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Outline

* Kernel optimizations
— Launch configuration
— Global memory throughput
— Shared memory access
— Instruction throughput / control flow

« Optimization of CPU-GPU interaction
— Maximizing PCle throughput
— Overlapping kernel execution with memory copies
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Launch Configuration
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Launch Configuration

 How many threads/threadblocks to launch?

» Key to understanding:
— Instructions are issued in order

— A thread stalls when one of the operands isn’t ready:
« Memory read by itself doesn’t stall execution

— Latency is hidden by switching threads

* GMEM latency: 400-800 cycles
» Arithmetic latency: 18-22 cycles

 Conclusion:
— Need enough threads to hide latency
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Launch Configuration

¥ Hiding arithmetic latency:
“ Need -18 warps (576) threads per Fermi SM
“ Fewer warps for pre-Fermi GPUs (Fermi SM more than doubled issue rate)
¥ Or, latency can also be hidden with independent instructions from the same warp

“ For example, if instruction never depends on the output of preceding
instruction, then only 9 warps are needed, etc.

¥ Maximizing global memory throughput:
“ Depends on the access pattern, and word size
“ Need enough memory transactions in flight to saturate the bus
¥ Independent loads and stores from the same thread
“ Loads and stores from different threads

“ Larger word sizes can also help (float2 is twice the transactions of float, for
example)
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Maximizing Memory Throughput

* Increment of an array of 64M elements

— Two accesses per thread (load then store)

— The two accesses are dependent, so really 1 access per thread at a time
+ Tesla C2050, ECC on, theoretical bandwidth: ~120 GB/s
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Launch Configuration: Summary

* Need enough total threads to keep GPU busy
— Typically, you’d like 512+ threads per SM
* More if processing one fp32 element per thread
— Of course, exceptions exist

» Threadblock configuration
— Threads per block should be a multiple of warp size (32)

— SM can concurrently execute up to 8 threadblocks
» Really small threadblocks prevent achieving good occupancy
» Really large threadblocks are less flexible
» | generally use 128-256 threads/block, but use whatever is best for the application

* For more details:
— Vasily Volkov’s GTC2010 talk “Better Performance at Lower Occupancy”



Global Memory Throughput



Fermi Memory Hierarchy Review

SM-0 SM-1 SM-N
Registers Registers Registers
L1 SMEM L1 SMEM L1 SMEM
A A
L2

!

Global Memory
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Fermi Memory Hierarchy Review

* Local storage
— Each thread has own local storage
— Mostly registers (managed by the compiler)
« Shared memory / L1
— Program configurable: 16KB shared / 48 KB L1 OR 48KB shared / 16KB L1
— Shared memory is accessible by the threads in the same threadblock
— Very low latency
— Very high throughput: 1+ TB/s aggregate
« L2
— All accesses to global memory go through L2, including copies to/from CPU host
* Global memory
— Accessible by all threads as well as host (CPU)
— Higher latency (400-800 cycles)
— Throughput: up to 177 GB/s
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Programming for L1 and L2

 Short answer: DON’T

— GPU caches are not intended for the same use as CPU caches
« Smaller size (especially per thread), so not aimed at temporal reuse
» Intended to smooth out some access patterns, help with spilled registers, etc.

— Don’t try to block for L1/L2 like you would on CPU
* You have 100s to 1,000s of run-time scheduled threads hitting the caches
 If it is possible to block for L1 then block for SMEM

— Same size, same bandwidth, hw will not evict behind your back

« Optimize as if no caches were there
— No Fermi-only techniques to learn per se (so, all you know is still good)
— Some cases will just run faster
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Fermi GMEM Operations

* Two types of loads:

— Caching
» Default mode
« Attempts to hit in L1, then L2, then GMEM
» Load granularity is 128-byte line

— Non-caching
« Compile with -Xptxas -dlcm=cg option to nvcc
» Attempts to hit in L2, then GMEM

— Do not hit in L1, invalidate the line if it’s in L1 already
» Load granularity is 32-bytes

