

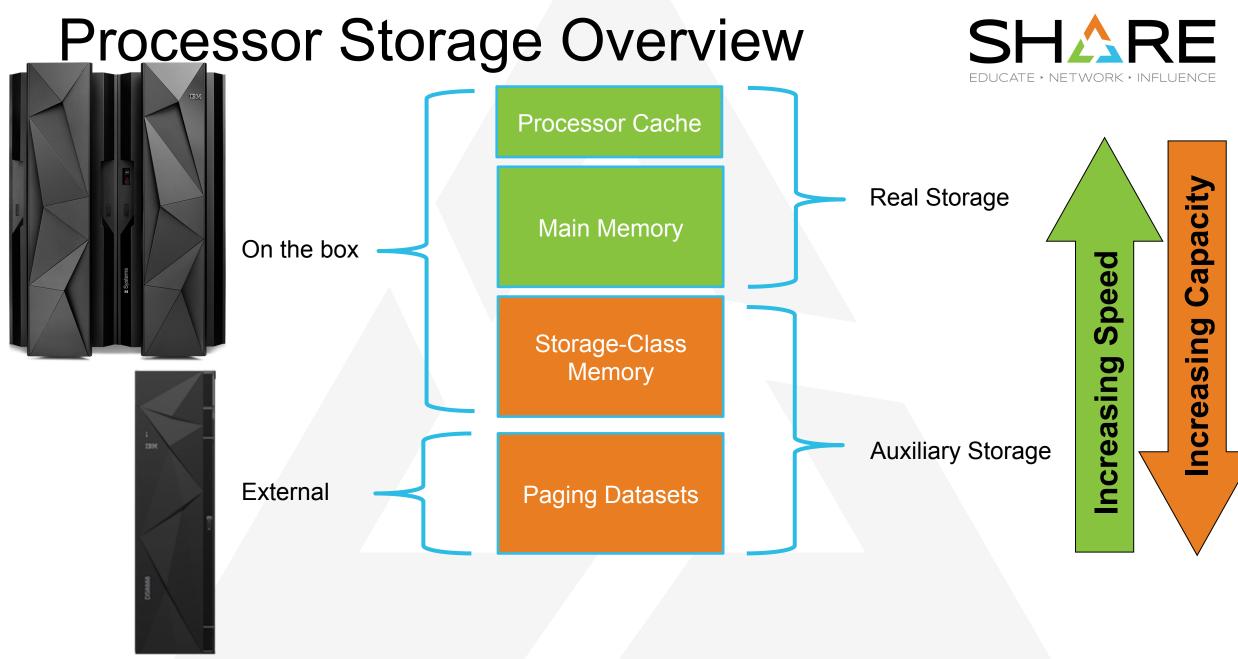
z/OS Virtual Memory

Session Number: 24662 March 13th, 2019

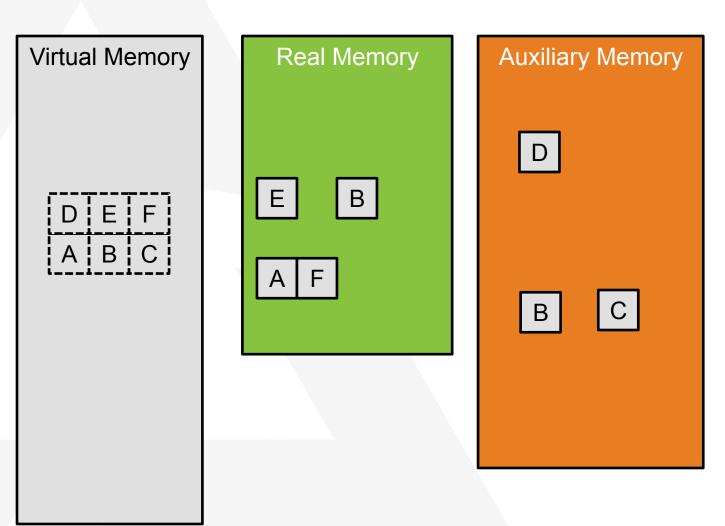
Elpida Tzortzatos Distinguished Engineer z/OS Core Design and Analytics Lead for IBM Z elpida@us.ibm.com

Agenda

- Memory Management Basics
- VSM Overview
- VSM DIAGxx Options
- VSM Health Checks
- Large Pages and Their Value


Z/OS BASIC MEMORY MANAGEMENT CONCEPTS

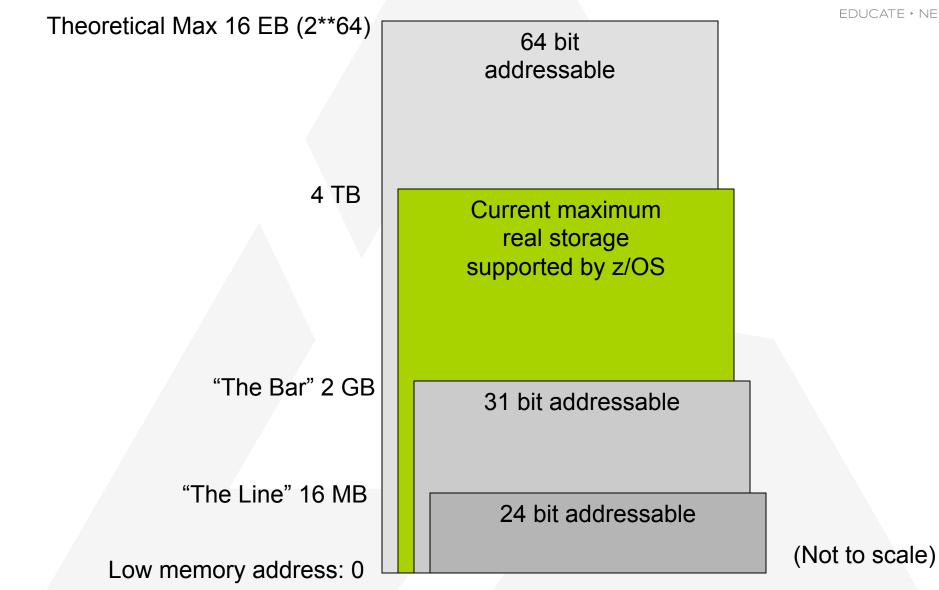
z/OS Memory Types


- There are three z/OS memory types used to process system and user/application storage requests:
 - Real frames: the physical main memory.
 - Auxiliary: paging dataset slots and storage-class memory (SCM) blocks.
 - Virtual pages: created through dynamic address translation (DAT) for multiple address spaces.

