	т	vne		History	Citation	Literature Cutoff Date					
	Full E	valuation	K. Auranen	and E. A. Mccutchan	NDS 168, 117 (2020)	1-Aug-2020					
$Q(\beta^{-})=31 4;$ S(2n)=12799 α : Additional	S(n)=5052 <i>3</i> ; <i>8</i> ; S(2p)=841 information	S(p)=3484. 4.2 20 (2017 1.	6 22; Q(α)=7 7Wa10).	817.1 6 2017Wa10							
				²¹² At Lev	vels						
				Cross Reference (2	XREF) Flags						
			A ²¹⁶ Fr B ²⁰⁸ Pb C ²⁰⁹ Bi	$\begin{array}{l} \alpha \ \text{decay} \ (0.70 \ \mu \text{s}) D \\ (^7 \text{Li}, 3 n \gamma) \qquad E \\ (\alpha, n \gamma) \qquad F \end{array}$	216 Fr α decay (71 n 212 At IT decay (152 216 Fr α decay (850	s) 2 μs) ns)					
E(level) [†]	J ^{##}	$T_{1/2}^{\ddagger}$	XREF		Comme	nts					
0.0	(1 ⁻) ^{&}	0.314 s 3	A CD	$%\alpha = 100$ J ^π : analogy with ²¹⁰ E J ^π =4 ⁺ in ²⁰⁸ Bi. T _{1/2} : weighted average <i>15</i> (1999Ho28), and %β ⁻ : from log ft>5.1 one obtains %β ⁻	B; $J^{\pi}=0^{-}$ is excluded by ge of 0.315 s 3 (1970Ref d 0.31 s 3 (2007Ku30). (minimum value expect 2×10^{-6}	the α group from ²¹² At(g.s.) to (02), 0.313 s 3 (1974Ba29), 0.306 s Other: 0.305 s (1963Jo09). red for a first- forbidden transition),					
54.99 20 160.30 10 205.30 14	one obtains $\%\beta^- < 2 \times 10^{-6}$. $\%\epsilon + \%\beta^+$: from log $ft > 5.1$ (minimum value expected for a first- forbidden transition) for decay to 212 Po g.s, one obtains $\%\epsilon + \beta^+ < 3 \times 10^{-2}$. (1 ⁻ ,2 ⁻) <1 [@] ns CD J^{π} : (M1) 55.0 γ to (1 ⁻), (M1+E2) 308.9 γ from (2 ⁻). (2 ⁻) A CD J^{π} : M1 160.3 γ to (1 ⁻) g.s., M1 45.0 γ from (3 ⁻). (3 ⁻) A CD J^{π} : allowed, unhindered α decay from 216 Fr ($J^{\pi} = (3^-)$).										
222.9 4	(9 ⁻)&	0.121 s 2	BC EF	$%\alpha$ =99.5 5; %IT=0.5 5 E(level): from 1976FrZO. J ^π : HF=1.9 for alpha group from ²¹⁶ Fr (J ^π =(9 ⁻)), analogy with ²¹⁰ Bi. T _{1/2} : weighted average of 0.122 s <i>I</i> (1970Re02), 0.115 s 2 (1974Ba29), 0.125 s <i>I</i> 7 (1999Ho28), and 0.125 s 25 (2007Ku30). Other: 0.120 s (1963Jo09). %α: based on nonobservation of ce in the range 100≤Eγ≤600 (1963Jo09), the							
275.2 10		$32^{\textcircled{0}}$ ns 1	С								
328.0 9	(8 ⁻)	<1 [@] ns	C	J^{π} : (M1+E2) 105.1 γ 1604.5 keV level.	to 9 ⁻ level; not fed by c	ascading transitions from (15 ⁻)					
345.7 10 363.7 7 622.6 10 635.3 10	(⁻) (2 ⁻) (⁻)		C C C C	J^{π} : (M1(+E2)) 290.7 γ to (1 ⁻ ,2 ⁻). J^{π} : (M1) 363.6 γ to (1 ⁻) g.s. J^{π} : (M1) 567.6 γ to (1 ⁻ ,2 ⁻).							
701.4 <i>4</i> 748.0 <i>10</i> 768.9 <i>10</i> 779.1 <i>10</i>	$(10^{-})^{a}$ $(1^{-},2^{-},3^{-})$ $(1^{-},2^{-},3^{-})$	≤1.4 ns	BC E C C C	J^{π} : M1 478.5 γ to (9 ⁻ J^{π} : (M1) 587.7 γ to (2 J^{π} : (M1) 608.6 γ to (2), (E1) 183.9γ from (11 ⁻ 	+).					
783.5 <i>12</i> 839.9 <i>10</i> 842.9 9 845.7 <i>10</i>	$(1^{-},2^{-},3^{-})$ $(1^{-},2^{-},3^{-})$ (7^{-}) $(1^{-},2^{-},3^{-})$		C C C	J^{π} : (M1) 419.8 γ to (2 J^{π} : (M1+E2) 679.6 γ J^{π} : (M1) 514.8 γ to (8 J^{π} : (M1) 685.4 γ to (2	2 ⁻). to (2 ⁻). 3 ⁻); (E2) 620.0γ to (9 ⁻). 2 ⁻).						
885.4 4	$(11^+)^d$	18.7 ns 7	BC E	$ \mu = 5.94 \ 11 J^{\pi}: M2 \ 662.5\gamma \text{ to } (9^{-1} \mu: \text{ from g-factor} = 0.54 (1979 \text{ sj01}). $), configuration assignm I (1994By01, 2014StZ	ent. Z). Other: g-factor=0.541 11					

