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Outline

• Kernel optimizations

– Launch configuration

– Global memory throughput

– Shared memory access

– Instruction throughput / control flow

• Optimization of CPU-GPU interaction

– Maximizing PCIe throughput

– Overlapping kernel execution with memory copies
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Launch Configuration
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Launch Configuration

• How many threads/threadblocks to launch?

• Key to understanding:

– Instructions are issued in order

– A thread stalls when one of the operands isn’t ready:
• Memory read by itself doesn’t stall execution

– Latency is hidden by switching threads
• GMEM latency: 400-800 cycles

• Arithmetic latency: 18-22 cycles

• Conclusion:

– Need enough threads to hide latency
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Launch Configuration

Hiding arithmetic latency:

Need ~18 warps (576) threads per Fermi SM

Fewer warps for pre-Fermi GPUs (Fermi SM more than doubled issue rate)

Or, latency can also be hidden with independent instructions from the same warp

For example, if instruction never depends on the output of preceding 
instruction, then only 9 warps are needed, etc.

Maximizing global memory throughput:

Depends on the access pattern, and word size

Need enough memory transactions in flight to saturate the bus

Independent loads and stores from the same thread

Loads and stores from different threads

Larger word sizes can also help (float2 is twice the transactions of float, for 
example)
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Maximizing Memory Throughput

• Increment of an array of 64M elements

– Two accesses per thread (load then store)

– The two accesses are dependent, so really 1 access per thread at a time

• Tesla C2050, ECC on, theoretical bandwidth: ~120 GB/s

Several independent smaller 
accesses have the same effect 
as one larger one.

For example:

Four 32-bit  ~=  one 128-bit
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Launch Configuration: Summary

• Need enough total threads to keep GPU busy

– Typically, you’d like 512+ threads per SM

• More if processing one fp32 element per thread

– Of course, exceptions exist

• Threadblock configuration

– Threads per block should be a multiple of warp size (32)

– SM can concurrently execute up to 8 threadblocks

• Really small threadblocks prevent achieving good occupancy

• Really large threadblocks are less flexible

• I generally use 128-256 threads/block, but use whatever is best for the application

• For more details:

– Vasily Volkov’s GTC2010 talk “Better Performance at Lower Occupancy”
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Global Memory Throughput
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Fermi Memory Hierarchy Review
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Fermi Memory Hierarchy Review
• Local storage

– Each thread has own local storage

– Mostly registers (managed by the compiler)

• Shared memory / L1

– Program configurable: 16KB shared / 48 KB L1   OR   48KB shared / 16KB L1

– Shared memory is accessible by the threads in the same threadblock

– Very low latency

– Very high throughput: 1+ TB/s aggregate

• L2

– All accesses to global memory go through L2, including copies to/from CPU host

• Global memory

– Accessible by all threads as well as host (CPU)

– Higher latency (400-800 cycles)

– Throughput: up to 177 GB/s
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Programming for L1 and L2

• Short answer: DON’T

– GPU caches are not intended for the same use as CPU caches

• Smaller size (especially per thread), so not aimed at temporal reuse

• Intended to smooth out some access patterns, help with spilled registers, etc.

– Don’t try to block for L1/L2 like you would on CPU

• You have 100s to 1,000s of run-time scheduled threads hitting the caches

• If it is possible to block for L1 then block for SMEM

– Same size, same bandwidth, hw will not evict behind your back

• Optimize as if no caches were there

– No Fermi-only techniques to learn per se (so, all you know is still good)

– Some cases will just run faster
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Fermi GMEM Operations

• Two types of loads:

– Caching

• Default mode

• Attempts to hit in L1, then L2, then GMEM

• Load granularity is 128-byte line

– Non-caching

• Compile with –Xptxas –dlcm=cg option to nvcc

• Attempts to hit in L2, then GMEM

– Do not hit in L1, invalidate the line if it’s in L1 already

• Load granularity is 32-bytes

• Stores:

– Invalidate L1, write-back for L2
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Load Caching and L1 Size

• Non-caching loads can improve perf when:

– Loading scattered words or only a part of a warp issues a load

• Benefit: transaction is smaller, so useful payload is a larger percentage

• Loading halos, for example

– Spilling registers (reduce line fighting with spillage)

• Large L1 can improve perf when:

– Spilling registers (more lines so fewer evictions)

– Some misaligned, strided access patterns

– 16-KB L1 / 48-KB smem OR 48-KB L1 / 16-KB smem

• CUDA call, can be set for the app or per-kernel

• How to use:

– Just try a 2x2 experiment matrix:  {CA,CG} x {48-L1, 16-L1}

• Keep the best combination - same as you would with any HW managed cache, including CPUs
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Load Operation

• Memory operations are issued per warp (32 
threads)
– Just like all other instructions

– Prior to Fermi, memory issues were per half-warp

• Operation:
– Threads in a warp provide memory addresses

– Determine which lines/segments are needed

– Request the needed lines/segments
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Caching Load

• Warp requests 32 aligned, consecutive 4-byte words

• Addresses fall within 1 cache-line

– Warp needs 128 bytes

– 128 bytes move across the bus on a miss

– Bus utilization: 100%

...
addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0
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Non-caching Load

• Warp requests 32 aligned, consecutive 4-byte words

• Addresses fall within 4 segments

– Warp needs 128 bytes

– 128 bytes move across the bus on a miss

– Bus utilization: 100%

...
addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0
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Caching Load

...

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

addresses from a warp

0

• Warp requests 32 aligned, permuted 4-byte words

• Addresses fall within 1 cache-line

– Warp needs 128 bytes

– 128 bytes move across the bus on a miss

– Bus utilization: 100%
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Non-caching Load

...

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

addresses from a warp

0

• Warp requests 32 aligned, permuted 4-byte words

• Addresses fall within 4 segments

– Warp needs 128 bytes

– 128 bytes move across the bus on a miss

– Bus utilization: 100%
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Caching Load

96 192128 160 224 288256

...
addresses from a warp

32 640 352320 384 448416
Memory addresses

• Warp requests 32 misaligned, consecutive 4-byte words

• Addresses fall within 2 cache-lines

– Warp needs 128 bytes

– 256 bytes move across the bus on misses

– Bus utilization: 50%
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Non-caching Load

96 192128 160 224 288256

...
addresses from a warp

32 640 352320 384 448416
Memory addresses

• Warp requests 32 misaligned, consecutive 4-byte words

• Addresses fall within at most 5 segments

– Warp needs 128 bytes

– At most 160 bytes move across the bus

– Bus utilization: at least 80%
• Some misaligned patterns will fall within 4 segments, so 100% utilization
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Caching Load

...
addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0

• All threads in a warp request the same 4-byte word

• Addresses fall within a single cache-line

– Warp needs 4 bytes

– 128 bytes move across the bus on a miss

– Bus utilization: 3.125%
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Non-caching Load

...
addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0

• All threads in a warp request the same 4-byte word

• Addresses fall within a single segment

– Warp needs 4 bytes

– 32 bytes move across the bus on a miss

– Bus utilization: 12.5%
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Caching Load

...
addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0

• Warp requests 32 scattered 4-byte words

• Addresses fall within N cache-lines

– Warp needs 128 bytes

– N*128 bytes move across the bus on a miss

– Bus utilization:  128 / (N*128)
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Non-caching Load

...
addresses from a warp

96 192128 160 224 28825632 64 352320 384 448416
Memory addresses

0

• Warp requests 32 scattered 4-byte words

• Addresses fall within N segments

– Warp needs 128 bytes

– N*32 bytes move across the bus on a miss

– Bus utilization:  128 / (N*32)
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Impact of Address Alignment

• Warps should access aligned regions for maximum memory throughput

– Fermi L1 can help for misaligned loads if several warps are accessing a contiguous region

– ECC further significantly reduces misaligned store throughput

Experiment:

– Copy 16MB of floats

– 256 threads/block

Greatest throughput drop:

– GT200: 40%

– Fermi:

– CA loads: 15%

– CG loads: 32%
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GMEM Optimization Guidelines
• Strive for perfect coalescing per warp

