
MOCK: Optimizing Kernel Fuzzing Mutation with
Context-aware Dependency

Jiacheng Xu†, Xuhong Zhang†, B, Shouling Ji†, Yuan Tian‡,
Binbin Zhao

∗
, Qinying Wang†, Peng Cheng†, B, and Jiming Chen†

†Zhejiang University, ‡University of California, Los Angeles, ∗Georgia Institute of Technology
{stitch, zhangxuhong, sji}@zju.edu.cn, yuant@ucla.edu, binbin.zhao@gatech.edu, {wangqinying, lunarheart, cjm}@zju.edu.cn,

Abstract—Kernels are at the heart of modern operating
systems, whereas their development comes with vulnerabilities.
Coverage-guided fuzzing has proven to be a promising software
testing technique. When applying fuzzing to kernels, the salient
aspect of it is that the input is a sequence of system calls (syscalls).
As kernels are complex and stateful, specific sequences of syscalls
are required to build up necessary states to trigger code deep in
the kernels. However, the syscall sequences generated by existing
fuzzers fall short in maintaining states to sufficiently cover deep
code in the kernels where vulnerabilities favor residing.

In this paper, we present a practical and effective kernel
fuzzing framework, called MOCK, which is capable of learn-
ing the contextual dependencies in syscall sequences and then
generating context-aware syscall sequences. To conform to the
statefulness when fuzzing kernel, MOCK adaptively mutates
syscall sequences in line with the calling context. MOCK integrates
the context-aware dependency with (1) a customized language
model-guided dependency learning algorithm, (2) a context-aware
syscall sequence mutation algorithm, and (3) an adaptive task
scheduling strategy to balance exploration and exploitation. Our
evaluation shows that MOCK performs effectively in achieving
branch coverage (up to 32% coverage growth), producing high-
quality input (50% more interrelated sequences), and discovering
bugs (15% more unique crashes) than the state-of-the-art kernel
fuzzers. Various setups including initial seeds and a pre-trained
model further boost MOCK’s performance. Additionally, MOCK
also discovers 15 unique bugs in the most recent Linux kernels,
including two CVEs.

I. INTRODUCTION

In the modern world of computing, the operating system
kernel plays a crucial role in the overall security of a computer
system. It is responsible for managing and coordinating various
hardware and software resources of a computer and providing
a secure and reliable platform for applications. Due to a large
code base and complicated architectures, kernels have been
plagued by vulnerabilities. For example, 288 vulnerabilities
related to Linux kernel, with an average CVSS [3] score of
6.5 out of ten, were reported in 2022, and an average of 196
vulnerabilities, with an average CVSS score of 6.3, have been
discovered per year over the past five years [46]. Vulnera-
bilities in the kernel can allow attackers to access sensitive

BXuhong Zhang and Peng Cheng are the corresponding authors.

information, disrupt normal functioning, or compromise the
entire system [4], [21].

Security researchers are dedicated to discovering vulner-
abilities in the kernel by utilizing both static and dynamic
approaches [23], [17], [56], [7], [30], [47]. Fuzzing [54], [28],
[12] has been an effective and preferable testing technique
for vulnerability discovery, and has proven its capability for
software assurance by finding thousands of bugs in real-world
complex systems [43]. It repeatedly feeds generated inputs
into programs and discovers complex vulnerabilities with the
help of programs’ feedback and various sanitizers. In the field
of kernel fuzzing, researchers leverage the syscalls interfaces
as entry points, which are naturally provided by the kernel
to handle communication between its various components
and userspace applications. The test cases consist of syscall
sequences which include syscall functions and parameters.
In this manner, Google’s Syzkaller [14], the state-of-the-art
kernel fuzzer, has reported more than 3,900 bugs in the Linux
upstream kernel over the past five years [16].

Despite the significant progress, kernel fuzzing has always
faced challenges due to the stateful communication with the
kernel. This is because there are explicit or implicit relations,
referred to as dependencies, between syscalls. The execution of
the preceding syscalls serves as the context for the subsequent
syscalls, which impacts the subsequent syscalls’ executing
paths. It is, therefore, essential to construct syscalls in specific
sequences to build up the required states of an execution
path. Hence, the order in which syscalls are organized is
crucial for a fuzzer to effectively find bugs deep in the
kernel. Improper syscall selection for a given syscall sequence
context will finally result in an ineffective test case, which will
likely be rejected by the kernel or behave equivalently to the
preceding context. A context-aware syscall selection approach
can prominently enhance the input quality, reduce the search
space and improve the efficiency of kernel fuzzers.

Existing kernel fuzzing solutions have worked to address
the challenge of statefulness but still have many limitations
in synthesizing stateful syscall sequences. The existing ap-
proaches [37], [56], [50], [48], [14] are designed to synthesize
new test cases on a point-to-point basis, i.e., the selection
of the next syscall is solely based on the previous one. For
example, Syzkaller’s choice table [14] and HEALER’ relation
table [48] ignore the subtle semantics or states encoded in the
syscall sequences. Such a context-free design may work well
for the low-hanging fruits with simple semantics but hinders
fuzzers from generating complex, in-depth syscall sequences
and exploring deep space in the kernel. Therefore, a context-

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.23131
www.ndss-symposium.org

aware design for generating syscall sequences is desired.
Towards this, the first problem to address is how to prepare the
corpus from which to learn the context-aware dependencies.
Directly using the existing syscall trace datasets [2] may bring
much noise, as the syscall sequences in the trace contain many
loosely related syscalls, making it hard to extract the genuine
context for a dependency. Limited by the availability of a
golden corpus, the learned dependencies may be incomplete
and even contain errors. Therefore, the second problem we
need to address is the balance between the exploitation of
the learned dependencies and the exploration of the existing
strategies.

To address the aforementioned problems, we propose a
novel approach to model the context-aware syscall dependen-
cies as conditional probabilities and implement a prototype
named MOCK. Against the first problem, we aggregate the
syscall sequences that trigger new coverage in the fuzzing
campaign and minimize them to extract the genuine contexts
consisting of closely related syscalls. The minimized sequences
embody the influence dependencies of syscalls, serving as a
high-quality training set. We design a neural network language
model to capture the dependencies that comprise the calling
contexts efficiently. As the corpus accumulates and collects
adequate training samples, MOCK enables the model training
to learn the context-aware dependencies from the training set
regularly and utilizes the learned dependencies to synthesize
new test cases in a context-aware manner. In order to settle the
second problem, we model the syscall sequence mutation as a
Multi-Armed Bandit problem to balance exploitation and ex-
ploration. The various mutation operations are seen as bandits,
and the coverage feedback acts as rewards. The context-aware
dependencies are dedicated to examine the deeper part of the
kernel while the context-free, as well as random operations,
help increase the diversity of mutation.

We measure MOCK’s performance on the recent versions of
the Linux kernel. Our evaluation shows that MOCK’s context-
aware dependencies perform more effectively in achieving
branch coverage with an average of 7% coverage growth
than the state-of-the-art kernel fuzzers HEALER, Syzkaller
and SyzVegas. It is also capable of producing 50% more
interrelated high-quality input. In addition, we evaluate MOCK
with various setups including initial seeds and a pre-trained
model, which proves to help reduce warmup time and acceler-
ate fuzzing campaign. Compared to HEALER, Syzkaller, and
SyzVegas, MOCK also finds 15% more unique vulnerabilities,
especially the ones whose triggerings require a long, interre-
lated syscall sequence. Moreover, MOCK has newly found 15
unique vulnerabilities in the most recent Linux kernels, four
of which are confirmed by Linux developers.

We summarize our main contributions as follows:
• We identify the syscall relations as the context-aware depen-

dencies in conformance to the kernel’s statefulness, which
is largely neglected by existing kernel fuzzers. The novel
context-aware dependency schema for syscalls contributes
to synthesizing stateful syscall sequences and enhancing the
quality of test cases.

• We develop the first system incorporating context-aware
syscall dependency for kernel fuzzing. Specifically, MOCK
optimizes kernel fuzzing by (1) designing a neural net-
work language model to learn the contextual syscall de-

pendency from runtime syscall sequences dynamically, (2)
mutating syscall sequences according to the contextual de-
pendency, and (3) adaptively scheduling the context-aware
mutation task for diversity assurance. To facilitate future
kernel security research, we will open-source MOCK at
https://github.com/m0ck1ng/mock.
• We evaluate MOCK in comparison with HEALER [48],

Syzkaller [14] and SyzVegas [50] on the Linux kernels.
The results indicate that MOCK outperforms its counter-
parts impressively in terms of branch coverage, interrelated
sequences synthesis, and discovery of vulnerabilities. Ad-
ditionally, our further analysis reveals that our designs are
valuable contributions that can be seamlessly integrated into
the existing fuzzer with minimal overhead.
• We have discovered 15 unique bugs in the recent Linux

kernels and reported all the discovered bugs, of which four
are confirmed by Linux developers during the responsible
disclosure process. Up to now, we have received two CVEs
that lead to high severity, allowing attackers to escalate
privilege.

II. BACKGROUND

A. Kernel Fuzzing

Syscalls are a set of interfaces for interacting with the
kernel and the behavior of each syscall heavily depends on the
kernel states created by the previous syscalls. Hence, programs
are required to invoke syscalls following dependencies to
function correctly. Since the sequence of syscalls is highly
structured, it is non-trivial to achieve good code coverage with
random combinations of syscalls.

Google’s Syzkaller is now the state-of-the-art fuzzer for
kernel fuzzing [14]. To generate diverse and interesting test
cases that cover various corner cases, Syzkaller develops a set
of declarative templates, called Syzlang, involving functions,
arguments, and types to describe the syntax and structure of
syscalls. Based on Syzlang, Syzkaller establishes a choice
table to guide the syscall sequence generation. The choice
table records the probability value that a syscall should be
invoked before another syscall. Specifically, the choice table
is comprised of static and dynamic priority. The static priority
considers the direction of arguments. For given syscalls, a
higher priority will be assigned if one syscall produces a
resource and the other consumers it. Syzkaller leverages an
intuitive analysis algorithm based on initial seeds to calculate
the dynamic priority. The core idea of the algorithm is that if
two syscalls always come adjacently in seeds, they are more
likely to have dependencies on each other. Static and dynamic
priority are finally combined together on weights as the choice
table.