(This presentation uses the traditional term "storage" and more common term "memory" interchangeably.)

Virtual Memory

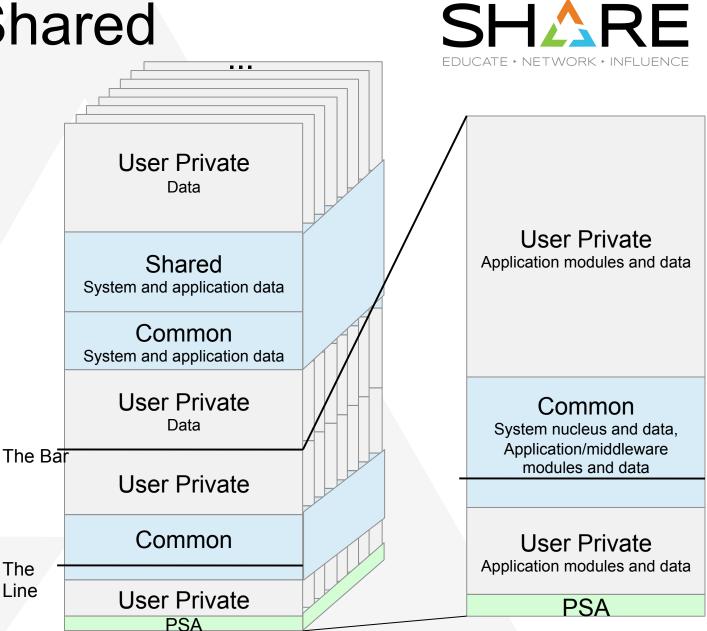
- Pages of data in virtual is backed by real or auxiliary storage.
- Contiguous in virtual are typically not contiguous when backed.
- In some cases a page can be backed both in real and aux.
- DAT tables translate virtual addresses to real addresses.


The Memory Managers

- The Virtual Storage Manager (VSM)
 - Receives the requests to obtain and release virtual storage.
 - Keeps track of the allocated and free virtual areas for the different types of storage below the 2G bar.
- The Real Storage Manager (RSM)
 - Backs the virtual storage pages with real storage frames.
 - Keeps track of the various frames needed for the different areas of virtual storage.
 - Manages 64-bit "above the bar" virtual.
- The Auxiliary Storage Manager (ASM)
 - Reads and writes pages to/from auxiliary storage.

Virtual/Real Sizes

Full Virtual Memory Map


16EB **High-Virtual** High-Virtual User Region Private **High-Virtual High-Virtual Shared** Shared Area 2TB High-Virtual High-Virtual Common Common High-Virtual User Region 320GB **High-Virtual** Local System Area Private 64G **Compressed References Area** 2G Extended LSQA/SWA/229/230 Extended Private Extended User Region Extended CSA Extended PLPA/FLPA/MLPA Extended Common Extended SQA Extended Nucleus 16MB Nucleus SQA Common PLPA/FLPA/MLPA CSA LSQA/SWA/229/230 Private User Region 24K System Region 8K Common PSA (Not to scale)

Three addressing ranges:
 - 64-bit: 2G-16EB "Above the Bar"
 - 31-bit: 16MB-2G "Above the Line"
 - 24-bit: 0-16MB "Below the Line"

• Each has both private and common areas.

Common, Private, Shared

- Private storage is unique to each address space.
- Common storage is global to every address space.
- Share storage access can be granted to multiple address spaces.
- The Prefix Save Area (PSA) is a special area unique to each processor.

Memory Attributes

- Viewability: Private, Common, Shared.
- Type:
 - Pageable Default for most cases. Can be backed in real or auxiliary.
 - Fixed Use if doing I/O, running in a FLIH, or obtaining real address.
 - DREF Use if disabled but don't need fixed.
- Residency:
 - Virtual: Controlled by first part of LOC option on STORAGE OBTAIN for 24 and 31 bit virtual. E.g. LOC=(31,xx).
 - IARV64/IARST64/IARCP64 are always 64-bit virtual.
 - Real: Controlled by second part to LOC option, e.g. LOC=(xx,64).
 - Only enforced if fixed.
 - LOC=(31,64) should be used by most applications.
 - 64-bit services (IARV64 et al) use 64-bit real backing.
- Ownership: Task, Address Space, System.
- Others: Key, Fetch Protection, Executable, and more.

Virtual Above and Below "The Bar" SH

- Below 2G:
 - Storage requests by using the following services:
 - Getmain/Freemain, Storage Obtain/Release, CPOOL (cell pool).
 - Allocate in 8 byte increments.
- Above 2G:
 - Storage requests by using the following services:
 - IARV64 (GETSTOR/GETCOMMON/GETSHARED), IARCP64 (cell pool), IARST64.
 - IARV64 allocates in 1MB increments. Use IARST64 and IARCP64 to obtain smaller increments.

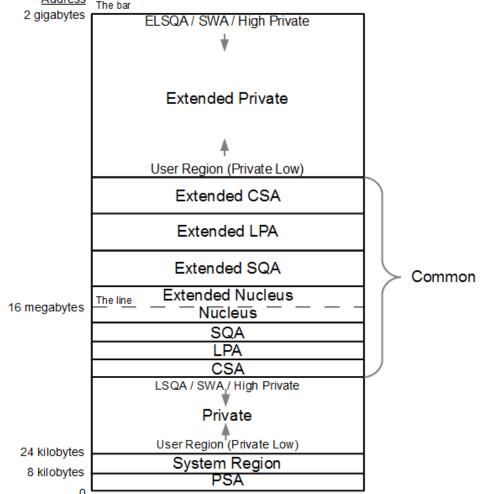
VSM: VIRTUAL STORAGE MANAGER

z/OS Memory Managers: VSM

- Virtual Storage Manager
- Address Space-centric view of the system and processes.
- Objectives:
 - Control the allocation/deallocation of 31-bit virtual storage addresses.
 - Efficiency minimum overhead per request.
- Associate a storage protection key with each virtual storage block requested.
- Maintain storage use information by generating SMF records.