» Stores:
— Invalidate L1, write-back for L2
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Load Caching and L1 Size

* Non-caching loads can improve perf when:

— Loading scattered words or only a part of a warp issues a load
» Benefit: transaction is smaller, so useful payload is a larger percentage
« Loading halos, for example

— Spilling registers (reduce line fighting with spillage)
* Large L1 can improve perf when:
— Spilling registers (more lines so fewer evictions)
— Some misaligned, strided access patterns
— 16-KB L1 / 48-KB smem OR 48-KB L1 / 16-KB smem
* CUDA call, can be set for the app or per-kernel
* How to use:
— Just try a 2x2 experiment matrix: {CA,CG} x {48-L1, 16-L1}

» Keep the best combination - same as you would with any HW managed cache, including CPUs
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Load Operation

* Memory operations are issued per warp (32
threads)

— Just like all other instructions

— Prior to Fermi, memory issues were per half-warp
* Operation:

— Threads in a warp provide memory addresses

— Determine which lines/segments are needed

— Request the needed lines/segments
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Caching Load

* Warp requests 32 alighed, consecutive 4-byte words

» Addresses fall within 1 cache-line
— Warp needs 128 bytes
— 128 bytes move across the bus on a miss
— Bus utilization: 100%

addresses from a warp

RRI L

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses
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Non-caching Load

* Warp requests 32 alighed, consecutive 4-byte words

» Addresses fall within 4 segments
— Warp needs 128 bytes
— 128 bytes move across the bus on a miss
— Bus utilization: 100%

addresses from a warp

RRI L

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses
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Caching Load

» Warp requests 32 alighed, permuted 4-byte words

» Addresses fall within 1 cache-line
— Warp needs 128 bytes
— 128 bytes move across the bus on a miss
— Bus utilization: 100%

addresses from a warp
I

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses
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Non-caching Load

» Warp requests 32 alighed, permuted 4-byte words

» Addresses fall within 4 segments
— Warp needs 128 bytes
— 128 bytes move across the bus on a miss
— Bus utilization: 100%

addresses from a warp
[ T T T 1

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses
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Caching Load

* Warp requests 32 misaligned, consecutive 4-byte words

» Addresses fall within 2 cache-lines
— Warp needs 128 bytes
— 256 bytes move across the bus on misses
— Bus utilization: 50%

addresses from a warp

I

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses
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Non-caching Load

* Warp requests 32 misaligned, consecutive 4-byte words

» Addresses fall within at most 5 segments
— Warp needs 128 bytes
— At most 160 bytes move across the bus
— Bus utilization: at least 80%

« Some misaligned patterns will fall within 4 segments, so 100% utilization

addresses from a warp

T T T T 71

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses
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Caching Load

 All threads in a warp request the same 4-byte word

» Addresses fall within a single cache-line
— Warp needs 4 bytes
— 128 bytes move across the bus on a miss
— Bus utilization: 3.125%

addresses from a warp

N ——"

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses
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Non-caching Load

 All threads in a warp request the same 4-byte word
» Addresses fall within a single segment

— Warp needs 4 bytes

— 32 bytes move across the bus on a miss

— Bus utilization: 12.5%

addresses from a warp

N ——"

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses
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Caching Load

* Warp requests 32 scattered 4-byte words

» Addresses fall within N cache-lines
— Warp needs 128 bytes
— N*128 bytes move across the bus on a miss
— Bus utilization: 128 / (N*128)

addresses from a warp
— r 1 0 0 ]

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses
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Non-caching Load

* Warp requests 32 scattered 4-byte words

» Addresses fall within N segments
— Warp needs 128 bytes
— N*32 bytes move across the bus on a miss
— Bus utilization: 128 / (N*32)

addresses from a warp
L 1 L
[ [ T 1 [ T 1 /T 1]

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
Memory addresses
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Impact of Address Alighment