– Align starting address (may require padding)

– A warp should access within a contiguous region

• Have enough concurrent accesses to saturate the bus

– Launch enough threads to maximize throughput

• Latency is hidden by switching threads (warps)

– Process several elements per thread

• Multiple loads get pipelined

• Indexing calculations can often be reused

• Try L1 and caching configurations to see which one works best

– Caching vs non-caching loads (compiler option)

– 16KB vs 48KB L1 (CUDA call)
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Shared Memory
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Shared Memory

• Uses:

– Inter-thread communication within a block

– Cache data to reduce redundant global memory accesses

– Use it to improve global memory access patterns

• Fermi organization:

– 32 banks, 4-byte wide banks

– Successive 4-byte words belong to different banks

• Performance:

– 4 bytes per bank per 2 clocks per multiprocessor

– smem accesses are issued per 32 threads (warp)

• per 16-threads for GPUs prior to Fermi

– serialization: if n threads in a warp access different 4-byte words in the same bank, n accesses are 
executed serially

– multicast: n threads access the same word in one fetch

• Could be different bytes within the same word

• Prior to Fermi, only broadcast was available, sub-word accesses within the same bank caused serialization
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Bank Addressing Examples

• No Bank Conflicts • No Bank Conflicts

Bank 31

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 31

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 31

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 31

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0
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Bank Addressing Examples

• 2-way Bank Conflicts • 8-way Bank Conflicts

Thread 31
Thread 30
Thread 29
Thread 28

Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 31

Bank 7
Bank 6
Bank 5
Bank 4
Bank 3
Bank 2
Bank 1
Bank 0

Thread 31

Thread 7
Thread 6
Thread 5
Thread 4
Thread 3
Thread 2
Thread 1
Thread 0

Bank 9
Bank 8

Bank 31

Bank 7

Bank 2
Bank 1
Bank 0x8

x8
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Shared Memory: Avoiding Bank Conflicts

• 32x32 SMEM array

• Warp accesses a column:

– 32-way bank conflicts (threads in a warp access the same bank)

31

210

31210

31210

warps:

0       1         2              31

Bank 0

Bank 1

…

Bank 31
20 1

31
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Shared Memory: Avoiding Bank Conflicts

• Add a column for padding:

– 32x33 SMEM array

• Warp accesses a column:

– 32 different banks, no bank conflicts

31210

31210

31210

warps:

0       1         2              31       padding

Bank 0

Bank 1

…

Bank 31
3120 1
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Additional “memories”

• Texture and constant

• Read-only

• Data resides in global memory

• Read through different caches
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Constant Memory

• Ideal for coefficients and other data that is read uniformly by warps

• Data is stored in global memory, read through a constant-cache

– __constant__ qualifier in declarations

– Can only be read by GPU kernels

– Limited to 64KB

• Fermi adds uniform accesses:

– Kernel pointer argument qualified with const

– Compiler must determine that all threads in a threadblock will dereference the same address

– No limit on array size, can use any global memory pointer

• Constant cache throughput: 

– 32 bits per warp per 2 clocks per multiprocessor

– To be used when all threads in a warp read the same address

• Serializes otherwise



© NVIDIA 2010

Constant Memory

• Ideal for coefficients and other data that is read uniformly by warps

• Data is stored in global memory, read through a constant-cache

– __constant__ qualifier in declarations

– Can only be read by GPU kernels

– Limited to 64KB

• Fermi adds uniform accesses:

– Kernel pointer argument qualified with const

– Compiler must determine that all threads in a threadblock will dereference the same address

– No limit on array size, can use any global memory pointer

• Constant cache throughput: 

– 32 bits per warp per 2 clocks per multiprocessor

– To be used when all threads in a warp read the same address

• Serializes otherwise

__global__ void kernel( const float *g_a )

{

...

float x = g_a[15];                   // uniform

float y = g_a[blockIdx.x+5];    // uniform

float z = g_a[threadIdx.x];      // non-uniform

...

