
AMD PUBLIC | 20211

[AMD Public Use]

ROCm™ Library Support &
Profiling Tools

Julio Maia, Noel Chalmers, Paul T. Bauman, Nicholas Curtis,
Nicholas Malaya, Damon McDougall, Rene van Oostrum, Noah

Wolfe

May 2021

AMD PUBLIC | 20212

[AMD Public Use]

Agenda

▪ Agenda
Library Support

Profiling tools

AMD PUBLIC | 20213

[AMD Public Use]

ROCm GPU Libraries

ROCm provides several GPU math libraries

▪ Typically two versions:

▪ roc* -> AMD GPU library, usually written in HIP

▪ hip* -> Thin interface between roc* and Nvidia cu* library

When developing an application meant to target both CUDA
and AMD devices, use the hip* libraries

When developing an application meant to target only AMD
devices, may prefer the roc* library API.

▪ Some roc* libraries perform better by using addition APIs not
available in the cu* equivalents.

hipBLAS

rocBLAS cuBLAS

AMD PUBLIC | 20214

[AMD Public Use]

AMD Math Library Equivalents: “Decoder Ring”

Basic Linear Algebra
Subroutines

CUBLAS ROCBLAS

Fast Fourier TransformsCUFFT ROCFFT

C++ Parallel AlgorithmsTHRUST ROCTHRUST

Optimized Parallel PrimitivesCUB ROCPRIM

CURAND ROCRAND Random Number Generation

AMD PUBLIC | 20215

[AMD Public Use]

AMD Math Library Equivalents: “Decoder Ring”

Sparse BLAS, SpMV, etc. CUSPARSE ROCSPARSE

Linear SolversCUSOLVER ROCSOLVER

AMGX ROCALUTION

GITHUB.COM/ROCM-DEVELOPER-TOOLS/HIP → HIP_PORTING_GUIDE.MD FOR A COMPLETE LIST

Solvers and preconditioners
for sparse linear systems

AMD PUBLIC | 20216

[AMD Public Use]

Some Links to Key Libraries
▪ BLAS

▪ rocBLAS (https://github.com/ROCmSoftwarePlatform/rocBLAS)

▪ hipBLAS (https://github.com/ROCmSoftwarePlatform/hipBLAS)

▪ FFTs

▪ rocFFT (https://github.com/ROCmSoftwarePlatform/rocFFT)

▪ Random number generation

▪ rocRAND (https://github.com/ROCmSoftwarePlatform/rocRAND)

▪ Sparse linear algebra

▪ rocSPARSE (https://github.com/ROCmSoftwarePlatform/rocSPARSE)

▪ hipSPARSE (https://github.com/ROCmSoftwarePlatform/hipSPARSE)

▪ Iterative solvers

▪ rocALUTION (https://github.com/ROCmSoftwarePlatform/rocALUTION)

▪ Parallel primitives

▪ rocPRIM (https://github.com/ROCmSoftwarePlatform/rocPRIM)

▪ hipCUB (https://github.com/ROCmSoftwarePlatform/hipCUB)

https://github.com/ROCmSoftwarePlatform/rocBLAS
https://github.com/ROCmSoftwarePlatform/hipBLAS
https://github.com/ROCmSoftwarePlatform/rocFFT
https://github.com/ROCmSoftwarePlatform/rocRAND
https://github.com/ROCmSoftwarePlatform/hipSPARSE
https://github.com/ROCmSoftwarePlatform/hipSPARSE
https://github.com/ROCmSoftwarePlatform/rocALUTION
https://github.com/ROCmSoftwarePlatform/rocPRIM
https://github.com/ROCmSoftwarePlatform/hipCUB

AMD PUBLIC | 20217

[AMD Public Use]

AMD Machine Learning Library Support
Machine Learning Frameworks:

▪ Tensorflow: https://github.com/ROCmSoftwarePlatform/tensorflow-upstream

▪ Pytorch: https://github.com/ROCmSoftwarePlatform/pytorch

▪ Caffe: https://github.com/ROCmSoftwarePlatform/hipCaffe

Machine Learning Libraries:

▪ MIOpen (similar to cuDNN): https://github.com/ROCmSoftwarePlatform/MIOpen

▪ Tensile (GEMM Autotuner): https://github.com/ROCmSoftwarePlatform/Tensile

▪ RCCL (ROCm analogue of NCCL): https://github.com/ROCmSoftwarePlatform/rccl

▪ Horovod (Distributed ML): https://github.com/ROCmSoftwarePlatform/horovod

Benchmarks:

▪ DeepBench: https://github.com/ROCmSoftwarePlatform/DeepBench

▪ MLPerf: https://mlperf.org

https://github.com/ROCmSoftwarePlatform/tensorflow-upstream
https://github.com/ROCmSoftwarePlatform/pytorch
https://github.com/ROCmSoftwarePlatform/hipCaffe
https://github.com/ROCmSoftwarePlatform/MIOpen
https://github.com/ROCmSoftwarePlatform/Tensile
https://github.com/ROCmSoftwarePlatform/rccl
https://github.com/ROCmSoftwarePlatform/horovod
https://github.com/ROCmSoftwarePlatform/DeepBench
https://mlperf.org/

AMD PUBLIC | 20218

[AMD Public Use]

NDA NOT REQUIRED | AMD PUBLIC USE

Profiling

AMD PUBLIC | 20219

[AMD Public Use]

AMD GPU Profiling
▪ ROC-profiler (or simply rocprof) is the command line front-end for AMD's GPU profiling libraries

▪ Repo: https://github.com/ROCm-Developer-Tools/rocprofiler

▪ rocprof contains the central components allowing the collection of application tracing and counter
collection

▪ Under constant development

▪ Provided in the ROCm releases

▪ The output of rocprof can be visualized using the chrome browser with chrome tracing

https://github.com/ROCm-Developer-Tools/rocprofiler

AMD PUBLIC | 202110

[AMD Public Use]

rocprof: Getting started + useful flags
▪ To get help:

▪ $ /opt/rocm/bin/rocprof -h

▪ Useful housekeeping flags:

▪ --timestamp <on|off> : turn on/off gpu kernel timestamps

▪ --basenames <on|off>: turn on/off truncating gpu kernel names (i.e., removing template parameters and argument types)

▪ -o <output csv file>: Direct counter information to a particular file name

▪ -d <data directory>: Send profiling data to a particular directory

▪ -t <temporary directory>: Change the directory where data files typically created in /tmp are placed. This allows you to save these temporary
files.

▪ Flags directing rocprofiler activity:

▪ -i input<.txt|.xml> - specify an input file (note the output files will now be named input.*)

▪ --hsa-trace - to trace GPU Kernels, host HSA events (more later) and HIP memory copies.

▪ --hip-trace - to trace HIP API calls

▪ --roctx-trace - to trace roctx markers

▪ Advanced usage

▪ -m <metric file>: Allows the user to define and collect custom metrics. See rocprofiler/test/tool/*.xmlon GitHub for examples.

https://github.com/ROCm-Developer-Tools/rocprofiler/tree/amd-master/test/tool

AMD PUBLIC | 202111

[AMD Public Use]

rocprof: Collecting application traces

▪ rocprof can collect a variety of trace event types, and generate timelines in JSON format for use with
chrome-tracing, currently:

Trace Event rocprof Trace Mode

HIP API call --hip-trace

GPU Kernels --hip-trace

Host <-> Device Memory copies --hip-trace

CPU HSA Calls --hsa-trace

User code markers --roctx-trace

AMD PUBLIC | 202112

[AMD Public Use]

rocprof: Collecting application traces
▪ rocprofiler can collect traces

▪ $ /opt/rocm/bin/rocprof --hip-trace <app with arguments>

▪ This will output a .json file that can be visualized using the chrome browser

▪ Go to chrome://tracing and then load in the .json file.

▪ The trace will display HIP calls, mem copies, kernels.

AMD PUBLIC | 202113

[AMD Public Use]

rocprof: Collecting application traces
▪ rocprofiler can collect traces

▪ $ /opt/rocm/bin/rocprof --hsa-trace <app with arguments>

▪ This will output a .json file that can be visualized using the chrome browser

▪ Go to chrome://tracing and then load in the .json file.

▪ The trace will display copies, hsa signals, and kernel calls.