²¹²At Levels (continued)

E(level) [†]	J ^{π#}	$T_{1/2}^{\ddagger}$	XREF	Comments			
				$T_{1/2}$: other: 20 ns 4 from $184\gamma(t)$ in 209 Bi $(\alpha,n\gamma)$.			
890.4 12	(_)		С	J^{π} : (M1) 526.7 γ to (1 ⁻ ,2 ⁻).			
920.8 <i>3</i>	(4 ⁻)		С	J^{π} : (E2) 760.5 γ to (2 ⁻).			
1082.5 14			C				
1117.7 10			C				
1209.5 14	(10+) h	.0.7	C				
1262.4 5	$(12^+)^{\bullet}$	$\leq 0.7 \text{ ns}$	BC E	J^{n} : M1 3//.0y to (11 ⁺).			
1265.0 5	(12) (11^{-})	$\leq 4 \text{IIS}$	BC	J^{-1} . (W11) J^{-2}/J^{-1} to (11). $I^{\pi_{1}}$ (F2) 1094 0v to (9 ⁻¹) F2 223 7v from (13 ⁻¹)			
1321.4.5	$(11^+, 12^+)$	≤ 2 ns	BC	J^{π} : (M1) 436.0v to (11 ⁺) level.			
1428.6 11	(11^{-})		BC	J^{π} : (M1) 727.2 γ to (10 ⁻).			
1457.5 10	(5 ⁺)		С	J^{π} : (E1) 536.7 γ to (4 ⁻).			
1540.5 5	(13 ⁻) ^{&}	≤1.4 ns	BC E	J^{π} : E1 278.1 γ to (12 ⁺).			
1548.4 <i>13</i>			В				
1604.3 9	(15 ⁻) ^{&}	35.4 ns 14	BC E	μ=9.46 <i>8</i>			
				J^{π} : (E2) 63.9 γ to (13 ⁻), configuration assignment.			
				μ : from g-factor=0.631 5 (1994By01,2014StZZ). Othe: g-factor=0.622 10,			
1 6 5 1 1 1 1	(12+)			$\mu = 9.33 \ 15 \ (1979 \text{Sj}01, 2014 \text{StZZ}).$			
1651.1 11	(13 ⁺)		C	J^{n} : (E2) 765.7 γ to (11 ⁺).			
1710.6 9	$(14^{-})^{\alpha}$		ΒE	J^{π} : 170.1 γ to (13 ⁻), configuration assignment.			
1763.9 11	(16)		BE	J^{*} : M1 159.3 γ to (15).			
1800.0 10	(12^{+})		в	I^{π} : (M1+F2) 9/2 by to (11 ⁺): no y rays to levels with L<12			
1832.4.12	(12)		RF	I^{π} . M1 228 0v to (15 ⁻)			
1933.1 11	(13^+)		Č	J^{π} : (M1+E2) 650.1 γ to (12 ⁺).			
1954.7 <i>12</i>	$(16^{-})^{a}$		ΒE	J^{π} : 350.3 γ to (15 ⁻), configuration assignment.			
2004.5 14			В				
2037.6 16			В				
2093.9 14			В				
2111.5 11			В				
2128.2 12	(15)		D D D				
2193.1 10	$(15)^{\alpha}$		BF	$J^*: 482.4\gamma$ to (14), 19.2 γ from (16).			
2212.5 10	(16')"		ВЕ	J^{n} : E1 608.2 γ to (15).			
2250.0 11	$(18^{+})^{a}$	42 ns 2	ΒE	J^{n} : M2 295.4 γ to (16 ⁻), E3 645.5 γ to (15 ⁻).			
2263.5 13	$(19^{+})^{a}$		ΒE	J^{π} : 2176.5 γ from (21 ⁺), 13.5 γ to (18 ⁺), configuration assignment.			
2269.5 15			В				
2355.9 13			В R				
2702.6 13			B				
2724.9 16			В				
2737.5 15			В				
2786.9 15			В				
2797.3 13	$(20^{+})^{e}$	≤0.7 ns	ΒE	J^{π} : M1 533.8 γ to (19 ⁺).			
3034.3 13	$(19^{+})^{a}$		ΒE	J^{π} : M1 237.0 γ to (20 ⁺), 784.3 γ to (18 ⁺), configuration assignment.			
3322.7 14	8		ΒE	J^{π} : from comparison to shell model calculations and configuration assignments, J^{π} =(19 ⁺) is assigned in ²⁰⁸ Pb(⁷ Li,3n γ).			
3364.1 14	i		ΒE	J^{π} : from comparison to shell model calculations and configuration assignments, $J^{\pi}=(21^{-})$ is assigned in ²⁰⁸ Pb(⁷ Li,3n γ).			
3506.0 14	$(22^{-})^{f}$	2.8 ns 7	ΒE	J^{π} : (E3) 1242.5 γ to (19 ⁺).			
3519.6? 16	、 <u> </u>		В				
3682.4 14	f		ΒE	J ^{π} : from comparison to shell model calculations and configuration assignments, J ^{π} =(21 ⁻) is assigned in ²⁰⁸ Pb(⁷ Li, 3ny).			
3882.6.13	h		ΒE	J^{π} : from comparison to shell model calculations and configuration assignments			
2002.0 15				• . The comparison to sher model encounters and configuration assignments,			