Inspired by Syzkaller, many works strive to improve kernel
fuzzing from various perspectives. By statically analyzing
syscall traces and global variables, MoonShine [37] captures
the explicit and implicit dependencies among syscalls. It
adopts a seed distillation algorithm relying upon the cap-
tured dependencies to prepare high-quality seeds for Syzkaller.
SyzVegas [50] dynamically and automatically adapts task
selection and seed selection in Syzkaller with EXP3 algorithm,
to improve coverage performance. In contrast to previous
works, HEALER [48] dedicates to deduce dependencies during

2

the fuzzing campaign. HEALER defines a binary influence
relation to describe the dependencies of syscalls, in which a
syscall’s execution can affect the execution path of another.
Relation learning is divided into static and dynamic learning
routines. The static routine recognizes explicit relations if a
syscall’s output meets another’s input. The dynamic routine
aims at finding implicit relations not expressed by syscall
templates. When a test case triggers new coverage, HEALER
removes syscalls in the test case individually, re-executes it and
monitors whether the new covered lines still exist. Syscalls
that do not contribute to new coverage will be discarded in
the minimization. Finally, HEALER determines the last pair
of syscalls in the minimized test case as related. The relation
table, a two-dimensional table, preserves the influence relations
for all the syscalls. The value of Rij in the table Rn×n is 1
if syscall Ci affects Cj’s execution, whereas 0 represents the
opposite.

B. Language Model

A language model is basically a statistical model that
determines the probability of a given sequence of words, which
takes center stage in Natural Language Processing (NLP).
Language models are utilized in a variety of tasks, including
machine translation, text generation, and sentiment analysis.
Generally, these models are built by analyzing the likelihood
of word sequences in a training set and applying that knowl-
edge to new, similar contexts. An N-gram language model is
constructed by calculating the probabilities that the N-gram’s
last word follows the preceding N-1 words in history. N-gram
works based on Markov assumption that the probability of a
word depends only on the previous N words. However, this
approach lacks long-range dependency and cannot cope with
non-occurring grams, which are named context and sparsity
problems. These shortcomings of N-gram models lead to poor
prediction in real-world settings.

Neural network language models (NNLM) ease the sparsity
problem by the way that encodes each word. Word embeddings
create a sized vector as a feature vector, which incorporates
the semantic information of each word. The NNLM was first
proposed by Bengio et al. [8] and implemented as a feed-
forward neural network (FNN) model. Word2Vec [35] further
ported Recurrent Neural Network as a substitution for FNN
to achieve better performance. It includes two architectures:
continuous bag-of-words (CBOW) and skip-gram. A CBOW
model is trained to predict the word in the middle based on the
context, while the skip-gram does the opposite. In practice, the
NNLM first establishes a vocabulary V containing all words
from the corpus and maps each word in V into a feature
vector. For a given context, a concatenation of feature vectors,
the model is designed to output a conditional probability
distribution over V for the next word.

C. Multi-Armed Bandit Problem

The Multi-Armed Bandit (MAB) problem [49] is a classical
decision problem that exemplifies the exploration-exploitation
tradeoff dilemma. In the problem, a gambler at a row of slot
machines decides which machines to play and how many times
to play each machine. The objective of the gambler is to
maximize the expected gain. The MAB problem well mod-
els various decisions (e.g., seeds selection, mutation strategy

selection) in coverage-guided fuzzing settings in which gains
correspond to code coverage. There are several algorithms
designed for the MAB problem. ϵ − Greedy is a simple
method that randomly selects an action at the probability ϵ,
and selects the one with the highest gain at the probability
1−ϵ [52]. Thompson Sampling selects actions based on a prior
distribution and posterior distribution decided by past obser-
vations [41]. Upper Confidence Bound (UCB) [6] algorithm
is one of the most popular and impressive bandit algorithms.
UCB is a deterministic algorithm while Thompson Sampling is
a heuristic. Specifically, the algorithm constructs a confidence
boundary to measure each action’s reward on each round of
exploration and play the one with the highest one on each
round of exploitation.

The historical knowledge could be effective but an over-
reliance on it may compromise the fuzzing diversity and the
quality of the context-aware dependencies. We leverage UCB-
1, a variant of UCB algorithm, to cope with this exploration-
exploitation dilemma in fuzzing due to its good performance
and low overhead.

III. MOTIVATION

An effective kernel fuzzer requires an in-depth understand-
ing of the interfaces of the target kernel and the syscall de-
pendencies for fuzzing. The dependencies facilitate the syscall
selection in test case generation and mutation, and play a
significant role in improving the quality of test cases and
accelerating the fuzzing process. With a specific sequence
of syscalls, a test case builds up a context in which kernel
states are properly set for triggering deep code paths. While a
fuzzer may pick low-hanging fruits with random combinations
of syscalls, deep vulnerabilities are likely to be missed due
to their subtle dependencies on complex states. For instance,
Listing 1 shows a simplified proof-of-concept of a real bug
discovered by MOCK. To trigger the bug, a syscall combination
in a particular order is required and complicated states are
supposed to be established: a fuzzer first creates a socket with
the correct type, associates the socket with its local address,
then connects it with a remote address; importantly, the fuzzer
invokes setsockopt syscall to carefully configure the socket
with specific level, option name as well as other attributes;
finally, the fuzzer sends the socket to the EVDEV interface.
MOCK can uniquely find the bug by considering the contextual
information and giving more priority to setsockopt syscall,
i.e., calling setsockopt twice.

Listing 1: A simplified proof-of-concept of a kernel bug found
by MOCK. A syscall sequence in a particular order is required
to trigger the bug.

1 socket$INET
2 bind$INET
3 connect$INET
4 s e t sock op t$ INET
5 s e t sock op t$ INET
6 write$EVDEV

Fuzzing sophisticated stateful software like kernel remains
a big challenge. One of the difficulties is synthesizing state-
ful syscall sequences to cover deep code paths efficiently.
Syzkaller and HEALER have shown promising results in using
choice and relation tables, respectively, to guide mutation.

3

However, their effectiveness is hindered when dealing with
interrelated sequences and exploring deeper state spaces in the
kernel due to their reliance on context-free dependencies. As
a result, these approaches struggle to adequately address the
challenge of statefulness in kernel fuzzing. We find that either
the choice table or the relation table is unequal to the role
and has difficulty generating complicated syscall sequences.
To illustrate this point, we conduct the following case study
to present the constitution of the input produced during the
fuzzing campaign. We use HEALER and Syzkaller, considered
the most cutting-edge kernel fuzzers, to fuzz a Linux kernel
for 24 hours. We collect the generated syscall sequences that
trigger new coverage. The distribution of the generated syscall
sequence length is illustrated in Figure 1. The distribution
reveals that the performance of Syzkaller and HEALER no-
tably declines when they generate more interrelated and longer
syscall sequences. The syscall sequences whose lengths are
more than three merely account for 8% of the corpus.

1 2 3 4 >=5
Length

0
10
20
30
40
50
60
70

R
at

io
(%

)

HEALER
Syzkaller

Fig. 1: The distribution of length of the syscall sequences
generated by the fuzzers with the context-free dependencies.

The above results indicate that existing fuzzers are insuffi-
cient to produce complicated input and effectively explore the
kernel space for vulnerabilities deep in states. We infer the
reasons as follows:

1) Context-free Dependency. Existing kernel fuzzers model
the interaction of syscalls as context-free dependencies. They
develop the dependencies on a point-to-point basis, in which
the dependencies work only in a range of two syscalls, whereas
dependencies are supposed to be conditional probabilities and
dynamically adjusted under different contexts. Such context-
free dependencies modeling approaches also largely ignore
the directions of dependencies. A dependency learned from
the pair ⟨Ca, Cb⟩ is supposed to demonstrate that the syscall
Ca has an impact on Cb (denoted as Ca → Cb) and the
reversed pair does the opposite. However, neither Syzkaller nor
HEALER conforms to the rules. They consider the dependency
to have a mutual effect on ⟨Ca → Cb⟩ and ⟨Cb → Ca⟩, and
apply it to the prefixes ⟨Ca, ⟩ and ⟨Cb, ⟩ even though the
latter makes no sense or even hinders the fuzzing efficiency.

2) Inadequate Utilization of Corpus. The runtime corpus
consists of the syscall sequences collected in the fuzzing
process, which reveals how the syscalls are organized and
embody the syscall dependencies. Unfortunately, it has been
vastly underutilized by existing kernel fuzzers. For example,
Syzkaller does not use the runtime corpus when establishing
the choice table. HEALER leverages the corpus but has certain
drawbacks, leading to inadequate utilization. First, it studies
the dependencies from the corpus in a coarse-grained manner.
The learned dependencies are considered to be static and
binary, i.e., related or not. However, despite the fact that the
syscalls may be labeled as related, their relationship depends

on the specific context and does not always take effect. Second,
HEALER only captures the partial dependency information in
the generated syscall sequences, i.e., it only uses the last pair
of the test case for relation inference. However, in the corpus,
each syscall in a test case contributes to new coverage, and the
test case maintains the necessary states to trigger code deep
in the kernel. Therefore, HEALER grossly neglects the overall
dependency information behind the preceding syscalls; in other
words, it fails to capture long-distance dependencies.

IV. DESIGN OF MOCK

In this section, we present the design detail of MOCK.
Figure 2 illustrates MOCK’s overall design and workflow. First,
MOCK pre-processes Syzlang and the target kernel to infer
the available syscalls and the static dependencies in ①. The
available syscalls compose the syscall vocabulary, which is
used for the context-aware dependency learning. Then, MOCK
picks up a seed from the corpus for mutation (② in Figure 2).
Given a syscall sequence, the context-aware dependencies or
the static dependencies guide the syscall selection to generate
a new test case, and the scheduler determines the specific
strategy with UCB-1 algorithm to balance the exploration and
the exploitation in ③. After mutation, MOCK executes the test
case in ④ and checks whether new coverage or kernel crash is
triggered. If a syscall sequence achieves new coverage, MOCK
minimizes it by re-executing it and analyzing the feedback
for individual syscalls. As the fuzzing campaign advances,
MOCK collects more valuable test cases as the training set
and updates the language model periodically to learn the latest
context-aware dependencies (⑤ in Figure 2). The scheduler
also records the execution and the performance of each strategy
for better decisions.

