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Topological Quantum Matter
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® The TKNN formula (on behalf of David
Thouless)

® [he Chern Insulator and the birth of
“topological insulators”

® Quantum Spin Chains and the “lost
preprint”



® |n high school chemistry, we learn that
electrons bound to the nucleus of an
atom move in closed orbits around the

nucleus , and quantum mechanics then
fixes their energies to only be one of a
discrete set of energy levels.
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The rotational symmetry of the
— 2p spherical atom means that there
25 are some energy levels at which
there are more than one state




® This picture (which follows from the Heisenberg uncertainty
principle) is completed by the Pauli exclusion principle, which
says that no two electrons can be in the same state or “orbital”
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An additional ingredient is that electrons
have an extra parameter called “spin”
which takes values “up” ( T) and

“down” (1)

This allows two electrons (one T,onel)
to occupy each orbital



® |[f electrons which are not bound to atoms are free to
move on a two-dimensional surface, with a magnetic field
normal to the surface, they also move in circular orbits
because there a magnetic force at right angles to the
direction in which they move

® In high magnetic fields, all electrons have spin T pointing in
the direction of the magnetic field
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As in atoms, the (kinetic) energy of the
electron can only take one of a finite set of
values, and now determines the radius of the
orbit (larger radius = larger kinetic energy)




® As with atoms, we can draw an energy-level diagram:
(spin direction is fixed in each level)
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number of orbitals is proportional to area of surface!

degeneracy of _ Total magnetic flux through surface B x area

Landau level (London) quantum of magnetic flux h/e



® For a fixed density of electrons let’s choose the
magnetic field B just right, so the lowest level is filled:
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This appears to describe the integer quantum Hall states
discovered by Klaus von Klitzing (Nobel Laureate 1985)

BUT: seems to need the magnetic field to be “fine-tuned”.

In fact, this is a “topological state” with extra physics at edges of the system that fix this
problem



way’’ edge states (Halperin)

® confined system with edge
must have edge states!

______ :: Fermi level
Ey IA bulk &P > pinned at edge
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magnetic field



® The integer quantum Hall effect (1980)
was the first “topological quantum
state” to be experimentally discovered

(Nobel Laureate 985, Klaus von
Klitzing)

® Hall conductance current
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dissipationless current
) — jnteger flows at right angles to electric field

(number of filled Landau levels)



® Von Klitzing’s system is much dirtier that
the theoretical toy model and work in the
early 1 980°s focussed on difficult problems

of disorder, random potentials and localized
states

® David Thouless had the idea to study the
effect of a periodic potential in perturbing
the flat Landau levels of the integer
quantum Hall states:




Bob Laughlin (Laureate 1998 for fractional QHE ) gave a clear argument
AV for quantization of the Hall conductance in this case

edge edge
flat potential in bulk
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The TKNN or TKN?2 paper

Quantized Conductance in a Two-Dimensional Periodic Potential

D. ]. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs
Physical Review Letters 49,405 (1982)

® |n 1982 David Thouless with three postdoc
collaborators (TKNN) asked how the presence of a
periodic potential would affect the integer quantum
Hall effect of an electron moving in a uniform magnetic

field

® They found a remarkable formula .....



® David became particularly interested in an
interesting ““toy model”, of a crystal in a
magnetic field, a family of models including
the “Hofstadter Butterfly”



H=_|p—cA(r) +U(r)

U(r) = Uy(cos(2mx/a) + cos(2my/a))

® Harper’s equation (square
symmetry) or

® “Hofstadter’s Butterfly” splits
the lowest Landau level into

0§ ' bands separated by gaps.
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® The band are very narrow, and
the gaps wide, for low magnetic
flux per cell (like Landau levels)

, color-coded Hall conductance

I magnetic flux per unit cell

simple Landau

o e colored “butterfly” courtesy of D. Osadchy and |.Avron
level limit Y Y y and]



® TKNN pointed out that
Laughlin’s argument just
required a bulk gap at the
Fermi energy for the Hall
conductance to be
quantized as integers

® So it should work in gaps
between bands of the
“butterfly”

® so what was the integer?

