This is a standalone BST (Binary Search Tree) data structure from the data-structure-typed collection. If you wish to
access more data structures or advanced features, you can transition to directly installing the
complete data-structure-typed package
import {BST, BSTNode} from 'data-structure-typed';
// /* or if you prefer */ import {BST, BSTNode} from 'bst-typed';
const bst = new BST();
bst instanceof BST; // true
bst.add(11);
bst.add(3);
const idsAndValues = [15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5];
bst.addMany(idsAndValues);
bst.root instanceof BSTNode; // true
if (bst.root) bst.root.id; // 11
bst.size; // 16
bst.has(6); // true
const node6 = bst.get(6);
node6 && bst.getHeight(6); // 2
node6 && bst.getDepth(6); // 3
const nodeId10 = bst.get(10);
nodeId10?.id; // 10
const nodeVal9 = bst.get(9, 'val');
nodeVal9?.id; // 9
const leftMost = bst.getLeftMost();
leftMost?.id; // 1
const node15 = bst.get(15);
const minNodeBySpecificNode = node15 && bst.getLeftMost(node15);
minNodeBySpecificNode?.id; // 12
const subTreeSum = node15 && bst.subTreeSum(15);
subTreeSum; // 70
const lesserSum = bst.lesserSum(10);
lesserSum; // 45
node15 instanceof BSTNode; // true
const node11 = bst.get(11);
node11 instanceof BSTNode; // true
const dfsInorderNodes = bst.DFS('in', 'node');
dfsInorderNodes[0].id; // 1
dfsInorderNodes[dfsInorderNodes.length - 1].id; // 16
bst.perfectlyBalance();
bst.isPerfectlyBalanced(); // true
const bfsNodesAfterBalanced = bst.BFS('node');
bfsNodesAfterBalanced[0].id; // 8);
bfsNodesAfterBalanced[bfsNodesAfterBalanced.length - 1].id; // 16
const removed11 = bst.remove(11, true);
removed11 instanceof Array; // true
if (removed11[0].deleted) removed11[0].deleted.id; // 11
bst.isAVLBalanced(); // true
bst.getHeight(15); // 1
const removed1 = bst.remove(1, true);
removed1 instanceof Array; // true
if (removed1[0].deleted) removed1[0].deleted.id; // 1
bst.isAVLBalanced(); // true
bst.getHeight(); // 4
const removed4 = bst.remove(4, true);
removed4 instanceof Array; // true
if (removed4[0].deleted) removed4[0].deleted.id; // 4
bst.isAVLBalanced(); // true
bst.getHeight(); // 4
const removed10 = bst.remove(10, true);
if (removed10[0].deleted) removed10[0].deleted.id; // 10
bst.isAVLBalanced(); // false
bst.getHeight(); // 4
const removed15 = bst.remove(15, true);
if (removed15[0].deleted) removed15[0].deleted.id; // 15
bst.isAVLBalanced(); // true
bst.getHeight(); // 3
const removed5 = bst.remove(5, true);
if (removed5[0].deleted) removed5[0].deleted.id; // 5
bst.isAVLBalanced(); // true
bst.getHeight(); // 3
const removed13 = bst.remove(13, true);
if (removed13[0].deleted) removed13[0].deleted.id; // 13
bst.isAVLBalanced(); // true
bst.getHeight(); // 3
const removed3 = bst.remove(3, true);
if (removed3[0].deleted) removed3[0].deleted.id; // 3
bst.isAVLBalanced(); // false
bst.getHeight(); // 3
const removed8 = bst.remove(8, true);
if (removed8[0].deleted) removed8[0].deleted.id; // 8
bst.isAVLBalanced(); // true
bst.getHeight(); // 3
const removed6 = bst.remove(6, true);
if (removed6[0].deleted) removed6[0].deleted.id; // 6
bst.remove(6, true).length; // 0
bst.isAVLBalanced(); // false
bst.getHeight(); // 3
const removed7 = bst.remove(7, true);
if (removed7[0].deleted) removed7[0].deleted.id; // 7