A. Pre-Processing

The purpose of this phase is to prepare the groundwork for
the fuzzing process and language model training. It conducts
static dependency analysis and syscall vocabulary construc-
tion.

Static Dependency. The static dependencies play multiple
roles in the fuzzing process. First, the static dependencies serve
as a baseline for guiding the mutation of syscall sequences.
A diverse and high-quality corpus of syscall sequences is a
prerequisite of the context-aware dependencies, which means
the context-aware dependencies cannot be enabled at the initial
stage. Therefore, we use the static dependencies to ensure
the normal operation of MOCK before collecting a corpus
with sufficient test cases and activating the context-aware
dependencies. Second, the static dependencies also contribute
to the diversity of the fuzzing campaign when combined
with the context-aware dependencies. While context-aware
dependency based on historical knowledge may prove effective
for exploitation, an over-reliance on it could hinder further
exploration of the input space. Specifically, MOCK regards the
static dependencies as an optional mutation strategy respon-
sible for generating diverse syscall sequences and designs a
customized task scheduling algorithm for balance, which will
be further described in Section IV-C.

In the context of detecting the static dependencies, MOCK
utilizes the Syzlang descriptions and adopts HEALER’s

4

Pre-Processing

Syscall
Vocabulary

Syzlang

Static
Dependencies

Input Generation

Syscall Dependency

Context-aware

Static-based

Execution/Feedback

⑤Model Update
Corpus

Scheduler

Test Case

CrashMinimize

①Static Analysis
UCB

Algorithm

②Pick

③Mutate
Instrumented Kernel

Executor

④Execute Coverage

Fig. 2: The framework of MOCK.

strategy. The analysis focuses on the argument types and
directions of the syscalls. The syscalls that output resources are
identified as producers, while those that accept resources are
regarded as consumers. Through this principle, the producers
and consumers are understood to be interrelated. Specifically,
given the syscall Ci and Cj , we identify that they share a static
dependency following two guidelines: (1) Ci produces a return
value that could be compatibly consumed by any parameter in
Cj ; (2) the parameters of Ci includes an outward direction
pointer that could be compatibly consumed by any parameter
in Cj .

Syscall Vocabulary. Vocabulary construction is a standard
procedure for building a language model. In the kernel fuzzing
setting, all the available syscalls compose the vocabulary to
build a language model. With the syscall vocabulary, MOCK
maps the syscall sequences into vectors in the training stage
and the predicted vectors back to promising syscalls. Note that
though Syzlang provides a set of information of syscalls,
not every syscall in the Syzlang is available. The available
syscalls may vary from kernel to kernel. Consequently, we
perform a pre-run on the target kernel to check which syscalls
could be invoked.

B. Context-aware Dependency Learning

As the core of MOCK, it models the syscall relations as
the context-aware dependencies in the form of the language
model and makes the most of the corpus collected from the
fuzzing process. MOCK starts to train and utilize the language
model when collecting sufficient samples. In this phase, we
detail the process of context-aware dependency learning from
the corpus.

Corpus Aggregation. The technique of coverage-guided
fuzzing involves tracing the code coverage achieved by each
input fed to a target program. The test case that achieves
new coverage proves its potential and is collected as a seed
in the corpus for further mutation. In kernel fuzzing, the
test cases consist of various syscall sequences, which tell
how the syscalls are organized and work jointly. As a result,
the corpus reveals the syscall dependencies and the state
transitions in addition to the code coverage. This historical
knowledge could help fuzzers maintain necessary states and
trigger code or vulnerabilities deep in the kernel. Consequently,

MOCK chooses the collected corpus as a dataset for training.
Unfortunately, when a syscall sequence triggers new coverage,
it builds up the necessary states but does not necessarily get
all the syscalls involved. There might be several noisy syscalls
in the sequence that do not interact with others or contribute
to new coverage. It is a necessity to filter out such individual
working syscalls to maintain exact dependencies, which will
have a significant impact on the model’s generalization.

Algorithm 1: Test Case Minimization
Data: s: syscall sequence

Cnew: syscall with new coverage
pos: position of Cnew

cov: coverage of Cnew

Result: S: minimized syscall sequence
Function MINIMIZE(s, cov, idx):

S ← s[0 : pos]
i← len(S)− 2
while i ≥ 0 do

S′ ← remove(S, i)
cov′ ← exec(S′)
if cov′ == cov then

S ← S′

i← i− 1

return S

Once a test case achieves new coverage, it will be min-
imized before saving it into the corpus. MOCK adopts the
same minimization method as HEALER and Syzkaller [15],
but they implement it in different programming languages.
Algorithm 1 shows the procedure of test case minimization.
The algorithm takes in a syscall sequence s, position pos of
the syscall Cnew that achieves new coverage and new coverage
cov. First, MOCK iterates over the sequence in a reversed
order. For each syscall prior to Cnew, the algorithm attempts to
remove it individually and executes the reduced sequence. The
algorithm removes a syscall permanently on the condition that
the removal has no impact on the execution of Cnew, which
means the syscall does not share a dependency with Cnew.
Otherwise, the syscall engages with the kernel states and shall
be reserved. In this way, MOCK minimizes test cases, which
preserves the distinct dependencies without noise and provides
a high-quality corpus for model training.

5

E0 E1

C0 C1 Cn-1 Cn
…

…

C2

En

h
→

h
→

h
→

h
→

h
→

h

→

h

→

h

→

h

→

h

→

Embedding
Layer

BiGRU
Layer

En-1E2

Linear Layer

Distribution of Cn+1

Corpus

Fig. 3: The architecture of the language model.

Language Model. MOCK uses the neural network lan-
guage model to capture the context-aware dependencies of
syscalls. Figure 3 depicts the architecture of the model. Our
model is composed of one embedding layer, one Bidirectional
Gate Recurrent Unit (BiGUR) [9], and one linear layer. MOCK
trains the language model using the corpus (x, y) ∈ D as train-
ing data, which is collected from syscall sequences that trigger
new coverage. Given a syscall context x = [C0, C1, . . . , Cn],
the goal of the model is to output a conditional probability
distribution for the next syscall. The detailed process is as
follows.

When the model takes in a syscall sequence, it first converts
the sequence into a numerical sequence in compliance with the
syscall vocabulary. After passing the embedding layer, each
syscall turns into a distributed vector representation named
embedding. Thus the syscall sequence is represented in the
form of a numerical matrix. The embedding vector is then
fed to the BiGRU layer. At each time step, the BiGRU layer
takes four inputs: (1) a forward hidden state

−→
h t−1 and (2)

a backward hidden state
←−
h t−1 from the previous time step;

and (3) the embedding of a given syscall. We take advantage
of the BiGRU to predict the promising syscall based on the
cumulative context of preceding syscalls. Finally, the output
of the BiGRU layer is forwarded to the linear layer, and the
layer yields a probability distribution f(x) over the vocabulary.
To meet the goal mentioned above, the language model is
designed to minimize the following loss L over the training
set (x, y) ∈ D:

g(x) = softmax(f(x))

l(g(x), y) = −
n∑

i=1

yi log g(x)i

L =
1

|D|
∑

(x,y)∈D

l(g(x), y)

(1)

In this work, we utilize the CBOW model to tackle the
syscall sequence generation task. This model combines sur-
rounding words to predict the word located in the middle of a

Algorithm 2: Context-aware Mutation
Data: s: syscall sequence

pos: insert position
M : language model

Result: C: selected syscall
Function MUTATE(s, M , pos):

ctxf ← s[0 : pos] // the front context
df ← softmax(M(ctxf))
cand← topK(df) // with probabilities

if pos ¡ len(s) then
ctxr ← reverse(s[pos : len(s)])
// the rear context
dr ← softmax(M(ctxr))
candr ← topK(dr) // with probabilities
cand← merge(cand, candr)

C ← random weighted(cand)
return C

given sequence. There are front and rear surrounding words in
the text, and so do the syscall sequences. To address this, we
employ a bidirectional RNN, where the forward GRU handles
the front context while the backward GRU handles the rear
context. By utilizing this approach, MOCK can improve the
context-aware dependencies.

We update the language model on a regular basis in the
fuzzing process. This is because with the state change of the
kernel and the growth of the corpus, the latest dependencies
can be learned and the existing dependencies can be refined.
The corpus is split into a training set and a validation set in the
updating phase to train the model and inspect its performance
intermediately. After MOCK finishes several epochs in training,
the updating phase ends, and the model that achieves the best
performance on the validation set will be employed.

C. Dependency-guided Mutation

In this phase, MOCK leverages the learned context-aware
dependencies to mutate a syscall sequence according to con-
text. In addition, we design a novel scheduling strategy to
prevent mutation from stereotypes raised by excessive reliance
on historical knowledge.

Context-aware Mutation. MOCK mutates a syscall se-
quence in a context-aware manner in order to intentionally
trigger code paths on complex states. Kernel fuzzers gener-
ally possess various mutation strategies, such as sequence-
level operations and parameter synthesis. The sequence-level
operations involve inserting syscalls into an existing sequence
and removing syscalls from a sequence, and the parameter
synthesis produces concrete values according to Syzlang’s
types. The greatest strength of MOCK is that it optimizes
the syscall selection approaches of existing kernel fuzzers by
incorporating context-aware dependencies.

