721

• An acc_invalid_null_pointer error is issued if data_arg is a null pointer and3722

bytes is nonzero.3723

• An acc_error_not_present error is issued if the data section is not in shared memory3724

and is not present in the current device memory.3725

• An acc_error_invalid_data_section error is issued if data_arg is an array sec-3726

tion that is not contiguous (in Fortran).3727

• An acc_error_partly_present error is issued if part of the data section is already3728

present in the current device memory but all of the data section is not.3729

• An acc_error_invalid_async error is issued if async_arg is not a valid async-3730

argument value.3731

See Section 5.2.2.3732

3.2.20 acc update device and acc update self3733

Summary3734

The acc_update_device and acc_update_self routines test to see if the argument is in3735

shared memory; if not, the argument must be present in the current device memory, and the routines3736

update the data in device memory from the corresponding local memory (acc_update_device)3737

or update the data in local memory from the corresponding device memory (acc_update_self).3738

Format3739

C or C++:3740

void acc_update_device(h_void* data_arg, size_t bytes);3741

void acc_update_self (h_void* data_arg, size_t bytes);3742

105

The OpenACC R© API 3.2. Runtime Library Routines

3743

void acc_update_device_async(h_void* data_arg, size_t bytes,3744

int async_arg);3745

void acc_update_self_async (h_void* data_arg, size_t bytes,3746

int async_arg);3747

3748

Fortran:3749

subroutine acc_update_device(data_arg [, bytes])3750

subroutine acc_update_self (data_arg [, bytes])3751

3752

subroutine acc_update_device_async(data_arg [, bytes], async_arg)3753

subroutine acc_update_self_async (data_arg [, bytes], async_arg)3754

3755

type(*), dimension(..) :: data_arg3756

integer :: bytes3757

integer(acc_handle_kind) :: async_arg3758

Description3759

A call to an acc_update_device routine is functionally equivalent to an update device3760

directive. A call to an acc_update_self routine is functionally equivalent to an update self3761

directive. See Section 2.14.4. The arguments and the data section are as for acc_copyin.3762

The behavior of these routines for the associated data section is:3763

• If the data section is in shared memory or bytes is zero, no action is taken.3764

• Otherwise:3765

– A call to an acc_update_device routine copies the data in the local memory to the3766

corresponding device memory.3767

– A call to an acc_update_self routine copies the data in the corresponding device3768

memory to the local memory.3769

The _async versions of these routines will perform the data transfers asynchronously on the async3770

queue associated with async_arg. The routine may return before the data has been transferred;3771

see Section 2.16 Asynchronous Behavior for more details. The synchronous versions will not return3772

until the data has been completely transferred.3773

Errors3774

• An acc_invalid_null_pointer error is issued if data_arg is a null pointer and3775

bytes is nonzero.3776

• An acc_error_not_present error is issued if the data section is not in shared memory3777

and is not present in the current device memory.3778

• An acc_error_invalid_data_section error is issued if data_arg is an array sec-3779

tion that is not contiguous (in Fortran).3780

• An acc_error_partly_present error is issued if part of the data section is already3781

present in the current device memory but all of the data section is not.3782

106

The OpenACC R© API 3.2. Runtime Library Routines

• An acc_error_invalid_async error is issued if async_arg is not a valid async-3783

argument value.3784

See Section 5.2.2.3785

3.2.21 acc map data3786

Summary3787

The acc_map_data routine maps previously allocated space in the current device memory to the3788

specified host data.3789

Format3790

C or C++:

void acc_map_data(h_void* data_arg, d_void* data_dev,

size_t bytes);3791

Description3792

A call to the acc_map_data routine is similar to a call to acc_create, except that instead of3793

allocating new device memory to start a data lifetime, the device address to use for the data lifetime3794

is specified as an argument. data_arg is a host address, data_dev is the corresponding device3795

address, and bytes is the length in bytes. data_dev may be the result of a call to acc_malloc,3796

or may come from some other device-specific API routine.3797

The behavior of the acc_map_data routine is:3798

• If the data referred to by data_arg is in shared memory, the behavior is undefined.3799

• If any of the data referred to by data_dev is already mapped to any host memory address,3800

the behavior is undefined.3801

• Otherwise, after this call, when data_arg appears in a data clause, the data_dev address3802

will be used. The dynamic reference count for the data referred to by data_arg is set to3803

one, but no data movement will occur.3804

Memory mapped by acc_map_data may not have the associated dynamic reference count decre-3805

mented to zero, except by a call to acc_unmap_data. See Section 2.6.7 Reference Counters.3806

Errors3807

• An acc_invalid_null_pointer error is issued if either data_arg or data_dev is3808

a null pointer.3809

• An acc_error_present error is issued if any part of the data is already present in the3810

current device memory.3811

See Section 5.2.2.3812

3.2.22 acc unmap data3813

Summary3814

The acc_unmap_data routine unmaps device data from the specified host data.3815

Format3816

C or C++:3817

void acc_unmap_data(h_void* data_arg);3818

107

The OpenACC R© API 3.2. Runtime Library Routines

Description3819

A call to the acc_unmap_data routine is similar to a call to acc_delete, except the device3820

memory is not deallocated. data_arg is a host address.3821

The behavior of the acc_unmap_data routine is:3822

• If data_argwas not previously mapped to some device address via a call to acc_map_data,3823

the behavior is undefined.3824

• Otherwise, the data lifetime for data_arg is ended. The dynamic reference count for3825

data_arg is set to zero, but no data movement will occur and the corresponding device3826

memory is not deallocated. See Section 2.6.7 Reference Counters.3827

Errors3828

• An acc_invalid_null_pointer error is issued if data_arg is a null pointer.3829

• An acc_error_present error is issued if the structured reference count for the any part3830

of the data is not zero.3831

See Section 5.2.2.3832

3.2.23 acc deviceptr3833

Summary3834

The acc_deviceptr routine returns the device pointer associated with a specific host address.3835

Format3836

C or C++:3837

d_void* acc_deviceptr(h_void* data_arg);3838

Description3839

The acc_deviceptr routine returns the device pointer associated with a host address. data_arg3840

is the address of a host variable or array that may have an active lifetime on the current device.3841

The behavior of the acc_deviceptr routine for the data referred to by data_arg is:3842

• If the data is in shared memory or data_arg is a null pointer, acc_deviceptr returns3843

the incoming address.3844

• If the data is not present in the current device memory, acc_deviceptr returns a null3845

pointer.3846

• Otherwise, acc_deviceptr returns the address in the current device memory that corre-3847

sponds to the address data_arg.3848

3.2.24 acc hostptr3849

Summary3850

The acc_hostptr routine returns the host pointer associated with a specific device address.3851

Format3852

C or C++:3853

h_void* acc_hostptr(d_void* data_dev);3854

108

The OpenACC R© API 3.2. Runtime Library Routines

Description3855

The acc_hostptr routine returns the host pointer associated with a device address. data_dev3856

is the address of a device variable or array, such as that returned from acc_deviceptr, acc_create3857

or acc_copyin.3858

The behavior of the acc_hostptr routine for the data referred to by data_dev is:3859

• If the data is in shared memory or data_dev is a null pointer, acc_hostptr returns the3860

incoming address.3861

• If the data corresponds to a host address which is present in the current device memory,3862

acc_hostptr returns the host address.3863

• Otherwise, acc_hostptr returns a null pointer.3864

3.2.25 acc is present3865

Summary3866

The acc_is_present routine tests whether a variable or array region is accessible from the3867

current device.3868

Format3869

C or C++:3870

int acc_is_present(h_void* data_arg, size_t bytes);3871

Fortran:3872

logical function acc_is_present(data_arg)3873

logical function acc_is_present(data_arg, bytes)3874

type(*), dimension(..) :: data_arg3875

integer :: bytes3876

Description3877

The acc_is_present routine tests whether the specified host data is accessible from the current3878

device. In C/C++, data_arg is a pointer to the data, and bytes specifies the data size in bytes. In3879

Fortran, two forms are supported. In the first, data_arg is a variable or contiguous array section.3880

In the second, data_arg is a variable or array element and bytes is the length in bytes. A3881

bytes value of zero is treated as a value of one if data_arg is not a null pointer.3882

The behavior of the acc_is_present routines for the data referred to by data_arg is:3883

• If the data is in shared memory, a call to acc_is_present will evaluate to true.3884

• If the data is present in the current device memory, a call to acc_is_present will evaluate3885

to true.3886

• Otherwise, a call to acc_is_present will evaluate to false.3887

Errors3888

• An acc_error_invalid_argument error is issued if bytes is negative (in Fortran).3889

• An acc_error_invalid_data_section error is issued if data_arg is an array sec-3890

tion that is not contiguous (in Fortran).3891

See Section 5.2.2.3892

109

The OpenACC R© API 3.2. Runtime Library Routines

3.2.26 acc memcpy to device3893

Summary3894

The acc_memcpy_to_device routine copies data from local memory to device memory.3895

Format3896

C or C++:

void acc_memcpy_to_device(d_void* data_dev_dest,

h_void* data_host_src, size_t bytes);

void acc_memcpy_to_device_async(d_void* data_dev_dest,

h_void* data_host_src, size_t bytes,

int async_arg);3897

Description3898

The acc_memcpy_to_device routine copies bytes bytes of data from the local address in3899

data_host_src to the device address in data_dev_dest. data_dev_dest must be an3900

address accessible from the current device, such as an address returned from acc_malloc or3901

acc_deviceptr, or an address in shared memory.3902

The behavior of the acc_memcpy_to_device routines is:3903

• If bytes is zero, no action is taken.3904

• If data_dev_dest and data_host_src both refer to shared memory and have the same3905

value, no action is taken.3906

• If data_dev_dest and data_host_src both refer to shared memory and the memory3907

regions overlap, the behavior is undefined.3908

• If the data referred to by data_dev_dest is not accessible by the current device, the be-3909

havior is undefined.3910

• If the data referred to by data_host_src is not accessible by the local thread, the behavior3911

is undefined.3912

• Otherwise, bytes bytes of data at data_host_src in local memory are copied to3913

data_dev_dest in the current device memory.3914

The _async version of this routine will perform the data transfers asynchronously on the async3915

queue associated with async_arg. The routine may return before the data has been transferred;3916

see Section 2.16 Asynchronous Behavior for more details. The synchronous versions will not return3917

until the data has been completely transferred.3918

Errors3919

• An acc_error_invalid_null_pointer error is issued if data_dev_dest or3920

data_host_src is a null pointer and bytes is nonzero.3921

• An acc_error_invalid_async error is issued if async_arg is not a valid async-3922

argument value.3923

See Section 5.2.2.3924

110

The OpenACC R© API 3.2. Runtime Library Routines

3.2.27 acc memcpy from device3925

Summary3926

The acc_memcpy_from_device routine copies data from device memory to local memory.3927

Format3928

C or C++:

void acc_memcpy_from_device(h_void* data_host_dest,

d_void* data_dev_src, size_t bytes);

void acc_memcpy_from_device_async(h_void* data_host_dest,

d_void* data_dev_src, size_t bytes,3929

int async_arg);3930

Description3931

The acc_memcpy_from_device routine copies bytes bytes of data from the device address3932

in data_dev_src to the local address in data_host_dest. data_dev_src must be an3933

address accessible from the current device, such as an address returned from acc_malloc or3934

acc_deviceptr, or an address in shared memory.3935

The behavior of the acc_memcpy_from_device routines is:3936

• If bytes is zero, no action is taken.3937

• If data_host_dest and data_dev_src both refer to shared memory and have the same3938

value, no action is taken.3939

• If data_host_dest and data_dev_src both refer to shared memory and the memory3940

regions overlap, the behavior is undefined.3941

• If the data referred to by data_dev_src is not accessible by the current device, the behav-3942

ior is undefined.3943

• If the data referred to by data_host_dest is not accessible by the local thread, the behav-3944

ior is undefined.3945

• Otherwise, bytes bytes of data at data_dev_src in the current device memory are copied3946

to data_host_dest in local memory.3947

The _async version of this routine will perform the data transfers asynchronously on the async3948

queue associated with async_arg. The routine may return before the data has been transferred;3949

see Section 2.16 Asynchronous Behavior for more details. The synchronous versions will not return3950

until the data has been completely transferred.3951

Errors3952

• An acc_error_invalid_null_pointer error is issued if data_host_dest or3953

data_dev_src is a null pointer and bytes is nonzero.3954

• An acc_error_invalid_async error is issued if async_arg is not a valid async-3955

argument value.3956

See Section 5.2.2.3957

111

The OpenACC R© API 3.2. Runtime Library Routines

3.2.28 acc memcpy device3958

Summary3959

The acc_memcpy_device routine copies data from one memory location to another memory3960

location on the current device.3961

Format3962

C or C++:

void acc_memcpy_device(d_void* data_dev_dest,

d_void* data_dev_src, size_t bytes);

void acc_memcpy_device_async(d_void* data_dev_dest,

d_void* data_dev_src, size_t bytes,3963

int async_arg);3964

Description3965

The acc_memcpy_device routine copies bytes bytes of data from the device address in3966

data_dev_src to the device address in data_dev_dest. Both addresses must be addresses in3967

the current device memory, such as would be returned from acc_malloc or acc_deviceptr.3968

