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Abstract

No-limit Texas Hold’em is the most popular vari-
ant of poker in the world. Heads-up no-limit Texas
Hold’em is the main benchmark challenge for AI
in imperfect-information games. We present Libra-
tus, the first—and so far only—AI to defeat top hu-
man professionals in that game. Libratus’s archi-
tecture features three main modules, each of which
has new algorithms: pre-computing a solution to an
abstraction of the game which provides a high-level
blueprint for the strategy of the AI, a new nested
subgame-solving algorithm which repeatedly cal-
culates a more detailed strategy as play progresses,
and a self-improving module which augments the
pre-computed blueprint over time.

1 Introduction

Recreational games have long been used in AI as benchmark-
s to evaluate the progress of the field. AIs have beaten top
humans in chess [Campbell et al., 2002] and Go [Silver et
al., 2016]. Checkers was even completely solved [Schaef-
fer et al., 2007]. However, these are perfect-information
games: both players know the exact state of the game at every
point. In contrast, poker is an imperfect-information game:
part of the state is hidden from a player because the other
player has private information. Many real-world applications
can be modeled as imperfect-information games, such as ne-
gotiations, business strategy, security interactions, and auc-
tions. Indeed, imperfect information is common in the real
world, while perfect information is rare, making imperfect-
information games particularly suitable for modeling real-
world strategic interactions. Dealing with hidden information
requires drastically different AI techniques. Heads-up no-
limit Texas Hold’em has long been the primary benchmark
challenge for imperfect-information games.

In January 2017 Libratus beat a team of four top-10 heads-
up no-limit specialist professionals in a 120,000-hand Brains
vs. AI challenge match over 20 days. This was the first time
an AI had beaten top human players in this game. Libra-
tus beat the humans by a large margin (147 mbb/hand), with
99.98% statistical significance. It also beat each of the hu-
mans individually.

2 Architecture of Libratus

Libratus’s strategy was not programmed in, but rather gener-
ated algorithmically. The algorithms are domain-independent
and have applicability to a variety of imperfect-information
games. Libratus features three main modules, and is powered
by new algorithms in each of the three:

1. Computing approximate Nash equilibrium strategies be-
fore the event.

2. Subgame solving during play.

3. Improving Libratus’s own strategy to play even closer
to equilibrium based on what holes the opponents have
been able to identify and exploit.

The next three subsections discuss these, respectively.

2.1 Abstraction and Equilibrium Finding

It is infeasible to pre-compute a strategy for each of the
10161 different decision points in heads-up no-limit Texas
hold’em.1,2 However, many situations are strategically sim-
ilar and can be treated identically at only a small cost. For
example, there is little difference between a bet of $500 and
a bet of $501. Rather than come up with a unique strategy
for both of those situations, it is standard to group them to-
gether and treat them identically, so that only one strategy is
generated for them. There are two kinds of such abstraction:
action abstraction and card abstraction.

In action abstraction, only a few of the nearly 20, 000 pos-
sible actions available at any point in the game are included
in the abstraction for both the agent and the opponent. If,
during actual play, the opponent chooses an action that is not
in the abstraction, then it is standard to map that action to a
nearby action that is in the abstraction. The actions that we
included in the abstraction were determined by analyzing the
most common actions taken by prior top AIs in the Annual
Computer Poker Competition (ACPC). For the first few ac-
tions of the game, the actions to include in the abstraction
(i.e., bet sizes) were determined by a parameter optimiza-
tion algorithm which converged to a locally optimal set of
bet sizes [Brown and Sandholm, 2014].

1The standard version of the game has 10161 because both play-
ers have $20,000 and are limited to dollar-increment bets.

2Heads-up limit Texas Hold’em, a significantly smaller game
with 10

13 decision points, was essentially solved in 2015 [Bowling
et al., 2015; Tammelin et al., 2015].



In card abstraction, similar poker hands are bucketed to-
gether and treated identically. Libratus does not use any card
abstraction on the first (preflop) and second (flop) betting
rounds. The last two betting rounds, which are exponentially
larger, are more coarsely abstracted. The 55 million different
hand possibilities on the third round are grouped into 2.5 mil-
lion buckets, and the 2.4 billion different possibilities on the
fourth round are grouped into 1.25 million buckets. The idea
is that solving this abstraction gives a detailed strategy for the
first two betting rounds and a blueprint for the remaining t-
wo betting rounds; the subgame solver, discussed in the next
subsection, will then refine the blueprint into a detailed strate-
gy. The card abstraction algorithm was similar to that used in
Baby Tartanian8 [Brown and Sandholm, 2016a] (the winner
of the 2016 ACPC) and Tartanian7 [Brown et al., 2015] (the
winner of the 2014 ACPC). The abstraction algorithm took
the game size from 10161 decision points down to 1012.