bst.isAVLBalanced(); // false
bst.getHeight(); // 3
const removed9 = bst.remove(9, true);
if (removed9[0].deleted) removed9[0].deleted.id; // 9
bst.isAVLBalanced(); // false
bst.getHeight(); // 3
const removed14 = bst.remove(14, true);
if (removed14[0].deleted) removed14[0].deleted.id; // 14
bst.isAVLBalanced(); // false
bst.getHeight(); // 2
bst.isAVLBalanced(); // false
const bfsIDs = bst.BFS();
bfsIDs[0]; // 2
bfsIDs[1]; // 12
bfsIDs[2]; // 16
const bfsNodes = bst.BFS('node');
bfsNodes[0].id; // 2
bfsNodes[1].id; // 12
bfsNodes[2].id; // 16
const {BST, BSTNode} = require('data-structure-typed');
// /* or if you prefer */ const {BST, BSTNode} = require('bst-typed');
const bst = new BST();
bst instanceof BST; // true
bst.add(11);
bst.add(3);
const idsAndValues = [15, 1, 8, 13, 16, 2, 6, 9, 12, 14, 4, 7, 10, 5];
bst.addMany(idsAndValues);
bst.root instanceof BSTNode; // true
if (bst.root) bst.root.id; // 11
bst.size; // 16
bst.has(6); // true
const node6 = bst.get(6);
node6 && bst.getHeight(6); // 2
node6 && bst.getDepth(6); // 3
const nodeId10 = bst.get(10);
nodeId10?.id; // 10
const nodeVal9 = bst.get(9, 'val');
nodeVal9?.id; // 9
const leftMost = bst.getLeftMost();
leftMost?.id; // 1
const node15 = bst.get(15);
const minNodeBySpecificNode = node15 && bst.getLeftMost(node15);
minNodeBySpecificNode?.id; // 12
const subTreeSum = node15 && bst.subTreeSum(15);
subTreeSum; // 70
const lesserSum = bst.lesserSum(10);
lesserSum; // 45
node15 instanceof BSTNode; // true
const node11 = bst.get(11);
node11 instanceof BSTNode; // true
const dfsInorderNodes = bst.DFS('in', 'node');
dfsInorderNodes[0].id; // 1
dfsInorderNodes[dfsInorderNodes.length - 1].id; // 16
bst.perfectlyBalance();
bst.isPerfectlyBalanced(); // true
const bfsNodesAfterBalanced = bst.BFS('node');
bfsNodesAfterBalanced[0].id; // 8);
bfsNodesAfterBalanced[bfsNodesAfterBalanced.length - 1].id; // 16
const removed11 = bst.remove(11, true);
removed11 instanceof Array; // true
if (removed11[0].deleted) removed11[0].deleted.id; // 11
bst.isAVLBalanced(); // true
bst.getHeight(15); // 1
const removed1 = bst.remove(1, true);
removed1 instanceof Array; // true
if (removed1[0].deleted) removed1[0].deleted.id; // 1
bst.isAVLBalanced(); // true
bst.getHeight(); // 4
const removed4 = bst.remove(4, true);
removed4 instanceof Array; // true
if (removed4[0].deleted) removed4[0].deleted.id; // 4
bst.isAVLBalanced(); // true
bst.getHeight(); // 4
const removed10 = bst.remove(10, true);
if (removed10[0].deleted) removed10[0].deleted.id; // 10
bst.isAVLBalanced(); // false
bst.getHeight(); // 4
const removed15 = bst.remove(15, true);
if (removed15[0].deleted) removed15[0].deleted.id; // 15
bst.isAVLBalanced(); // true
bst.getHeight(); // 3
const removed5 = bst.remove(5, true);
if (removed5[0].deleted) removed5[0].deleted.id; // 5
bst.isAVLBalanced(); // true
bst.getHeight(); // 3
const removed13 = bst.remove(13, true);
if (removed13[0].deleted) removed13[0].deleted.id; // 13
bst.isAVLBalanced(); // true
bst.getHeight(); // 3
const removed3 = bst.remove(3, true);
if (removed3[0].deleted) removed3[0].deleted.id; // 3
bst.isAVLBalanced(); // false
bst.getHeight(); // 3
const removed8 = bst.remove(8, true);