The behavior of the acc_memcpy_device routines is:3969

• If bytes is zero, no action is taken.3970

• If data_dev_dest and data_dev_src have the same value, no action is taken.3971

• If the memory regions referred to by data_dev_dest and data_dev_src overlap, the3972

behavior is undefined.3973

• If the data referred to by data_dev_src or data_dev_dest is not accessible by the3974

current device, the behavior is undefined.3975

• Otherwise, bytes bytes of data at data_dev_src in the current device memory are copied3976

to data_dev_dest in the current device memory.3977

The _async version of this routine will perform the data transfers asynchronously on the async3978

queue associated with async_arg. The routine may return before the data has been transferred;3979

see Section 2.16 Asynchronous Behavior for more details. The synchronous versions will not return3980

until the data has been completely transferred.3981

Errors3982

• An acc_error_invalid_null_pointer error is issued if data_dev_dest or3983

data_dev_src is a null pointer and bytes is nonzero.3984

• An acc_error_invalid_async error is issued if async_arg is not a valid async-3985

argument value.3986

See Section 5.2.2.3987

3.2.29 acc attach and acc detach3988

Summary3989

The acc_attach routines update a pointer in device memory to point to the corresponding device3990

copy of the host pointer target. The acc_detach routines restore a pointer in device memory to3991

point to the host pointer target.3992

112

The OpenACC R© API 3.2. Runtime Library Routines

Format3993

C or C++:3994

void acc_attach(h_void** ptr_addr);3995

void acc_attach_async(h_void** ptr_addr, int async_arg);3996

3997

void acc_detach(h_void** ptr_addr);3998

void acc_detach_async(h_void** ptr_addr, int async_arg);3999

void acc_detach_finalize(h_void** ptr_addr);4000

void acc_detach_finalize_async(h_void** ptr_addr,4001

int async_arg);4002

Description4003

A call to an acc_attach routine is functionally equivalent to an enter data attach direc-4004

tive, as described in Section 2.7.12. A call to an acc_detach routine is functionally equivalent to4005

an exit data detach directive, and a call to an acc_detach_finalize routine is function-4006

ally equivalent to an exit data finalize detach directive, as described in Section 2.7.13.4007

ptr_addr must be the address of a host pointer. async_arg must be an async-argument as4008

defined in Section 2.16.4009

The behavior of these routines is:4010

• If ptr_addr refers to shared memory, no action is taken.4011

• If the pointer referred to by ptr_addr is not present in the current device memory, no action4012

is taken.4013

• Otherwise:4014

– The acc_attach routines perform an attach action on the pointer referred to by4015

ptr_addr; see Section 2.7.2.4016

– The acc_detach routines perform a detach action on the pointer referred to by ptr_addr;4017

See Section 2.7.2.4018

– The acc_detach_finalize routines perform an immediate detach action on the4019

pointer referred to by ptr_addr; see Section 2.7.2.4020

These routines may issue a data transfer from local memory to device memory. The _async ver-4021

sions of these routines will perform the data transfers asynchronously on the async queue associated4022

with async_arg. These routines may return before the data has been transferred; see Section 2.164023

for more details. The synchronous versions will not return until the data has been completely trans-4024

ferred.4025

Errors4026

• An acc_error_invalid_null_pointer error is issued if ptr_addr is a null pointer.4027

• An acc_error_invalid_async error is issued if async_arg is not a valid async-4028

argument value.4029

See Section 5.2.2.4030

3.2.30 acc memcpy d2d4031

113

The OpenACC R© API 3.2. Runtime Library Routines

Summary4032

The acc_memcpy_d2d routines copy the contents of an array on one device to an array on the4033

same or a different device without updating the value on the host.4034

Format4035

C or C++:

void acc_memcpy_d2d(h_void* data_arg_dest,

h_void* data_arg_src, size_t bytes,

int dev_num_dest, int dev_num_src);

void acc_memcpy_d2d_async(h_void* data_arg_dest,

h_void* data_arg_src, size_t bytes,

int dev_num_dest, int dev_num_src,

int async_arg_src);4036

4037

Fortran:

subroutine acc_memcpy_d2d(data_arg_dest, data_arg_src,&

bytes, dev_num_dest, dev_num_src)

subroutine acc_memcpy_d2d_async(data_arg_dest, data_arg_src,&

bytes, dev_num_dest, dev_num_src,&

async_arg_src)4038

type(*), dimension(..) :: data_arg_dest4039

type(*), dimension(..) :: data_arg_src4040

integer :: bytes4041

integer :: dev_num_dest4042

integer :: dev_num_src4043

integer :: async_arg_src4044

4045

Description4046

The acc_memcpy_d2d routines are passed the address of destination and source host data as well4047

as integer device numbers for the destination and source devices, which must both be of the current4048

device type.4049

The behavior of the acc_memcpy_d2d routines is:4050

• If bytes is zero, no action is taken.4051

• If both pointers have the same value and either the two device numbers are the same or the4052

addresses are in shared memory, then no action is taken.4053

• Otherwise, bytes bytes of data at the device address corresponding to data_arg_src on4054

device dev_num_src are copied to the device address corresponding to data_arg_dest4055

on device dev_num_dest.4056

For acc_memcpy_d2d_async the value of async_arg_src is the number of an async queue4057

on the source device. This routine will perform the data transfers asynchronously on the async queue4058

associated with async_arg_src for device dev_num_src; see Section 2.16 Asynchronous Behavior4059

for more details.4060

114

The OpenACC R© API 3.2. Runtime Library Routines

Errors4061

• An acc_error_device_unavailable error is issued if dev_num_dest or dev_num_src4062

is not a valid device number.4063

• An acc_error_invalid_null_pointer error is issued if either data_arg_dest4064

or data_arg_src is a null pointer and bytes is nonzero.4065

• An acc_error_not_present error is issued if the data at either address is not in shared4066

memory and is not present in the respective device memory.4067

• An acc_error_partly_present error is issued if part of the data is already present in4068

the current device memory but all of the data is not.4069

• An acc_error_invalid_async error is issued if async_arg is not a valid async-4070

argument value.4071

See Section 5.2.2.4072

115

The OpenACC R© API 3.2. Runtime Library Routines

116

The OpenACC R© API 4.1. ACC DEVICE TYPE

4. Environment Variables4073

This chapter describes the environment variables that modify the behavior of accelerator regions.4074

The names of the environment variables must be upper case. The values assigned environment4075

variables are case-insensitive and may have leading and trailing whitespace. If the values of the4076

environment variables change after the program has started, even if the program itself modifies the4077

values, the behavior is implementation-defined.4078

4.1 ACC DEVICE TYPE4079

The ACC_DEVICE_TYPE environment variable controls the default device type to use when ex-4080

ecuting parallel, serial, and kernels regions, if the program has been compiled to use more than4081

one different type of device. The allowed values of this environment variable are implementation-4082

defined. See the release notes for currently-supported values of this environment variable.4083

Example:4084

setenv ACC_DEVICE_TYPE NVIDIA4085

export ACC_DEVICE_TYPE=NVIDIA4086

4.2 ACC DEVICE NUM4087

The ACC_DEVICE_NUM environment variable controls the default device number to use when4088

executing accelerator regions. The value of this environment variable must be a nonnegative integer4089

between zero and the number of devices of the desired type attached to the host. If the value is4090

greater than or equal to the number of devices attached, the behavior is implementation-defined.4091

Example:4092

setenv ACC_DEVICE_NUM 14093

export ACC_DEVICE_NUM=14094

4.3 ACC PROFLIB4095

The ACC_PROFLIB environment variable specifies the profiling library. More details about the4096

evaluation at runtime is given in section 5.3.3 Runtime Dynamic Library Loading.4097

Example:4098

setenv ACC_PROFLIB /path/to/proflib/libaccprof.so4099

export ACC_PROFLIB=/path/to/proflib/libaccprof.so4100

117

The OpenACC R© API 4.3. ACC PROFLIB

118

The OpenACC R© API 5.1. Events

5. Profiling and Error Callback Interface4101

This chapter describes the OpenACC interface for runtime callback routines. These routines may be4102

provided by the programmer or by a tool or library developer. Calls to these routines are triggered4103

during the application execution at specific OpenACC events. There are two classes of events,4104

profiling events and error events. Profiling events can be used by tools for profile or trace data4105

collection. Currently, this interface does not support tools that employ asynchronous sampling.4106

Error events can be used to release resources or cleanly shut down a large parallel application when4107

the OpenACC runtime detects an error condition from which it cannot recover. This is specifically4108

for error handling, not for error recovery. There is no support provided for restarting or retrying4109

an OpenACC program, construct, or API routine after an error condition has been detected and an4110

error callback routine has been called.4111

In this chapter, the term runtime refers to the OpenACC runtime library. The term library refers to4112

the routines invoked at specified events by the OpenACC runtime.4113

There are three steps for interfacing a library to the runtime. The first step is to write the library4114

callback routines. Section 5.1 Events describes the supported runtime events and the order in which4115

callbacks to the callback routines will occur. Section 5.2 Callbacks Signature describes the signature4116

of the callback routines for all events.4117

The second step is to load the library at runtime. The library may be statically linked to the appli-4118

cation or dynamically loaded by the application, a library, or a tool. This is described in Section 5.34119

Loading the Library.4120

The third step is to register the desired callbacks with the events. This may be done explicitly by the4121

application, if the library is statically linked with the application, implicitly by including a call to a4122

registration routine in a .init section, or by including an initialization routine in the library if it is4123

dynamically loaded by the runtime. This is described in Section 5.4 Registering Event Callbacks.4124

5.1 Events4125

This section describes the events that are recognized by the runtime. Most profiling events have a4126

start and end callback routine, that is, a routine that is called just before the runtime code to handle4127

the event starts and another routine that is called just after the event is handled. The event names4128

and routine prototypes are available in the header file acc_callback.h, which is delivered with4129

the OpenACC implementation. For backward compatibility with previous versions of OpenACC,4130

the implementation also delivers the same information in acc_prof.h. Event names are prefixed4131

with acc_ev_.4132

The ordering of events must reflect the order in which the OpenACC runtime actually executes them,4133

i.e. if a runtime moves the enqueuing of data transfers or kernel launches outside the originating4134

clauses/constructs, it needs to issue the corresponding launch callbacks when they really occur. A4135

callback for a start event must always precede the matching end callback. No callbacks will be4136

issued after a runtime shutdown event.4137

The events that the runtime supports can be registered with a callback and are defined in the enu-4138

meration type acc_event_t.4139

119

The OpenACC R© API 5.1. Events

typedef enum acc_event_t{4140

acc_ev_none = 0,4141

acc_ev_device_init_start = 1,4142

acc_ev_device_init_end = 2,4143

acc_ev_device_shutdown_start = 3,4144

acc_ev_device_shutdown_end = 4,4145

acc_ev_runtime_shutdown = 5,4146

acc_ev_create = 6,4147

acc_ev_delete = 7,4148

acc_ev_alloc = 8,4149

acc_ev_free = 9,4150

acc_ev_enter_data_start = 10,4151

acc_ev_enter_data_end = 11,4152

acc_ev_exit_data_start = 12,4153

acc_ev_exit_data_end = 13,4154

acc_ev_update_start = 14,4155

acc_ev_update_end = 15,4156

acc_ev_compute_construct_start = 16,4157

acc_ev_compute_construct_end = 17,4158

acc_ev_enqueue_launch_start = 18,4159

acc_ev_enqueue_launch_end = 19,4160

acc_ev_enqueue_upload_start = 20,4161

acc_ev_enqueue_upload_end = 21,4162

acc_ev_enqueue_download_start = 22,4163

acc_ev_enqueue_download_end = 23,4164

acc_ev_wait_start = 24,4165

acc_ev_wait_end = 25,4166

acc_ev_error = 100,4167

acc_ev_last = 1014168

}acc_event_t;4169

The value of acc_ev_last will change if new events are added to the enumeration, so a library4170

should not depend on that value.4171

5.1.1 Runtime Initialization and Shutdown4172

No callbacks can be registered for the runtime initialization. Instead the initialization of the tool is4173

handled as described in Section 5.3 Loading the Library.4174

The runtime shutdown profiling event name is4175

acc_ev_runtime_shutdown4176

This event is triggered before the OpenACC runtime shuts down, either because all devices have4177

been shutdown by calls to the acc_shutdown API routine, or at the end of the program.4178