> magnetic flux per unit cell
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® Bloch’s theorem for a particle in a periodic

potential
U (1) = un(k,r)e™™  periodic factor that varies over
< the unit cell of the potential

® Starting from the fundamental Kubo formula for electrical
conductivity, TKNN obtained a remarkable formula that
does not depend in any way on the energy bands,
but just on the Bloch wavefunctions:
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TKNN first form

Sum over fully-occupied bands
below the Fermi energy
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® Shortly after the TKNN paper was published,

Michael Berry (1983) (Lorentz Medal, 2014)
discovered his famous geometric phase in
adiabatic quantum mechanics.

® (The Berry phase is geometric, not topological, but many consider this
extremely influential work a contender for a Nobel prize).

® Berry’s example: a spin S aligned along an axis

direction of spin moves on closed
path on unit sphere
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® the mathematical physicist Barry Simon (1983)
then recognized the TKNN expression as an
integral over the (Berry) curvature associated
with the Berry’s phase, on a compact manifold:
the Brillouin zone.

® This is mathematical extension of Carl Friedrich

Gauss’'s™ 1828 Theorema Egregium
“remarkable theorem”

*foreign member of Royal Swedish
Academy of Sciences



® geometric properties (such as curvature) are
local properties

® but integrals over local geometric properties may
characterize global topology!

Gauss-Bonnet (for a closed surface)

d*r(Gaussian curvature) = 47(1 — genus)

product of 1/

principal radi of = 27 (Euler characteristic)

cuvature 149

e trivially true for a sphere, but non-trivially true
for any compact 2D manifold
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Berry curvature

an antisymmetric tensor in momentum space

® The two-dimensional 1982 TKNN formula
d*k ng(k) This is an integral over a @
27)?

2
ab €
oY = —
H h zn: /BZ ( “doughnut”: the torus define by a
complete electronic band in 2D

Interestingly It emerged in 1999 that a (non-topological) 3D version
of this form applied to the anomalous Hall effect in ferromagetic
metals can be found in a 1954 paper by Karplus and Luttinger that
was unjustly denounced as wrong at the time!




® first form of the TKNN formula
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Like a magnetic flux but in k-space/Like a magnetic vector
(the Brillouin zone) potential in k-space

Berry’s phase (defined modulo 2m)is oi®5 () _ exp ( 7{ dk, Al (k ))
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® TKNN give the formula as
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| learned from Marcel den Nijs, and Peter Nightingale that
their memory is that the inclusion of this explicit general
formula (in a single paragraph) was an “afterthought” while
writing the paper, which was focussed on the specific values of
the integers for the Hofstadter model!

® Another quote from Marcel:“the genius of David Thouless to choose

the periodic potential generalization[to split the Landau level] not the
random potential one was the essential step”




® We finally arrive at the central TKNN result:

Integral of the (Berry) curvature over the
2D Brillouin zone = 27 times an integer C

62

Hall conductance: ox = - X C
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Chern number



OHE without Landau levels

® The 1982 TKNN paper considered the
effect of a periodic potential on Landau
Levels due to a strong magnetic field

® |n |988,| for reasons that are too long to
describe here, | found that the Landau
levels could be dispensed with altogether,
provided some magnetism (broken time-
reversal symmetry) was present.



The 2D Chern insulator

® This was a model for a “quantum
Hall effect without Landau
levels” (FDMH 1988), now
variously known as the “quantum
anomalous Hall effect” or “Chern
insulator”.

® |t just involves particles hopping on
a lattice (that looks like graphene)
with some complex phases that
break time reversal symmetry.

