Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	M. S. Basunia	NDS 181, 475 (2022)	1-Jan-2022

 $Q(\beta^{-}) = -884 6$; S(n)=6023 5; S(p)=3499 5; $Q(\alpha) = 9254 5 2021$ Wa16 Assignment: daughter of ²²⁹Np, ²²⁵Pa, ²²¹Ac, and ²¹⁷Fr (1968Ha14,1970Bo13).

Induced fission data from ${}^{209}\text{Bi}(\alpha, f)$ reaction were taken, and fission barrier parameters were deduced by 1982Gr21, 1982Gr24, 1983Gr17, 1984Gr06, 1984Gr13, 1984Ig01, 1984It01, 1985It01, 1986Be20, 1986It01, 1987It03, and 1988Gr16.

2020De36: ²³⁸U(⁴⁸Ca,X), E=233.3 MeV; measured multi-nucleon transfer reaction cross section $\sigma_{\text{cumulative}}$ =54.0 nb/sr 12 for ²¹³At.

2015Ba20: ¹³⁶Xe + ²⁰⁸Pb, E(c.m.)=450 MeV, measured multi-nucleon transfer reaction cross section $\sigma_{\text{cumulative yield}}=0.384 \text{ mb}$ 77 and $\sigma_{\rm independent \, yield}{=}0.384$ mb 77 for $^{213}{\rm At.}$

See 1972Mo10, 1973Ba19, 1974Ba87, 1977Ha41, 1977Pr10, 1979Ad07, 1979Ig04, 1980Ig02, 1983Br06, 1983Br15, 1984Ni09, and 1984Ro23 for calculations of fission barriers and probabilities for decay by fission. Effective moment of inertia was calculated by 1982Ad01.

²¹³At Levels

Cross Reference (XREF) Flags

²¹⁷Fr α decay

A

 208 Pb(⁷Li,2n γ), 209 Bi(18 O, 14 C γ) 209 Bi(7 Li,p2n γ), 209 Bi(8 He,4n γ) В

С

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0	9/2-	125 ns 6	ABC	%α=100
				Possible $\%\varepsilon$ decay to ²¹³ Po g.s. is expected to be $<2.5\times10^{-12}$ from log <i>ft</i> >5.1.
				J^{π} : favored α decay to ²⁰⁹ Bi g.s. ($J^{\pi}=9/2^{-}$).
				Configuration: π (h ⁺¹ _{9/2}).
				$T_{1/2}$: from 1981Bo29. Other measurements: <2 s (1968Ha14), 110 ns (1975LiZH), 110 ns 20 (1970Bo13, 1976Da18).
				Probability for decay by ⁸ Be emission relative to α emission was calculated by 1986Pi11. See 1973Ma52 for theoretical calculations of α -decay probabilities.
				See also 1976De25 for absolute reduced $\Gamma(\alpha)$ obtained by analyzing ²⁰⁹ Bi(α) reaction cross sections. α clustering effects were studied by 1982Ka37. $F\alpha$ =9080 5 (1988Hu08) 9080 <i>l</i> 2 (1970Bo13) 9060 <i>20</i> (1968Ha14)
340 5 3	$(7/2^{-} 0/2^{-})$	<5.5 <mark>%</mark> ns	R	I^{π} : 340 5v (M1 E2) to $9/2^{-}$ state. Dominant π (f ⁺¹) with possible π
540.5 5	(1/2 ,)/2)	<u></u> 113	b	$(h_{1/2}^{+1}) \otimes 2^+$ admixture.
724.6.3	$(13/2^{-})$	<5.5 <mark>%</mark> ns	BC	$I^{\pi_{1}}_{724} = 6\gamma (E^{2}) \text{ to } 9/2^{-} \text{ state}$
121100	(10/=)	_010 110	20	Possible configuration: π (h ⁺¹ _e) $\otimes 2^+$.
1111.3 5	$(15/2^{-})$	<5.5 <mark>&</mark> ns	BC	J^{π} : 386.7 γ (M1+E2) to (13/2 ⁻) state.
1129.7.5	$(17/2^{-})$	<5.5 ^{&} ns	BC	I^{π} : 405 γ (E2) to (13/2 ⁻) state.
	(,-)			Possible configuration: π (h ⁺¹ ₀₍₂₎) \otimes 4 ⁺ .
1318.1.6	$(19/2^{-})$	<5.5 <mark>&</mark> ns	BC	J^{π} : 188.4 γ D to (17/2 ⁻) state.
1318.1+x	(110 ns <i>17</i>	В	E(level), J^{π} : 1358 23 (2021Ko07 – NUBASE) and 25/2 ⁻ from systematics (2021Ko07 – NUBASE).
				$T_{1/2}$: from 386.7 γ (t) in ²⁰⁸ Pb(⁷ Li,2n γ) (1980Sj01 – also 113 ns <i>10</i> from 405 γ (t) measurements).
1318.1+y	$(27/2^{-})^{\#}$	85 [@] ns	С	···· ·
1681+y	$(29/2^+)^{\#}$		С	
1838+y	$(33/2^+)^{\#}$	82 [@] ns	С	
2194+y	(35/2 ⁻) [#]		С	