5.1.2 Device Initialization and Shutdown4179

The device initialization profiling event names are4180

120

The OpenACC R© API 5.1. Events

acc_ev_device_init_start4181

acc_ev_device_init_end4182

These events are triggered when a device is being initialized by the OpenACC runtime. This may be4183

when the program starts, or may be later during execution when the program reaches an acc_init4184

call or an OpenACC construct. The acc_ev_device_init_start is triggered before device4185

initialization starts and acc_ev_device_init_end after initialization is complete.4186

The device shutdown profiling event names are4187

acc_ev_device_shutdown_start4188

acc_ev_device_shutdown_end4189

These events are triggered when a device is shut down, most likely by a call to the OpenACC4190

acc_shutdown API routine. The acc_ev_device_shutdown_start is triggered before4191

the device shutdown process starts and acc_ev_device_shutdown_end after the device shut-4192

down is complete.4193

5.1.3 Enter Data and Exit Data4194

The enter data profiling event names are4195

acc_ev_enter_data_start4196

acc_ev_enter_data_end4197

These events are triggered at enter data directives, entry to data constructs, and entry to implicit4198

data regions such as those generated by compute constructs. The acc_ev_enter_data_start4199

event is triggered before any data allocation, data update, or wait events that are associated with4200

that directive or region entry, and the acc_ev_enter_data_end is triggered after those events.4201

The exit data profiling event names are4202

acc_ev_exit_data_start4203

acc_ev_exit_data_end4204

These events are triggered at exit data directives, exit from data constructs, and exit from4205

implicit data regions. The acc_ev_exit_data_start event is triggered before any data4206

deallocation, data update, or wait events associated with that directive or region exit, and the4207

acc_ev_exit_data_end event is triggered after those events.4208

When the construct that triggers an enter data or exit data event was generated implicitly by the4209

compiler the implicit field in the event structure will be set to 1. When the construct that4210

triggers these events was specified explicitly by the application code the implicit field in the4211

event structure will be set to 0.4212

5.1.4 Data Allocation4213

The data allocation profiling event names are4214

acc_ev_create4215

acc_ev_delete4216

acc_ev_alloc4217

acc_ev_free4218

121

The OpenACC R© API 5.1. Events

An acc_ev_alloc event is triggered when the OpenACC runtime allocates memory from the de-4219

vice memory pool, and an acc_ev_free event is triggered when the runtime frees that memory.4220

An acc_ev_create event is triggered when the OpenACC runtime associates device memory4221

with local memory, such as for a data clause (create, copyin, copy, copyout) at entry to4222

a data construct, compute construct, at an enter data directive, or in a call to a data API rou-4223

tine (acc_copyin, acc_create, . . .). An acc_ev_create event may be preceded by an4224

acc_ev_alloc event, if newly allocated memory is used for this device data, or it may not, if4225

the runtime manages its own memory pool. An acc_ev_delete event is triggered when the4226

OpenACC runtime disassociates device memory from local memory, such as for a data clause at4227

exit from a data construct, compute construct, at an exit data directive, or in a call to a data API4228

routine (acc_copyout, acc_delete, . . .). An acc_ev_delete event may be followed by4229

an acc_ev_free event, if the disassociated device memory is freed, or it may not, if the runtime4230

manages its own memory pool.4231

When the action that generates a data allocation event was generated explicitly by the application4232

code the implicit field in the event structure will be set to 0. When the data allocation event4233

is triggered because of a variable or array with implicitly-determined data attributes or otherwise4234

implicitly by the compiler the implicit field in the event structure will be set to 1.4235

5.1.5 Data Construct4236

The profiling events for entering and leaving data constructs are mapped to enter data and exit data4237

events as described in Section 5.1.3 Enter Data and Exit Data.4238

5.1.6 Update Directive4239

The update directive profiling event names are4240

acc_ev_update_start4241

acc_ev_update_end4242

The acc_ev_update_start event will be triggered at an update directive, before any data4243

update or wait events that are associated with the update directive are carried out, and the corre-4244

sponding acc_ev_update_end event will be triggered after any of the associated events.4245

5.1.7 Compute Construct4246

The compute construct profiling event names are4247

acc_ev_compute_construct_start4248

acc_ev_compute_construct_end4249

The acc_ev_compute_construct_start event is triggered at entry to a compute construct,4250

before any launch events that are associated with entry to the compute construct. The4251

acc_ev_compute_construct_end event is triggered at the exit of the compute construct,4252

after any launch events associated with exit from the compute construct. If there are data clauses4253

on the compute construct, those data clauses may be treated as part of the compute construct, or as4254

part of a data construct containing the compute construct. The callbacks for data clauses must use4255

the same line numbers as for the compute construct events.4256

122

The OpenACC R© API 5.1. Events

5.1.8 Enqueue Kernel Launch4257

The launch profiling event names are4258

acc_ev_enqueue_launch_start4259

acc_ev_enqueue_launch_end4260

The acc_ev_enqueue_launch_start event is triggered just before an accelerator compu-4261

tation is enqueued for execution on a device, and acc_ev_enqueue_launch_end is trig-4262

gered just after the computation is enqueued. Note that these events are synchronous with the4263

local thread enqueueing the computation to a device, not with the device executing the compu-4264

tation. The acc_ev_enqueue_launch_start event callback routine is invoked just before4265

the computation is enqueued, not just before the computation starts execution. More importantly,4266

the acc_ev_enqueue_launch_end event callback routine is invoked after the computation is4267

enqueued, not after the computation finished executing.4268

Note: Measuring the time between the start and end launch callbacks is often unlikely to be useful,4269

since it will only measure the time to manage the launch queue, not the time to execute the code on4270

the device.4271

5.1.9 Enqueue Data Update (Upload and Download)4272

The data update profiling event names are4273

acc_ev_enqueue_upload_start4274

acc_ev_enqueue_upload_end4275

acc_ev_enqueue_download_start4276

acc_ev_enqueue_download_end4277

The _start events are triggered just before each upload (data copy from local memory to device4278

memory) operation is or download (data copy from device memory to local memory) operation is4279

enqueued for execution on a device. The corresponding _end events are triggered just after each4280

upload or download operation is enqueued.4281

Note: Measuring the time between the start and end update callbacks is often unlikely to be useful,4282

since it will only measure the time to manage the enqueue operation, not the time to perform the4283

actual upload or download.4284

When the action that generates a data update event was generated explicitly by the application4285

code the implicit field in the event structure will be set to 0. When the data allocation event4286

is triggered because of a variable or array with implicitly-determined data attributes or otherwise4287

implicitly by the compiler the implicit field in the event structure will be set to 1.4288

5.1.10 Wait4289

The wait profiling event names are4290

acc_ev_wait_start4291

acc_ev_wait_end4292

4293

An acc_ev_wait_start event will be triggered for each relevant queue before the local thread4294

waits for that queue to be empty. A acc_ev_wait_end event will be triggered for each relevant4295

123

The OpenACC R© API 5.2. Callbacks Signature

queue after the local thread has determined that the queue is empty.4296

Wait events occur when the local thread and a device synchronize, either due to a wait directive4297

or by a wait clause on a synchronous data construct, compute construct, or enter data, exit4298

data, or update directive. For wait events triggered by an explicit synchronous wait directive4299

or wait clause, the implicit field in the event structure will be 0. For all other wait events, the4300

implicit field in the event structure will be 1.4301

The OpenACC runtime need not trigger wait events for queues that have not been used in the4302

program, and need not trigger wait events for queues that have not been used by this thread since4303

the last wait operation. For instance, an acc wait directive with no arguments is defined to wait on4304

all queues. If the program only uses the default (synchronous) queue and the queue associated with4305

async(1) and async(2) then an acc wait directive may trigger wait events only for those4306

three queues. If the implementation knows that no activities have been enqueued on the async(2)4307

queue since the last wait operation, then the acc wait directive may trigger wait events only for4308

the default queue and the async(1) queue.4309

5.1.11 Error Event4310

The only error event is4311

acc_ev_error4312

An acc_ev_error event is triggered when the OpenACC program detects a runtime error con-4313

dition. The default runtime error callback routine may print an error message and halt program4314

execution. An application can register additional error event callback routines, to allow a failing4315

application to release resources or to cleanly shut down a large parallel runtime with many threads4316

and processes, for instance.4317

The application can register multiple alternate error callbacks. As described in Section4318

5.4.1 Multiple Callbacks, the callbacks will be invoked in the order in which they are registered.4319

If all the error callbacks return, the default error callback will be invoked. The error callback4320

routine must not execute any OpenACC compute or data constructs. The only OpenACC API4321

routines that can be safely invoked from an error callback routine are acc_get_property,4322

acc_get_property_string, and acc_shutdown.4323

5.2 Callbacks Signature4324

This section describes the signature of event callbacks. All event callbacks have the same signature.4325

The routine prototypes are available in the header file acc_callback.h, which is delivered with4326

the OpenACC implementation.4327

All callback routines have three arguments. The first argument is a pointer to a struct containing4328

general information; the same struct type is used for all callback events. The second argument is4329

a pointer to a struct containing information specific to that callback event; there is one struct type4330

containing information for data events, another struct type containing information for kernel launch4331

events, and a third struct type for other events, containing essentially no information. The third4332

argument is a pointer to a struct containing information about the application programming interface4333

(API) being used for the specific device. For NVIDIA CUDA devices, this contains CUDA-specific4334

information; for OpenCL devices, this contains OpenCL-specific information. Other interfaces can4335

be supported as they are added by implementations. The prototype for a callback routine is:4336

124

The OpenACC R© API 5.2. Callbacks Signature

typedef void (*acc_callback)4337

(acc_callback_info*, acc_event_info*, acc_api_info*);4338

typedef acc_callback acc_prof_callback;4339

In the descriptions, the datatype ssize_t means a signed 32-bit integer for a 32-bit binary and4340

a 64-bit integer for a 64-bit binary, the datatype size_t means an unsigned 32-bit integer for a4341

32-bit binary and a 64-bit integer for a 64-bit binary, and the datatype int means a 32-bit integer4342

for both 32-bit and 64-bit binaries.4343

5.2.1 First Argument: General Information4344

The first argument is a pointer to the acc_callback_info struct type:4345

typedef struct acc_prof_info{4346

acc_event_t event_type;4347

int valid_bytes;4348

int version;4349

acc_device_t device_type;4350

int device_number;4351

int thread_id;4352

ssize_t async;4353

ssize_t async_queue;4354

const char* src_file;4355

const char* func_name;4356

int line_no, end_line_no;4357

int func_line_no, func_end_line_no;4358

}acc_callback_info;4359

typedef struct acc_prof_info acc_prof_info;4360

The name acc_prof_info is preserved for backward compatibility with previous versions of4361

OpenACC. The fields are described below.4362

• acc_event_t event_type - The event type that triggered this callback. The datatype4363

is the enumeration type acc_event_t, described in the previous section. This allows the4364

same callback routine to be used for different events.4365

• int valid_bytes - The number of valid bytes in this struct. This allows a library to inter-4366

face with newer runtimes that may add new fields to the struct at the end while retaining com-4367

patibility with older runtimes. A runtime must fill in the event_type and valid_bytes4368

fields, and must fill in values for all fields with offset less than valid_bytes. The value of4369

valid_bytes for a struct is recursively defined as:4370

valid_bytes(struct) = offset(lastfield) + valid_bytes(lastfield)4371

valid_bytes(type[n]) = (n-1)*sizeof(type) + valid_bytes(type)4372

valid_bytes(basictype) = sizeof(basictype)4373

• int version - A version number; the value of _OPENACC.4374

• acc_device_t device_type - The device type corresponding to this event. The datatype4375

is acc_device_t, an enumeration type of all the supported device types, defined in openacc.h.4376

• int device_number - The device number. Each device is numbered, typically starting at4377

125

The OpenACC R© API 5.2. Callbacks Signature

device zero. For applications that use more than one device type, the device numbers may be4378

unique across all devices or may be unique only across all devices of the same device type.4379