²¹²At Levels (continued)

E(level) [†]	J ^{π#}	T _{1/2} ‡	XR	REF	Comments
					J^{π} =(20 ⁺) is assigned in ²⁰⁸ Pb(⁷ Li,3n\gamma).
4440.2 13	$(21^{+})^{j}$		В	Е	J^{π} : M1 1643.0 γ to (20 ⁺).
4547.3 15	$(22^{+})^{k}$		В	Е	J^{π} : M1 107.2 γ to (21 ⁺).
4771.4 15	$(25^{-})^{l}$	152 μs 5	В	Ε	J^{π} : E3 224.2 γ to (22 ⁺).

[†] From a least-squares fit to $E\gamma$, by evaluators, except where noted. Evaluators assume 1 keV uncertainty for γ rays with no experimental uncertainty.

[‡] From ²⁰⁸Pb(⁷Li,3n γ), except where noted.

[#] Shell-model configuration assignments are from 208 Pb(⁷Li,3n γ) (1999Ba30). Assignments are made under the general assumption that spin increases with increasing excitation energy in the fusion evaporation reactions.

[@] From ²⁰⁹Bi(α ,n γ) (1982Lo01).

& Possible configuration= $((\pi h_{9/2})^{+3}(\nu g_{9/2}))$.

- ^{*a*} Possible configuration= $((\pi h_{9/2})^{+3}(\nu i_{11/2}))$.
- ^b Possible configuration= $((\pi h_{9/2})^{+3}(\nu j_{15/2}))$.
- ^c Possible configuration= $((\pi h_{9/2})^{+2}(\pi f_{7/2})(\nu g_{9/2})).$
- ^d Possible configuration= $((\pi h_{9/2})^{+2}(\pi i_{13/2})(\nu g_{9/2}))$.
- ^e Possible configuration= $((\pi h_{9/2})^{+2}(\pi i_{13/2})(\nu i_{11/2}))$.
- ^f Possible configuration= $((\pi h_{9/2})^{+2}(\pi i_{13/2})(\nu j_{15/2}))$.

^g Possible configuration= $((\pi h_{9/2})(\pi i_{13/2})(\pi f_{7/2})(\nu g_{9/2}))$.

- ^{*h*} Possible configuration= $((\pi h_{9/2})(\pi i_{13/2})(\pi f_{7/2})(\nu i_{11/2}))$.
- ^{*i*} Possible configuration= $((\pi h_{9/2})(\pi i_{13/2})^{+2}(\nu g_{9/2}))$.
- ^j Possible configuration= $((\pi h_{9/2})^{+3}(\nu g_{9/2})(\nu i_{11/2})(\nu p_{1/2})^{-1})$.

^k Possible configuration= $((\pi h_{9/2})^{+2}(\pi f_{7/2})(\nu g_{9/2})(\nu i_{11/2})(\nu p_{1/2})^{-1}).$

^{*l*} Possible configuration= $((\pi h_{9/2})^{+2}(\pi i_{13/2})(\nu g_{9/2})(\nu i_{11/2})(\nu p_{1/2})^{-1})$.

$\gamma(^{212}\text{At})$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_f \qquad J_f^{\pi}$	Mult. [‡]	α	Comments
54.99	(1 ⁻ ,2 ⁻)	55.0 2	100	0.0 (1 ⁻)	(M1) [@]	13.28 24	$\alpha(L)=10.12 \ 18; \ \alpha(M)=2.40 \ 5; \ \alpha(N)=0.621$ $11; \ \alpha(O)=0.1330 \ 24; \ \alpha(P)=0.0184 \ 4$
160.30	(2 ⁻)	160.3 [#] 1	100	0.0 (1 ⁻)	M1 [#]	3.16	$\alpha(K)=2.56 4; \alpha(L)=0.457 7; \alpha(M)=0.1083$ $16; \alpha(N)=0.0281 4; \alpha(O)=0.00601 9$ $\alpha(P)=0.000830 12$
205.30	(3-)	45.0 [#] 1	100	160.30 (2-)	M1 [#]	24.0	α (L)=18.2 3; α (M)=4.32 7; α (N)=1.120 18; α (O)=0.240 4; α (P)=0.0331 6
275.2		69.9 [@]	100 [@]	205.30 (3-)			
328.0	(8 ⁻)	105.1 [@]	100 [@]	222.9 (9 ⁻)	(M1+E2)	8.4 21	$\begin{array}{l} \alpha(\mathrm{K}) = 4.4 \ 41; \ \alpha(\mathrm{L}) = 2.9 \ 15; \ \alpha(\mathrm{M}) = 0.77 \ 41; \\ \alpha(\mathrm{N}) = 0.20 \ 11; \ \alpha(\mathrm{O}) = 0.040 \ 20; \\ \alpha(\mathrm{P}) = 0.0044 \ 16 \end{array}$
							Mult.: (D+Q) from $\gamma(\theta)$ in ²⁰⁹ Bi($\alpha,n\gamma$); even small M2 component is excluded by comparison to RUL.
345.7	(¯)	290.7 [@]	100 [@]	54.99 (1 ⁻ ,2 ⁻)	(M1(+E2)) [@]	0.37 23	α (K)=0.28 21; α (L)=0.070 17; α (M)=0.017 4; α (N)=0.0045 9; α (O)=0.00093 21 α (P)=1.18×10 ⁻⁴ 39
363.7	(2 ⁻)	308.9 [@]	27 [@]	54.99 (1 ⁻ ,2 ⁻)	(M1+E2) [@]	0.31 20	$\alpha(K)=0.24$ 18; $\alpha(L)=0.058$ 16; $\alpha(M)=0.014$