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

²¹³At Levels (continued)

E(level) [†]	Jπ‡	T _{1/2}	XREF	Comments
2570+y	$(37/2^{-})^{\#}$		С	
2620+y	(43/2 ⁻) [#]	34.7 [@] ns	С	possible configuration: π ([h _{9/2} ⁺² ,f _{7/2} ⁺¹] _{23/2} -) ν ([(g _{9/2} ⁺¹ ,i _{11/2} ⁺¹] ₁₀ +) (2003LaZZ). T _{1/2} : A low-energy (50-keV) unobserved transition was postulated to explain the observed isomer (2003LaZZ – (⁷ Li,p2n χ)).
2926+y	(49/2 ⁺) [#]	45 μs 4	С	E(level): 2998 27 (2021K007 – NUBASE). possible configuration: π ([$h_{9/2}^{+2}$, $i_{13/2}^{+1}$] _{29/2+}) ν ([$g_{9/2}^{+1}$, $i_{11/2}^{+1}$] ₁₀₊) (2003LaZZ). 306 γ [E3] to 43/2 ⁻ state. T _{1/2} : From 306 γ (t) (2003LaZZ – (⁷ Li,p2n γ)).

[†] From E γ . Energy levels at 1318.1+y keV and above are from ²⁰⁹Bi(⁷Li,p2n γ). These level energies are about 235 keV less than the level energy presented in 2003LaZZ. Evaluator labeled these levels with '+y', because placement of some highly converted low energy γ -lines between (27/2⁻) and 19/2⁻ states are not clear and the evaluator placed those gammas as unplaced in the ²⁰⁹Bi(⁷Li,p2n γ),²⁰⁹Bi(⁸He,4n γ) dataset.

[‡] From γ transition multipolarity, deduced from measured γ -ray angular distribution in ²⁰⁸Pb(⁷Li,2n γ), except otherwise noted.

[#] From 2003LaZZ (⁷Li,p2n γ), detailed arguments are not available. It appears that the assignment was based on the placement of gamma transitions in the level scheme following the decay of 2626+y isomer (J^{π}=(49/2⁺)), shell model calculations, and comparison with a comparable isomer at 4771.4 (J^{π}=(25⁻)), T_{1/2}=152 μ s 5, in ²¹²At.

[@] From time-difference spectra by gating on γ -ray transition above and below the level of interest in ²⁰⁹Bi(⁷Li,p2n γ) (2003LaZZ). [&] From ²⁰⁸Pb(⁷Li,2n γ),²⁰⁹Bi(¹⁸O,¹⁴C γ) (1980Sj01).