VSM Services

VSM:


- GETMAIN Allocate 31-bit virtual.
- FREEMAIN Free 31-bit virtual.
- STORAGE Newer service to allocate/free 31-bit virtual.
- CPOOL 31-bit cell pool service.

VSM.

 Sizes of CSA, ECSA, SQA, ESQA are specified via IEASYSxx parmlib member.

virtual is managed by

31-Bit Address Space Memory Map 31-bit Storage Map 31-bit Storage Map 31-bit (below the bar)

SHARE

:K ► INFLUENCE

VSM Storage Management Rules

- z/OS manages 31-bit virtual storage through the use of subpools designed to accommodate a variety of storage needs.
- Storage is allocated or assigned to a subpool in one page (4K) multiples.
- Storage belonging to different subpools cannot occupy the same page.
- Storage with different storage keys cannot occupy the same page.
- Storage belonging to different TCBs cannot occupy the same page.

Private Subpool Attributes

- **Subpool numbers**: 0 255
- Storage protection: Keys 0 15
- User Region (AKA Low Private):
 - Subpools 0 132, 250 252
 - TCB-related
 - Keyed storage
 - Unauthorized
 - General purpose subpools
- High Private:
 - Subpools 229, 230, 249
 - TCB-related
 - Keyed storage
 - Authorized
 - Special authorization application storage needs

• ELSQA/LSQA:

- Subpool 255 (mainly)
- Fixed, key 0 storage
- Address space-related, not TCB-related

See MVS Diagnosis: Reference, Chapter 9, for additional subpool information

Virtual Storage Areas: Common

- Common (Global) Storage
- Shared by all address spaces
 - Contents of a particular virtual address is the same for all address spaces.
 - Accessible using the DAT tables for any address space.

• Different (separate) areas of common storage.

- Prefixed Save Area (PSA) Maps fixed hardware and software locations for the related processor
- Common Service Area (CSA)
 - Pageable and fixed data areas
 - Some load to global modules

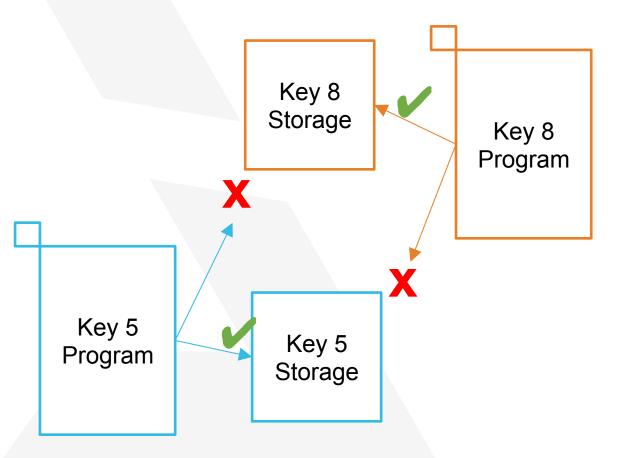
Link Pack Area (LPA)

- Pageable Link Pack Area (PLPA)
 - Built at IPL time from libraries specified in LPALSTxx or PROGxx.
 - Contains SVC routines, access methods, and other read-only system programs, some select read-only re-enterable user programs that an be shared among users of the system, some frequently used refreshable SYS1.LINKLIB and SYS1.CMDLIB modules.
- Modified Link Pack Area (MLPA)
 - Built at IPL time as specified in IEALPAxx.

System Queue Area (SQA)

- · Contains tables and queues relating to the entire system
- When not enough SQA storage available, storage may be taken from CSA
- Nucleus (NUC)
 - Built at IPL time
 - Read-only nuc, Read-write nuc

Virtual Storage Areas: Private



- Private (Local) Storage
- Not shared across address spaces (each address space has its own)
 - Content of a particular virtual address not same in another address space
- Different (separate) areas within the private area
 - System Region
 - GETMAINs for tasks running under RCT
 - 'Low-end' of private area
 - User Region
 - 'High-end' of private area
 - Local System Queue Area (LSQA)
 - Area for system tables and queues
 - associated with the users address space
 - Scheduler Work Area (SWA) Contains control blocks for Initiator/Scheduler
 - Subpools 229 and 230
 - Storage obtained in requestor's storage protect key
 - Used for control blocks only obtained by auth programs with appropriate key

Storage Key Protection

- Storage keys ensure only programs with the right permissions have access to storage.
- If a program attempts to access a page in the wrong key an ABEND results.

Storage Key Details

- Pages have a storage key and fetch protect status.
- Programs run in a PSW key.
- Programs can only read and write to pages that have a storage key matching their PSW key, with the following exceptions:
 - Programs running with PSW key 0 can read and write to any key.
 - All programs can read and write key 9 storage.
 - All programs can read any storage that is not fetch protected.
- System keys are 0-7.
- User keys 8-15.

Changing Keys

- In addition to PSW key, each program has a PSW key mask (PKM) in control register 3.
 - This is initially set to match the programs PSW-key but can be changed on attach or PC routines.
- Programs can only change to a key defined by their PKM.
- Additionally authorized programs (key 0-7, supervisor state, or APF authorized) can change to any key.
- A program must be Supervisor State and Key 0 to change the storage key of a page.

EXECUTABLE=NO

- Exploiting of z14's Instruction Execution Protection.
- New keyword EXECUTABLE.
- Specify on STORAGE OBTAIN & RELEASE (and IARV64).
- EXECUTABLE=YES is default and matches old behavior.
- EXECUTABLE=NO indicates it will not be executed.
 - ABEND0C4-4 will result if execution is attempted.
- Helps prevent security exposures that rely on injecting executable code into data buffers.
 - Best to use EXECUTABLE=NO if you know its not executable.
- Supported for non-LSQA private subpools.

VSM DIAGXX AND HEALTH CHECKS

VSM DIAGxx Statements

- VSM TRACE ... Enable GETMAIN, FREEMAIN, STORAGE (GFS) trace.
 - Many options for filtering.
- VSM TRACK ... Enable the Common Storage Tracker.
- VSM CHECKREGIONLOSS(256K,10M) Provides way to recycle initiators when their storage becomes fragmented.
- ALLOWUSERKEYCSA(<u>NO</u>|YES) YES allows user-key CSA. Default and recommendation is NO.
 - v2.3 is last release to support YES.
- VSM BESTFITCSA(<u>NO</u>|YES) YES may avoid CSA fragmentation. NO is default.
- TRAPS ... -- Various other diagnostic functions (mostly undocumented).