}
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Constant Memory

• Ideal for coefficients and other data that is read uniformly by warps

• Data is stored in global memory, read through a constant-cache

– __constant__ qualifier in declarations

– Can only be read by GPU kernels

– Limited to 64KB

• Fermi adds uniform accesses:

– Kernel pointer argument qualified with const

– Compiler must determine that all threads in a threadblock will dereference the same address

– No limit on array size, can use any global memory pointer

• Constant cache throughput: 

– 32 bits per warp per 2 clocks per multiprocessor

– To be used when all threads in a warp read the same address

• Serializes otherwise
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Constant Memory

• Kernel executes 10K threads (320 warps) per SM during its lifetime

• All threads access the same 4B word

• Using GMEM:

– Each warp fetches 32B -> 10KB of bus traffic

– Caching loads potentially worse – 128B line, very likely to be evicted multiple times

...
addresses from a warp

96 192128 160 224 28825632 64 352320 384 4484160
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Constant Memory

• Kernel executes 10K threads (320 warps) per SM during its lifetime

• All threads access the same 4B word

• Using constant/uniform access:

– First warp fetches 32 bytes

– All others hit in constant cache -> 32 bytes of bus traffic per SM

• Unlikely to be evicted over kernel lifetime – other loads do not go through this cache

...
addresses from a warp

96 192128 160 224 28825632 64 352320 384 4484160
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Texture

• Separate cache

• Dedicated texture cache hardware provides:

– Out-of-bounds index handling

• clamp or wrap-around

– Optional interpolation

• Think: using fp indices for arrays

• Linear, bilinear, trilinear

– Interpolation weights are 9-bit

– Optional format conversion

• {char, short, int} -> float

– All of these are “free”
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Instruction Throughput / Control Flow
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Runtime Math Library and Intrinsics

• Two types of runtime math library functions

– __func(): many map directly to hardware ISA
• Fast but lower accuracy (see CUDA Programming Guide for full details)

• Examples: __sinf(x), __expf(x), __powf(x, y)

– func(): compile to multiple instructions
• Slower but higher accuracy (5 ulp or less)

• Examples: sin(x), exp(x), pow(x, y)

• A number of additional intrinsics:

– __sincosf(), __frcp_rz(), ...

– Explicit IEEE rounding modes (rz,rn,ru,rd)
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Control Flow

• Instructions are issued per 32 threads (warp)

• Divergent branches:

– Threads within a single warp take different paths

• if-else, ...

– Different execution paths within a warp are serialized

• Different warps can execute different code with no impact on performance

• Avoid diverging within a warp

– Example with divergence: 

• if (threadIdx.x > 2) {...} else {...}

• Branch granularity < warp size

– Example without divergence:

• if (threadIdx.x / WARP_SIZE > 2) {...} else {...}

• Branch granularity is a whole multiple of warp size
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Control Flow

if ( ... )

{

// then-clause

}

else

{

// else-clause

}

in
s
tr

u
c
ti

o
n

s
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Execution within warps is coherent
in
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Warp 

(“vector” of threads)

353433 636232321 31300

Warp 

(“vector” of threads)
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Execution diverges within a warp
in
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321 31300 353433 636232
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CPU-GPU Interaction
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Pinned (non-pageable) memory

• Pinned memory enables:

– faster PCIe copies

– memcopies asynchronous with CPU

– memcopies asynchronous with GPU

• Usage

– cudaHostAlloc / cudaFreeHost
• instead of malloc / free

• Implication:

– pinned memory is essentially removed from host virtual memory
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Streams and Async API

• Default API:

– Kernel launches are asynchronous with CPU

– Memcopies (D2H, H2D) block CPU thread

– CUDA calls are serialized by the driver

• Streams and async functions provide:

– Memcopies (D2H, H2D) asynchronous with CPU

– Ability to concurrently execute a kernel and a memcopy

• Stream = sequence of operations that execute in issue-order on GPU

– Operations from different streams may be interleaved

– A kernel and memcopy from different streams can be overlapped
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Overlap kernel and memory copy

• Requirements:

– D2H or H2D memcopy from pinned memory

– Device with compute capability ≥ 1.1 (G84 and later)