« Warps should access aligned regions for maximum memory throughput
— Fermi L1 can help for misaligned loads if several warps are accessing a contiguous region
— ECC further significantly reduces misaligned store throughput

120 ‘ .
\\ // Experiment:
R ——  ———
100 \ I — Copy 16MB of floats
5 Y . N o — 256 threads/block
GB/s || A | Greatest throughput drop:
— GT200: 40%
0 : : — Fermi:
===Fermi: caching copy
20 ===Fermi: non-caching copy — CA loads: 15%
GT200: copy — CG loads: 32%
O T T T T T T T 1
0 4 8 12 16 20 24 28 32
misalignment, in 4-byte words
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GMEM Optimization Guidelines

« Strive for perfect coalescing per warp
— Align starting address (may require padding)
— A warp should access within a contiguous region

« Have enough concurrent accesses to saturate the bus

— Launch enough threads to maximize throughput
» Latency is hidden by switching threads (warps)
— Process several elements per thread

* Multiple loads get pipelined
» Indexing calculations can often be reused

« Try L1 and caching configurations to see which one works best

— Caching vs non-caching loads (compiler option)
— 16KB vs 48KB L1 (CUDA call)
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Shared Memory
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Shared Memory

* Uses:
— Inter-thread communication within a block
— Cache data to reduce redundant global memory accesses
— Use it to improve global memory access patterns

 Fermi organization:
— 32 banks, 4-byte wide banks
— Successive 4-byte words belong to different banks

» Performance:
— 4 bytes per bank per 2 clocks per multiprocessor
— smem accesses are issued per 32 threads (warp)
* per 16-threads for GPUs prior to Fermi

— serialization: if n threads in a warp access different 4-byte words in the same bank, n accesses are
executed serially

— multicast: n threads access the same word in one fetch

* Could be different bytes within the same word
» Prior to Fermi, only broadcast was available, sub-word accesses within the same bank caused serialization
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Bank Addressing Examples

 No Bank Conflicts

Thread O
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5

Thread 6
Thread 7

 No Bank Conflicts

Thread O
Thread 1

Thread 2
Thread 3
Thread 4
Thread 5

Thread 6
Thread 7

Thread 31
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Bank Addressing Examples

« 2-way Bank Conflicts

Thread O
Thread 1
Thread 2
Thread 3
Thread 4

Thread 28
Thread 29
Thread 30
Thread 31

« 8-way Bank Conflicts

Thread O
Thread 1
Thread 2
Thread 3
Thread 4
Thread 5
Thread 6

Thread 7

Thread 31




Shared Memory: Avoiding Bank Conflicts

* 32x32 SMEM array

* Warp accesses a column:
— 32-way bank conflicts (threads in a warp access the same bank)

warps:
0 1 2 31

Bank O
Bank 1

Bank 31
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Shared Memory: Avoiding Bank Conflicts

» Add a column for padding:
— 32x33 SMEM array
* Warp accesses a column:
— 32 different banks, no bank conflicts

warps:
0 1 2 31 padding

Bank O
Bank 1 1 2

Bank 31

31

© NVIDIA 2010



Additional “memories”

» Texture and constant

* Read-only

* Data resides in global memory
» Read through different caches




Constant Memory

Ideal for coefficients and other data that is read uniformly by warps

Data is stored in global memory, read through a constant-cache
— __constant__ qualifier in declarations
— Can only be read by GPU kernels
— Limited to 64KB
Fermi adds uniform accesses:
— Kernel pointer argument qualified with const
— Compiler must determine that all threads in a threadblock will dereference the same address

— No limit on array size, can use any global memory pointer

Constant cache throughput:
— 32 bits per warp per 2 clocks per multiprocessor

— To be used when all threads in a warp read the same address

Serializes otherwise
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Constant Memory

Ideal for coefficients and other data that is read uniformly by warps
Data is stored in global me?/ \
— __constant__ qualifier in d¢
_ Canonly be read by GPU k§ __global__ void kernel( const float *g_a )