Common Storage Tracker

- Tracks owners of currently obtained SQA/ESQA and CSA/ ECSA storage.
 - Address and length of storage.
 - ASID, jobname, and PSW address of owner.
 - Time and date of GETMAIN.
- Activated via DIAGxx parmlib member
 - Can be activated/deactivated at any time.
 - DIAGxx: VSM TRACK CSA(ON) SQA(ON)
 - Set DIAG=XX

Viewing Tracker Data

- VERBX VSMDATA 'OWNCOMM DETAIL'
- Formats a detailed report of common storage usage.

ASID Job Name Id St T Address Length Ret Addr MM/DD/YYYY HH:MM:SS CAUB GQE 0028 IBMUSER TSU00016 Ac C 00B44400 00000088 23FCC9D6 09/12/2005 16:45:45 0241FEB0 01DDD6A0 Data -----> 23FAF2D8 23DB5D80 E3606000 0000088 *..2Q..).T--...h*

0028 IBMUSER TSU00016 Ac S 00FC5018 00000030 00CA5024 09/12/2005 16:45:45 0241FEB0 01E35AF0 Data -----> 00000000 0000000 00F97B80 00000028 *.....9#.....*

0028 IBMUSER TSU00016 Ac S 00FC5048 00000030 00CA5024 09/12/2005 16:45:45 0241FEB0 01E35148 Data ----> 00000000 00000000 00F97B80 00000028 *.....9#.....*

0028 IBMUSER TSU00016 Ac S 022E7A28 00000018 039E5364 09/12/2005 16:45:57 0241FEB0 01E43C88 Data ----> E2E8E2F1 40404040 00000000 00000000 *SYS1*

0028 IBMUSER TSU00016 Ac S 02313068 0000080 23F3D918 09/12/2005 16:45:58 0241FEB0 01E35C40 Data ----> D1E2C1C2 0000000 0000080 01000001 *JSAB.....*

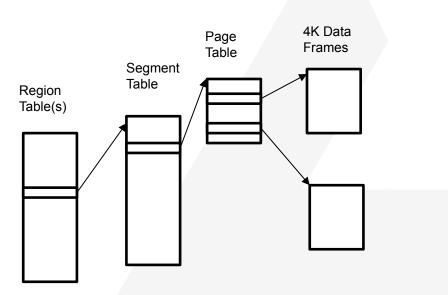
0028 IBMUSER TSU00016 Ac S 02546000 0000060 00D3D1AE 09/12/2005 16:45:58 0241FEB0 01E35C70 Data ----> E2E3D8C5 F500005C 0000000 00000000 *STQE5..*....*

0028 IBMUSER TSU00016 Ac S 025C1578 00000048 2466F036 09/12/2005 16:45:57 0241FEB0 01E35BC8 Data -----> D3D4C1C2 0000000 7FF4EF60 7FF4EF60 *LMAB...."4.-"4.-*

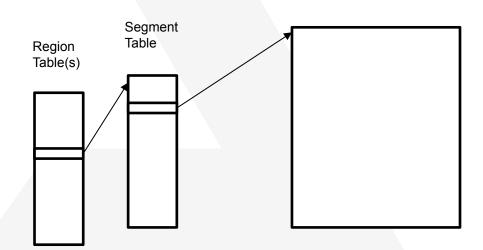
Copyright© 2017 by SHARE Inc. Except where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 license. http://creativecommons.org/licenses/by-nc-nd/3.0/

VSM Health Checks

- VSM_CSA_CHANGE Warn if CSA size is different this IPL.
- VSM_CSA_THRESHOLD Warn if CSA is getting full.
- VSM_SQA_LIMIT Warn if SQA size is too small.
- VSM_PVT_LIMIT Warn if private area is too small.
- VSM_CSA_LIMIT Warn if CSA size is too small.
- VSM_SQA_THRESHOLD Warn if SQA is getting too full.
 - Note that some installation normally overflow SQA into CSA.
- VSM_ALLOWUSERKEYCSA Warns if using insecure "YES" option.
- VSM_CSA_LARGEST_FREE Warns if CSA is becoming fragmented.


RSM AND LARGE PAGES

Large Pages: What Are They?


4K Pages:

- Page table points to 4K frames.
- Uses up to 256 TLB entries per segment.

1M Pages:

- No page table.
- Segment table points to 1M frames.
- Uses only one TLB entry per segment.

Importance of Exploiting Large Pages

- Problem: Performance degradation due to increased TLB (Translation Lookaside Buffer) misses.
 - Over the past years application memory sizes have dramatically increased due to support for 64-bit addressing in both physical and virtual memory.
 - TLB sizes have remained relatively small due to low access time requirements and hardware space limitations.
 - Therefore TLB coverage today represents a much smaller fraction of an applications working set size leading to a larger number of TLB misses.
 - Applications can suffer a significant performance penalty resulting from an increased number of TLB misses as well as the increased cost of each TLB miss.

Importance of Exploiting Large Pages

- Benefits: Increase TLB coverage without proportionally enlarging the TLB size by using large pages:
 - Large pages will provide exploiters with better TLB coverage, and therefore better performance by decreasing the number of TLB misses that an application incurs.
 - Less time spent converting virtual addresses into physical addresses.
 - Less page faults as whole 1MB is backed at once instead of for each 4k page.
 - A large page is a memory page larger than an ordinary 4K base page.
 z/OS supports the following 2 large page sizes:
 - 1MB.
 - 2GB.

Key Exploiters of Large Pages

- Db2:
 - 1M (V10) and 2G (V11) page frame size for PGFIX(YES) pools.
 - FRAMESIZE parameter in Db2 11.
 - IBM evaluation shows:
 - 1-3% improvement from 4K frames to 1M frames (zEC12).
 - 1-3% improvement from 1M frames to 2G frames (z13).
- Java™:
 - Pageable 1MB is default as of Java 7.
 - Use option -XIp to control the page size such as to use 2GB pages.
 - WAS Day Trader benchmarks showed up to an 8% performance improvement.
- z/OS itself uses large pages in many places when they are available.