We solved the abstract game via a distributed version of an
improvement over Monte Carlo Counterfactual Regret Min-
imization (MCCFR) [Zinkevich et al., 2007; Lanctot et al.,
2009; Brown et al., 2015]. MCCFR is an iterative algo-
rithm which independently minimizes regret at every deci-
sion point. If both players play according to MCCFR in a
two-player zero-sum game, then their average strategies prov-
ably converge to a Nash equilibrium. Libratus improves over
vanilla MCCFR through a sampled form of Regret-Based
Pruning (RBP) [Brown and Sandholm, 2015] (which we al-
so used in our Baby Tartanian8 agent [Brown and Sandholm,
2016a]). At a high level, our improvement is that paths in the
tree that have very negative regret (for the player that is being
updated on the current iteration) are visited less often. This
leads to a significant speed improvement, thereby enabling a
large fine-grained abstraction to be solved. It also mitigates
the downsides of imperfect-recall abstraction (which is the
state of the art) because the effective in-degree of abstract s-
tates decreases as some paths to them get de-emphasized.

2.2 Nested Safe Subgame Solving

The second module solves a finer-grained abstraction of the
remaining game, taking into account the blueprint of the s-
trategy for the entire game, when the third round is reached.
Unlike perfect-information games, an imperfect-information
subgame cannot be solved in isolation. The Nash equilibrium
strategy in other subgames affects the optimal strategy in the
subgame that is reached during play. Nevertheless, we can
approximate a good strategy in the subgame that is reached if
we have a good estimate of the value of reaching the subgame
in an equilibrium. The first module estimated this value for
every subgame. Using these subgame values as input, sub-
game solving creates and solves a finer-grained abstraction in
the subgame that is reached.

This finer-grained abstraction does not use any card ab-
straction and uses a dense action abstraction.

Also, rather than apply action translation as was done on
the first two rounds, and as has been done in prior poker AIs,
Libratus instead constructs and solves a new subgame every
time an opponent chooses an action that is not in the finer-
grained abstraction (in practice, it constructs a new subgame
every time the opponent bets). This allows it to avoid the

rounding error due to action translation and leads to much
lower exploitability [Brown and Sandholm, 2017b].

Another novel aspect of the subgame solver is that it guar-
antees that the solution is no worse than the precomputed
equilibrium approximation, taking into account the magni-
tude of opponent’s mistakes in the hand so far to enlarge
the strategy polytope that can be safely optimized over. This
leads to better strategies [Brown and Sandholm, 2017b] than
prior subgame-solving techniques [Ganzfried and Sandholm,
2015; Burch et al., 2014; Jackson, 2014; Moravcik et al.,
2016].

A further novel aspect is that Libratus changes its action
abstraction in each subgame. Thus the opponents must adapt
to new bet sizes in each subgame.

2.3 Self-Improvement

As described in Section 2.1, Libratus uses a dense action ab-
straction on the first two betting rounds. If an opponent does
not bet an amount that is in the abstraction, the bet is rounded
to a nearby size that is in the abstraction. This causes the AI’s
strategy and estimates of the values of reaching subgames,
to be slightly off. To improve upon this, in the background,
the AI determined a small number of actions to add to the
abstraction that would reduce this rounding error as much as
possible. The choice of actions was based on a combination
of which actions the opponents were choosing most frequent-
ly and how far those actions were from their nearest actions
in the abstraction. Once an action was selected, a strategy
was calculated for it in a similar manner to subgame solving,
described in Section 2.2. From that point on, if that action (or
a nearby one) were chosen by an opponent, then the newly
solved subgame strategy would be used.

3 Agent Construction

In total, Libratus used about 25 million core hours. Of those,
about 13 million core hours were used for exploratory experi-
ments and evaluation. About 6 million core hours were spent
on the initial abstraction and equilibrium finding component,
another 3 million were used for nested subgame solving, and
about 3 million were used on the self-improvement algorithm.

The equilibrium finding and self-improvement algorithms
used 196 nodes on the Bridges supercomputer at the Pitts-
burgh Supercomputing Center. Each node has 128 GB of
memory and 28 cores, but only 14 cores are used by the agen-
t. An asymmetric abstraction was used that had more actions
for the opponent, to better reduce the error resulting from ac-
tion translation [Bard et al., 2014].

The subgame solver used 50 nodes per game. Here we
used CFR+ [Tammelin et al., 2015] combined with spe-
cialized optimizations [Johanson et al., 2011] for equilib-
rium finding. Recent work suggests that subgame solving
could be even faster by leveraging warm starting [Brown
and Sandholm, 2016b], new pruning techniques [Brown and
Sandholm, 2017a], or first-order methods [Nesterov, 2005;
Kroer et al., 2017].
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