• int thread_id - The host thread ID making the callback. Host threads are given unique4380

thread ID numbers typically starting at zero. This is not necessarily the same as the OpenMP4381

thread number.4382

• ssize_t async - The async-value used for operations associated with this event; see Sec-4383

tion 2.16 Asynchronous Behavior.4384

• ssize_t async_queue - The actual activity queue onto which the async field gets4385

mapped; see Section 2.16 Asynchronous Behavior.4386

• const char* src_file - A pointer to null-terminated string containing the name of or4387

path to the source file, if known, or a null pointer if not. If the library wants to save the source4388

file name, it should allocate memory and copy the string.4389

• const char* func_name - A pointer to a null-terminated string containing the name of4390

the function in which the event occurred, if known, or a null pointer if not. If the library wants4391

to save the function name, it should allocate memory and copy the string.4392

• int line_no - The line number of the directive or program construct or the starting line4393

number of the OpenACC construct corresponding to the event. A negative or zero value4394

means the line number is not known.4395

• int end_line_no - For an OpenACC construct, this contains the line number of the end4396

of the construct. A negative or zero value means the line number is not known.4397

• int func_line_no - The line number of the first line of the function named in func_name.4398

A negative or zero value means the line number is not known.4399

• int func_end_line_no - The last line number of the function named in func_name.4400

A negative or zero value means the line number is not known.4401

5.2.2 Second Argument: Event-Specific Information4402

The second argument is a pointer to the acc_event_info union type.4403

typedef union acc_event_info{4404

acc_event_t event_type;4405

acc_data_event_info data_event;4406

acc_launch_event_info launch_event;4407

acc_other_event_info other_event;4408

}acc_event_info;4409

The event_type field selects which union member to use. The first five members of each union4410

member are identical. The second through fifth members of each union member (valid_bytes,4411

parent_construct, implicit, and tool_info) have the same semantics for all event4412

types:4413

• int valid_bytes - The number of valid bytes in the respective struct. (This field is similar4414

used as discussed in Section 5.2.1 First Argument: General Information.)4415

126

The OpenACC R© API 5.2. Callbacks Signature

• acc_construct_t parent_construct - This field describes the type of construct4416

that caused the event to be emitted. The possible values for this field are defined by the4417

acc_construct_t enum, described at the end of this section.4418

• int implicit - This field is set to 1 for any implicit event, such as an implicit wait at4419

a synchronous data construct or synchronous enter data, exit data or update directive. This4420

field is set to zero when the event is triggered by an explicit directive or call to a runtime API4421

routine.4422

• void* tool_info - This field is used to pass tool-specific information from a _start4423

event to the matching _end event. For a _start event callback, this field will be initialized4424

to a null pointer. The value of this field for a _end event will be the value returned by the4425

library in this field from the matching _start event callback, if there was one, or a null4426

pointer otherwise. For events that are neither _start or _end events, this field will be a4427

null pointer.4428

Data Events4429

For a data event, as noted in the event descriptions, the second argument will be a pointer to the4430

acc_data_event_info struct.4431

typedef struct acc_data_event_info{4432

acc_event_t event_type;4433

int valid_bytes;4434

acc_construct_t parent_construct;4435

int implicit;4436

void* tool_info;4437

const char* var_name;4438

size_t bytes;4439

const void* host_ptr;4440

const void* device_ptr;4441

}acc_data_event_info;4442

The fields specific for a data event are:4443

• acc_event_t event_type - The event type that triggered this callback. The events that4444

use the acc_data_event_info struct are:4445

acc_ev_enqueue_upload_start4446

acc_ev_enqueue_upload_end4447

acc_ev_enqueue_download_start4448

acc_ev_enqueue_download_end4449

acc_ev_create4450

acc_ev_delete4451

acc_ev_alloc4452

acc_ev_free4453

• const char* var_name - A pointer to null-terminated string containing the name of the4454

variable for which this event is triggered, if known, or a null pointer if not. If the library wants4455

to save the variable name, it should allocate memory and copy the string.4456

• size_t bytes - The number of bytes for the data event.4457

127

The OpenACC R© API 5.2. Callbacks Signature

• const void* host_ptr - If available and appropriate for this event, this is a pointer to4458

the host data.4459

• const void* device_ptr - If available and appropriate for this event, this is a pointer4460

to the corresponding device data.4461

Launch Events4462

For a launch event, as noted in the event descriptions, the second argument will be a pointer to the4463

acc_launch_event_info struct.4464

typedef struct acc_launch_event_info{4465

acc_event_t event_type;4466

int valid_bytes;4467

acc_construct_t parent_construct;4468

int implicit;4469

void* tool_info;4470

const char* kernel_name;4471

size_t num_gangs, num_workers, vector_length;4472

}acc_launch_event_info;4473

The fields specific for a launch event are:4474

• acc_event_t event_type - The event type that triggered this callback. The events that4475

use the acc_launch_event_info struct are:4476

acc_ev_enqueue_launch_start4477

acc_ev_enqueue_launch_end4478

• const char* kernel_name - A pointer to null-terminated string containing the name of4479

the kernel being launched, if known, or a null pointer if not. If the library wants to save the4480

kernel name, it should allocate memory and copy the string.4481

• size_t num_gangs, num_workers, vector_length - The number of gangs, work-4482

ers and vector lanes created for this kernel launch.4483

Error Events4484

For an error event, as noted in the event descriptions, the second argument will be a pointer to the4485

acc_error_event_info struct.4486

typedef struct acc_error_event_info{4487

acc_event_t event_type;4488

int valid_bytes;4489

acc_construct_t parent_construct;4490

int implicit;4491

void* tool_info;4492

acc_error_t error_code;4493

const char* error_message;4494

size_t runtime_info;4495

}acc_error_event_info;4496

The enumeration type for the error code is4497

128

The OpenACC R© API 5.2. Callbacks Signature

typedef enum acc_error_t{4498

acc_error_none = 0,4499

acc_error_other = 1,4500

acc_error_system = 2,4501

acc_error_execution = 3,4502

acc_error_device_init = 4,4503

acc_error_device_shutdown = 5,4504

acc_error_device_unavailable = 6,4505

acc_error_device_type_unavailable = 7,4506

acc_error_wrong_device_type = 8,4507

acc_error_out_of_memory = 9,4508

acc_error_not_present = 10,4509

acc_error_partly_present = 11,4510

acc_error_present = 12,4511

acc_error_invalid_argument = 13,4512

acc_error_invalid_async = 14,4513

acc_error_invalid_null_pointer = 15,4514

acc_error_invalid_data_section = 16,4515

acc_error_implementation_defined = 1004516

}acc_error_t;4517

The fields specific for an error event are:4518

• acc_event_t event_type - The event type that triggered this callback. The only event4519

that uses the acc_error_event_info struct is:4520

acc_ev_error4521

• int implicit - This will be set to 1.4522

• acc_error_t error_code - The error codes used are:4523

– acc_error_other is used for error conditions other than those described below.4524

– acc_error_system is used when there is a system error condition.4525

– acc_error_execution is used when there is an error condition issued from code4526

executing on the device.4527

– acc_error_device_init is used for any error initializing a device.4528

– acc_error_device_shutdown is used for any error shutting down a device.4529

– acc_error_device_unavailable is used when there is an error where the se-4530

lected device is unavailable.4531

– acc_error_device_type_unavailable is used when there is an error where4532

no device of the selected device type is available or is supported.4533

– acc_error_wrong_device_type is used when there is an error related to the4534

device type, such as a mismatch between the device type for which a compute construct4535

was compiled and the device available at runtime.4536

– acc_error_out_of_memory is used when the program tries to allocate more mem-4537

ory on the device than is available.4538

129

The OpenACC R© API 5.2. Callbacks Signature

– acc_error_not_present is used for an error related to data not being present at4539

runtime.4540

– acc_error_partly_present is used for an error related to part of the data being4541

present but not being completely present at runtime.4542

– acc_error_present is used for an error related to data being unexpectedly present4543

at runtime.4544

– acc_error_invalid_argument is used when an API routine is called with a4545

invalid argument value, other than those described above.4546

– acc_error_invalid_async is used when an API routine is called with an invalid4547

async-argument, or when a directive is used with an invalid async-argument.4548

– acc_error_invalid_null_pointer is used when an API routine is called with4549

a null pointer argument where it is invalid, or when a directive is used with a null pointer4550

in a context where it is invalid.4551

– acc_error_invalid_data_section is used when an invalid array section ap-4552

pears in a directive data clause, or an invalid array section appears as a runtime API call4553

argument.4554

– acc_error_implementation_defined: any value greater or equal to this value4555

may be used for an implementation-defined error code.4556

• const char* error_message - A pointer to null-terminated string containing an error4557

message from the OpenACC runtime describing the error, or a null pointer.4558

• size_t runtime_info - A value, such as an error code, from the underlying device4559

runtime or driver, if one is available and appropriate.4560

Other Events4561

For any event that does not use the acc_data_event_info, acc_launch_event_info, or4562

acc_error_event_info struct, the second argument to the callback routine will be a pointer4563

to acc_other_event_info struct.4564

typedef struct acc_other_event_info{4565

acc_event_t event_type;4566

int valid_bytes;4567

acc_construct_t parent_construct;4568

int implicit;4569

void* tool_info;4570

}acc_other_event_info;4571

Parent Construct Enumeration4572

All event structures contain a parent_construct member that describes the type of construct4573

that caused the event to be emitted. The purpose of this field is to provide a means to identify4574

the type of construct emitting the event in the cases where an event may be emitted by multi-4575

ple contruct types, such as is the case with data and wait events. The possible values for the4576

parent_construct field are defined in the enumeration type acc_construct_t. In the4577

case of combined directives, the outermost construct of the combined construct should be specified4578

130

The OpenACC R© API 5.2. Callbacks Signature

as the parent_construct. If the event was emitted as the result of the application making a4579

call to the runtime api, the value will be acc_construct_runtime_api.4580

typedef enum acc_construct_t{4581

acc_construct_parallel = 0,4582

acc_construct_serial = 164583

acc_construct_kernels = 1,4584

acc_construct_loop = 2,4585

acc_construct_data = 3,4586

acc_construct_enter_data = 4,4587

acc_construct_exit_data = 5,4588

acc_construct_host_data = 6,4589

acc_construct_atomic = 7,4590

acc_construct_declare = 8,4591

acc_construct_init = 9,4592

acc_construct_shutdown = 10,4593

acc_construct_set = 11,4594

acc_construct_update = 12,4595

acc_construct_routine = 13,4596

acc_construct_wait = 14,4597

acc_construct_runtime_api = 15,4598

}acc_construct_t;4599

5.2.3 Third Argument: API-Specific Information4600

The third argument is a pointer to the acc_api_info struct type, shown here.4601

typedef struct acc_api_info{4602

acc_device_api device_api;4603

int valid_bytes;4604

acc_device_t device_type;4605

int vendor;4606

const void* device_handle;4607

const void* context_handle;4608

const void* async_handle;4609

}acc_api_info;4610

The fields are described below:4611

• acc_device_api device_api - The API in use for this device. The data type is the4612

enumeration acc_device_api, which is described later in this section.4613

• int valid_bytes - The number of valid bytes in this struct. See the discussion above in4614

Section 5.2.1 First Argument: General Information.4615

• acc_device_t device_type - The device type; the datatype is acc_device_t, de-4616

fined in openacc.h.4617

• int vendor - An identifier to identify the OpenACC vendor; contact your vendor to deter-4618

mine the value used by that vendor’s runtime.4619

131

The OpenACC R© API 5.3. Loading the Library

• const void* device_handle - If applicable, this will be a pointer to the API-specific4620

device information.4621

• const void* context_handle - If applicable, this will be a pointer to the API-specific4622

context information.4623

• const void* async_handle - If applicable, this will be a pointer to the API-specific4624

async queue information.4625

According to the value of device_api a library can cast the pointers of the fields device_handle,4626

context_handle and async_handle to the respective device API type. The following device4627

APIs are defined in the interface below. Any implementation-defined device API type must have a4628

value greater than acc_device_api_implementation_defined.4629

typedef enum acc_device_api{
acc_device_api_none = 0, /* no device API */

acc_device_api_cuda = 1, /* CUDA driver API */

acc_device_api_opencl = 2, /* OpenCL API */

acc_device_api_other = 4, /* other device API */

acc_device_api_implementation_defined = 1000 /* other device API */4630

}acc_device_api;4631

5.3 Loading the Library4632

This section describes how a tools library is loaded when the program is run. Four methods are4633

described.4634

• A tools library may be linked with the program, as any other library is linked, either as a4635

static library or a dynamic library, and the runtime will call a predefined library initialization4636

routine that will register the event callbacks.4637

• The OpenACC runtime implementation may support a dynamic tools library, such as a shared4638

object for Linux or OS/X, or a DLL for Windows, which is then dynamically loaded at runtime4639

under control of the environment variable ACC_PROFLIB.4640

• Some implementations where the OpenACC runtime is itself implemented as a dynamic li-4641

brary may support adding a tools library using the LD_PRELOAD feature in Linux.4642