Large Pages in 31-bit Virtual

- The most significant benefit of large pages comes from applications that use vast amounts of data (e.g. 64-bit).
 - 31-bit applications can gain benefits as well if they frequently touch many pages together.
- 31-bit private via STORAGE OBTAIN and CPOOL:
 - LOC=(31|EXPLICIT,PAGEFRAMESIZE1MB).
 - Indicates to back pages in 64-bit real and prefer 1MB frames.
 - Only 0-127, 129-132, 240, 244 or 250-252 (Private low, pageable).
- Data spaces via DSPSERV:
 - PAGEFRAMESIZE=1M on CREATE (changes default to BACK=64).
 - BLOCKS does not need to be multiple of 256.

Large Frame Areas (Pre-v2.3)

- 1MB LFAREA Large Frame Area
 - Fixed storage each frame is 1MB
 - Defined by LFAREA (1M=) (IEASYSxx)
 - Included in Available Frame Count when INCLUDE1MAFC=YES
- PLAREA Pageable Large Area
 - Pageable storage each frame is 1MB.
 - System defined size approximately (online storage at IPL time)/8 if enough storage is left above 2G after LFAREA and Quad Area are defined.
 - Allocated on SCM capable machines.
 - Can overflow in the LFAREA.
- 2GB LFAREA Large Frame Area
 - Fixed storage each frame is 2GB
 - Defined by LFAREA (2G =) (IEASYSxx)
 - Not included in Available Frame Count used only for 2G requests
 - Reserved for specific 2GB memory objects

Large Frame Areas in z/OS v2.3

- 1MB LFAREA Large Frame Area
 - No longer physical range.
 - Managed dynamically in non-reconfigurable memory above 2G bar.
 - Capped by LFAREA (1M=) (IEASYSxx)
 - INCLUDE1MAFC=NO is ignored.
- PLAREA Pageable Large Area
 - No longer physical range.
 - Managed dynamically in non-reconfigurable memory above 2G bar.
 - No cap.
- 2GB LFAREA Large Frame Area
 - Unchanged in v2.3.

Sizing LFAREA for Fixed 1MB

- Calculate how much you will need for Db2 buffer pools, JVM Heaps, etc.
- Best to add additional memory corresponding to the specified LFAREA size to existing system memory.
- Have enough 4K frames to handle your 4K workload needs (both pageable and fixed).
 - Have enough 4K frames above the bar to avoid RSM breaking down free 1M frames and paging or page movement for 4K page Fixes
 - Include RSM needs for memory mapping 1/64 total online real at IPL (4g for 256G system)
 - System address space memory usage.
 - Include enough spare 4K frames for taking dumps quickly.
- Doc APAR OA34024 gives some guidance on how to size the LFAREA.

Sizing LFAREA for Pageable 1M (Pre-v2.3) SHAR

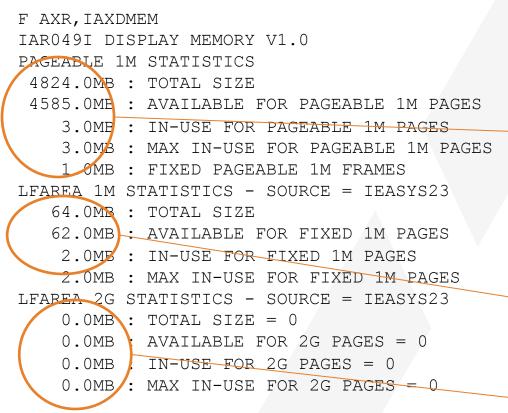
- Pageable Large Pages overflow into the LFAREA when PLAREA is • depleted.
- If you want to ensure your system has enough Pageable Large Pages • specify additional memory for the LFAREA to also accommodate Pageable Large Pages.
- The following z/OS System Console command D VS,LFAREA can be used to display LFAREA usage by 1MB fixed, 4K, and 1MB pageable large pages.

```
RESPONSE=PA1
         17.13.02 DISPLAY VIRTSTOR 175
IAR019I
 SOURCE =
           OM
 TOTAL LFAREA = 120422M , OG
 LFAREA AVAILABLE = OM ,
                          0G
 LFAREA ALLOCATED (1M)
                          OM
 LFAREA ALLOCATED (4K)
                         OM
                       -
 MAX LFAREA ALLOCATED
                       (1M)
                              OM
 MAX LFAREA ALLOCATED (4K) =
                              OM
 LFAREA ALLOCATED (PAGEABLE1M)
                                 120422M
                                -
 MAX LFAREA ALLOCATED (PAGEABLE1M) = 120422M
 LFAREA ALLOCATED NUMBER OF 2G PAGES = 0
     LEAREA ALLOCATED NUMBER OF
                                 2G
 MAX
```