MOCK adds a new syscall to a given syscall sequence for
mutation. In the preparatory stage, MOCK picks up a seed and
randomly chooses the position for the syscall to be inserted.
Given a seed syscall sequence and the target position, MOCK
leverages the context-aware dependencies to select a promising
syscall in consideration of the context. Algorithm 2 outlines

6

the process of mutating a syscall sequence with the model.
Specifically, the algorithm first extracts the sub-sequence prior
to the position as the front context, which is then fed to the
model to generate an output vector. The vector is further trans-
formed into a probability distribution of syscalls via softmax
function, which is often used in machine learning to scale
arbitrary values into probabilities. Based on the probability
distribution, the topK function identifies the top-k suggestions
(with their probabilities) as the candidates. MOCK adopts the
same measures to the rear context, assuming that the insert
position is not at the end of the sequence. The front context
determines which syscalls are influenced by it, while the rear
context decides which syscalls can influence it. It takes in
the rear context in reverse order and yields another top-k
suggestions with their probabilities. MOCK then merges the
two suggestions into the overall weighted candidates by adding
up the probabilities of the same syscall in the suggestions.
Finally, MOCK randomly makes a syscall selection from the
overall candidates according to their probabilities. After the
syscall selection, MOCK synthesizes parameters for the newly
added syscall according to parameter types and sends it to the
kernel image for execution. In the procedure, no significant
alteration is required when constructing and using the context-
aware dependencies, which conveniently serve as an extension
of existing fuzzers.

It is worth noting that the rear context is fed into the model
in reverse order. As mentioned previously, the language model
utilizes the BiGRU to better develop the context-aware de-
pendencies where the backward GRU passes the hidden states
to predict the next syscall from back to front (see Figure 3).
Hence, MOCK conforms to the rule as well when mutating
a syscall sequence and generates high-quality test cases. It is
important to bear in mind that the context-aware dependencies
we propose are definitely directional though it combines the
bidirectional contexts to mutate a syscall sequence. Having
known an influence relation Ca → Cb, the fuzzers with
the context-free dependencies neglect the relation’s direction
and equally apply it to the prefixes ⟨Ca, ⟩ and ⟨ , Ca⟩.
MOCK overcomes the problem by taking the context into
account. For instance, MOCK learns the dependencies from
the syscall sequences [C0, C1, . . ., Cn] in the corpus (the sub-
sequence [C0, C1, . . .] denoted as ctx). MOCK may apply the
dependencies to a similar context ⟨ctx′, ⟩ whereas disregard
of the context ⟨ , ctx′⟩. So does it when the context is on the
back.

Task Scheduling. MOCK aims to find bugs by building
solid seeds which require a combination of interrelated syscalls
to establish states in the kernel. These solid seeds are more
difficult to produce by existing approaches and enable the
exploration of deeper logic. To achieve this, we propose
and learn the context-aware dependencies from the corpus.
However, while the historical-knowledge-based dependencies
prove effective, an over-reliance on it may undermine the
diversity and lead the mutation candidates to a limited set.
This will compromise the quality of the training set and the
context-aware dependency. Consequently, the input mutation
eventually may be limited to some fixed patterns, hindering
further exploration of input space (shown in III). Hence, we
model the fuzzing dilemma as a MAB problem and introduce
the MAB algorithm to increase the diversity of mutation and
corpus mainly. Additionally, the diversity also improves the

Algorithm 3: Task Scheduling
Data: texplore: time budget for exploration

texploit: time budget for exploitation
Function SCHEDULE(s, M , pos):

T ← [static-based, model-based]
// different tasks for syscall selection
do

if stage = EXPLORE then
init weights(w)
init zeros(N,R)
for t = 0→ texplore do

i← random weighted(w)
// selected task index
input← insert call(T [i]);
cov ← execute(input)
Ni ← Ni + 1
Ri ← Ri + is new(cov)

stage← EXPLOIT

else if stage = EXPLOIT then
ibest ← UCB − 1(N,R)
for t = 0→ texploit do

input call(T [ibest]);
execute(input)

stage← EXPLORE

while true

chance of unpredictable syscalls for bug hitting, which is the
secondary objective.

To address the above challenges, we design a task schedul-
ing strategy based on the UCB-1 algorithm. We choose UCB-
1 instead of EXP3 adopted by SyzVegas [50] for three
reasons. First, the UCB-1 algorithm requires fewer compu-
tational resources, making it suitable for fuzzing where the
decision-making process needs to be fast. Second, UCB-1 is
a relatively simple algorithm, making it easier to grasp and
apply in practice. The objective of coverage-guided fuzzing is
to maximize the code coverage within the same time. Thus
actions in MAB problems correspond to distinct mutation
tasks, and gain corresponds to code coverage. The UCB-1
algorithm divides the fuzzing campaign into the exploration
and exploitation stage: in the exploration stage, the algorithm
estimates each action’s confidence interval, which represents
the uncertainty and combines the average award (exploitation
term) with the upper confidence bound (exploration term) as
the overall rewards; in the exploitation, only the action with the
highest reward is selected. Moreover, the confidence interval
gets narrower and more accurate with the attempts increasing.
Given the number of executions Ni and the number of test
cases Ri that trigger new coverage or crashes at time step t,
we formally define the reward and the algorithm as follows:

Gi =
Ri

Ni
+ c

√
ln t

Ni

ibest = argmax
i

G
(2)

Algorithm 3 shows the workflow of task scheduling inte-
grated with the fuzzer. The algorithm takes in the time budget
texplore for the exploration stage and texploit for the exploita-

7

tion stage. After the model’s employment, MOCK iteratively
switches between the exploration and exploitation stage under
the time budget until the fuzzing loop ends. In the exploration
stage, MOCK first assigns a pre-defined selection weight for
each task. It also resets the numbers of execution and that
of the test cases which triggers new coverage or crashes as
zero. After the initialization, MOCK picks up a syscall selection
task i by the weights w randomly and applies it to a seed to
generate a new input. The scheduler updates the correspondent
execution time Ni when a task gets employed. The executor
runs the new input and returns the code coverage information
to the scheduler, which updates Ri if the input achieves new
coverage. MOCK repeatedly follows the procedure before the
time budget texplore is consumed and then changes to the other
stage. From the estimated reward, the schedule determines the
task with the best performance, and MOCK focuses on the
task to generate effective input and trigger more code coverage
within the time budget texploit. Then MOCK switches to the
exploration stage again, and so the cycle continues.

V. IMPLEMENTATION

The context-aware dependency could be implemented as
an extension module of existing kernel fuzzers. Our imple-
mentation of MOCK inherits Syzlang from Syzkaller and
incorporates the model training, the model-guided mutation,
and the task scheduler on top of the fuzzing engine of
HEALER , which takes roughly 1,600 lines of code.

The model training module uses PyTorch 1.11.0 to im-
plement a lightweight NNLM where each embedding has a
dimension size of 64, and the BiGRU layer has a hidden state
size of 128. The BiGRU also randomly sets units to zero
with a frequency of 0.5 to help prevent overfitting. The Adam
optimizer is adopted and its learning rate adaptively decays
every ten training epochs. The module preserves the trained
model in the form of TorchScript. In the fuzzing process,
MOCK uses the first hour to collect the initial training set.
Since then, it invokes the training module every two hours to
dynamically adjust the dependencies.

The model-guided mutation module then loads the model
and performs the mutation operation via binding code (e.g.,
tch-rs [34]), which provides some thin wrappers around the
C++ PyTorch API (LibTorch [40]) in the underlying. When the
model outputs a probability distribution, we sample candidates
from it with top-k as 15. Due to a conflicting issue between
PyTorch and LibTorch when they run in the same process, we
deploy the training module in a paralleled routine with the
main fuzzing loop in which the mutation module resides. The
mutation module invokes the training module periodically via
restful APIs and loads the model from the return value.

In the task scheduling module, each task is assigned with
even weights in the exploration stage. We determine the
budget ratio of exploration and exploitation by running various
settings and choose the one with the most branch coverage,
which is shown in Table IV.

VI. EVALUATION

In this section, we evaluate the following research ques-
tions:

• RQ1: How does MOCK perform in code coverage?

• RQ2: How effective is context-aware dependency compared
to context-free dependency?

• RQ3: Do various setups (e.g. initial seeds, pre-trained
models) reduce warmup time and boost fuzzing performance?

• RQ4: How does MOCK perform in vulnerability detection?

• RQ5: Can MOCK discover new vulnerabilities in real-world
kernels?

• RQ6: How is the significance and overhead of key compo-
nents in MOCK?

To be specific, we compare MOCK with the state-of-the-
art fuzzers Syzkaller, HEALER and SyzVegas on the recent
versions of Linux kernels. The evaluations are designed to
measure the efficacy of context-aware dependency to build
up kernel states to discover new vulnerabilities and reach
execution paths. We also conduct experiments to demonstrate
the advantage of context-aware dependency over context-free
dependency by various metrics. In addition, the fuzzers start
with various setups including initial seeds and a pre-trained
model to verify if the settings help reduce the warmup time
and improve the efficiency of fuzzing. Moreover, we conduct
further analysis to evaluate the significance of key components
in MOCK by ablation experiments and discuss the overhead of
our designs.

A. Experiment Setup

All the experiments are conducted on four machines, each
of which runs 64-bit Ubuntu 16.04LTS with Intel Xeon E5-
2650 v4 (2.2GHZ, 48cores) CPU and 256GB of main memory.
To mitigate randomness, each set of experiments is repeated
five times and each experiment has a time budget of 168 hours
[24]. MOCK and other fuzzers use only CPU and the same
virtual machine configuration (2 cores, 2 GB of memory) to
ensure a fair comparison. We evaluate the fuzzers on three
long-term Linux kernels: Linux-5.10, Linux-5.15, and Linux-
5.19, which are widely deployed all over the world and heavily
tested by many other works. All the kernels are compiled under
the same configuration with the common features enabled (e.g.,
KCOV [45] and KASAN [13]). Unless stated otherwise, we
employ Linux-5.10 as the target kernel and run the fuzzers
without any initial seeds.

B. Coverage Performance

To evaluate MOCK’s capability of exploring code execution
paths with the same time budget, we inspect the fuzzing
process on three versions of Linux kernel 5.4, 5.10, and 5.15,
and record the branch coverage in comparison with Syzkaller,
HEALER and SyzVegas.