• A tools library may be linked with the program, as in the first option, and the application itself4643

may directly register event callback routines, or may invoke a library initialization routine that4644

will register the event callbacks.4645

Callbacks are registered with the runtime by calling acc_callback_register for each event4646

as described in Section 5.4 Registering Event Callbacks. The prototype for acc_callback_register4647

is:4648

extern void acc_callback_register4649

(acc_event_t event_type, acc_callback cb,4650

acc_register_t info);4651

The first argument to acc_callback_register is the event for which a callback is being4652

registered (compare Section 5.1 Events). The second argument is a pointer to the callback routine:4653

132

The OpenACC R© API 5.3. Loading the Library

typedef void (*acc_callback)4654

(acc_callback_info*,acc_event_info*,acc_api_info*);4655

The third argument is an enum type:4656

typedef enum acc_register_t{4657

acc_reg = 0,4658

acc_toggle = 1,4659

acc_toggle_per_thread = 24660

}acc_register_t;4661

This is usually acc_reg, but see Section 5.4.2 Disabling and Enabling Callbacks for cases where4662

different values are used.4663

An example of registering callbacks for launch, upload, and download events is:4664

acc_callback_register(acc_ev_enqueue_launch_start,4665

prof_launch, acc_reg);4666

acc_callback_register(acc_ev_enqueue_upload_start,4667

prof_data, acc_reg);4668

acc_callback_register(acc_ev_enqueue_download_start,4669

prof_data, acc_reg);4670

As shown in this example, the same routine (prof_data) can be registered for multiple events.4671

The routine can use the event_type field in the acc_callback_info structure to determine4672

for what event it was invoked.4673

The names acc_prof_register and acc_prof_unregister are preserved for backward4674

compatibility with previous versions of OpenACC.4675

5.3.1 Library Registration4676

The OpenACC runtime will invoke acc_register_library, passing the addresses of the reg-4677

istration routines acc_callback_register and acc_callback_unregister, in case4678

that routine comes from a dynamic library. In the third argument it passes the address of the lookup4679

routine acc_prof_lookup to obtain the addresses of inquiry functions. No inquiry functions4680

are defined in this profiling interface, but we preserve this argument for future support of sampling-4681

based tools.4682

Typically, the OpenACC runtime will include a weak definition of acc_register_library,4683

which does nothing and which will be called when there is no tools library. In this case, the library4684

can save the addresses of these routines and/or make registration calls to register any appropriate4685

callbacks. The prototype for acc_register_library is:4686

extern void acc_register_library4687

(acc_prof_reg reg, acc_prof_reg unreg,4688

acc_prof_lookup_func lookup);4689

The first two arguments of this routine are of type:4690

typedef void (*acc_prof_reg)4691

(acc_event_t event_type, acc_callback cb,4692

acc_register_t info);4693

133

The OpenACC R© API 5.3. Loading the Library

The third argument passes the address to the lookup function acc_prof_lookup to obtain the4694

address of interface functions. It is of type:4695

typedef void (*acc_query_fn)();4696

typedef acc_query_fn (*acc_prof_lookup_func)4697

(const char* acc_query_fn_name);4698

The argument of the lookup function is a string with the name of the inquiry function. There are no4699

inquiry functions defined for this interface.4700

5.3.2 Statically-Linked Library Initialization4701

A tools library can be compiled and linked directly into the application. If the library provides an4702

external routine acc_register_library as specified in Section 5.3.1Library Registration, the4703

runtime will invoke that routine to initialize the library.4704

The sequence of events is:4705

1. The runtime invokes the acc_register_library routine from the library.4706

2. The acc_register_library routine calls acc_callback_register for each event4707

to be monitored.4708

3. acc_callback_register records the callback routines.4709

4. The program runs, and your callback routines are invoked at the appropriate events.4710

In this mode, only one tool library is supported.4711

5.3.3 Runtime Dynamic Library Loading4712

A common case is to build the tools library as a dynamic library (shared object for Linux or OS/X,4713

DLL for Windows). In that case, you can have the OpenACC runtime load the library during initial-4714

ization. This allows you to enable runtime profiling without rebuilding or even relinking your ap-4715

plication. The dynamic library must implement a registration routine acc_register_library4716

as specified in Section 5.3.1 Library Registration.4717

The user may set the environment variable ACC_PROFLIB to the path to the library will tell the4718

OpenACC runtime to load your dynamic library at initialization time:4719

Bash:4720

export ACC_PROFLIB=/home/user/lib/myprof.so4721

./myapp4722

or4723

ACC_PROFLIB=/home/user/lib/myprof.so ./myapp4724

C-shell:4725

setenv ACC_PROFLIB /home/user/lib/myprof.so4726

./myapp4727

When the OpenACC runtime initializes, it will read the ACC_PROFLIB environment variable (with4728

getenv). The runtime will open the dynamic library (using dlopen or LoadLibraryA); if4729

the library cannot be opened, the runtime may cause the program to halt execution and return an4730

134

The OpenACC R© API 5.3. Loading the Library

error status, or may continue execution with or without an error message. If the library is suc-4731

cessfully opened, the runtime will get the address of the acc_register_library routine (us-4732

ing dlsym or GetProcAddress). If this routine is resolved in the library, it will be invoked4733

passing in the addresses of the registration routine acc_callback_register, the deregistra-4734

tion routine acc_callback_unregister, and the lookup routine acc_prof_lookup. The4735

registration routine in your library, acc_register_library, should register the callbacks by4736

calling the register argument, and should save the addresses of the arguments (register,4737

unregister, and lookup) for later use, if needed.4738

The sequence of events is:4739

1. Initialization of the OpenACC runtime.4740

2. OpenACC runtime reads ACC_PROFLIB.4741

3. OpenACC runtime loads the library.4742

4. OpenACC runtime calls the acc_register_library routine in that library.4743

5. Your acc_register_library routine calls acc_callback_register for each event4744

to be monitored.4745

6. acc_callback_register records the callback routines.4746

7. The program runs, and your callback routines are invoked at the appropriate events.4747

If supported, paths to multiple dynamic libraries may be specified in the ACC_PROFLIB environ-4748

ment variable, separated by semicolons (;). The OpenACC runtime will open these libraries and in-4749

voke the acc_register_library routine for each, in the order they appear in ACC_PROFLIB.4750

5.3.4 Preloading with LD PRELOAD4751

The implementation may also support dynamic loading of a tools library using the LD_PRELOAD4752

feature available in some systems. In such an implementation, you need only specify your tools4753

library path in the LD_PRELOAD environment variable before executing your program. The Open-4754

ACC runtime will invoke the acc_register_library routine in your tools library at initial-4755

ization time. This requires that the OpenACC runtime include a dynamic library with a default4756

(empty) implementation of acc_register_library that will be invoked in the normal case4757

where there is no LD_PRELOAD setting. If an implementation only supports static linking, or if the4758

application is linked without dynamic library support, this feature will not be available.4759

Bash:4760

export LD_PRELOAD=/home/user/lib/myprof.so4761

./myapp4762

or4763

LD_PRELOAD=/home/user/lib/myprof.so ./myapp4764

C-shell:4765

setenv LD_PRELOAD /home/user/lib/myprof.so4766

./myapp4767

The sequence of events is:4768

1. The operating system loader loads the library specified in LD_PRELOAD.4769

135

The OpenACC R© API 5.4. Registering Event Callbacks

2. The call to acc_register_library in the OpenACC runtime is resolved to the routine4770

in the loaded tools library.4771

3. OpenACC runtime calls the acc_register_library routine in that library.4772

4. Your acc_register_library routine calls acc_callback_register for each event4773

to be monitored.4774

5. acc_callback_register records the callback routines.4775

6. The program runs, and your callback routines are invoked at the appropriate events.4776

In this mode, only a single tools library is supported, since only one acc_register_library4777

initialization routine will get resolved by the dynamic loader.4778

5.3.5 Application-Controlled Initialization4779

An alternative to default initialization is to have the application itself call the library initialization4780

routine, which then calls acc_callback_register for each appropriate event. The library4781

may be statically linked to the application or your application may dynamically load the library.4782

The sequence of events is:4783

1. Your application calls the library initialization routine.4784

2. The library initialization routine calls acc_callback_register for each event to be4785

monitored.4786

3. acc_callback_register records the callback routines.4787

4. The program runs, and your callback routines are invoked at the appropriate events.4788

In this mode, multiple tools libraries can be supported, with each library initialization routine in-4789

voked by the application.4790

5.4 Registering Event Callbacks4791

This section describes how to register and unregister callbacks, temporarily disabling and enabling4792

callbacks, the behavior of dynamic registration and unregistration, and requirements on an Open-4793

ACC implementation to correctly support the interface.4794

5.4.1 Event Registration and Unregistration4795

The library must call the registration routine acc_callback_register to register each call-4796

back with the runtime. A simple example:4797

extern void prof_data(acc_callback_info* profinfo,4798

acc_event_info* eventinfo, acc_api_info* apiinfo);4799

extern void prof_launch(acc_callback_info* profinfo,4800

acc_event_info* eventinfo, acc_api_info* apiinfo);4801

. . .4802

void acc_register_library(acc_prof_reg reg,4803

acc_prof_reg unreg, acc_prof_lookup_func lookup){4804

reg(acc_ev_enqueue_upload_start, prof_data, acc_reg);4805

reg(acc_ev_enqueue_download_start, prof_data, acc_reg);4806

136

The OpenACC R© API 5.4. Registering Event Callbacks

reg(acc_ev_enqueue_launch_start, prof_launch, acc_reg);4807

}4808

In this example the prof_data routine will be invoked for each data upload and download event,4809

and the prof_launch routine will be invoked for each launch event. The prof_data routine4810

might start out with:4811

void prof_data(acc_callback_info* profinfo,4812

acc_event_info* eventinfo, acc_api_info* apiinfo){4813

acc_data_event_info* datainfo;4814

datainfo = (acc_data_event_info*)eventinfo;4815

switch(datainfo->event_type){4816

case acc_ev_enqueue_upload_start :4817

. . .4818

}4819

}4820

Multiple Callbacks4821

Multiple callback routines can be registered on the same event:4822

acc_callback_register(acc_ev_enqueue_upload_start,4823

prof_data, acc_reg);4824

acc_callback_register(acc_ev_enqueue_upload_start,4825

prof_up, acc_reg);4826

For most events, the callbacks will be invoked in the order in which they are registered. However,4827

end events, named acc_ev_..._end, invoke callbacks in the reverse order. Essentially, each4828

event has an ordered list of callback routines. A new callback routine is appended to the tail of the4829

list for that event. For most events, that list is traversed from the head to the tail, but for end events,4830

the list is traversed from the tail to the head.4831

If a callback is registered, then later unregistered, then later still registered again, the second regis-4832

tration is considered to be a new callback, and the callback routine will then be appended to the tail4833

of the callback list for that event.4834

Unregistering4835

A matching call to acc_callback_unregister will remove that routine from the list of call-4836

back routines for that event.4837

acc_callback_register(acc_ev_enqueue_upload_start,4838

prof_data, acc_reg);4839

// prof_data is on the callback list for acc_ev_enqueue_upload_start4840

. . .4841

acc_callback_unregister(acc_ev_enqueue_upload_start,4842

prof_data, acc_reg);4843

// prof_data is removed from the callback list4844

// for acc_ev_enqueue_upload_start4845

Each entry on the callback list must also have a ref count. This keeps track of how many times4846

this routine was added to this event’s callback list. If a routine is registered n times, it must be4847

137

The OpenACC R© API 5.4. Registering Event Callbacks

unregistered n times before it is removed from the list. Note that if a routine is registered multiple4848

times for the same event, its ref count will be incremented with each registration, but it will only be4849

invoked once for each event instance.4850

5.4.2 Disabling and Enabling Callbacks4851

A callback routine may be temporarily disabled on the callback list for an event, then later re-4852

enabled. The behavior is slightly different than unregistering and later re-registering that event.4853