® By removing the Landau level
ingredient, replacing it with a more
standard crystalline model the
“topological insulators” were born
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Kane and Mele 2005

® Two conjugate copies of the 1988 spinless
graphene model, one for spin-up, other for

spin-down
P Zeeman coupling

B=0 opens gap
At edge, spin-up moves
/ one way, spin-down

the other way
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If the 2D plane is a plane of mirror symmetry, spin-
orbit coupling preserves the two kind of spin.
Occupied spin-up band has chern number +1,

occupied spin-down band has chern-number -1.



From the account of Marcel Den Nijs, the TKNN
formula was found unexpectly “by accident” because
David picked just the right “toy model” to study

In 1981, | made a similar “unexpected discovery” that
may be the simplest example of “topological matter

® |nteger and half-integer quantum
Antiferromagnetic Chains, “Quantum
Kosterlitz-Thoulessand the “lost preprint”.



® |LL preprint SP81-95 (unpublished) (now available on arXiv)

® This original preprint was rejected by two journals and when the
result was finally published, the connection to the Kosterlitz-
Thouless work has been removed.

® The original preprint was lost, but now is found!

One dimensional guantum spin chains are currently the subject of much

study. In this note, I outlins some new rasults on axially—symmatric spin

chains, without restriction on S, that cenfirm and extend earlier results’ ??

rastrictad to spin 5 = 3, knd lead to an unexpected conclusion: $hile half-
integral spin isofropic antiferromagnets have a gapless linear spin wave

. | =4 -
spactrum and power—-law decay of ground state corrslations{<§;-5;)~(—4)nn 1,

integral spin systems have a singlet ground state, with a gap for"massive™

1 elementary excitations, and aggdnential decay of ground state correlations:




® Conventional magnetic ground states have
long-range order, without significant
entanglement (modeled by product states)

H——JZS H:JZS}-S*}
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(4,5)
Ferromagnet Antiferromagnet
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AB AB AB ABAGB
spin direction is
arbitrary, but same
for all spins

spin direction is arbitrary,

but same for all spins on
same sublattice, opposite
lattice spins are antiparallel



H=-J) 5;-5
(9,3)
Ferromagnet

VWA NN A

H=J) ;5

neighbors—(; ;)

Antiferromagnet

NAVA AR VA

AB AB AB ABAB

Has a conserved order
parameter direction
(conserved total spin
angular momentum)

order parameter direction is
NOT conserved (zero total
spin angular momentum)

quantum fluctuations destroy
true long range order in one
spatial direction




® For a long time the conventional wisdom assumed
the one-dimensional antiferromagnetic systems
behaved like the ordered 3D systems, with a
harmonic-oscillator treatment of small
fluctuations around the ordered state.

® This was partly due to a misinterpretation of a
remarkable exact solution in 1931 of the S=1/2
chain by Hans Bethe* (before he moved on to
nuclear physics!) The full understanding of Bethe’s
solution required almost fifty years!

* David Thouless’s Thesis Advisor at Cornell!



® |n the mid-1970’, another piece of work
from the 1930’s (the Jordan-Wigner
transformation) provided another more
standard way to analyze the spin-1/2 chain
without Bethe’s method.

(spinless) fermions:

fermion operators
on different sites
anticommute!

needed so that [S;", 5] =0



® This converts the spin-1/2 chain into a
fermion problem

H = Z%(Si_l_sz’_—kl -5 Sz—:l) + A5 S

A < 1 easy plane | A > 1 easy axis

H = Z %(C;—Cﬁ_l -+ C,:-r_l_lci) + )\(nz — %)(ni—l—l o %)

tE A =0

free fermions
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“Umklapp processes”

Half-filled band (in zero magnetic field)



® Converting to a field theory (Luther and Peschel:)

Hy = —i [de(yL0,05 — ¢! 0,01 4|(F Umbklapp!?
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® Around that time | developed the
“Luttinger liquid theory” (a fit of
microscopic models to an effective
Tomonaga/Luttinger model), an
Abelian precursor to the later-
developed and more general
conformal field theory, and applied it
to this model:

® From the numerical results using
Bethe’s methods it the presence of
the till-then missed Umklapp term
was obvious, and driving a quantum
analog of the Kosterlitz-Thouless
transition, but with a “double vortex”

rather than a single vortex
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® The topological Kosterlitz-Thouless transition occurs in a
“classical” system in two dimensions at finite temperature, but
there is a well-know mapping from classical statistical mechanic:
in two spatial dimensions to quantum mechanics “(1+1)
dimensions” (1D space + time)

® One difference is that in classical mechanics the Boltzmann
probability is always positive, while the quantum amplitude can
be positive, negative or complex giving rise to interference
effects.

These spins rotate These spins rotate by ’9
1800 anticlockwise 1800 clockwise vortex
fime t /;¢f7‘j§'( Vi *: in space-time=
I ; T
f_»ﬁ_,ﬁé:}_ }‘,5_\_’“- winding-number
AR tunneling event
(IR N SR R S &

- |d space



These spins rotate : These spins rotate
180° anticlockwise : 180° clockwise

tme | ¢ 77778 NN\
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_o-0-0-0-0-0-0-0006 |d space
® The tunneling events (vortices) occur on “bonds”
that couple neighboring spins.

® |[f the bonds are equal strength, and the vortex is
moved one bond to the right, one spin that formerly
rotated 180° clockwise now rotates anticlockwise.

® The difference is a 360° rotation which gives phase
factor of -1(and destructive quantum interference) if

the spin is half-integral, 4-1 if not.



® From this, it became clear that the
progression from easy plane to easy axis
was different for integer and half-integer
spin antiferromagnets

easy-plane isotropic easy-axis
(XY) (Heisenberg) (Ising)
A< 1 =1 A>1
half-integer S |
gapless, topologically-ordered I gapped long-range Ising order
with conserved winding number T (two-fold degenerate ground state)

double-vortex Kosterlitz-
Thouless transition

integer S non-degenerate gapped phase

¢ .
TOPO|0g|ca| gapped long-range Ising order
matte r!” T(two-fold degenerate ground state)

gapless, topologically-ordered
with conserved winding number
single-vortex Kosterlitz- Ising transition
Thouless transition




® The new gapped phase in a“window”
containing the integer-spin isotropic
Heisenberg point turned out to be the first
example of what is now called “topological
matter”

® The window is large for S=1, but gets very
small for S =2, 3, .....

® [he S=1 case is now classified as a

“Symmetry-Protected Topological Phase” (the
“protective symmetries’’ are time-reversal
and spatial inversion)



later developments were:

® the identification of a topological “theta” term in the
effective field theory of the Heisenberg
antiferromagnet that distinguishes integer and half-
integer spins. This perhaps started to popularize
Lagrangian actions to complement Hamiltonian
descriptions in condensed matter theory.

® the identification (Affleck, Kennedy, Lieb, Tasaki) of the
“AKLT model” that provides a very simple model
state, which explicitly exhibits the remarkable

topological edge states and entanglement of this
phase



o AKLT state (Affleck, Kennedy,Lieb, Tasaki)

® regard a“spin-1"object as symmetrized product of two
spin-1/2 spins, and pair one of these in a singlet state

with “half” of the neighbor to the right, half with the
neighbor to the left:
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. maximally
left unpaired at entangled

each free end! 0 — (2) singlet state




® The fragments of old work presented here may have
seemed difficult for non-experts to understand, but
mark the beginnings of what has turned into a
completely now way to look at quantum properties of
condensed matter

® A large experimental and theoretical effort is
underway to find and characterise such new
materials, study entanglement, and dream of new
“quantum information technolgies”

® |t has been a privilege to have contributed to these
new ideas, and | thank the Royal Swedish Academy of
Sciences for honoring us and our exciting field.