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	E_f	J_f^π	Mult. [#]	α [@]	Comments
340.5	(7/2 ⁻ ,9/2 ⁻)	340.5 3	100	0.0	9/2-	(M1,E2)	0.24 15	$\alpha(K)=0.18 \ 14; \ \alpha(L)=0.043 \ 14; \alpha(M)=0.0104 \ 28 \alpha(N)=0.00270 \ 72; \ \alpha(O)=5.7\times10^{-4} \ 17; \alpha(P)=7.3\times10^{-5} \ 28$
724.6	(13/2 ⁻)	724.6 3	100	0.0	9/2-	(E2)	0.01473	$\alpha(\mathbf{K}) = 0.01106 \ 16; \ \alpha(\mathbf{L}) = 0.00278 \ 4; \\ \alpha(\mathbf{M}) = 0.000683 \ 10 \\ \alpha(\mathbf{N}) = 0.0001766 \ 25; \ \alpha(\mathbf{O}) = 3.67 \times 10^{-5} \ 6; \\ \alpha(\mathbf{P}) = 4.64 \times 10^{-6} \ 7 $
1111.3	(15/2 ⁻)	386.7 <i>3</i>	100	724.6	(13/2 ⁻)	(M1+E2)	0.17 11	$\alpha(\mathbf{K}) = 0.132 \ 93; \ \alpha(\mathbf{L}) = 0.029 \ 11; \\ \alpha(\mathbf{M}) = 0.0071 \ 23 \\ \alpha(\mathbf{N}) = 0.00183 \ 59; \ \alpha(\mathbf{O}) = 3.8 \times 10^{-4} \ 14; \\ \alpha(\mathbf{P}) = 5.0 \times 10^{-5} \ 22$
1129.7	(17/2 ⁻)	(18.4)		1111.3	(15/2 ⁻)			Transition was not observed. Its existence is inferred from the observed (188.4)(386.7 γ) coincidences. Intensity balance at 1111.3 level yields I(γ +ce)(18.4)/I γ (405.1 γ)<1.2 4.
		405.1 3	100	724.6	(13/2 ⁻)	(E2)	0.0568	$\alpha(K)=0.0354 5; \alpha(L)=0.01600 23;\alpha(M)=0.00410 6\alpha(N)=0.001061 16; \alpha(O)=0.000215 3;\alpha(P)=2.49\times10^{-5} 4$
1318.1	$(19/2^{-})$	188.4 <i>3</i>	100	1129.7	$(17/2^{-})$	D		
1681+y	$(29/2^+)$	363 [‡]	100	1318.1+y	$(27/2^{-})$			
1838+y	$(33/2^+)$	156 [‡]		1681+y	$(29/2^+)$			

$\gamma(^{213}\text{At})$

Adopted Levels, Gammas (continued)

$\gamma(^{213}\text{At})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	Iγ	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α [@]	Comments
1838+y	$(33/2^+)$	520 [‡]		1318.1+y	(27/2 ⁻)			
2194+y	$(35/2^{-})$	356 [‡]	100	1838+y	$(33/2^+)$			
2570+y	$(37/2^{-})$	376 [‡]	100	2194+y	$(35/2^{-})$			
2620+y	(43/2 ⁻)	(50)		2570+y	(37/2 ⁻)			E_{γ} : A low-energy (50-keV) unobserved γ transition was postulated to explain the observed isomer (2003LaZZ - (⁷ Li,p2n γ)).
2926+у	(49/2+)	306‡	100	2620+y	(43/2 ⁻)	[E3]	0.707	B(E3)(W.u.)=23 2 α (K)=0.1716 24; α (L)=0.393 6; α (M)=0.1075 15 α (N)=0.0280 4; α (O)=0.00558 8; α (P)=0.000600 9 The large B(E3)(W.u) value implies ΔJ=ΔL=3 transition, which is consistent with the π (i ⁺¹ _{13/2}) → π (f ⁺¹ _{7/2}) orbitals change.

[†] From ²⁰⁸Pb(⁷Li,2nγ), except otherwise noted.
[‡] From ²⁰⁹Bi(⁷Li,p2nγ),²⁰⁹Bi(⁸He,4nγ).
[#] From ²⁰⁸Pb(⁷Li,2nγ) (1980Sj01), based on γ(θ) and RUL, except where otherwise noted.
[@] Additional information 1.

Adopted Levels, Gammas Legend Level Scheme Intensities: Relative photon branching from each level γ Decay (Uncertain) ۲ + ³a_{6 (E3)} 1₀₀ 2926+y $(49/2^+)$ 45 μs 4 37 too ŝ 2620+y 2570+y (43/2-) 34.7 ns (37/2-) ł + 35_{6 100} 2194+y $(35/2^{-})$ + 3₆₃ 1 100 *6666* 156 (33/2+) 1838+y 82 ns 1681+y $(29/2^+)$ | 1^{68; x} D 100 | 11+453 100 + *05[|] | | (2) /00 13<u>18.1+y</u> $(27/2^{-})$ 85 ns ≤5.5 ns (19/2-) 9 1318.1 36 96 > | $(17/2^{-})$ 1129.7 \leq 5.5 ns + 224.6 (22) 100 (15/2-) ¥ 1111.3 \leq 5.5 ns + 340,5 Art 2) 000 $(13/2^{-})$ 724.6 \leq 5.5 ns (7/2⁻,9/2⁻) 340.5 \leq 5.5 ns 9/2-0.0 125 ns 6

 $^{213}_{85}{\rm At}_{128}$