When a routine is disabled and later re-enabled, the routine’s position on the callback list for that4854

event is preserved. When a routine is unregistered and later re-registered, the routine’s position on4855

the callback list for that event will move to the tail of the list. Also, unregistering a callback must be4856

done n times if the callback routine was registered n times. In contrast, disabling, and enabling an4857

event sets a toggle. Disabling a callback will immediately reset the toggle and disable calls to that4858

routine for that event, even if it was enabled multiple times. Enabling a callback will immediately4859

set the toggle and enable calls to that routine for that event, even if it was disabled multiple times.4860

Registering a new callback initially sets the toggle.4861

A call to acc_callback_unregister with a value of acc_toggle as the third argument4862

will disable callbacks to the given routine. A call to acc_callback_register with a value of4863

acc_toggle as the third argument will enable those callbacks.4864

acc_callback_unregister(acc_ev_enqueue_upload_start,4865

prof_data, acc_toggle);4866

// prof_data is disabled4867

. . .4868

acc_callback_register(acc_ev_enqueue_upload_start,4869

prof_data, acc_toggle);4870

// prof_data is re-enabled4871

A call to either acc_callback_unregister or acc_callback_register to disable or4872

enable a callback when that callback is not currently registered for that event will be ignored with4873

no error.4874

All callbacks for an event may be disabled (and re-enabled) by passing NULL to the second argument4875

and acc_toggle to the third argument of acc_callback_unregister (and4876

acc_callback_register). This sets a toggle for that event, which is distinct from the toggle4877

for each callback for that event. While the event is disabled, no callbacks for that event will be4878

invoked. Callbacks for that event can be registered, unregistered, enabled, and disabled while that4879

event is disabled, but no callbacks will be invoked for that event until the event itself is enabled.4880

Initially, all events are enabled.4881

acc_callback_unregister(acc_ev_enqueue_upload_start,4882

prof_data, acc_toggle);4883

// prof_data is disabled4884

. . .4885

acc_callback_unregister(acc_ev_enqueue_upload_start,4886

NULL, acc_toggle);4887

// acc_ev_enqueue_upload_start callbacks are disabled4888

. . .4889

acc_callback_register(acc_ev_enqueue_upload_start,4890

138

The OpenACC R© API 5.5. Advanced Topics

prof_data, acc_toggle);4891

// prof_data is re-enabled, but4892

// acc_ev_enqueue_upload_start callbacks still disabled4893

. . .4894

acc_callback_register(acc_ev_enqueue_upload_start,4895

prof_up, acc_reg);4896

// prof_up is registered and initially enabled, but4897

// acc_ev_enqueue_upload_start callbacks still disabled4898

. . .4899

acc_callback_register(acc_ev_enqueue_upload_start,4900

NULL, acc_toggle);4901

// acc_ev_enqueue_upload_start callbacks are enabled4902

4903

Finally, all callbacks can be disabled (and enabled) by passing the argument list (acc_ev_none,4904

NULL, acc_toggle) to acc_callback_unregister (and acc_callback_register).4905

This sets a global toggle disabling all callbacks, which is distinct from the toggle enabling callbacks4906

for each event and the toggle enabling each callback routine.4907

The behavior of passing acc_ev_none as the first argument and a non-NULL value as the second4908

argument to acc_callback_unregister or acc_callback_register is not defined,4909

and may be ignored by the runtime without error.4910

All callbacks can be disabled (or enabled) for just the current thread by passing the argument list4911

(acc_ev_none, NULL, acc_toggle_per_thread) to acc_callback_unregister4912

(and acc_callback_register). This is the only thread-specific interface to4913

acc_callback_register and acc_callback_unregister, all other calls to register,4914

unregister, enable, or disable callbacks affect all threads in the application.4915

5.5 Advanced Topics4916

This section describes advanced topics such as dynamic registration and changes of the execution4917

state for callback routines as well as the runtime and tool behavior for multiple host threads.4918

5.5.1 Dynamic Behavior4919

Callback routines may be registered or unregistered, enabled or disabled at any point in the execution4920

of the program. Calls may appear in the library itself, during the processing of an event. The4921

OpenACC runtime must allow for this case, where the callback list for an event is modified while4922

that event is being processed.4923

Dynamic Registration and Unregistration4924

Calls to acc_register and acc_unregister may occur at any point in the application. A4925

callback routine can be registered or unregistered from a callback routine, either the same routine4926

or another routine, for a different event or the same event for which the callback was invoked. If a4927

callback routine is registered for an event while that event is being processed, then the new callback4928

routine will be added to the tail of the list of callback routines for this event. Some events (the4929

_end) events process the callback routines in reverse order, from the tail to the head. For those4930

events, adding a new callback routine will not cause the new routine to be invoked for this instance4931

139

The OpenACC R© API 5.5. Advanced Topics

of the event. The other events process the callback routines in registration order, from the head4932

to the tail. Adding a new callback routine for such an event will cause the runtime to invoke that4933

newly registered callback routine for this instance of the event. Both the runtime and the library4934

must implement and expect this behavior.4935

If an existing callback routine is unregistered for an event while that event is being processed, that4936

callback routine is removed from the list of callbacks for this event. For any event, if that callback4937

routine had not yet been invoked for this instance of the event, it will not be invoked.4938

Registering and unregistering a callback routine is a global operation and affects all threads, in a4939

multithreaded application. See Section 5.4.1 Multiple Callbacks.4940

Dynamic Enabling and Disabling4941

Calls to acc_register and acc_unregister to enable and disable a specific callback for4942

an event, enable or disable all callbacks for an event, or enable or disable all callbacks may occur4943

at any point in the application. A callback routine can be enabled or disabled from a callback4944

routine, either the same routine or another routine, for a different event or the same event for which4945

the callback was invoked. If a callback routine is enabled for an event while that event is being4946

processed, then the new callback routine will be immediately enabled. If it appears on the list of4947

callback routines closer to the head (for _end events) or closer to the tail (for other events), that4948

newly-enabled callback routine will be invoked for this instance of this event, unless it is disabled4949

or unregistered before that callback is reached.4950

If a callback routine is disabled for an event while that event is being processed, that callback routine4951

is immediately disabled. For any event, if that callback routine had not yet been invoked for this in-4952

stance of the event, it will not be invoked, unless it is enabled before that callback routine is reached4953

in the list of callbacks for this event. If all callbacks for an event are disabled while that event is4954

being processed, or all callbacks are disabled for all events while an event is being processed, then4955

when this callback routine returns, no more callbacks will be invoked for this instance of the event.4956

Registering and unregistering a callback routine is a global operation and affects all threads, in a4957

multithreaded application. See Section 5.4.1 Multiple Callbacks.4958

5.5.2 OpenACC Events During Event Processing4959

OpenACC events may occur during event processing. This may be because of OpenACC API rou-4960

tine calls or OpenACC constructs being reached during event processing, or because of multiple host4961

threads executing asynchronously. Both the OpenACC runtime and the tool library must implement4962

the proper behavior.4963

5.5.3 Multiple Host Threads4964

Many programs that use OpenACC also use multiple host threads, such as programs using the4965

OpenMP API. The appearance of multiple host threads affects both the OpenACC runtime and the4966

tools library.4967

Runtime Support for Multiple Threads4968

The OpenACC runtime must be thread-safe, and the OpenACC runtime implementation of this4969

tools interface must also be thread-safe. All threads use the same set of callbacks for all events, so4970

140

The OpenACC R© API 5.5. Advanced Topics

registering a callback from one thread will cause all threads to execute that callback. This means that4971

managing the callback lists for each event must be protected from multiple simultaneous updates.4972

This includes adding a callback to the tail of the callback list for an event, removing a callback from4973

the list for an event, and incrementing or decrementing the ref count for a callback routine for an4974

event.4975

In addition, one thread may register, unregister, enable, or disable a callback for an event while4976

another thread is processing the callback list for that event asynchronously. The exact behavior may4977

be dependent on the implementation, but some behaviors are expected and others are disallowed.4978

In the following examples, there are three callbacks, A, B, and C, registered for event E in that4979

order, where callbacks A and B are enabled and callback C is temporarily disabled. Thread T1 is4980

dynamically modifying the callbacks for event E while thread T2 is processing an instance of event4981

E.4982

• Suppose thread T1 unregisters or disables callback A for event E. Thread T2 may or may not4983

invoke callback A for this event instance, but it must invoke callback B; if it invokes callback4984

A, that must precede the invocation of callback B.4985

• Suppose thread T1 unregisters or disables callback B for event E. Thread T2 may or may not4986

invoke callback B for this event instance, but it must invoke callback A; if it invokes callback4987

B, that must follow the invocation of callback A.4988

• Suppose thread T1 unregisters or disables callback A and then unregisters or disables callback4989

B for event E. Thread T2 may or may not invoke callback A and may or may not invoke4990

callback B for this event instance, but if it invokes both callbacks, it must invoke callback A4991

before it invokes callback B.4992

• Suppose thread T1 unregisters or disables callback B and then unregisters or disables callback4993

A for event E. Thread T2 may or may not invoke callback A and may or may not invoke4994

callback B for this event instance, but if it invokes callback B, it must have invoked callback4995

A for this event instance.4996

• Suppose thread T1 is registering a new callback D for event E. Thread T2 may or may not4997

invoke callback D for this event instance, but it must invoke both callbacks A and B. If it4998

invokes callback D, that must follow the invocations of A and B.4999

• Suppose thread T1 is enabling callback C for event E. Thread T2 may or may not invoke5000

callback C for this event instance, but it must invoke both callbacks A and B. If it invokes5001

callback C, that must follow the invocations of A and B.5002

The acc_callback_info struct has a thread_id field, which the runtime must set to a5003

unique value for each host thread, though it need not be the same as the OpenMP threadnum value.5004

Library Support for Multiple Threads5005

The tool library must also be thread-safe. The callback routine will be invoked in the context of the5006

thread that reaches the event. The library may receive a callback from a thread T2 while it’s still5007

processing a callback, from the same event type or from a different event type, from another thread5008

T1. The acc_callback_info struct has a thread_id field, which the runtime must set to a5009

unique value for each host thread.5010

If the tool library uses dynamic callback registration and unregistration, or callback disabling and5011

enabling, recall that unregistering or disabling an event callback from one thread will unregister or5012

141

The OpenACC R© API 5.5. Advanced Topics

disable that callback for all threads, and registering or enabling an event callback from any thread5013

will register or enable it for all threads. If two or more threads register the same callback for the5014

same event, the behavior is the same as if one thread registered that callback multiple times; see5015

Section 5.4.1 Multiple Callbacks. The acc_unregister routine must be called as many times5016

as acc_register for that callback/event pair in order to totally unregister it. If two threads5017

register two different callback routines for the same event, unless the order of the registration calls5018

is guaranteed by some sychronization method, the order in which the runtime sees the registration5019

may differ for multiple runs, meaning the order in which the callbacks occur will differ as well.5020

142

The OpenACC R© API 6. Glossary

6. Glossary5021

Clear and consistent terminology is important in describing any programming model. We define5022

here the terms you must understand in order to make effective use of this document and the asso-5023

ciated programming model. In particular, some terms used in this specification conflict with their5024

usage in the base language specifications. When there is potential confusion, the term will appear5025

here.5026

Accelerator – a device attached to a CPU and to which the CPU can offload data and compute5027

kernels to perform compute-intensive calculations.5028

Accelerator routine – a C or C++ function or Fortran subprogram compiled for the accelerator5029

with the routine directive.5030

Accelerator thread – a thread of execution that executes on the accelerator; a single vector lane of5031

a single worker of a single gang.5032

Aggregate datatype – any non-scalar datatype such as array and composite datatypes. In Fortran,5033

aggregate datatypes include arrays, derived types, character types. In C, aggregate datatypes include5034

arrays, targets of pointers, structs, and unions. In C++, aggregate datatypes include arrays, targets5035

of pointers, classes, structs, and unions.5036

Aggregate variables – a variable of any non-scalar datatype, including array or composite variables.5037

In Fortran, this includes any variable with allocatable or pointer attribute and character variables.5038

Async-argument – an async-argument is a nonnegative scalar integer expression (int for C or C++,5039

integer for Fortran), or one of the special values acc_async_noval or acc_async_sync.5040

Barrier – a type of synchronization where all parallel execution units or threads must reach the5041

barrier before any execution unit or thread is allowed to proceed beyond the barrier; modeled after5042

the starting barrier on a horse race track.5043

Block construct – a block-construct, as specified by the Fortran language.5044

Composite datatype – a derived type in Fortran, or a struct or union type in C, or a class,5045

struct, or union type in C++. (This is different from the use of the term composite data type in5046

the C and C++ languages.)5047

Composite variable – a variable of composite datatype. In Fortran, a composite variable must not5048

have allocatable or pointer attributes.5049

Compute construct – a parallel construct, serial construct, or kernels construct.5050