$\gamma(^{212}\text{At})$ (continued)										
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α	Comments		
								3; α (N)=0.0037 8; α (O)=0.00077 19 α (P)=9.8×10 ⁻⁵ 35		
363.7	(2 ⁻)	363.6 [@]	100 [@]	0.0	(1-)	(M1) [@]	0.326	$\alpha(K)=0.265 \ 4; \ \alpha(L)=0.0466 \ 7; \\ \alpha(M)=0.01102 \ 16; \ \alpha(N)=0.00285 \ 4; \\ \alpha(O)=0.000611 \ 9 \\ \alpha(P)=8.44\times10^{-5} \ 12$		
622.6	(¯)	567.6 [@]	100 [@]	54.99	(1 ⁻ ,2 ⁻)	(M1) [@]	0.0989	α (K)=0.0805 <i>12</i> ; α (L)=0.01401 <i>20</i> ; α (M)=0.00331 <i>5</i> ; α (N)=0.000856 <i>12</i> ; α (O)=0.000183 <i>3</i> α (P)=2 54×10 ⁻⁵ <i>4</i>		
635.3		580.3 [@]	$100^{@}$	54.99	$(1^{-},2^{-})$					
701.4	(10 ⁻)	478.5 2	100	222.9	(9 ⁻)	M1	0.1557	$\begin{array}{l} \alpha(\mathbf{K}) = 0.1266 \ 18; \ \alpha(\mathbf{L}) = 0.0221 \ 4; \\ \alpha(\mathbf{M}) = 0.00523 \ 8; \ \alpha(\mathbf{N}) = 0.001354 \ 19; \\ \alpha(\mathbf{O}) = 0.000290 \ 4 \\ \alpha(\mathbf{P}) = 4 \ 01 \times 10^{-5} \ 6 \end{array}$		
748.0	(1 ⁻ ,2 ⁻ ,3 ⁻)	587.7 [@]	100 [@]	160.30	(2 ⁻)	(M1) [@]	0.0902	$\alpha(K) = 0.0735 \ 11; \ \alpha(L) = 0.01277 \ 18;$ $\alpha(M) = 0.00301 \ 5; \ \alpha(N) = 0.000780 \ 11$ $\alpha(Q) = 0.0001671 \ 24; \ \alpha(P) = 2.31 \times 10^{-5} \ 4$		
768.9	(1 ⁻ ,2 ⁻ ,3 ⁻)	608.6 [@]	100 [@]	160.30	(2 ⁻)	(M1) [@]	0.0823	α (K)=0.0670 <i>10</i> ; α (L)=0.01164 <i>17</i> ; α (M)=0.00275 <i>4</i> ; α (N)=0.000711 <i>10</i> α (O)=0.0001523 <i>22</i> ; α (P)=2.11×10 ⁻⁵ <i>3</i>		
779.1		618.8 [@]	100 [@]	160.30	(2 ⁻)					
783.5	(1 ⁻ ,2 ⁻ ,3 ⁻)	419.8 [@]	100 [@]	363.7	(2-)	(M1) [@]	0.221	α (K)=0.180 3; α (L)=0.0315 5; α (M)=0.00745 11; α (N)=0.00193 3; α (O)=0.000413 6 α (P)=5 71×10 ⁻⁵ 8		
839.9	(1 ⁻ ,2 ⁻ ,3 ⁻)	679.6 [@]	100 [@]	160.30	(2 ⁻)	(M1+E2) [@]	0.039 23	$\alpha(\mathbf{K}) = 0.031 \ 19; \ \alpha(\mathbf{L}) = 0.0060 \ 27; \alpha(\mathbf{M}) = 0.00143 \ 62; \ \alpha(\mathbf{N}) = 3.7 \times 10^{-4} \ 16; \alpha(\mathbf{O}) = 7.9 \times 10^{-5} \ 35 \alpha(\mathbf{P}) = 1.06 \times 10^{-5} \ 52$		
842.9	(7 ⁻)	514.8 [@]	100 [@]	328.0	(8-)	(M1) [@]	0.1281	$\alpha(\mathbf{K}) = 1.00 \times 10^{-5.2}$ $\alpha(\mathbf{K}) = 0.1043 \ 15; \ \alpha(\mathbf{L}) = 0.0182 \ 3;$ $\alpha(\mathbf{M}) = 0.00430 \ 6; \ \alpha(\mathbf{N}) = 0.001112 \ 16;$ $\alpha(\mathbf{O}) = 0.000238 \ 4$ $\alpha(\mathbf{P}) = 3.29 \times 10^{-5} \ 5$		
		620.0 [@]	≤82 [@]	222.9	(9 ⁻)	(E2) [@]	0.0206	α (K)=0.01492 21; α (L)=0.00425 6; α (M)=0.001056 15; α (N)=0.000273 4; α (O)=5.65×10 ⁻⁵ 8 α (P)=6.98×10 ⁻⁶ 10		
845.7	(1 ⁻ ,2 ⁻ ,3 ⁻)	685.4 [@]	100 [@]	160.30	(2 ⁻)	(M1) [@]	0.0602	$\alpha(K) = 0.0491 7; \ \alpha(L) = 0.00849 12; \alpha(M) = 0.00200 3; \ \alpha(N) = 0.000518 8; \alpha(O) = 0.0001111 16 (P) = 527 105 22$		
885.4	(11*)	183.9 2	49.6 <i>15</i>	701.4	(10 ⁻)	(E1)	0.1030	$\alpha(P)=1.537\times10^{-5}22$ $\alpha(K)=0.0827 I2; \ \alpha(L)=0.01549 23; \ \alpha(M)=0.00367 6; \ \alpha(N)=0.000940 I4; \ \alpha(O)=0.000195 3$ $\alpha(P)=2.45\times10^{-5} 4$ B(E1)(W.u.)=4.72×10^{-7} +22-20 I _γ : weighted average of 49.1 I5 from 208 Pb(⁷ Li,3nγ) and 50.0 I5 from 212 At IT decay (152 µs)		
		662.5 2	100.0 18	222.9	(9 ⁻)	M2	0.1714	$\alpha(K)=0.1343 \ 19; \ \alpha(L)=0.0281 \ 4; \ \alpha(M)=0.00681 \ 10; \ \alpha(N)=0.001772 \ 25;$		