if (removed8[0].deleted) removed8[0].deleted.id; // 8
bst.isAVLBalanced(); // true
bst.getHeight(); // 3
const removed6 = bst.remove(6, true);
if (removed6[0].deleted) removed6[0].deleted.id; // 6
bst.remove(6, true).length; // 0
bst.isAVLBalanced(); // false
bst.getHeight(); // 3
const removed7 = bst.remove(7, true);
if (removed7[0].deleted) removed7[0].deleted.id; // 7
bst.isAVLBalanced(); // false
bst.getHeight(); // 3
const removed9 = bst.remove(9, true);
if (removed9[0].deleted) removed9[0].deleted.id; // 9
bst.isAVLBalanced(); // false
bst.getHeight(); // 3
const removed14 = bst.remove(14, true);
if (removed14[0].deleted) removed14[0].deleted.id; // 14
bst.isAVLBalanced(); // false
bst.getHeight(); // 2
bst.isAVLBalanced(); // false
const bfsIDs = bst.BFS();
bfsIDs[0]; // 2
bfsIDs[1]; // 12
bfsIDs[2]; // 16
const bfsNodes = bst.BFS('node');
bfsNodes[0].id; // 2
bfsNodes[1].id; // 12
bfsNodes[2].id; // 16
API Docs
Live Examples
Examples Repository
Data Structure |
Unit Test |
Performance Test |
API Docs |
Binary Search Tree (BST) |
|
|
BST |
Standard library data structure comparison
Data Structure Typed |
C++ STL |
java.util |
Python collections |
BST<K, V> |
- |
- |
- |
bst
test name |
time taken (ms) |
executions per sec |
sample deviation |
10,000 add randomly |
31.59 |
31.66 |
2.74e-4 |
10,000 add & delete randomly |
74.56 |
13.41 |
8.32e-4 |
10,000 addMany |
29.16 |
34.30 |
0.00 |
10,000 get |
29.24 |
34.21 |
0.00 |
Built-in classic algorithms
Algorithm |
Function Description |
Iteration Type |
Binary Tree DFS |
Traverse a binary tree in a depth-first manner, starting from the root node, first visiting the left subtree,
and then the right subtree, using recursion.
|
Recursion + Iteration |
Binary Tree BFS |
Traverse a binary tree in a breadth-first manner, starting from the root node, visiting nodes level by level
from left to right.
|
Iteration |
Binary Tree Morris |
Morris traversal is an in-order traversal algorithm for binary trees with O(1) space complexity. It allows tree
traversal without additional stack or recursion.
|
Iteration |
Software Engineering Design Standards
Principle |
Description |
Practicality |
Follows ES6 and ESNext standards, offering unified and considerate optional parameters, and simplifies method names. |
Extensibility |
Adheres to OOP (Object-Oriented Programming) principles, allowing inheritance for all data structures. |
Modularization |
Includes data structure modularization and independent NPM packages. |
Efficiency |
All methods provide time and space complexity, comparable to native JS performance. |
Maintainability |
Follows open-source community development standards, complete documentation, continuous integration, and adheres to TDD (Test-Driven Development) patterns. |
Testability |
Automated and customized unit testing, performance testing, and integration testing. |
Portability |
Plans for porting to Java, Python, and C++, currently achieved to 80%. |
Reusability |
Fully decoupled, minimized side effects, and adheres to OOP. |
Security |
Carefully designed security for member variables and methods. Read-write separation. Data structure software does not need to consider other security aspects. |
Scalability |
Data structure software does not involve load issues. |