Right-Sizing the LFAREA

RMF Monitor III - STORF

RMF V2R1 Storage Memory Objects Line 1 of 308 Command ===> Storage Memory Objects Line 1 of 308 Scroll ===> DR Samples: 90 System: R7F Date: 03/02/16 Time: 14.36.30 Range: 0 Sec MemObjFrames1MB MemObj1MB Fixed 1M5 Pageable Shared 1 Shared 677 Total 1 Total 104K Service Memory Objects1MB Fixed XUsed 0.0 XUsed 0.0 XUsed 5.6 XUsed 0.0 XUsed 0.0 XGLOGR S SYSEM 0028 374 0 0 0 O 0 0 0 4 379M 0 MEmory Objects1MB Frames Bytes Jobname C Class ASID Total Comm Shr 1 MB Fixed Pgable Total Comm Shr XGLOGR S SYSEM 0009 49 0 0 0 O 0 0 0 4 379M 0 SmpSE1 S SYSEM 0009 49 0 0 0 O 0 0 0 0 48.0M 0 SMEW 0009 49 0 0 0 SmpSE1 S SYSEM 0009 49 0 0 O 0 0 0 0 44.0M 0 SmpSE1 S SYSEM 0009 49 0 0 SmpSE S SYSEM 0009 49 0 0 Smp														_
MemObj Frames -1MB MemObj- 1MB Fixed 1MB Pageable Shared 1 Shared 677 Total 1 Total 104K Initial 23704 Common 101 Common 125K Common 1 Common 5 yuamic 0 %Used 5.6 %Used 0.0 %Used 0.2 %Used 0.2 Service Memory Objects 1MB Frames- Bytes 0 Jobname C Class ASID Total Comm Shr 1 MB Fixed Pgable Total Comm Shr XGLOGR S SYSEM 0028 374 0 0 0 4 379M 0 0 SMSPDSE S SYSTEM 0009 49 0 0 0 0 440M 136M 0 JES2AUX S SYSTEM 0008 27 0 0 0 0 0 SMSPDSE S SYSTEM 0008 27	Command :	===	=>		RMF V2	R1 St	torage	Memory	y Obje	cts				F
MemObjFrames1MB MemObj1MB Fixed 1MB Pageable Shared 1 Shared 677 Total 1 Total 104K Initial 23704 Common 101 Common 125K Common 1 Common 5 %Used 5.6 %Used 0.0 %Used 0.2 Service Memory Objects1MB Frames Bytes Jobname C Class ASID Total Comm Shr 1 MB Fixed Pgable Total Comm Shr (XGLOGR S SYS EM 0028 374 0 0 0 0 4 379M 0 0 MSPDSE1 S SYS EM 0009 49 0 0 0 0 68.0M 0 0 JES2AUX S SYSSTC 0077 33 32 0 0 0 4140M 136M 0 TRACE S SYSTEM 0004 32 0 0 0 0 46.0M 0 0 SMSPDSE S SYSTEM 0004 32 0 0 0 0 46.0M 0 0 SMSPDSE S SYSTEM 0006 15 0 0 0 0 416M 0 0 SMSPDSE S SYSTEM 00066 15 0 0 0 0 0 46.0M 0 0 SMSPDSE S SYSTEM 0001 12 9 0 1 5 0 70.0M 64.0M 0 RMASTER* S SYSTEM 0007 12 1 0 0 0 0 2591M 2580M 0 APPC S STCLOW 0035 9 0 0 0 0 0 12.0M 0 0 SMSVSAM S SYSTEM 0010 8 1 0 0 0 7 931M 1024K 0					: R7F		03/02/	16 T	ime: 1	4.36.30		e: 30		
Common 101 Common 125K Common 1 Common 5 Dynamic 0 %Used 5.6 %Used 0.0 %Used 0.0 %Used 0.0 %Used 0.0 Service Memory Objects 1MB Frames- Bytes Jobname C Class ASID Total Comm Shr 1 MB Fixed Pgable Total Comm Shr XGLOGR S SYSEM 0028 374 0 0 0 4 379M 0 0 MSPDSE1 S SYSEM 0009 49 0 0 0 68.0M 0 0 JES2AUX S SYSTEM 0004 32 0 0 0 35.0M 0 0 JES2AUX S SYSTEM 0004 32 0 0 0 46.0M 0 SMSPDSE S SYSTEM 0008 27 0 0 0 46.0M	MemObj			Frames				_			 1MB Pageat		ole	7
%Used 5.6 %Used 0.0 %Used 0.2 Jobname C Class ASID Total Comm Shr 1 MB Fixed Pgable Total Comm Shr XGLOGR S SYS EM 0028 374 0 0 0 4 379M 0 0 MSPDSE1 S SYS EM 0009 49 0 0 0 68.0M 0 0 JES2AUX S SYSSTC 0077 33 32 0 0 0 46.0M 0 JES2AUX S SYSTEM 0008 27 0 0 0 46.0M 0 JSSFAUX S STCLOW 0066 15 0 0 0 464.0M 0 RRS S YSTEM 0001 12 9 1 5 70.0M 64.0M 0 RRS S YSTEM 0007 12	Shared	-	1 Sł	hared	677	Total	1	L T	otal	104K	Initi	ial 23 [.]	704	(
Service Jobname Memory Objects Bytes XGLOGR S SYSTEM 0028 374 0 0 0 4 379M 0 0 XGLOGR S SYSTEM 0028 374 0 0 0 0 4 379M 0 0 MSPDSE1 S SYSTEM 0009 49 9 0 0 0 68.0M 0 0 JES2AUX S SYSTEM 0004 32 0 0 0 44.0M 136M 0 JES2AUX S SYSTEM 0004 32 0 0 0 0 0 0 0 JES2AUX S SYSTEM 0004 32 0 0 0 0 0 0 0 SMSPDSE S SYSTEM 0008 27 0 0 0 0 0 0 SMSTER* S SYSTEM 0001 12 9 1	Common	10	91 Co	ommon	125K	Commor	ר 1	L C	dmmon	5	Dynar	nic	0	
Jobname C Class ASID Total Comm Shr 1 MB Fixed Pgable Total Comm Shr 1XGLOGR S SYSEM 0028 374 0 0 0 4 379M 0 0 MSPDSE1 S SYSEM 0009 49 9 0 0 0 68.0M 0 0 JES2AUX S SYSTEM 0004 32 0 0 0 35.0M 0 0 JES2AUX S SYSTEM 0004 32 0 0 0 0 35.0M 0 TRACE S SYSTEM 0008 27 0 0 0 0 46.0M 0 SDSFAUX S STCLOW 0066 15 0 0 0 0 416M 0 #MASTER* S SYSTEM 0001 12 9 0 1 5 0 70.0M 64.0			%l	Jsed	5.6			%	Used	0.0	%Ūse		2.2	f