▪ Slow your calculation a lot! Use with caution

AMD PUBLIC | 202114

[AMD Public Use]

rocprof: Collecting application traces

▪ rocprofiler can collect multiple trace modes simultaneously

▪ $ /opt/rocm/bin/rocprof --hsa-trace --hip-trace <app with arguments>

▪ This command will additionally add HIP API calls to the trace

AMD PUBLIC | 202115

[AMD Public Use]

rocprof: Collecting application traces
▪ Rocprof can collect user code-markers using rocTX

▪ See MatrixTranspose.cpp example on roctracer GitHub page for sample in-code usage

▪ $ /opt/rocm/bin/rocprof --hip-trace --roctx-trace <app with arguments>

https://github.com/ROCm-Developer-Tools/roctracer/blob/amd-master/test/MatrixTranspose/MatrixTranspose.cpp

AMD PUBLIC | 202116

[AMD Public Use]

rocprof: Collecting hardware counters
▪ rocprofiler can collect a number of hardware counters and derived counters

▪ $ /opt/rocm/bin/rocprof --list-basic

▪ $ /opt/rocm/bin/rocprof --list-derived

▪ Specify counters in a counter file. For example:

▪ $ /opt/rocm/bin/rocprof -i rocprof_counters.txt <app with args>

▪ $ cat rocprof_counters.txt

pmc : Wavefronts VALUInsts VFetchInsts VWriteInsts VALUUtilization VALUBusy WriteSize

pmc : SALUInsts SFetchInsts LDSInsts FlatLDSInsts GDSInsts SALUBusy FetchSize

pmc : L2CacheHit MemUnitBusy MemUnitStalled WriteUnitStalled ALUStalledByLDS LDSBankConflict

...

▪ A limited number of counters can be collected during a specific pass of code.

▪ Each line in the counter file will be collected in one pass

▪ You will receive an error suggesting alternative counter ordering if you have too many / conflicting counters on one line

▪ A .csv file will be created by this command containing all of the requested counters

AMD PUBLIC | 202117

[AMD Public Use]

rocprof: Commonly Used Counters

▪ VALUUtilization: The percentage of ALUs active in a wave. Low VALUUtilization is likely due to high
divergence or a poorly sized grid

▪ VALUBusy: The percentage of GPUTime vector ALU instructions are processed. Can be thought of as
something like compute utilization.

▪ FetchSize: The total kilobytes fetched from global memory

▪ WriteSize: The total kilobytes written to global memory

▪ L2CacheHit: The percentage of fetch, write, atomic, and other instructions that hit the data in L2 cache

▪ MemUnitBusy: The percentage of GPUTime the memory unit is active. The result includes the stall time

▪ MemUnitStalled: The percentage of GPUTime the memory unit is stalled

▪ WriteUnitStalled: The percentage of GPUTime the write unit is stalled

Full list at: https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/test/tool/metrics.xml

https://github.com/ROCm-Developer-Tools/rocprofiler/blob/amd-master/test/tool/metrics.xml

AMD PUBLIC | 202118

[AMD Public Use]

Performance counters tips and tricks

▪ GPU Hardware counters are global

• Kernel dispatches are serialized to ensure that only one dispatch is ever in flight

• It is recommended that no other applications are running that use the GPU when collecting performance counters.

• Use “--basenames on” which will report only kernel names, leaving off kernel arguments.

• How do you time a kernel’s duration?

• $ /opt/rocm/bin/rocprof --timestamps on -i rocprof_counters.txt <app with args>

• This produces four times: DispatchNs, BeginNs, EndNs, and CompleteNs

• Closest thing to a kernel duration: EndNs - BeginNs

• If you run with “--stats” the resultant results file will automatically include a column that calculates kernel duration

• Note: the duration is aggregated over repeated calls to the same kernel

AMD PUBLIC | 202119

[AMD Public Use]

rocprof: Multiple MPI Ranks

▪ rocprof can collect counters and traces for multiple MPI ranks.

▪ Say you want to profile an application usually called like this:

▪ mpiexec –np <n> ./Jacobi_hip –g <x> <y>

▪ Then invoke the profiler by executing:

rocprof --hip-trace mpiexec -np <n> ./Jacobi_hip -g <x> <y>

▪ This will produce a single unified CSV file for all ranks

▪ Multi-node profiling currently isn’t supported

AMD PUBLIC | 202120

[AMD Public Use]

rocprof: Profiling Overhead

Simple estimation of profiling overhead,
obtained via wall-clock timing of entire
application run via linux ‘time’ utility:

AMD PUBLIC | 202121

[AMD Public Use]

Disclaimer
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The information contained
herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard version changes,
new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks
of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD
reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY
INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER
CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY CONTENT IS PROVIDED “AS IS”
WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER NO CIRCUMSTANCES WILL AMD BE LIABLE TO YOU FOR
ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY DAMAGES THAT MAY ARISE FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2021 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ROCm, Radeon, Radeon Instinct and combinations thereof are trademarks of Advanced Micro
Devices, Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of their respective owners.

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board.

AMD PUBLIC | 202122

[AMD Public Use]