$\gamma(^{212}\text{At})$ (continued)										
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	α	Comments		
								α (O)=0.000378 6 α (P)=5.17×10 ⁻⁵ 8 B(M2)(W.u.)=0.213 8		
890.4	(^)	526.7 [@]	100 [@]	363.7	(2 ⁻)	(M1) [@]	0.1206	$\alpha(K)=0.0981 \ 14; \ \alpha(L)=0.01712 \ 24; \ \alpha(M)=0.00404 \ 6; \ \alpha(N)=0.001046 \ 15; \ \alpha(O)=0.000224 \ 4 \ \alpha(P)=3.10 \times 10^{-5} \ 5$		
920.8	(4 ⁻)	715.1 [@]	100@	205.30	(3-)	(E2) [@]	0.01515	$\alpha(K) = 0.01134 \ 16; \ \alpha(L) = 0.00287 \ 4; \alpha(M) = 0.000708 \ 10; \ \alpha(N) = 0.000183 \ 3; \alpha(O) = 3.81 \times 10^{-5} \ 6 \alpha(P) = 4.80 \times 10^{-6} \ 7$		
		760.5 [@] 3	72 [@]	160.30	(2 ⁻)	(E2) [@]	0.01333	$\alpha(K)=0.01009 \ 15; \ \alpha(L)=0.00245 \ 4; \\ \alpha(M)=0.000601 \ 9; \ \alpha(N)=0.0001553 \\ 22; \ \alpha(O)=3.24\times10^{-5} \ 5 \\ \alpha(P)=4.11\times10^{-6} \ 6 $		
1082.5		239.6 [@]	100 [@]	842.9	(7 ⁻)					
1117.7		196.9 [@]	100 [@]	920.8	(4 ⁻)	0				
1209.5		366.6 [@]	100 [@]	842.9	(7 ⁻)	(M1+E2) [@]	0.20 13	$\alpha(K)=0.15 \ 11; \ \alpha(L)=0.034 \ 12; \alpha(M)=0.0083 \ 25; \ \alpha(N)=0.00215 \ 64; \alpha(O)=4.5\times10^{-4} \ 15 \alpha(D)=5.0\times10^{-5} \ 24$		
1262.4	(12 ⁺)	377.0 2	100	885.4	(11+)	M1	0.295	$\alpha(\mathbf{K}) = 0.240 \ 4; \ \alpha(\mathbf{L}) = 0.0422 \ 6; \\ \alpha(\mathbf{M}) = 0.00998 \ 14; \ \alpha(\mathbf{N}) = 0.00258 \ 4; \\ \alpha(\mathbf{O}) = 0.000553 \ 8 \\ \alpha(\mathbf{P}) = 7.65 \times 10^{-5} \ 11$		
1283.0	(12 ⁺)	397.6 2	100	885.4	(11+)	(M1) [@]	0.256	$\alpha(\mathbf{K}) = 0.208 \ 3; \ \alpha(\mathbf{L}) = 0.0365 \ 6; \\ \alpha(\mathbf{M}) = 0.00863 \ 13; \ \alpha(\mathbf{N}) = 0.00224 \ 4; \\ \alpha(\mathbf{O}) = 0.000479 \ 7 \\ \alpha(\mathbf{C}) = 6.62 \times 10^{-5} \ 10 $		
1316.8	(11 ⁻)	1094.0	100	222.9	(9 ⁻)	(E2)	0.00651	$\alpha(\mathbf{F}) = 0.02 \times 10^{-170}$ $\alpha(\mathbf{K}) = 0.00516 \ 8; \ \alpha(\mathbf{L}) = 0.001027 \ 15;$ $\alpha(\mathbf{M}) = 0.000247 \ 4; \ \alpha(\mathbf{N}) = 6.37 \times 10^{-5}$ $9; \ \alpha(\mathbf{O}) = 1.344 \times 10^{-5} \ 19$ $\alpha(\mathbf{P}) = 1.775 \times 10^{-6} \ 25$		
1321.4	(11 ⁺ ,12 ⁺)	436.0 2	100	885.4	(11+)	(M1) [@]	0.200	α (K)=0.1624 23; α (L)=0.0285 4; α (M)=0.00672 10; α (N)=0.001741 25; α (O)=0.000373 6 α (P)=5.15×10 ⁻⁵ 8		
1428.6	(11 ⁻)	727.2	100	701.4	(10 ⁻)	(M1) [@]	0.0516	$\alpha(\mathbf{r}) = 0.0420 \ 6; \ \alpha(\mathbf{L}) = 0.00726 \ 11; \\ \alpha(\mathbf{M}) = 0.001712 \ 24; \ \alpha(\mathbf{N}) = 0.000443 \ 7; \\ \alpha(\mathbf{O}) = 9.50 \times 10^{-5} \ 14 \\ \alpha(\mathbf{P}) = 1.314 \times 10^{-5} \ 19$		
1457.5	(5 ⁺)	536.7 [@]	100 [@]	920.8	(4 ⁻)	(E1) [@]	0.00920	$\alpha(K) = 0.00757 \ 11; \ \alpha(L) = 0.001249 \ 18; \alpha(M) = 0.000293 \ 4; \ \alpha(N) = 7.53 \times 10^{-5} \ 11 \ (M) = 1500 \ 10^{-5} \ 20 \ (M) = 0.10 \ 10^{-5} \ 10^{-$		
1540.5	(13 ⁻)	223.7	7.9 8	1316.8	(11 ⁻)	E2	0.337	$\alpha(O)=1.593 \times 10^{-5} 23; \ \alpha(P)=2.13 \times 10^{-6} 3$ $\alpha(K)=0.1301 \ 19; \ \alpha(L)=0.1532 \ 22; \alpha(M)=0.0405 \ 6; \ \alpha(N)=0.01048 \ 15; \alpha(O)=0.00208 \ 3 \alpha(P)=0.000222 \ 4 I_{\gamma}: weighted average of 7.7 \ 10 \ from 208 Pb(7Li,3n\gamma) and 8.0 \ 8 \ from 212 At IT decay (152 \ \mu s).$		