Jobname C Class ASID Total Comm Shr 1 MB Fixed Pgable Total Comm Shr 1XGLOGR S SYSEM 0028 374 0 0 0 4 379M 0 0 MSPDSE1 S SYSEM 0009 49 9 0 0 0 68.0M 0 0 JES2AUX S SYSTEM 0004 32 0 0 0 35.0M 0 0 JES2AUX S SYSTEM 0004 32 0 0 0 0 35.0M 0 TRACE S SYSTEM 0008 27 0 0 0 0 46.0M 0 SDSFAUX S STCLOW 0066 15 0 0 0 0 416M 0 #MASTER* S SYSTEM 0001 12 9 0 1 5 0 70.0M 64.0			Servid	ce		Memory	Object	:s	-1MB	Frames-		Bytes		ι
SMSPDSE1 S SYSTEM 0009 49 9 0 0 0 68.0M 0 0 JES2AUX S SYSTC 0077 33 32 0 0 0 8.140M 136M 0 TRACE S SYSTEM 0004 32 0 0 0 0 35.0M 0 0 SMSPDSE S SYSTEM 0008 27 0 0 0 0 46.0M 0 0 SDSFAUX S STCLOW 0066 15 0 0 0 0 44.0M 0 0 *MASTER* S SYSTEM 0001 12 9 0 1 5 0 70.0M 64.0M 0 GRS S SYSTEM 0007 12 1 0 0 0 236G 1024K 0 GRS S SYSTEM 0057 10 2 0 0 0 2591M 2580M 0 APPC S STCLOW 0035 9 0 0 0 0 12.0M 0 0 SMSVSAM S SYSTEM	Jobname	С	Class											K
JES2AUX S SYSSTC 0077 33 32 0 0 0 140M 136M 0 TRACE S SYSTEM 0004 32 0 0 0 0 35.0M 0 0 SMSPDSE S SYSTEM 0008 27 0 0 0 0 46.0M 0 0 SDSFAUX S STCLOW 0066 15 0 0 0 0 46.0M 0 0 *MASTER* S SYSTEM 0001 12 9 0 1 5 0 70.0M 64.0M 0 GRS S SYSTEM 0007 12 1 0 0 0 236G 1024K 0 TCP342 S SYSSTC 0057 10 2 0 0 0 2591M 2580M 0 APPC S STCLOW 0035 9 0 0 0 0 12.0M 0 SMSVSAM S SYSTEM 0010	IXGLOGR	S	SYSTEM	4 002	8 374	0	0	0	0	4	379M	0	0	
TRACE S SYSTEM 0004 32 0 0 0 0 35.0M 0 0 SMSPDSE S SYSTEM 0008 27 0 0 0 0 0 46.0M 0 0 SDSFAUX S STCLOW 0066 15 0 0 0 0 44.0M 0 0 *MASTER* S SYSTEM 0001 12 9 0 1 5 0 70.0M 64.0M 0 GRS S SYSTEM 0007 12 1 0 0 0 236G 1024K 0 GRS S SYSTEM 0007 12 1 0 0 0 236G 1024K 0 TCP342 S SYSTEM 0035 9 0 0 0 0 2591M 2580M 0 APPC S STCLOW 0035 9 0 0 0 0 33.0M 1024K 0 OMVS S SYSTE	SMSPDSE1	S	SYSTEM	4 000	9 49	0	Ω	0	0	0	68.0M	0	0	
SMSPDSE S SYSTEM 0008 27 0 0 0 0 46.0M 0 0 SDSFAUX S STCLOW 0066 15 0 0 0 0 46.0M 0 0 SDSFAUX S STCLOW 0066 15 0 0 0 0 44.0M 0 0 *MASTER* S SYSTEM 0001 12 9 0 1 5 0 70.0M 64.0M 0 GRS S SYSTEM 0007 12 1 0 0 0 236G 1024K 0 TCP342 S SYSSTC 0057 10 2 0 0 0 2591M 2580M 0 APPC S STCLOW 0035 9 0 0 0 0 2591M 2580M 0 SMSVSAM S SYSTEM 0010 8 1 0 0 0 33.0M 1024K 0 OMVS S SYSTEM	JES2AUX	S	SYSST	C 007	7 33	32	Θ	Θ	0	0	140M	136M	Θ	
SDSFAUX S STCLOW 0066 15 0 0 0 0 416M 0 0 *MASTER* S SYSTEM 0001 12 9 0 1 5 0 70.0M 64.0M 0 GRS S SYSTEM 0007 12 1 0 0 0 236G 1024K 0 TCP342 S SYSSTC 0057 10 2 0 0 0 2591M 2580M 0 APPC S STCLOW 0035 9 0 0 0 0 12.0M 0 0 SMSVSAM S SYSTEM 0010 8 1 0 0 0 33.0M 1024K 0 OMVS S SYSTEM 0017 8 1 0 0 7 931M 1024K 0	TRACE	S	SYSTEM	4 000	4 32	0	0	0	Θ	0	35.0M	0	0	┝,
MASTER S SYSTEM 0001 12 9 0 1 5 0 70.0M 64.0M 0 GRS S SYSTEM 0007 12 1 0 0 0 236G 1024K 0 TCP342 S SYSSTC 0057 10 2 0 0 0 2591M 2580M 0 APPC S STCLOW 0035 9 0 0 0 0 12.0M 0 0 SMSVSAM S SYSTEM 0010 8 1 0 0 0 33.0M 1024K 0 OMVS S SYSTEM 0017 8 1 0 0 7 931M 1024K 0	SMSPDSE	S	SYSTEM	4 000	8 27	0	0	0	0	0	46.OM	0	0	
GRSSSYSTEM0007121000236G1024K0TCP342SSYSSTC005710200002591M2580M0APPCSSTCLOW003590000012.0M00SMSVSAMSSYSTEM001081000033.0M1024K0OMVSSSYSTEM0017810007931M1024K0	SDSFAUX	S	STCLO	J 006	6 15	0	0	0	0	0	416M	0	0	5
TCP342 S SYSSTC 0057 10 2 0 0 0 2591M 2580M 0 APPC S STCLOW 0035 9 0 0 0 0 12.0M 0 0 SMSVSAM S SYSTEM 0010 8 1 0 0 0 33.0M 1024K 0 OMVS S SYSTEM 0017 8 1 0 0 7 931M 1024K 0	*MASTER*	S	SYSTE	4 000	1 12	9	Θ	1	5	0	70.0M	64.0M	0	
APPC S STCLOW 0035 9 0 0 0 0 12.0M 0 0 SMSVSAM S SYSTEM 0010 8 1 0 0 0 33.0M 1024K 0 OMVS S SYSTEM 0017 8 1 0 0 0 7 931M 1024K 0	GRS	S	SYSTE	4 000	7 12	ĺ	Û	()	Ð	Ú	236G	1024K	Û	
SMSVSAM S SYSTEM 0010 8 1 0 0 0 33.0M 1024K 0 OMVS S S SYSTEM 0017 8 1 0 0 0 7 931M 1024K 0	TCP342				7 10	2	Θ	0	0	0		2580M	Ο	
OMVS S SYSTEM 0017 8 1 0 0 0 7 931M 1024K 0	APPC	S	STCLO	Y 003			0	0	0	0	12.0M	0	Ο	
	SMSVSAM	S	SYSTEM	4 001	0 8	1	Θ	Θ	Θ	0	33.0M	1024K	Ο	
HZSPROC S STCLOW 0020 7 1 1 0 0 0 8202M 1024K 1024K					7 8	1	0	Θ	0	7	931M	1024K	Ο	
	HZSPROC	S	STCLO			1 xcept where other	1 vise noted, this wo	JIK IS licensed u			8202M	1024K	1024K	ommons.o