_ Limited to 64KB {

Fermi adds uniform access|
— Kernel pointer argument qu

float x = g_a[15]; // uniform
float y = g_a[blockldx.x+5]; // uniform

— Compiler must determine t float z = g_a[threadldx.x]; // non-uniform

— No limit on array size, can
Constant cache throughpu{ 3}

— 32 bits per warp per 2 cloc
— To be used when all threads

* Serializes otherwise
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Constant Memory

Ideal for coefficients and other data that is read uniformly by warps

Data is stored in global memory, read through a constant-cache
— __constant__ qualifier in declarations
— Can only be read by GPU kernels
— Limited to 64KB
Fermi adds uniform accesses:
— Kernel pointer argument qualified with const
— Compiler must determine that all threads in a threadblock will dereference the same address

— No limit on array size, can use any global memory pointer

Constant cache throughput:
— 32 bits per warp per 2 clocks per multiprocessor

— To be used when all threads in a warp read the same address

Serializes otherwise
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Constant Memory

« Kernel executes 10K threads (320 warps) per SM during its lifetime
 All threads access the same 4B word
* Using GMEM:
— Each warp fetches 32B -> 10KB of bus traffic
— Caching loads potentially worse - 128B line, very likely to be evicted multiple times

addresses from a warp

N ———

[ ]
0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
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Constant Memory

« Kernel executes 10K threads (320 warps) per SM during its lifetime
 All threads access the same 4B word

 Using constant/uniform access:
— First warp fetches 32 bytes

— All others hit in constant cache -> 32 bytes of bus traffic per SM
» Unlikely to be evicted over kernel lifetime - other loads do not go through this cache

addresses from a warp

N ———

[ ]
0 32 64 96 128 160 192 224 256 288 320 352 384 416 448
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Texture

» Separate cache

» Dedicated texture cache hardware provides:
— Out-of-bounds index handling
» clamp or wrap-around
— Optional interpolation
« Think: using fp indices for arrays

 Linear, bilinear, trilinear
— Interpolation weights are 9-bit

— Optional format conversion
» {char, short, int} -> float
— All of these are “free”
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Instruction Throughput / Control Flow



Runtime Math Library and Intrinsics

* Two types of runtime math library functions
— __func(): many map directly to hardware ISA

» Fast but lower accuracy (see CUDA Programming Guide for full details)

« Examples: __sinf(x), __expf(x), ___powf(x, y)

— func(): compile to multiple instructions

» Slower but higher accuracy (5 ulp or less)

» Examples: sin(x), exp(x), pow(X, y)

A humber of additional intrinsics:
— __sincosf(), __ frcp_rz(), ...
— Explicit IEEE rounding modes (rz,rn,ru,rd)
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Control Flow

Instructions are issued per 32 threads (warp)

Divergent branches:
— Threads within a single warp take different paths
if-else, ...
— Different execution paths within a warp are serialized
Different warps can execute different code with no impact on performance
 Avoid diverging within a warp

— Example with divergence:
if (threadIdx.x > 2) {...} else {...}

Branch granularity < warp size

— Example without divergence:
if (threadIdx.x / WARP SIZE > 2) {...} else {...}

Branch granularity is a whole multiple of warp size
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Control Flow

l if(...)
c {
-S /l then-clause
(&
- }
‘g else
= {
/] else-clause
l }
v
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CPU-GPU Interaction



Pinned (non-pageable) memory

* Pinned memory enables:
— faster PCle copies
— memcopies asynchronous with CPU
— memcopies asynchronous with GPU
* Usage
— cudaHostAlloc / cudaFreeHost

» instead of malloc / free
* Implication:
— pinned memory is essentially removed from host virtual memory
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Streams and Async API