Figure 4 shows the branch coverage growth achieved by
each fuzzer. MOCK can achieve higher code coverage than
HEALER, Syzkaller, and SyzVegas during the same period.
Specifically, MOCK has a similar coverage performance com-
pared to the other fuzzers at the beginning of fuzzing. There
are several reasons for this. First, MOCK relies solely on the
static dependencies and does not initiate the model in the setup
time. Second, while the model is enabled after startup, the
inadequate size of the training set also leads to the limited

8

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168
Time(hours)

0
50

100
150
200
250
300
350
400
450

C
ov

er
ag

e(
10

00
 e

dg
es

)

Mock
Syzkaller
HEALER
SyzVegas

(a) Linux-5.4

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168
Time(hours)

0

50

100

150

200

250

300

350

400

C
ov

er
ag

e(
10

00
 e

dg
es

)

Mock
Syzkaller
HEALER
SyzVegas

(b) Linux-5.10

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168
Time(hours)

0
50

100
150
200
250
300
350
400
450

C
ov

er
ag

e(
10

00
 e

dg
es

)

Mock
Syzkaller
HEALER
SyzVegas

(c) Linux-5.15
Fig. 4: The branch coverage growth of running MOCK, Syzkaller and HEALER on three versions of Linux kernel.

capacity of the model, and the model may not properly master
the context-aware dependencies. Therefore, the task scheduler
favors prioritizing the static dependencies in the early stage.
Once the fuzzing campaign advances and the training set
grows, we observe that the context-aware dependencies get
to manifest their might, and MOCK’s coverage gradually
outperforms the other fuzzers. Finally, MOCK performs the
best in respect of branch coverage. MOCK averagely achieves
12%, 6% and 3% branch coverage improvement in comparison
with HEALER, Syzkaller, and SyzVegas, respectively1. The
speed-up measures the speed of MOCK achieving the same
branch coverage as the baseline. Meanwhile, MOCK performs
more prompt in exploring the same amount of execution paths
with a 2.23×, 1.58×, and 1.32× speed-up over HEALER,
Syzkaller, and SyzVegas.

The above statistics indicate MOCK’s efficacy in triggering
more unique code branches with an average of 7% increase
and a 1.71× speed-up. Under the guidance of the language
model and the context-aware aspect, MOCK manages to grasp
the subtle dependencies between syscalls and make syscall
selections adapting to the calling context. In this way, MOCK
could prevent pointless combinations, build up necessary states
more efficiently and improve the quality of sequences, which
accounts for the growth in code coverage.

C. Effectiveness of Context-aware Dependency

As described in Section IV-C, MOCK leverages the context-
aware dependency to explore deep kernel space more ef-
fectively and efficiently. To evaluate whether the context-
aware dependency can construct more interrelated inputs, we
investigate the lengths of all the minimized syscall sequences
generated by the fuzzers. Next, in order to show a more
fine-grained effect of context-aware dependencies in selecting
promising syscalls, we evaluate the number of test cases that
cover new coverage and new states under various contexts.

Testcase Analysis. An effective fuzzer is designed to
generate diverse as well as in-depth input to cover different
corner cases. Fuzzers using context-free dependencies may
reach various and shallow code execution paths with simple
syscall combinations. However, they practically suffer from
generating in-depth test cases that properly set up kernel
states and trigger deep code logic. Therefore, we use the
length of the syscall sequence as the metric to measure the
test case’s interrelation. The syscall sequences in the corpus
are minimized and their syscalls all get engaged to maintain

1Our evaluation contradicts findings in [48], which could be due to [1].

necessary states and finally perform an execution. The more
kernel states are required, the longer a syscall sequence is, and
it is increasingly difficult for a fuzzer to construct such a test
case.

We collect and analyze the corpus from the four fuzzers.
Figure 5 depicts the distribution of lengths of the minimized
syscall sequences produced by the fuzzers. Syzkaller and
HEALER concentrate on generating syscall sequences whose
lengths are less than three while behaving poorly in construct-
ing long sequences. MOCK by contrast significantly improves
the ability to produce in-depth syscall sequences, especially for
the sequences with lengths greater than or equal to five. As is
shown in Figure 5, for syscall sequences no shorter than three,
the execution times assigned by MOCK (33.5%) are 1.11, 1.17
and 1.12 times higher than that of HEALER (30.1%), Syzkaller
(28.7%) and SyzVegas (30.0%); in particular, for in-depth
syscall sequences greater or equal than five, the execution
times assigned by MOCK (7.9%) is 1.61, 1.49 and 1.41 higher
than that of HEALER (4.9%), Syzkaller (5.3%) and SyzVegas
(5.6%). Under the guidance of context-aware dependencies,
MOCK could improve the quality of test cases by producing
more interrelated combinations. As a result, MOCK has a
greater opportunity to explore deeper code space in the kernel
with the same time budget, which is generally vulnerable and
far from fully tested.

TABLE I: The performance of context-free and context-aware
dependencies under various contexts.

Dependency Model Context Size
1 2 3 4 >=5

No. of test cases that trigger new coverage

context-free 4,381 8,275 3,966 1,846 1,921
context-aware 5,488 10,199 4,906 2,308 2,374

Improvement (%) 25 25 24 25 24

No. of test cases that increase the length of syscall sequences

context-free 604 701 183 68 84
context-aware 533 940 270 81 104

Improvement (%) -13 34 48 19 24

Contextual Mutation Analysis. It is difficult for exist-
ing fuzzers to generate in-depth inputs because they cap-
ture relations of syscalls ignorant of the calling context. To
overcome the shortcoming, MOCK adopts the context-aware
dependencies to guide the mutation and generation procedure.

9

1 2 3 4 >=5
Length

0

10

20

30

40

50

60

70
R

at
io

(%
)

15.9 16.3
19.1 18.2

51.6
53.6 52.5 51.8

18.7 18.6
16.5 17.4

7.7 6.8 6.7 7.2 6.1
4.7 5.2 5.4

Mock
HEALER
Syzkaller
SyzVegas

(a) Linux-5.4

1 2 3 4 >=5
Length

0

10

20

30

40

50

60

70

R
at

io
(%

)

16.2 16.4
18.7 18.2

50.8
53.0 52.7 51.8

16.9
18.3

16.3 17.2

7.3 7.2 6.7 6.9
8.9

5.0 5.6 5.9

Mock
HEALER
Syzkaller
SyzVegas

(b) Linux-5.10

1 2 3 4 >=5
Length

0

10

20

30

40

50

60

70

R
at

io
(%

)

15.3
16.8

18.4 17.6

49.9

53.4 52.5 52.3

18.7 18.0 17.9 18.2

7.4 6.9 6.2 6.6
8.8

4.9 5.0 5.4

Mock
HEALER
Syzkaller
SyzVegas

(c) Linux-5.15
Fig. 5: The length distribution of the corpus collected by MOCK, Syzkaller, and HEALER on three versions of Linux kernel.

Hence, we conduct experiments to compare the ability of the
context-free and context-aware dependencies to trigger new
coverage and new states under different contexts and take a
closer look at MOCK’s superiority. We choose the relation
table from HEALER as the representation of the context-free
dependencies in comparison. To be specific, we count the
number of executions of inserting new syscalls and inspect
whether syscall sequences after insertion achieve new coverage
or increase sequence length after minimization.

Table I presents a summary of the performance of context-
free and context-aware dependencies across different contexts.
The table indicates that the number of sequences that achieve
new coverage through context-aware and context-free syscall
selection is 25,275 and 20,389, respectively. Notably, we find
that the context-aware dependencies generate an average of
1.24 times more syscall sequences than the context-free de-
pendencies. Regarding length, the context-aware dependencies
generate 1,771 inputs that can increase the lengths of the
syscall sequences, which is comparable to the context-free
dependencies (1,523). However, it is worth noting that the
context-aware dependencies demonstrate better performance as
the context size increases. Specifically, while they underper-
form the context-free dependencies when the context size is
one, they exhibit a significant advantage over more extended
contexts. For instance, they achieve a 34% improvement in
increasing the lengths of the syscall sequences when the
context size is two, and this improvement remains 30% for
context sizes greater than or equal to three.

We conclude from the result that the context-aware depen-
dencies (1) facilitate building up complicated states and explor-
ing the deep kernel space, and (2) are marginally deficient in
the face of a simple context while reaching more coverage by
possibly allocating more energy to promising syscalls. Overall,
this result definitely demonstrates the effectiveness of MOCK
against existing kernel fuzzers in terms of tailoring the kernel
context to make better syscall selections. The context-free de-
pendencies that leverage the point-to-point approach may take
effect with a single syscall context, but their abilities ultimately
decline when coping with long dependencies and states. In
contrast, MOCK employs the context-aware dependencies to
capture the complicated dependencies and prevents them from
getting stuck in the shallow input space. This is the reason
why MOCK improves the code coverage as well as the bug
findings.

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168
Time(hours)

0

100

200

300

400

500

600

700

C
ov

er
ag

e(
10

00
 e

dg
es

)

Mock-Seeds
Syzkaller-Seeds
HEALER-Seeds
SyzVegas-Seeds

(a) Branch coverage

1 2 3 4 >=5
Length

0

10

20

30

40

50

60

70

Ra
tio

(%
)

9.3

18.0 17.1
15.1

30.3

43.6 42.4
39.6

13.8 15.0

18.2 17.3 17.2

8.2
11.1

13.5

29.3

15.2

11.1

14.6

Mock-Seeds
HEALER-Seeds
Syzkaller-Seeds
SyzVegas-Seeds

(b) Length distribution of corpus

Fig. 6: The fuzzing performance of MOCK-Seeds, HEALER-
Seeds, Syzkaller-Seeds, and SyzVegas-Seeds.

D. Various Setups

To effectively direct MOCK to learn the context-aware
dependency, we introduce a novel strategy by using the fuzzing
campaign to train the model. Hence, various settings including
initial seeds and a pre-trained model, may help reduce the
warmup time and accelerate fuzzing process. To evaluate how
the various setups contribute to the efficiency of MOCK, we
conduct experiments by (1) feeding the fuzzers with initial
seeds and (2) integrating the pre-trained context dependence
model with MOCK.