Monitor and adjust LFAREA parms based on workload.

Pre-v2.3, track Pagable large overflow into LFAREA. Average number of 1 MB frames in the LFAREA that were used to satisfy 1 MB pageable page request.

Note: all system address space large page usage.

Copyngnt@ 2017 by SHARE Inc. Except where otherwise noted, this work is incensed under a Creative Commons Attribution-NonCommercial-Noden's 3.0 incense. http://treativecommons.org/licenses/by-nc-nd/3.0/

z/OS v2.3 Large Page Display

• New display in v2.3 with large page statistics.

SHARE

- Pageable 1MB stats including number of 1M still available. If often low, consider adding memory.
- LFAREA 1M stats including total size (cap).
- LFAREA 2G stats.

Other Performance Techniques

- Large pages have great benefits but there are many other ways to gain performance.
- Applications:
 - Avoid frequent obtaining and freeing storage.
 - Use cell pools or pre-allocated storage on common paths instead of GETMAIN each time.
 - Buffer data instead of a second I/O or long calculation.
 - Multi-threaded applications should consider cache alignment of frequently used fields.
 - Keep frequent updates in separate cache lines from unrelated frequent reads.
- Installations:
 - Ensure plenty of memory is available.
 - Avoid all paging if performance is a premium.
 - Use storage-class memory (SCM) such as Flash Express or Virtual Flash Memory (VFM).

And much more... performance and tuning is a vast topic barely touched on here.

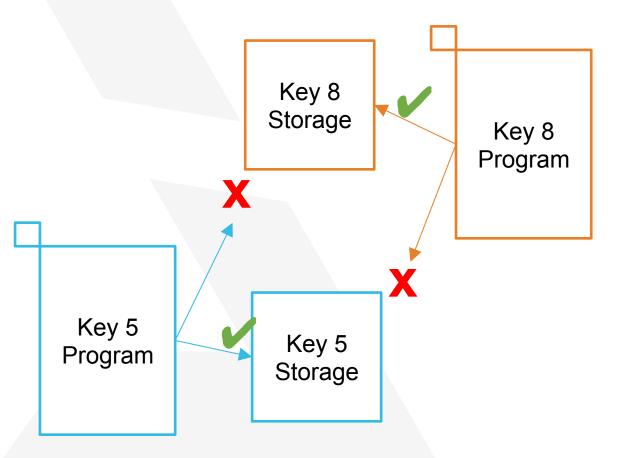
Questions?

BACKUP

Virtual Storage Areas: Common

- Common (Global) Storage
- Shared by all address spaces
 - Contents of a particular virtual address is the same for all address spaces.
 - Accessible using the DAT tables for any address space.
- Different (separate) areas of common storage.
 - Prefixed Save Area (PSA) Maps fixed hardware and software locations for the related processor
 - Common Service Area (CSA)
 - Pageable and fixed data areas
 - Some load to global modules
 - Link Pack Area (LPA)
 - Pageable Link Pack Area (PLPA)
 - Built at IPL time from libraries specified in LPALSTxx or PROGxx.
 - Contains SVC routines, access methods, and other read-only system programs, some select read-only re-enterable user programs that an be shared among users of the system, some frequently used refreshable SYS1.LINKLIB and SYS1.CMDLIB modules.
 - Fixed Link Pack Area (FLPA)
 - Built at IPL time as specified in IEAFIXxx.
 - Modified Link Pack Area (MLPA)
 - Built at IPL time as specified in IEALPAxx.
 - System Queue Area (SQA)
 - Contains tables and queues relating to the entire system
 - · When not enough SQA storage available, storage may be taken from CSA
 - Nucleus (NUC)
 - Built at IPL time
 - Read-only nuc, Read-write nuc

Virtual Storage Areas: Private



- Private (Local) Storage
- Not shared across address spaces (each address space has its own)
 Content of a particular virtual address not some in another address space
 - Content of a particular virtual address not same in another address space
- Accessible only using the DAT tables from that address space
- Different (separate) areas within the private area
 - System Region
 - GETMAINs for tasks running under RCT
 - 'Low-end' of private area
 - User Region
 - 'High-end' of private area
 - Local System Queue Area (LSQA)
 - Area for system tables and queues
 - associated with the users address space
 - Scheduler Work Area (SWA) Contains control blocks for Initiator/Scheduler
 - Subpools 229 and 230
 - Storage obtained in requestor's storage protect key
 - Used for control blocks only obtained by auth programs with appropriate key

Storage Key Protection

- Storage keys ensure only programs with the right permissions have access to storage.
- If a program attempts to access a page in the wrong key an ABEND results.

Storage Key Details

- Pages have a storage key and fetch protect status.
- Programs run in a PSW key.
- Programs can only read and write to pages that have a storage key matching their PSW key, with the following exceptions:
 - Programs running with PSW key 0 can read and write to any key.
 - All programs can read and write key 9 storage.
 - All programs can read any storage that is not fetch protected.
- System keys are 0-7.
- User keys 8-15.

Changing Keys

- In addition to PSW key, each program has a PSW key mask (PKM) in control register 3.
 - This is initially set to match the programs PSW-key but can be changed on attach or PC routines.
- Programs can only change to a key defined by their PKM.
- Additionally authorized programs (key 0-7, supervisor state, or APF authorized) can change to any key.
- A program must be Supervisor State and Key 0 to change the storage key of a page.

DIAGxx TRAPS for 64-bit

- IarCp64InitGet Put non-zero into cells on get for test.
- IarCp64InitFree Put non-zero into cells on free for test.
- IarCp64Trailer Always use cell trailer to detect overflow.
- IarSt64InitGet Put non-zero into storage on get for test.
- IarSt64InitFree Put non-zero into storage on free for test.
- IarSt64Trailer Always use storage trailer to detect overflow.