« Default API:
— Kernel launches are asynchronous with CPU
— Memcopies (D2H, H2D) block CPU thread
— CUDA calls are serialized by the driver
» Streams and async functions provide:
— Memcopies (D2H, H2D) asynchronous with CPU
— Ability to concurrently execute a kernel and a memcopy
« Stream = sequence of operations that execute in issue-order on GPU
— Operations from different streams may be interleaved
— A kernel and memcopy from different streams can be overlapped
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Overlap kernel and memory copy

 Requirements:
— D2H or H2D memcopy from pinned memory
— Device with compute capability > 1.1 (G84 and later)
— Kernel and memcopy in different, non-0 streams

* Code:
cudaStream_t streaml, stream?2;
cudaStreamCreate(&stream1);
cudaStreamCreate(&stream?2);

cudaMemcpyAsync( dst, src, size, dir, stream1 ); potentially
kernel<<<grid, block, 0, stream2>>>(...); overlapped
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Call Sequencing for Optimal Overlap

CUDA calls are dispatched to the hw in the sequence they were issued

Fermi can concurrently execute:
— Upto 16 kernels
— Upto 2 memcopies, as long as they are in different directions (D2H and H2D)

A call is dispatched if both are true:
— Resources are available
— Preceding calls in the same stream have completed

Note that if a call blocks, it blocks all other calls of the same type behind
it, even in other streams

— Type is one of { kernel, memcopy}
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Stream Examples

K1,M1,K2,M2: 4
K: kernel
M: memcopy
K1,K2,M1,M2: Integer: stread ID
-
K1,M1,M2: K1
K1,M2,M1: K1
K1,M2,M2: K1

Time —>
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More on Fermi Concurrent Kernels

» Kernels may be executed concurrently if they are
issued into different streams

* Scheduling:
— Kernels are executed in the order in which they were issued

— Threadblocks for a given kernel are scheduled if all
threadblocks for preceding kernels have been scheduled and
there still are SM resources available
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More on Fermi Dual Copy

* Fermi is capable of duplex communication with the host
— PCle bus is duplex

— The two memcopies must be in different streams, different
directions

* Not all current host systems can saturate duplex PCle
bandwidth:

— Likely limitations of the IOH chips
— If this is important to you, test your host system

© NVIDIA 2010



Duplex Copy: Experimental Results

QOO

PCle, x16
16 GB/s
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Duplex Copy: Experimental Results

QOO

PCle, x16
16 GB/s

QPI, 6.4 GT/s
25.6 GB/s

3xDDR3, 1066 MHz

25.8 GB/s

~

10.8 GB/s

DRAM

CPU-0
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Summary

Kernel Launch Configuration:
— Launch enough threads per SM to hide latency
— Launch enough threadblocks to load the GPU

Global memory:

— Maximize throughput (GPU has lots of bandwidth, use it effectively)
Use shared memory when applicable (over 1 TB/s bandwidth)
GPU-CPU interaction:

— Minimize CPU/GPU idling, maximize PCle throughput

Use analysis/profiling when optimizing:
— “Analysis-driven Optimization” talk next
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Additional Resources

Basics:

— CUDA webinars on NVIDIA website (just google for CUDA webinar)

— CUDA by Example” book by J. Sanders and E. Candrot
Profiling, analysis, and optimization for Fermi:

— GTC-2010 session 2012: “Analysis-driven Optimization” (tomorrow , 3-5pm)
GT200 optimization:

— GTC-2009 session 1029 (slides and video)
Slides:
— http://www.nvidia.com/content/GTC/documents/ 1029 GTC09.pdf

Materials for all sessions:

— http://developer.download.nvidia.com/compute/cuda/docs/GTCO9Materials.htm
CUDA Tutorials at Supercomputing:
— http://gpgpu.org/{sc2007,sc2008,sc2009}
CUDA Programming Guide
CUDA Best Practices Guide



http://www.nvidia.com/content/GTC/documents/1029_GTC09.pdf
http://developer.download.nvidia.com/compute/cuda/docs/GTC09Materials.htm
http://developer.download.nvidia.com/compute/cuda/docs/GTC09Materials.htm
http://gpgpu.org/

Questions?
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