Fuzzing with Initial Seeds. The initial seeds may greatly
influence the fuzzing performance. We prepare the seeds by
crawling syz reproducers from fixed Linux Kernel upstream
crashes in syzbot [16], following the guideline of [36]. To en-
sure a fair comparison,We then feed the fuzzers with the same
initial seeds and denote them as MOCK-Seeds, HEALER-
Seeds, Syzkaller-Seeds, and SyzVegas-Seeds. Figure 6 show-
cases the performance of the fuzzers with the initial seeds.
In particular, MOCK-Seeds gains an 84% coverage growth in

10

comparison to MOCK without seeds. The results demonstrate
that MOCK-Seeds outperforms HEALER-Seeds, Syzkaller-
Seeds, and SyzVegas-Seeds in terms of branch coverage
growth, achieving 32%, 13%, and 8% higher coverage, respec-
tively. Moreover, when considering the same level of branch
coverage, MOCK-Seeds exhibits a remarkable speed-up, out-
performing HEALER-Seeds, Syzkaller-Seeds, and SyzVegas-
Seeds by 4.31×, 1.87×, and 1.56×, respectively. In addition
to branch coverage, the length distribution of the generated
corpus is another significant metric. In this regard, MOCK
stands out by producing the highest number of interrelated
sequences whose lengths are equal to or greater than five,
amounting to 29.3%. Notably, comparing the results of fuzzing
with and without seeds, we find that MOCK-Seeds could gain a
higher speed-up (2.58× v.s. 1.71×) and produce considerably
more interrelated syscall sequences.

The reason for this advantageous situation can be explained
as follows. As described in Section IV-B, MOCK relies on the
minimized syscall sequences as a golden training set during
the fuzzing process, which embodies the valuable dependency
information. With the aid of the initial seeds, MOCK could
gather more valuable sequences in a shorter time and reduce
the warmup time. Consequently, the context-aware dependency
takes effect earlier and boosts the fuzzing performance.

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168
Time(hours)

0

50

100

150

200

250

300

350

400

C
ov

er
ag

e(
10

00
 e

dg
es

)

Mock
Mock-Pretrain

Fig. 7: The branch coverage of MOCK and MOCK-Pretrain.

Pre-trained Dependency. The utilization of initial seeds
has been shown to offer benefits in terms of dependency
learning and acceleration. This raises an intriguing question
regarding the potential advantages of integrating a pre-trained
dependency model into a fuzzer. To address the question, we
enable MOCK with a pre-trained model and without initial
seeds, denoting this setup as MOCK-Pretrain. The preparation
of the pre-trained model involves combining syzbot’s seeds
with the accumulated corpus of MOCK to create the training
set. Both syzbot’s seeds and MOCK’s accumulated corpus have
undergone minimization and have contributed to new coverage
or crashes, thus validating their high-quality nature. With
the golden training set, the pre-trained model is trained and
updated in the identical manner as described in Section IV-B.

Figure 7 illustrates the branch coverage of MOCK and
MOCK-Pretrain. With the aid of the pre-trained model, MOCK-
Pretrain gains knowledge of syscall dependencies from prior
runs. This knowledge allows the fuzzer to avoid unnecessary
exploration and focus on meaningful combinations of syscalls.
Hence, MOCK-Pretrain demonstrates significant advantages
over MOCK soon after startup. On average, MOCK-Pretrain
averagely earns a 10% coverage growth and a 3.29× speed-up
compared to MOCK.

In summary, our experiments have highlighted that MOCK
can indeed benefit from the various setups, including initial
seeds and pre-trained model. The initial seeds contribute to a
reduction in warmup time for MOCK, enabling the context-
aware dependency mechanism to bear fruit more quickly and
leading to an 18% coverage growth and a 2.58× speed-up.
On the other hand, the incorporation of a pre-trained depen-
dency model also allows MOCK to conduct input mutation
more effectively, resulting in a 10% coverage growth and
an impressive 3.29× acceleration in the fuzzing campaign.
These results further prove the significance of context-aware
dependency information, an aspect that has been previously
undervalued. MOCK successfully captures the dependency
through a language model in a context-aware manner.

E. Vulnerability Detection Ability

To demonstrate MOCK’s efficiency in vulnerability detec-
tion, we conduct experiments on an earlier version of Linux
kernel 5.10 and compare the number of unique vulnerabilities
reported by each fuzzer. We collect the count of vulnerabilities
in the process together and manually inspect the syscall
sequences that triggered the vulnerabilities.

30 21

4

5

Mock

HEALER
Syzkaller

SyzVegas

Fig. 8: The vulnerabilities discovered by MOCK, HEALER,
Syzkaller and SyzVegas on Linux-5.10.

As is shown in Figure 8, MOCK can discover more vulnera-
bilities compared to HEALER, Syzkaller and SyzVegas within
the same time. In the experiment, MOCK finds 39 unique
vulnerabilities while HEALER, Syzkaller and SyzVegas find
30, 35 and 37 vulnerabilities, respectively, achieving 30%,
11% and 5% growth in capability in vulnerability detection.
Especially, MOCK finds all the vulnerabilities discovered by
HEALER and detects eight extra vulnerabilities. The input
space of the vulnerabilities triggered by HEALER is not
only covered but exceeded by MOCK. Moreover, MOCK
detects 34 vulnerabilities that were also found by Syzkaller
and SyzVegas, and five extra vulnerabilities, which means
MOCK covers the majority of the input space of Syzkaller
and SyzVegas. It is worth noting that the average length of
syscall sequences to reproduce the five vulnerabilities uniquely
discovered by MOCK is 16. MOCK has a similar performance
over detecting shallow vulnerabilities that take shorter syscalls
compared to the other two fuzzers. Regarding detecting the
complicated vulnerabilities that are triggered by no less than
five syscalls, MOCK outperforms Syzkaller and HEALER.
Benefiting from the context-aware dependency, MOCK mutates
syscall sequences in view of the calling contexts. Hence, it can
prevent shallow, fruitless combinations and focus on producing
in-depth syscall sequences more efficiently in the given time.

11

This is the reason why MOCK outperforms those context-free
fuzzers in vulnerability findings.

Overall, MOCK finds 15% more vulnerabilities than the
state-of-the-art fuzzers, which indicates MOCK’s effectiveness
in vulnerability detection. The context-aware dependency also
proves to be an effective approach that contributes to not only
code coverage but also vulnerability findings, especially for
the ones requiring complicated syscall sequences to trigger.

F. Real-World Vulnerabilities Discovery

We evaluate the capabilities of MOCK in discovering read-
world vulnerabilities. We run MOCK on various versions of
Linux kernels, including 4.19, 5.4, 5.10, 5.15, and 5.19, over
a period of two weeks. Our fuzzer uncovers 15 unique practical
vulnerabilities in total, of which four are confirmed and four
are fixed by developers. Besides, we also have received two
CVE IDs (CVE-2022-2978, CVE-2022-40476) , which have a
7.8 and 5.5 CVSS Score according to NVD [25]. The CVEs
can lead to a high-security impact and attackers can potentially
exploit the vulnerabilities to escape privilege or run denial-
of-service attacks, breaking working systems. Table II shows
brief information on the vulnerabilities found by MOCK. The
results indicate that MOCK is capable of finding real-world
vulnerabilities effectively, including two high-risk security
vulnerabilities. We further describe one of them as a case study.

Case Study. The null pointer dereference is a prevalent
memory failure, which takes place when a pointer with a value
of null is used as though it pointed to a valid memory area. If a
system runs and attempts to deference a null pointer, attackers
could exploit the vulnerability to cause severe security conse-
quences, e.g., overwhelming the system or running a denial-
of-service attack.

MOCK finds a null pointer dereference vulnerability in the
io_uring module facilitated by KASAN. The io_uring
module is designed as a new asynchronous I/O framework
for Linux. It provides an efficient interface with rich features
for applications that require asynchronous I/O functionality
through the kernel. To properly execute system actions, kernel
code sometimes needs to know the information of the current
process driving it by accessing a global variable current.
It works fines on most occasions as well as the preparatory
stage of io_uring. Unfortunately, due to the characteristic
of asynchrony, the process soon vanishes after issuing an asyn-
chronous I/O task, and consequently, the variable current
turns into a null pointer. A subsequent visit of the variable
finally triggers the null pointer dereference vulnerability.

It takes a series of preparatory actions, including setting
up contexts, submitting I/O tasks and etc., before accessing
the null pointer. MOCK could find the vulnerability since it
effectively maintains or extends the calling states with the help
of context-aware dependency. The other fuzzers may generate
a similar combination occasionally, whereas they have trouble
producing sufficient test cases in line with the required states to
examine the targeted module fully. MOCK learns dependency
from historical knowledge and assigns more execution times
to the in-depth syscall sequences to explore deep code space,
leading to the discovery of the vulnerability.

TABLE II: List of new vulnerabilities discovered by MOCK.

Subsystem Crash Type Operation Kernel Status

filesystem use-after-free nilfs mdt destroC 4.14 Fixed
filesystem kernel bug btrfs init reloc root 5.10 Reported
filesystem kernel bug btrfs drop extents 5.10 Reported
filesystem null-ptr-deref io req track inflightC 5.15 Fixed
filesystem use-after-free ntfs are names equal 5.15 Fixed
filesystem deadlock io poll double wake 5.15 Reported
filesystem kernel bug ntfs readpage* 5.15 Reported
filesystem kernel bug ntfs read folio* 5.19 Reported

drivers warning md probe 5.19 Reported
drivers deadlock sch direct xmit 5.19 Reported
drivers deadlock rfcomm sk state change* 5.19 Confirmed

network refcount bpf exec tx verdict 5.19 Fixed
network use-after-free fib6 clean all× 6.0 Reported
network use-after-free nexthop flush dev× 6.0 Reported

* : Also reported by Syzkaller or HEALER.
×: Without syz repro. C : Received CVE ID.

G. Further Analysis

Stepwise Analysis. In order to measure the contribution
of each core design, we construct another two fuzzers and
compare them with MOCK in terms of reaching code space.
Table III illustrates the fuzzing results. To be specific, the
base fuzzer (denoted as B) is only equipped with static
dependencies; the model fuzzer (denoted as B+M) implements
the context-aware dependencies with the language model based
on the base fuzzer, but invokes the static-based and the context-
aware dependencies by even weights without any schedule.
MOCK, denoted as B+M+S, is constructed as previously de-
scribed with the static and context-aware dependencies as well
as the task scheduler. From Table III, we make the following
conclusion:

• The context-aware dependencies have little effect in the
first few hours. This is because it takes time for MOCK to
prepare the training set in the initial stage. The minor training
set also limits the language model’s performance. However, the
model takes an increasingly proactive role as fuzzing reaches
later stages. Compared to the base fuzzer, the model fuzzer
eventually brings 17% coverage improvement, which proves
the value of context-aware dependencies.