$\gamma(^{212}\text{At})$ (continued) Mult.[‡] E_i(level) \mathbf{E}_{f} Comments α 1540.5 E1 0.0384 $\alpha(K)=0.0312$ 5; $\alpha(L)=0.00553$ 8; $\alpha(M)=0.001305 \ 19; \ \alpha(N)=0.000335 \ 5;$ $\alpha(O) = 7.00 \times 10^{-5} 10$ $\alpha(P) = 9.05 \times 10^{-6}$ 13 1548.4 231.6 100 1316.8 (11-) α (L)=46.2 7; α (M)=12.37 18; α (N)=3.19 1604.3 (15^{-}) 63.9 100 1540.5 (13-) (E2) 62.4 5; $\alpha(O)=0.623$ 9; $\alpha(P)=0.0620$ 9 B(E2)(W.u.)=3.15 +19-17 765.7[@] 100[@] (E2)[@] 1651.1 (13^{+}) 885.4 (11⁺) 0.01315 $\alpha(K)=0.00996 \ 14; \ \alpha(L)=0.00241 \ 4;$ $\alpha(M)=0.000590$ 9; $\alpha(N)=0.0001525$ 22; $\alpha(O)=3.18\times10^{-5}$ 5 $\alpha(P) = 4.05 \times 10^{-6} 6$ 1710.6 100 9 $1604.3 (15^{-})$ (14^{-}) 106.3 170.1 82 9 1540.5 (13⁻) 100 3.22 $\alpha(K)=2.60$ 4; $\alpha(L)=0.466$ 7; $\alpha(M)=0.1102$ 1763.9 (16^{-}) 159.3 1604.3 (15⁻) M1 16; $\alpha(N)=0.0286$ 4; $\alpha(O)=0.00611$ 9 $\alpha(P) = 0.000844 \ 12$ 1806.0 257.6 100 1548.4 942.1[@] $100^{(0)}$ (M1+E2)[@] *α*(K)=0.0141 74; *α*(L)=0.0026 12; 1827.5 (12^{+}) 885.4 (11⁺) 0.0175 88 $\alpha(M)=6.1\times10^{-4}\ 26;\ \alpha(N)=1.57\times10^{-4}$ 67; $\alpha(O)=3.4\times10^{-5}$ 15 $\alpha(P) = 4.6 \times 10^{-6} 21$ $\alpha(K)=0.952$ 14; $\alpha(L)=0.1693$ 24; 1832.4 $(^{-})$ 228.0 100 1604.3 (15⁻) M1 1.175 $\alpha(M)=0.0401$ 6; $\alpha(N)=0.01038$ 15; $\alpha(O) = 0.00222 \ 4$ $\alpha(P) = 0.000307 5$ 650.1[@] 100@ (M1+E2)[@] 1933.1 (13^{+}) $1283.0 (12^+)$ 0.044 26 $\alpha(K)=0.035\ 22;\ \alpha(L)=0.0067\ 31;$ $\alpha(M)=0.00161\ 70;\ \alpha(N)=4.2\times10^{-4}\ 18;$ $\alpha(O) = 8.9 \times 10^{-5} 40$ $\alpha(P)=1.19\times10^{-5}58$ 1954.7 100 $1604.3 (15^{-})$ (16^{-}) 350.3 2004.5 400.2 100 1604.3 (15⁻) 2037.6 489.2 100 1548.4 489.6 1604.3 (15-) 2093.9 100 2111.5 571.0 100 1540.5 (13-) 2128.2 364.4 63 25 1763.9 (16⁻) 100 25 523.7 1604.3 (15-) 59 5 2193.1 (15)360.6 1832.4 (-) 100.9 482.4 1710.6 (14-) 588.8 18 5 $1604.3 (15^{-})$ 2212.5 (16^{+}) (19.2)2193.1 (15) I_{γ} : weighted average of 7.3 5 from 448.1 7.4 5 1763.9 (16-) 208 Pb(⁷Li,3n γ) and 7.5 5 from 212 At IT decay (152 μ s). $\alpha(K)=0.00592 9; \alpha(L)=0.000965 14;$ 0.00718 608.2 2 100.0 14 $1604.3 (15^{-})$ E1 α (M)=0.000226 4; α (N)=5.81×10⁻⁵ 9; $\alpha(O) = 1.232 \times 10^{-5}$ 18 $\alpha(P)=1.654\times10^{-6}\ 24$ I_{γ} : from ²¹²At IT decay (152 μ s). $\alpha(L)=603$ 9; $\alpha(M)=160.5$ 23; $\alpha(N)=41.3$ 2250.0 814 (18^{+}) (37.7)≤12.5 2212.5 (16⁺) (E2) 6; α (O)=8.06 12; α (P)=0.795 12 B(E2)(W.u.)=2.8 +4-27 I_{γ} : from ²¹²At IT decay (152 μ s). 295.4 13.3 17 1954.7 (16⁻) M2 2.10 $\alpha(K)=1.555\ 22;\ \alpha(L)=0.408\ 6;$