Compute intensity – for a given loop, region, or program unit, the ratio of the number of arithmetic5051

operations performed on computed data divided by the number of memory transfers required to5052

move that data between two levels of a memory hierarchy.5053

Compute region – a parallel region, serial region, or kernels region.5054

Construct – a directive and the associated statement, loop, or structured block, if any.5055

CUDA – the CUDA environment from NVIDIA, a C-like programming environment used to ex-5056

plicitly control and program an NVIDIA GPU.5057

143

The OpenACC R© API 6. Glossary

Current device – the device represented by the acc-current-device-type-var and acc-current-device-5058

num-var ICVs5059

Current device type – the device type represented by the acc-current-device-type-var ICV5060

Data lifetime – the lifetime of a data object in device memory, which may begin at the entry to5061

a data region, or at an enter data directive, or at a data API call such as acc_copyin or5062

acc_create, and which may end at the exit from a data region, or at an exit data directive,5063

or at a data API call such as acc_delete, acc_copyout, or acc_shutdown, or at the end of5064

the program execution.5065

Data region – a region defined by a data construct, or an implicit data region for a function or5066

subroutine containing OpenACC directives. Data constructs typically allocate device memory and5067

copy data from host to device memory upon entry, and copy data from device to local memory and5068

deallocate device memory upon exit. Data regions may contain other data regions and compute5069

regions.5070

Default asynchronous queue – the asynchronous activity queue represented in the acc-default-5071

async-var ICV5072

Device – a general reference to an accelerator or a multicore CPU.5073

Device memory – memory attached to a device, logically and physically separate from the host5074

memory.5075

Device thread – a thread of execution that executes on any device.5076

Directive – in C or C++, a #pragma, or in Fortran, a specially formatted comment statement, that5077

is interpreted by a compiler to augment information about or specify the behavior of the program.5078

Discrete memory – memory accessible from the local thread that is not accessible from the current5079

device, or memory accessible from the current device that is not accessible from the local thread.5080

DMA – Direct Memory Access, a method to move data between physically separate memories;5081

this is typically performed by a DMA engine, separate from the host CPU, that can access the host5082

physical memory as well as an IO device or other physical memory.5083

Exposed variable access – with respect to a compute construct, any access to the data or address5084

of a variable at a point within the compute construct where the variable is not private to a scope5085

lexically enclosed within the compute construct. See Section 2.6.2.5086

false – a condition that evaluates to zero in C or C++, or .false. in Fortran.5087

GPU – a Graphics Processing Unit; one type of accelerator.5088

GPGPU – General Purpose computation on Graphics Processing Units.5089

Host – the main CPU that in this context may have one or more attached accelerators. The host5090

CPU controls the program regions and data loaded into and executed on one or more devices.5091

Host thread – a thread of execution that executes on the host.5092

Implicit data region – the data region that is implicitly defined for a Fortran subprogram or C5093

function. A call to a subprogram or function enters the implicit data region, and a return from the5094

subprogram or function exits the implicit data region.5095

144

The OpenACC R© API 6. Glossary

Kernel – a nested loop executed in parallel by the accelerator. Typically the loops are divided into5096

a parallel domain, and the body of the loop becomes the body of the kernel.5097

Kernels region – a region defined by a kernels construct. A kernels region is a structured block5098

which is compiled for the accelerator. The code in the kernels region will be divided by the compiler5099

into a sequence of kernels; typically each loop nest will become a single kernel. A kernels region5100

may require space in device memory to be allocated and data to be copied from local memory to5101

device memory upon region entry, and data to be copied from device memory to local memory and5102

space in device memory to be deallocated upon exit.5103

Level of parallelism – a possible level of parallelism, which in OpenACC is gang, worker, vector,5104

or sequential. One or more of gang, worker, and vector parallelism may appear on a loop con-5105

struct. Sequential execution corresponds to no parallelism. The gang, worker, vector, and5106

seq clauses specify the level of parallelism for a loop.5107

Local device – the device where the local thread executes.5108

Local memory – the memory associated with the local thread.5109

Local thread – the host thread or the accelerator thread that executes an OpenACC directive or5110

construct.5111

Loop trip count – the number of times a particular loop executes.5112

MIMD – a method of parallel execution (Multiple Instruction, Multiple Data) where different exe-5113

cution units or threads execute different instruction streams asynchronously with each other.5114

null pointer – a C or C++ pointer variable with the value zero, NULL, or (in C++) nullptr, or a5115

Fortran pointer variable that is not associated, or a Fortran allocatable variable that is not5116

allocated.5117

OpenCL – short for Open Compute Language, a developing, portable standard C-like programming5118

environment that enables low-level general-purpose programming on GPUs and other accelerators.5119

Orphaned loop construct - a loop construct that is not lexically contained in any compute con-5120

struct, that is, that has no parent compute construct.5121

Parallel region – a region defined by a parallel construct. A parallel region is a structured block5122

which is compiled for the accelerator. A parallel region typically contains one or more work-sharing5123

loops. A parallel region may require space in device memory to be allocated and data to be copied5124

from local memory to device memory upon region entry, and data to be copied from device memory5125

to local memory and space in device memory to be deallocated upon exit.5126

Parent compute construct – for a loop construct, the parallel, serial, or kernels con-5127

struct that lexically contains the loop construct and is the innermost compute construct that con-5128

tains that loop construct, if any.5129

Partly present data – a section of data for which some of the data is present in a single device5130

memory section, but part of the data is either not present or is present in a different device memory5131

section. For instance, if a subarray of an array is present, the array is partly present.5132

Present data – data for which the sum of the structured and dynamic reference counters is greater5133

than zero in a single device memory section; see Section 2.6.7. A null pointer is defined as always5134

present with a length of zero bytes.5135

145

The OpenACC R© API 6. Glossary

Private data – with respect to an iterative loop, data which is used only during a particular loop5136

iteration. With respect to a more general region of code, data which is used within the region but is5137

not initialized prior to the region and is re-initialized prior to any use after the region.5138

Procedure – in C or C++, a function in the program; in Fortran, a subroutine or function.5139

Region – all the code encountered during an instance of execution of a construct. A region includes5140

any code in called routines, and may be thought of as the dynamic extent of a construct. This may5141

be a parallel region, serial region, kernels region, data region, or implicit data region.5142

Scalar – a variable of scalar datatype. In Fortran, scalars must not have allocatable or pointer5143

attributes.5144

Scalar datatype – an intrinsic or built-in datatype that is not an array or aggregate datatype. In For-5145

tran, scalar datatypes are integer, real, double precision, complex, or logical. In C, scalar datatypes5146

are char (signed or unsigned), int (signed or unsigned, with optional short, long or long long at-5147

tribute), enum, float, double, long double, Complex (with optional float or long attribute), or any5148

pointer datatype. In C++, scalar datatypes are char (signed or unsigned), wchar t, int (signed or5149

unsigned, with optional short, long or long long attribute), enum, bool, float, double, long double,5150

or any pointer datatype. Not all implementations or targets will support all of these datatypes.5151

Serial region – a region defined by a serial construct. A serial region is a structured block which5152

is compiled for the accelerator. A serial region contains code that is executed by a single gang of a5153

single worker with a vector length of one. A serial region may require space in device memory to be5154

allocated and data to be copied from local memory to device memory upon region entry, and data5155

to be copied from device memory to local memory and space in device memory to be deallocated5156

upon exit.5157

Shared memory – memory that is accessible from both the local thread and the current device.5158

SIMD – a method of parallel execution (single-instruction, multiple-data) where the same instruc-5159

tion is applied to multiple data elements simultaneously.5160

SIMD operation – a vector operation implemented with SIMD instructions.5161

Structured block – in C or C++, an executable statement, possibly compound, with a single entry5162

at the top and a single exit at the bottom. In Fortran, a block of executable statements with a single5163

entry at the top and a single exit at the bottom.5164

Thread – a host CPU thread or an accelerator thread. On a host CPU, a thread is defined by a5165

program counter and stack location; several host threads may comprise a process and share host5166

memory. On an accelerator, a thread is any one vector lane of one worker of one gang.5167

true – a condition that evaluates to nonzero in C or C++, or .true. in Fortran.5168

var – the name of a variable (scalar, array, or composite variable), or a subarray specification, or an5169

array element, or a composite variable member, or the name of a Fortran common block between5170

slashes.5171

Vector operation – a single operation or sequence of operations applied uniformly to each element5172

of an array.5173

Visible data clause – with respect to a compute construct, any data clause on the compute construct,5174

a lexically containing data construct, or a visible declare directive. See Section 2.6.2.5175

146

The OpenACC R© API 6. Glossary

Visible default clause – with respect to a compute construct, the nearest default clause ap-5176

pearing on the compute construct or a lexically containing data construct. See Section 2.6.2.5177

Visible device copy – a copy of a variable, array, or subarray allocated in device memory that is5178

visible to the program unit being compiled.5179

147

The OpenACC R© API 6. Glossary

148

The OpenACC R© API A.1. Target Devices

A. Recommendations for Implementers5180

This section gives recommendations for standard names and extensions to use for implementations5181

for specific targets and target platforms, to promote portability across such implementations, and5182

recommended options that programmers find useful. While this appendix is not part of the Open-5183

ACC specification, implementations that provide the functionality specified herein are strongly rec-5184

ommended to use the names in this section. The first subsection describes devices, such as NVIDIA5185

GPUs. The second subsection describes additional API routines for target platforms, such as CUDA5186

and OpenCL. The third subsection lists several recommended options for implementations.5187

A.1 Target Devices5188

A.1.1 NVIDIA GPU Targets5189

This section gives recommendations for implementations that target NVIDIA GPU devices.5190

Accelerator Device Type5191

These implementations should use the name acc_device_nvidia for the acc_device_t5192

type or return values from OpenACC Runtime API routines.5193

ACC DEVICE TYPE5194

An implementation should use the case-insensitive name nvidia for the environment variable5195

ACC_DEVICE_TYPE.5196

device type clause argument5197

An implementation should use the case-insensitive name nvidia as the argument to the device_type5198

clause.5199

A.1.2 AMD GPU Targets5200

This section gives recommendations for implementations that target AMD GPUs.5201

Accelerator Device Type5202

These implementations should use the name acc_device_radeon for the acc_device_t5203

type or return values from OpenACC Runtime API routines.5204

ACC DEVICE TYPE5205

These implementations should use the case-insensitive name radeon for the environment variable5206

ACC_DEVICE_TYPE.5207

device type clause argument5208

An implementation should use the case-insensitive name radeon as the argument to the device_type5209

clause.5210

149

The OpenACC R© API A.2. API Routines for Target Platforms

A.1.3 Multicore Host CPU Target5211

This section gives recommendations for implementations that target the multicore host CPU.5212

Accelerator Device Type5213

These implementations should use the name acc_device_host for the acc_device_t type5214

or return values from OpenACC Runtime API routines.5215

ACC DEVICE TYPE5216

These implementations should use the case-insensitive name host for the environment variable5217

ACC_DEVICE_TYPE.5218

device type clause argument5219

An implementation should use the case-insensitive name host as the argument to the device_type5220

clause.5221

A.2 API Routines for Target Platforms5222

These runtime routines allow access to the interface between the OpenACC runtime API and the5223

underlying target platform. An implementation may not implement all these routines, but if it5224

provides this functionality, it should use these function names.5225

A.2.1 NVIDIA CUDA Platform5226

This section gives runtime API routines for implementations that target the NVIDIA CUDA Run-5227

time or Driver API.5228

acc get current cuda device5229

Summary5230

The acc_get_current_cuda_device routine returns the NVIDIA CUDA device handle for5231

the current device.5232

Format5233

C or C++:5234

void* acc_get_current_cuda_device ();5235

acc get current cuda context5236

Summary5237

The acc_get_current_cuda_context routine returns the NVIDIA CUDA context handle5238

in use for the current device.5239

Format5240

C or C++:5241

void* acc_get_current_cuda_context ();5242

150

The OpenACC R© API A.2. API Routines for Target Platforms

acc get cuda stream5243

Summary5244

The acc_get_cuda_stream routine returns the NVIDIA CUDA stream handle in use for the5245

current device for the asynchronous activity queue associated with the async argument. This5246

argument must be an async-argument as defined in Section 2.16 Asynchronous Behavior.5247