• It is necessary for MOCK to dynamically schedule the
task selection to balance the exploration and exploitation. As
Table III shows, a fixed weight increases the probabilities
of picking model-based syscall selection, which could boost
coverage growth over a short period. However, it leads to a
local optimum and loses the initial advantages due to the lack
of diversification in the final. The adaptive task scheduler adds
a 14% coverage growth.

• Combining both the dependency-guided mutation and the
task scheduling brings considerable benefits for code coverage
growth. Every component in MOCK has a crucial role to play.
Notably, task scheduling internally serves as a close part of
the mutation strategies to support the construction and the
utilization of context-aware dependencies, which is the true
meaning of task scheduling.

Performance Overhead. In this phase, we discuss the
various overheads incurred by the system, which are mainly

12

brought by the language model training, model-guided muta-
tion, and task scheduling.

To eliminate the time cost of model training, several
measures are taken. First, the neural language model is trained
and loaded in parallel during every training cycle, ensuring that
the fuzzing process is not suspended or interrupted. Second,
a lightweight neural network structure is employed, which
does not require substantial computing resources or time. As a
result, it takes an average of 23 minutes to update the language
model. The model-guided mutation module also benefits from
the lightweight model. Compared to the static-based syscall
selection, invoking the model costs extra 1.6 hours during a 24-
hour experiment. Hence, the overall overhead of this module
is no more than 7%. In terms of the task scheduling module,
MOCK has to record additional information for each mutation
task in each exploration stage and calculate the performance
value in each exploitation stage. It totally takes eight minutes
for MOCK to implement task scheduling, which accounts for
less than 1% of the fuzzing time. Additionally, although the
experiments are done on CPU in the paper, MOCK is highly
recommended to be used with GPU for better performance.
The reason is that MOCK is a GPU-friendly fuzzer and can
further accelerate the mutation process with GPU which is
widely used and generally available in the real world. The
other approaches (e.g., HEALER, Syzkaller, SyzVegas) can
hardly be migrated to GPU.

TABLE III: The stepwise analysis on each component of
MOCK.

B B+M B+M+S

design -
context-aware
dependency

task scheduling

branch coverage 286k 335k 383k
overhead - <7% <1%

VII. DISCUSSION

Owing to minor modifications to the architecture and low
overhead, the context-aware dependency proposed by MOCK
could be conveniently applied to existing kernel fuzzers as
a pluggable mutation operator. Despite the effectiveness and
applicability of MOCK, we discuss the potential limitations of
the work and future directions in the section.

Model Structure. MOCK employs the language model
to learn the context-aware dependencies from a training set.
MOCK is highly dependent on both the model structure and
the composition of the training data. Therefore, selecting an
appropriate model structure and training dataset is crucial
for obtaining accurate results. In this work, we have used a
lightweight neural network structure for a trial, but more com-
plex neural networks may potentially enhance the performance.
Additionally, incorporating extra features from the training set,
such as parameter types and data flows of syscalls, could
be introduced to the neural network to augment the model’s
perceptibility.

Concurrency Dependency. Although MOCK has demon-
strated its outstanding capability in code coverage and vul-

nerability discovery compared to the fuzzers with context-
free dependencies, its designs are mainly oriented towards
the relations of sequential syscall executions. If two syscalls
contain threads that affect each other when they are con-
currently executed, it will be difficult for MOCK to capture
such a concurrency dependency. This is because the sequence
minimization algorithm is naturally based on the sequential
executions of syscalls. For a huge-scale system like a ker-
nel, it is common thing for threads to have concurrency
issues. Scheduling threads and recording feedback to infer
the potential concurrency influences in a more fine-grained
manner could be a preferable solution. As a future work,
it is interesting and challenging to model the concurrency
dependencies on complex systems.

VIII. RELATED WORK

A. API-aware Fuzzing

Software such as cloud service, library, and kernel gener-
ally exposes a series of APIs for interaction. A large number of
works have been proposed to find vulnerabilities via API-aware
fuzzing [33], [52], [5], [20], [22], [10], [17]. RESTler [5] is a
REST API fuzzer designed to automatically test cloud service
via REST API. RESTler analyzes API specifications to de-
termine producer-consumer relations, which guide the request
combination. In terms of libraries, FuzzGen [20] leverages a
whole system analysis to extract control-flow and data-flow
dependencies from source code, and synthesizes target fuzzers
for complex libraries. Jiang et al. [22] presented a fuzzer
named RULF dedicated to Rust libraries. The core of RULF is
to build an API dependency graph and then mutate sequences
with the graph. SMARTION [10] infers the constraint of
transactions and analyzes smart contract bytecodes. Based on
the above information, SMARTION constructs initial seeds
and evolves the seed pool to enhance smart contract fuzzing.
IMF [17] introduces model-based API fuzzing, a novel method
that exploits runtime logs to generate test cases for closed-
sourced kernels. Nevertheless, due to the large code base and
the rich states of the Linux kernel, the aforementioned ap-
proaches could not directly be applied to the fuzzing scenarios
for syscalls of the Linux kernel.

B. Machine-Learning based Fuzzing

Machine learning techniques have played an important role
in improving the effectiveness and efficiency of various fuzzing
phases [42], [32], [11], [19], including seed synthesis, input
generation, and mutation scheduling. Seed synthesis uses ma-
chine learning techniques to build high-quality seeds and boost
the fuzzing process. Skyfire [51] employs probabilistic context-
sensitive grammar (PCSG), which combines the syntactic and
semantic features to automatically extract information from
crawled corpus. Then the trained PCSG follows the rules laid
by the author and generates an initial seed pool.

A series of works have been devoted to constructing
coverage-oriented or vulnerability-oriented input. For exam-
ple, NEUZZ [44] trains a neural network model on real-
world program behaviors. After that, it deduces critical bytes
that may influence a program’s branches in a test case by
combining the model and smooth techniques. Li et al. [29]
proposed an approach called V-Fuzz, to train a vulnerability

13

prediction model based on a graph-embedded neural network.
The model orients the fuzzer towards the areas with potential
vulnerabilities. Montage [26] is another work that uses a
language model to generate syntactically and grammatically
correct JavaScript programs. It transforms JavaScript AST into
sequences and takes the program generation as a language
modeling problem.

In regard to mutation scheduling, MOPT [31] is the first
attempt to adaptively schedule mutation operations according
to runtime feedback for AFL [54]. MOPT decides the probabil-
ity distribution of operators with a customized particle swarm
optimization method and selects the optimal accordingly. Wang
et al. [50] suggested using a reinforcement learning algorithm
to adjust the mutator and seed distribution in the process of
fuzzing. They implemented a prototype named SyzVegas on
top of Syzkaller to guide kernel fuzzing.

IX. CONCLUSION

In this paper, we present MOCK, a kernel fuzzer equipped
with the context-aware dependency, which selects proper
syscalls according to the calling context so as to produce
interrelated and in-depth input. In this regard, MOCK learns
the dependencies by training a language model on the dynam-
ically collected corpus and applies a context-aware mutation
schema. To balance the exploration and exploitation, MOCK
also dynamically schedules the context-aware mutation tasks.
Our evaluation shows that MOCK can achieve 1.07× more
branch coverage, produce 1.50× more interrelated sequences,
and discover 1.15× more unique bugs than the state-of-
the-art kernel fuzzers. In addition, various setups including
initial seeds and a pre-trained model can enhance MOCK’s
performance. MOCK also finds 15 real-world bugs on the
most recent Linux kernels with two CVEs assigned. Especially,
MOCK integrates a neural network model into the fuzzing
system without relying on a pre-positioned training set, which
will motivate further research.

ACKNOWLEDGEMENT

We thank anonymous reviewers for their constructive feed-
back. This work was partly supported by National Natural
Science Foundation of China under Grant No. U1936215, No.
61833015, No. 62293511 and No. 62088101, the State Key
Laboratory of Computer Architecture (ICT, CAS) under Grant
No. CARCHA202001, the Fundamental Research Funds for
the Central Universities (Zhejiang University NGICS Platform,
226-2022-00107, 226-2023-00111), Meta Research Award,
Okawa Fundation Grant and Google Research Scholar Award.

REFERENCES

[1] “Healer’s issue,” https://github.com/SunHao-0/healer/issues/37.
[2] “Linux test project,” https://github.com/linux-test-project/ltp, 2001.
[3] “The common vulnerability scoring system (cvss),” https://nvd.nist.gov/

vuln-metrics/cvss, 2010.
[4] “Dirty cow (cve-2016-5195),” https://dirtycow.ninja/, 2016.
[5] V. Atlidakis, P. Godefroid, and M. Polishchuk, “Restler: Stateful rest api

fuzzing,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 2019, pp. 748–758.

[6] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, vol. 47, no. 2, pp. 235–
256, 2002.

[7] J.-J. Bai, J. Lawall, Q.-L. Chen, and S.-M. Hu, “Effective static analysis
of concurrency {Use-After-Free} bugs in linux device drivers,” in 2019
USENIX Annual Technical Conference (USENIX ATC 19), 2019, pp.
255–268.

[8] Y. Bengio, R. Ducharme, and P. Vincent, “A neural probabilistic
language model,” Advances in neural information processing systems,
vol. 13, 2000.

[9] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[10] J. Choi, D. Kim, S. Kim, G. Grieco, A. Groce, and S. K. Cha,
“Smartian: Enhancing smart contract fuzzing with static and dynamic
data-flow analyses,” in 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE, 2021, pp. 227–239.

[11] C. Cummins, P. Petoumenos, A. Murray, and H. Leather, “Compiler
fuzzing through deep learning,” in Proceedings of the 27th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2018, pp. 95–105.

[12] P. Godefroid, “Fuzzing: Hack, art, and science,” Communications of the
ACM, vol. 63, no. 2, pp. 70–76, 2020.