γ ⁽²¹²At) (continued)</sup>

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f J'_j	$\frac{\pi}{f}$ Mult. [‡]	α	Comments
2250.0	(18+)	486.0	32 5	1763.9 (16	-) [M2]	0.431	$\alpha(M)=0.1019 \ 15; \ \alpha(N)=0.0267 \ 4; \ \alpha(O)=0.00567 \ 8 \ \alpha(P)=0.000762 \ 11 \ B(M2)(W.u.)=0.023 \ +26-12 \ I_{\gamma}: weighted average of 13.6 \ 17 \ from \ ^{208}Pb(^7Li,3n\gamma) and 12.5 \ 25 \ from \ ^{212}At \ IT \ decay \ (152 \ \mu s). \ \alpha(K)=0.0183 \ 3; \ \alpha(N)=0.00477 \ 7; \ \alpha(O)=0.001017 \ 15 \ \alpha(P)=0.0001381 \ 20 \ B(M2)(W.u.)=0.0046 \ +52-24 \ I_{\gamma}: weighted average of 29 \ 7 \ from \ ^{208}Pb(^7Li,3n\gamma) and 33 \ 5 \ from \ ^{212}At \ IT \ decay \ (152 \ \mu s).$
		645.5	100 5	1604.3 (15	E3	0.0547	(132 μ s). $\alpha(K)=0.0328 5; \alpha(L)=0.01631 23; \alpha(M)=0.00423$ $\delta; \alpha(N)=0.001099 16; \alpha(O)=0.000225 4$ $\alpha(P)=2.67 \times 10^{-5} 4$
2263.5 2269.5 2335.9 2356.0 2702.6 2724.9 2737.5 2796.0	(19 ⁺)	 (13.5) 505.6 572.0 401.2 592.2 439.1 452.6 461.4 782.8 1022.0 	100 100 67 13 100 13 100 14 52 10 100 100	2250.0 (18 1763.9 (16 1763.9 (16 1954.7 (16 1763.9 (16 2263.5 (19 2250.0 (18 2263.5 (19 1954.7 (16	(*) (~) (~) (~) (~) (*) (*) (*) (*) (*) (*) (*) (*) (*) (*		B(E3)(W.u.)=4.4 +48-23
2786.9 2797.3	(20+)	1023.0 533.8	100 100 2	1763.9 (16 2263.5 (19) M1	0.1164	α (K)=0.0947 14; α (L)=0.01651 24; α (M)=0.00390 6; α (N)=0.001009 15; α (O)=0.000216 3 α (P)=2.99×10 ⁻⁵ 5 I _{γ} : from ²¹² At IT decay (152 μ s). Other: 100 4 in ²⁰⁸ Pb(⁷ Li,3n γ).
		547.3	2.1 5	2250.0 (18	(E2) (E2)		I _{γ} : from ²¹² At IT decay (152 μ s). Other: ≤ 4 in ²⁰⁸ Pb(⁷ Li,3n γ).
3034.3	(19 ⁺)	237.0	100 14	2797.3 (20	⁺) M1	1.055	$ \begin{aligned} &\alpha(\mathbf{K}) = 0.855 \ 12; \ \alpha(\mathbf{L}) = 0.1520 \ 22; \ \alpha(\mathbf{M}) = 0.0360 \ 5; \\ &\alpha(\mathbf{N}) = 0.00931 \ 13; \ \alpha(\mathbf{O}) = 0.00199 \ 3 \\ &\alpha(\mathbf{P}) = 0.000275 \ 4 \end{aligned} $
3322.7 3364 1		784.3 525.5 1059.3 566.8	86 <i>43</i> 55 <i>18</i> 100 <i>27</i> 100	2250.0 (18 2797.3 (20 2263.5 (19 2797.3 (20	(+) (+) (+) (+)		I_{γ} : other: 100 22 in ²¹² At IT decay (152 μ s).
3506.0	(22-)	708.7 1242.5	22 7 100 <i>11</i>	2797.3 (20 2263.5 (19	(H2] (H2] (H2] (H2) (H2) (H2) (H2) (H2) (H2) (H2) (H2)	0.01129	B(M2)(W.u.)= $0.31 + 14 - 11$ α (K)= $0.00851 12$; α (L)= $0.00209 3$; α (M)= $0.000515 8$; α (N)= $0.0001336 19$; α (O)= $2.80 \times 10^{-5} 4$ α (P)= $3.63 \times 10^{-6} 5$ B(E3)(W.u.)= $29 + 10 - 6$
3519.6? 3682.4		722.3 ^{&} 176.5 318.3	$100 \le 100 \ 100 \ 20 \ 100 \ 40$	2797.3 (20 3506.0 (22 3364.1	(⁺) (⁻)		
3882.6		560.0	31 6	3322.7	·)		I _γ : from ²¹² At IT decay (152 μ s). Other: 50 30 in ²⁰⁸ Pb(⁷ Li,3nγ).