Format5248

C or C++:5249

void* acc_get_cuda_stream (int async);5250

acc set cuda stream5251

Summary5252

The acc_set_cuda_stream routine sets the NVIDIA CUDA stream handle the current device5253

for the asynchronous activity queue associated with the async argument. This argument must be5254

an async-argument as defined in Section 2.16 Asynchronous Behavior.5255

Format5256

C or C++:5257

void acc_set_cuda_stream (int async, void* stream);5258

A.2.2 OpenCL Target Platform5259

This section gives runtime API routines for implementations that target the OpenCL API on any5260

device.5261

acc get current opencl device5262

Summary5263

The acc_get_current_opencl_device routine returns the OpenCL device handle for the5264

current device.5265

Format5266

C or C++:5267

void* acc_get_current_opencl_device ();5268

acc get current opencl context5269

Summary5270

The acc_get_current_opencl_context routine returns the OpenCL context handle in use5271

for the current device.5272

Format5273

C or C++:5274

void* acc_get_current_opencl_context ();5275

acc get opencl queue5276

Summary5277

The acc_get_opencl_queue routine returns the OpenCL command queue handle in use for5278

the current device for the asynchronous activity queue associated with the async argument. This5279

argument must be an async-argument as defined in Section 2.16 Asynchronous Behavior.5280

151

The OpenACC R© API A.3. Recommended Options

Format5281

C or C++:5282

cl_command_queue acc_get_opencl_queue (int async);5283

acc set opencl queue5284

Summary5285

The acc_set_opencl_queue routine returns the OpenCL command queue handle in use for5286

the current device for the asynchronous activity queue associated with the async argument. This5287

argument must be an async-argument as defined in Section 2.16 Asynchronous Behavior.5288

Format5289

C or C++:5290

void acc_set_opencl_queue (int async, cl_command_queue cmdqueue5291

);5292

A.3 Recommended Options5293

The following options are recommended for implementations; for instance, these may be imple-5294

mented as command-line options to a compiler or settings in an IDE.5295

A.3.1 C Pointer in Present clause5296

This revision of OpenACC clarifies the construct:5297

void test(int n){5298

float* p;5299

. . .5300

#pragma acc data present(p)5301

{5302

// code here. . .5303

}5304

This example tests whether the pointer p itself is present in the current device memory. Implemen-5305

tations before this revision commonly implemented this by testing whether the pointer target p[0]5306

was present in the current device memory, and this appears in many programs assuming such. Until5307

such programs are modified to comply with this revision, an option to implement present(p) as5308

present(p[0]) for C pointers may be helpful to users.5309

A.3.2 Automatic Data Attributes5310

Some implementations provide autoscoping or other analysis to automatically determine a variable’s5311

data attributes, including the addition of reduction, private, and firstprivate clauses. To promote5312

program portability across implementations, it would be helpful to provide an option to disable5313

the automatic determination of data attributes or report which variables’ data attributes are not as5314

defined in Section 2.6.5315

152

Index
_OPENACC, 28, 1255316

acc-current-device-num-var, 285317

acc-current-device-type-var, 285318

acc-default-async-var, 28, 835319

acc_async_noval, 835320

acc_async_sync, 835321

acc_device_host, 1505322

ACC_DEVICE_NUM, 28, 1175323

acc_device_nvidia, 1495324

acc_device_radeon, 1495325

ACC_DEVICE_TYPE, 28, 117, 149, 1505326

ACC_PROFLIB, 1175327

action5328

attach, 44, 485329

copyin, 475330

copyout, 485331

create, 475332

delete, 485333

detach, 44, 495334

immediate, 495335

present decrement, 475336

present increment, 465337

AMD GPU target, 1495338

async clause, 41, 43, 79, 845339

async queue, 115340

async-argument, 845341

asynchronous execution, 11, 835342

atomic construct, 675343

attach action, 44, 485344

attach clause, 545345

attachment counter, 445346

auto clause, 605347

portability, 585348

autoscoping, 1525349

barrier synchronization, 10, 31, 33, 1435350

bind clause, 825351

block construct, 1435352

cache directive, 655353

capture clause, 705354

collapse clause, 575355

common block, 44, 71, 72, 835356

compute construct, 1435357

compute region, 1435358

construct, 1435359

atomic, 675360

compute, 1435361

data, 40, 445362

host_data, 545363

kernels, 32, 445364

kernels loop, 655365

parallel, 30, 445366

parallel loop, 655367

serial, 32, 445368

serial loop, 655369

copy clause, 38, 505370

copyin action, 475371

copyin clause, 515372

copyout action, 485373

copyout clause, 515374

create action, 475375

create clause, 52, 725376

CUDA, 11, 12, 143, 149, 1505377

data attribute5378

explicitly determined, 375379

implicitly determined, 375380

predetermined, 375381

data clause, 445382

visible, 37, 1465383

data construct, 40, 445384

data lifetime, 1445385

data region, 39, 1445386

implicit, 395387

data-independent loop construct, 565388

declare directive, 715389

default clause, 36, 415390

visible, 37, 1475391

default(none) clause, 385392

default(present), 385393

delete action, 485394

delete clause, 535395

detach action, 44, 495396

immediate, 495397

detach clause, 545398

device clause, 785399

device_resident clause, 725400

device_type clause, 29, 45, 149, 1505401

deviceptr clause, 44, 505402

direct memory access, 11, 1445403

153

The OpenACC R© API Index

DMA, 11, 1445404

enter data directive, 41, 445405

environment variable5406

_OPENACC, 285407

ACC_DEVICE_NUM, 28, 1175408

ACC_DEVICE_TYPE, 28, 117, 149, 1505409

ACC_PROFLIB, 1175410

exit data directive, 41, 445411

explicitly determined data attribute, 375412

exposed variable access, 38, 1445413

firstprivate clause, 35, 385414

gang, 315415

gang clause, 57, 815416

implicit, 585417

gang parallelism, 105418

gang-arg, 565419

gang-partitioned mode, 105420

optimizations, 585421

gang-redundant mode, 10, 315422

GP mode, 105423

GR mode, 105424

host, 1505425

host clause, 785426

host_data construct, 545427

ICV, 285428

if clause, 41, 43, 74, 76, 77, 79, 865429

immediate detach action, 495430

implicit data region, 395431

implicit gang clause, 585432

implicitly determined data attribute, 375433

independent clause, 605434

init directive, 745435

internal control variable, 285436

kernels construct, 32, 445437

kernels loop construct, 655438

level of parallelism, 10, 1455439

link clause, 45, 735440

local device, 115441

local memory, 115442

local thread, 115443

loop construct, 555444

data-independent, 565445

orphaned, 565446

sequential, 565447

no_create clause, 535448

nohost clause, 825449

num_gangs clause, 345450

num_workers clause, 355451

nvidia, 1495452

NVIDIA GPU target, 1495453

OpenCL, 11, 12, 145, 149, 1515454

optimizations5455

gang-partitioned mode, 585456

orphaned loop construct, 565457

parallel construct, 30, 445458

parallel loop construct, 655459

parallelism5460

level, 10, 1455461

parent compute construct, 565462

portability5463

auto clause, 585464

predetermined data attribute, 375465

present clause, 38, 44, 505466

present decrement action, 475467

present increment action, 465468

private clause, 35, 615469

radeon, 1495470

read clause, 705471

reduction clause, 35, 615472

reference counter, 435473

region5474

compute, 1435475

data, 39, 1445476

implicit data, 395477

routine directive, 805478

self clause, 785479

sentinel, 275480

seq clause, 59, 825481

sequential loop construct, 565482

serial construct, 32, 445483

serial loop construct, 655484

shutdown directive, 755485

size-expr, 565486

structured-block, 1465487

thread, 1465488

tile clause, 605489

154

The OpenACC R© API Index

update clause, 705490

update directive, 785491

use_device clause, 555492

vector clause, 59, 825493

vector lane, 315494

vector parallelism, 105495

vector-partitioned mode, 105496

vector-single mode, 105497

vector_length clause, 355498

visible data clause, 37, 1465499

visible default clause, 37, 1475500

visible device copy, 1475501

VP mode, 105502

VS mode, 105503

wait clause, 41, 43, 79, 855504

wait directive, 855505

worker, 315506

worker clause, 59, 815507

worker parallelism, 105508

worker-partitioned mode, 105509

worker-single mode, 105510

WP mode, 105511

WS mode, 105512

155

	Introduction
	Scope
	Execution Model
	Memory Model
	Language Interoperability
	Runtime Errors
	Conventions used in this document
	Organization of this document
	References
	Changes from Version 1.0 to 2.0
	Corrections in the August 2013 document
	Changes from Version 2.0 to 2.5
	Changes from Version 2.5 to 2.6
	Changes from Version 2.6 to 2.7
	Changes from Version 2.7 to 3.0
	Changes from Version 3.0 to 3.1
	Changes from Version 3.1 to 3.2
	Topics Deferred For a Future Revision

	Directives
	Directive Format
	Conditional Compilation
	Internal Control Variables
	Modifying and Retrieving ICV Values

	Device-Specific Clauses
	Compute Constructs
	Parallel Construct
	Serial Construct
	Kernels Construct
	Compute Construct Restrictions
	Compute Construct Errors
	if clause
	self clause
	async clause
	wait clause
	num_gangs clause
	num_workers clause
	vector_length clause
	private clause
	firstprivate clause
	reduction clause
	default clause

	Data Environment
	Variables with Predetermined Data Attributes
	Variables with Implicitly Determined Data Attributes
	Data Regions and Data Lifetimes
	Data Structures with Pointers
	Data Construct
	Enter Data and Exit Data Directives
	Reference Counters
	Attachment Counter

	Data Clauses
	Data Specification in Data Clauses
	Data Clause Actions
	Data Clause Errors
	deviceptr clause
	present clause
	copy clause
	copyin clause
	copyout clause
	create clause
	no_create clause
	delete clause
	attach clause
	detach clause

	Host_Data Construct
	use_device clause
	if clause
	if_present clause

	Loop Construct
	collapse clause
	gang clause
	worker clause
	vector clause
	seq clause
	independent clause
	auto clause
	tile clause
	device_type clause
	private clause
	reduction clause

	Cache Directive
	Combined Constructs
	Atomic Construct
	Declare Directive
	device_resident clause
	create clause
	link clause

	Executable Directives
	Init Directive
	Shutdown Directive
	Set Directive
	Update Directive
	Wait Directive
	Enter Data Directive
	Exit Data Directive

	Procedure Calls in Compute Regions
	Routine Directive
	Global Data Access

	Asynchronous Behavior
	async clause
	wait clause
	Wait Directive

	Fortran Specific Behavior
	Optional Arguments
	Do Concurrent Construct

	Runtime Library
	Runtime Library Definitions
	Runtime Library Routines
	acc_get_num_devices
	acc_set_device_type
	acc_get_device_type
	acc_set_device_num
	acc_get_device_num
	acc_get_property
	acc_init
	acc_shutdown
	acc_async_test
	acc_wait
	acc_wait_async
	acc_wait_any
	acc_get_default_async
	acc_set_default_async
	acc_on_device
	acc_malloc
	acc_free
	acc_copyin and acc_create
	acc_copyout and acc_delete
	acc_update_device and acc_update_self
	acc_map_data
	acc_unmap_data
	acc_deviceptr
	acc_hostptr
	acc_is_present
	acc_memcpy_to_device
	acc_memcpy_from_device
	acc_memcpy_device
	acc_attach and acc_detach
	acc_memcpy_d2d

	Environment Variables
	ACC_DEVICE_TYPE
	ACC_DEVICE_NUM
	ACC_PROFLIB

	Profiling and Error Callback Interface
	Events
	Runtime Initialization and Shutdown
	Device Initialization and Shutdown
	Enter Data and Exit Data
	Data Allocation
	Data Construct
	Update Directive
	Compute Construct
	Enqueue Kernel Launch
	Enqueue Data Update (Upload and Download)
	Wait
	Error Event

	Callbacks Signature
	First Argument: General Information
	Second Argument: Event-Specific Information
	Third Argument: API-Specific Information

	Loading the Library
	Library Registration
	Statically-Linked Library Initialization
	Runtime Dynamic Library Loading
	Preloading with LD_PRELOAD
	Application-Controlled Initialization

	Registering Event Callbacks
	Event Registration and Unregistration
	Disabling and Enabling Callbacks

	Advanced Topics
	Dynamic Behavior
	OpenACC Events During Event Processing
	Multiple Host Threads

	Glossary
	Recommendations for Implementers
	Target Devices
	NVIDIA GPU Targets
	AMD GPU Targets
	Multicore Host CPU Target

	API Routines for Target Platforms
	NVIDIA CUDA Platform
	OpenCL Target Platform

	Recommended Options
	C Pointer in Present clause
	Automatic Data Attributes

	Index