– Kernel and memcopy in different, non-0 streams

• Code:

cudaStream_t stream1, stream2;

cudaStreamCreate(&stream1);

cudaStreamCreate(&stream2);

cudaMemcpyAsync( dst, src, size, dir, stream1 );

kernel<<<grid, block, 0, stream2>>>(…);
potentially

overlapped
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Call Sequencing for Optimal Overlap

• CUDA calls are dispatched to the hw in the sequence they were issued

• Fermi can concurrently execute:

– Upto 16 kernels

– Upto 2 memcopies, as long as they are in different directions (D2H and H2D)

• A call is dispatched if both are true:

– Resources are available 

– Preceding calls in the same stream have completed

• Note that if a call blocks, it blocks all other calls of the same type behind 
it, even in other streams

– Type is one of { kernel, memcopy}
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Stream Examples

K1,M1,K2,M2: K1

M1

K2

M2

K1,K2,M1,M2: K1

M1

K2

M2

K1,M1,M2: K1

M1 M2

K1,M2,M1: K1

M1M2

K1,M2,M2: K1

M2M2

Time 

K: kernel

M: memcopy

Integer: stread ID
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More on Fermi Concurrent Kernels

• Kernels may be executed concurrently if they are 
issued into different streams

• Scheduling:

– Kernels are executed in the order in which they were issued

– Threadblocks for a given kernel are scheduled if all 
threadblocks for preceding kernels have been scheduled and 
there still are SM resources available
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More on Fermi Dual Copy

• Fermi is capable of duplex communication with the host

– PCIe bus is duplex

– The two memcopies must be in different streams, different 
directions

• Not all current host systems can saturate duplex PCIe
bandwidth:

– Likely limitations of the IOH chips

– If this is important to you, test your host system
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Duplex Copy: Experimental Results

CPU-0

IOH

X58

DRAM

GPU-0

CPU-0

IOH

D36

DRAM

GPU-0

CPU-0

DRAM

10.8 GB/s 7.5 GB/s

QPI, 6.4 GT/s

25.6 GB/s

3xDDR3, 1066 MHz

25.8 GB/s

PCIe, x16

16 GB/s
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Duplex Copy: Experimental Results

CPU-0

IOH

X58

DRAM

GPU-0

CPU-0

IOH

D36

DRAM

GPU-0

CPU-1

DRAM

10.8 GB/s 11 GB/s

QPI, 6.4 GT/s

25.6 GB/s

3xDDR3, 1066 MHz

25.8 GB/s

PCIe, x16

16 GB/s
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Summary

• Kernel Launch Configuration:

– Launch enough threads per SM to hide latency

– Launch enough threadblocks to load the GPU

• Global memory:

– Maximize throughput (GPU has lots of bandwidth, use it effectively)

• Use shared memory when applicable (over 1 TB/s bandwidth)

• GPU-CPU interaction:

– Minimize CPU/GPU idling, maximize PCIe throughput

• Use analysis/profiling when optimizing:

– “Analysis-driven Optimization” talk next
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Additional Resources

• Basics:

– CUDA webinars on NVIDIA website (just google for CUDA webinar)

– CUDA by Example” book by J. Sanders and E. Candrot

• Profiling, analysis, and optimization for Fermi:

– GTC-2010 session 2012: “Analysis-driven Optimization”  (tomorrow , 3-5pm)

• GT200 optimization:

– GTC-2009 session 1029 (slides and video)

• Slides:

– http://www.nvidia.com/content/GTC/documents/1029_GTC09.pdf

• Materials for all sessions:

– http://developer.download.nvidia.com/compute/cuda/docs/GTC09Materials.htm

• CUDA Tutorials at Supercomputing: 

– http://gpgpu.org/{sc2007,sc2008,sc2009}

• CUDA Programming Guide

• CUDA Best Practices Guide

http://www.nvidia.com/content/GTC/documents/1029_GTC09.pdf
http://developer.download.nvidia.com/compute/cuda/docs/GTC09Materials.htm
http://developer.download.nvidia.com/compute/cuda/docs/GTC09Materials.htm
http://gpgpu.org/
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Questions?