$\gamma(^{212}\text{At})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	α	Comments
3882.6		848.0	19 5	3034.3	(19 ⁺)			I_{γ} : from ²¹² At IT decay (152 μ s). Other: 36 9 in ²⁰⁸ Pb(⁷ Li.3n γ).
		1085.4	100 9	2797.3	(20+)			I_{γ} : from ²¹² At IT decay (152 μ s). Other: 100 18 in ²⁰⁸ Pb(⁷ Li,3n γ).
4440.2	(21+)	557.5	14.0 12	3882.6				I_{γ} : from ²¹² At IT decay (152 μ s). Other: 17 10 in ²⁰⁸ Pb(⁷ Li.3n γ).
		757.8	2.4 5	3682.4				I _{γ} : from ²¹² At IT decay (152 μ s). Other: ≤ 17 in ²⁰⁸ Pb(⁷ Li.3n γ).
		1076.0	8.9 9	3364.1				I _{γ} : from ²¹² At IT decay (152 μ s). Other: 13 3 in ²⁰⁸ Pb(⁷ Li, 3n γ).
		1406.0	1.9 9	3034.3	(19 ⁺)			In $10(21;017)$. I_{γ} : from 212 At IT decay (152 μ s). Other: ≤ 17 in 208 Pb(7 Li, $3n\gamma$).
		1643.0	100.0 22	2797.3	(20 ⁺)	M1	0.00646	$\begin{array}{l} \alpha(\mathbf{K}) = 0.00512 \ 8; \ \alpha(\mathbf{L}) = 0.000865 \ I3; \\ \alpha(\mathbf{M}) = 0.00203 \ 3; \ \alpha(\mathbf{N}) = 5.26 \times 10^{-5} \ 8; \\ \alpha(\mathbf{O}) = 1.129 \times 10^{-5} \ I6 \\ \alpha(\mathbf{P}) = 1.566 \times 10^{-6} \ 22 \end{array}$
								I_{γ} : from ²¹² At IT decay (152 μ s). Other: 100 10 in ²⁰⁸ Pb(⁷ Li,3n γ).
		2176.5	14.9 <i>4</i>	2263.5	(19^{+})			I_{γ} : from ²¹² At IT decay (152 μ s).
4547.3	(22+)	107.2	100	4440.2	(21+)	M1	9.92	α (K)=8.02 12; α (L)=1.449 21; α (M)=0.343 5; α (N)=0.0889 13; α (O)=0.0190 3 α (P)=0.00263 4
4771.4	(25 ⁻)	224.2	100 5	4547.3	(22 ⁺)	E3	2.86	$\alpha(K) = 0.3305; \alpha(L) = 1.853; \alpha(M) = 0.5148; \alpha(N) = 0.1342$ 19; $\alpha(O) = 0.02664; \alpha(P) = 0.002784$
		1265.4 ^{&}	4.10 10	3506.0	(22-)	[M3]		B(E3)(W.u.)=27.0 10 B(M3)(W.u.)=7.01×10 ⁻⁴ +47-44 I _γ : from ²¹² At IT decay (152 μs). Other: ≤50 in ²⁰⁸ Pb(⁷ Li,3nγ).

[†] From ²⁰⁸Pb(⁷Li,3n γ), except where noted. [‡] From ²⁰⁸Pb(⁷Li,3n γ), except where noted. [#] From ²¹⁶Fr α decay (0.70 μ s). [@] From ²⁰⁹Bi(α ,n γ).

[&] Placement of transition in the level scheme is uncertain.

 $^{212}_{85}{\rm At}_{127}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $--- \rightarrow \gamma$ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

²¹²₈₅At₁₂₇