[13] Google, “Kernel address sanitizer: a fast memory corruption detector
for the linux kernel,” https://google.github.io/kernel-sanitizers/KASAN,
2015.

[14] Google, “syzkaller: an unsupervised coverage-guided kernel fuzzer,”
https://github.com/google/syzkaller, 2015.

[15] Google, “syzkaller’s minimization algorithm,” https://github.com/
google/syzkaller/blob/master/prog/minimization.go, 2015.

[16] Google, “syzbot,” https://syzkaller.appspot.com/upstream, 2018.

[17] H. Han and S. K. Cha, “Imf: Inferred model-based fuzzer,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 2345–2358. [Online].
Available: https://doi.org/10.1145/3133956.3134103

[18] S. He, K. Shi, C. Liu, B. Guo, J. Chen, and Z. Shi, “Collaborative
sensing in internet of things: A comprehensive survey,” IEEE Commu-
nications Surveys & Tutorials, vol. 24, no. 3, pp. 1435–1474, 2022.

[19] Z. Hu, J. Shi, Y. Huang, J. Xiong, and X. Bu, “Ganfuzz: a gan-based
industrial network protocol fuzzing framework,” in Proceedings of the
15th ACM International Conference on Computing Frontiers, 2018, pp.
138–145.

[20] K. Ispoglou, D. Austin, V. Mohan, and M. Payer, “{FuzzGen}:
Automatic fuzzer generation,” in 29th USENIX Security Symposium
(USENIX Security 20), 2020, pp. 2271–2287.

[21] J. Jackson, “Nasdaq’s facebook glitch came from ’race
conditions’,” https://www.computerworld.com/article/2504676/
nasdaq-s-facebook-glitch-came-from--race-conditions-.html, 2012.

[22] J. Jiang, H. Xu, and Y. Zhou, “Rulf: Rust library fuzzing via api
dependency graph traversal,” in Proceedings of the 36th IEEE/ACM
International Conference on Automated Software Engineering, ser.
ASE ’21. IEEE Press, 2022, p. 581–592. [Online]. Available:
https://doi.org/10.1109/ASE51524.2021.9678813

[23] K. Kim, D. R. Jeong, C. H. Kim, Y. Jang, I. Shin, and B. Lee, “Hfl:
Hybrid fuzzing on the linux kernel.” in NDSS, 2020.

[24] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating
fuzz testing,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 2123–2138.
[Online]. Available: https://doi.org/10.1145/3243734.3243804

[25] I. T. Laboratory, “Nvd: National vulnerability database,” https://nvd.nist.
gov/.

[26] S. Lee, H. Han, S. K. Cha, and S. Son, “Montage: A neural network
language {Model-Guided}{JavaScript} engine fuzzer,” in 29th USENIX
Security Symposium (USENIX Security 20), 2020, pp. 2613–2630.

[27] C. Li, S. Ji, H. Weng, B. Li, J. Shi, R. Beyah, S. Guo, Z. Wang,
and T. Wang, “Towards certifying the asymmetric robustness for neural
networks: Quantification and applications,” IEEE Transactions on De-
pendable and Secure Computing, vol. 19, no. 6, pp. 3987–4001, 2022.

14

[28] J. Li, B. Zhao, and C. Zhang, “Fuzzing: a survey,” Cybersecurity, vol. 1,
no. 1, pp. 1–13, 2018.

[29] Y. Li, S. Ji, C. Lv, Y. Chen, J. Chen, Q. Gu, and C. Wu,
“V-fuzz: Vulnerability-oriented evolutionary fuzzing,” arXiv preprint
arXiv:1901.01142, 2019.

[30] A. Lochmann, H. Schirmeier, H. Borghorst, and O. Spinczyk, “Lockdoc:
Trace-based analysis of locking in the linux kernel,” in Proceedings of
the Fourteenth EuroSys Conference 2019, 2019, pp. 1–15.

[31] C. Lyu, S. Ji, C. Zhang, Y. Li, W.-H. Lee, Y. Song, and R. Beyah,
“{MOPT}: Optimized mutation scheduling for fuzzers,” in 28th
USENIX Security Symposium (USENIX Security 19), 2019, pp. 1949–
1966.

[32] C. Lyu, H. Liang, S. Ji, X. Zhang, B. Zhao, M. Han, Y. Li, Z. Wang,
W. Wang, and R. Beyah, “Slime: Program-sensitive energy allocation
for fuzzing,” in Proceedings of the 31st ACM SIGSOFT International
Symposium on Software Testing and Analysis, 2022, p. 365–377.

[33] C. Lyu, J. Xu, S. Ji, X. Zhang, Q. Wang, B. Zhao, G. Pan, W. Cao, and
R. Beyah, “Miner: A hybrid data-driven approach for rest api fuzzing,”
arXiv preprint arXiv:2303.02545, 2023.

[34] L. Mazare, “tch-rs: Rust bindings for the c++ api of pytorch,” https:
//github.com/LaurentMazare/tch-rs, 2019.

[35] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[36] P. B. Oswal, “Improving linux kernel fuzzing,” Ph.D. dissertation, 2023.
[Online]. Available: https://www.proquest.com/dissertations-theses/
improving-linux-kernel-fuzzing/docview/2812311865/se-2

[37] S. Pailoor, A. Aday, and S. Jana, “{MoonShine}: Optimizing {OS}
fuzzer seed selection with trace distillation,” in 27th USENIX Security
Symposium (USENIX Security 18), 2018, pp. 729–743.

[38] S. Park, W. Xu, I. Yun, D. Jang, and T. Kim, “Fuzzing javascript engines
with aspect-preserving mutation,” in 2020 IEEE Symposium on Security
and Privacy (SP), 2020, pp. 1629–1642.

[39] H. Pu, L. He, P. Cheng, M. Sun, and J. Chen, “Security of industrial
robots: Vulnerabilities, attacks, and mitigations,” Netwrk. Mag. of
Global Internetwkg., vol. 37, no. 1, p. 111–117, jul 2022. [Online].
Available: https://doi.org/10.1109/MNET.116.2200034

[40] Pytorch, “Libtorch: Installing c++ distributions of pytorch,” https:
//pytorch.org/cppdocs/, 2018.

[41] D. J. Russo, B. Van Roy, A. Kazerouni, I. Osband, Z. Wen et al., “A
tutorial on thompson sampling,” Foundations and Trends® in Machine
Learning, vol. 11, no. 1, pp. 1–96, 2018.

[42] G. J. Saavedra, K. N. Rodhouse, D. M. Dunlavy, and P. W. Kegelmeyer,
“A review of machine learning applications in fuzzing,” arXiv preprint
arXiv:1906.11133, 2019.

[43] K. Serebryany, “{OSS-Fuzz}-google’s continuous fuzzing service for
open source software,” 2017.

[44] D. She, K. Pei, D. Epstein, J. Yang, B. Ray, and S. Jana, “Neuzz:
Efficient fuzzing with neural program smoothing,” in 2019 IEEE
Symposium on Security and Privacy (SP). IEEE, 2019, pp. 803–817.

[45] SimonKagstrom, “Kcov: code coverage for fuzzing,” https://docs.kernel.
org/dev-tools/kcov.html, 2010.

[46] stack.watch, “Linux kernel - security vulnerabilities in 2022,” https:
//stack.watch/product/linux/linux-kernel/, 2022.

[47] Y. Sui and J. Xue, “Svf: Interprocedural static value-flow analysis
in llvm,” in Proceedings of the 25th International Conference on
Compiler Construction, ser. CC 2016. New York, NY, USA:
Association for Computing Machinery, 2016, p. 265–266. [Online].
Available: https://doi.org/10.1145/2892208.2892235

[48] H. Sun, Y. Shen, C. Wang, J. Liu, Y. Jiang, T. Chen, and A. Cui,
“Healer: Relation learning guided kernel fuzzing,” in Proceedings of
the ACM SIGOPS 28th Symposium on Operating Systems Principles,
2021, pp. 344–358.

[49] J. Vermorel and M. Mohri, “Multi-armed bandit algorithms and empiri-
cal evaluation,” in European conference on machine learning. Springer,
2005, pp. 437–448.

[50] D. Wang, Z. Zhang, H. Zhang, Z. Qian, S. V. Krishnamurthy, and
N. Abu-Ghazaleh, “{SyzVegas}: Beating kernel fuzzing odds with

reinforcement learning,” in 30th USENIX Security Symposium (USENIX
Security 21), 2021, pp. 2741–2758.

[51] J. Wang, B. Chen, L. Wei, and Y. Liu, “Skyfire: Data-driven seed
generation for fuzzing,” in 2017 IEEE Symposium on Security and
Privacy (SP). IEEE, 2017, pp. 579–594.

[52] M. Wunder, M. Littman, and M. Babes, “Classes of multiagent q-
learning dynamics with epsilon-greedy exploration,” ser. ICML’10.
Madison, WI, USA: Omnipress, 2010, p. 1167–1174.

[53] Z. Yang, L. He, H. Yu, C. Zhao, P. Cheng, and J. Chen, “Detecting plc
intrusions using control invariants,” IEEE Internet of Things Journal,
vol. 9, no. 12, pp. 9934–9947, 2022.

[54] M. Zalewski, “American fuzzy lop: a security-oriented fuzzer,” https:
//lcamtuf.coredump.cx/afl/, 2013.

[55] B. Zhao, S. Ji, J. Xu, Y. Tian, Q. Wei, Q. Wang, C. Lyu, X. Zhang,
C. Lin, J. Wu et al., “A large-scale empirical analysis of the vul-
nerabilities introduced by third-party components in iot firmware,” in
Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2022, pp. 442–454.

[56] B. Zhao, Z. Li, S. Qin, Z. Ma, M. Yuan, W. Zhu, Z. Tian, and
C. Zhang, “{StateFuzz}: System {Call-Based}{State-Aware} linux
driver fuzzing,” in 31st USENIX Security Symposium (USENIX Security
22), 2022, pp. 3273–3289.

X. APPENDIX

TABLE IV: The results of various exploration & exploitation
ratios used by MOCK.

exploration & exploitation ratio branch coverage
1:4 347k
2:2 379k
4:1 383k

15

