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Abstract— In this paper, we propose the Road-SLAM algo-
rithm, which robustly exploits road markings obtained from
camera images. Road markings are well categorized and infor-
mative but susceptible to visual aliasing for global localization.
To enable loop-closures using road marking matching, our
method defines a feature consisting of road markings and
surrounding lanes as a sub-map. The proposed method uses
random forest method to improve the accuracy of matching
using a sub-map containing road information. The random
forest classifies road markings into six classes and only incor-
porates informative classes to avoid ambiguity. The proposed
method is validated by comparing the SLAM result with RTK-
Global Positioning System (GPS) data. Accurate loop detection
improves global accuracy by compensating for cumulative
errors in odometry sensors. This method achieved an average
global accuracy of 1.098 m over 4.7 km of path length, while
running at real-time performance.

I. INTRODUCTION

Accurate real-time localization is one of the most fun-
damental technologies for autonomous vehicles in many
road based environments. Many researchers have been de-
veloping algorithms for more accurate pose estimation using
information from various sensors [1, 2, 3, 4, 5]. Among
the many type of localization sensors, GPS is the most
popular but has a critical weakness regarding availability in
urban areas. GPS signals suffer from multipath and blackout
issues, especially in highly complex urban canyons [6].
Furthermore, consumer-level single GPS merely provides
meter-level accuracy, which is not sufficient for lane-level
localization. Other sensors for estimating the position of
vehicles include in-vehicle sensors such as an encoder and
an Inertial Measurement Unit (IMU). The accuracy of these
sensors is relatively high compared to GPS, but they can only
estimate the local position and inevitably have cumulative
errors. Despite researches on the pose estimation using these
two sensor types [7], lane-level positional accuracy has
hardly been achieved due to potential errors [8, 9].

In order to achieve accuracy in global localization, many
studies have examined Simultaneous Localization and Map-
ping (SLAM) using additional sensor information. Recent
research commonly uses aerial images provided by several
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Fig. 1: Illustration of Road-SLAM. The road markings in
images are transformed into 3D point clouds and classi-
fied into six classes through segmentation and classification
processes. Using this information, sub-maps containing the
relationships among markings are created and applied to the
SLAM.

companies. Using airborne imaging, these methods are ca-
pable of capturing large areas by extracting lane and road
information for pose estimation [10, 11, 12, 13]. However,
the accuracy of pose estimation based on aerial images
depends on the accuracy of the image data. As addressed by
[6], since the actual position measured by RTK GPS differs
from the position in the aerial image, this error is reflected
in the localization results.

Many groups use on-board imaging sensors with prior 3D
information. Schreiber et al., [14] obtained 3D data using
a down-looking camera and a Light Detection and Ranging
(LiDAR) sensor, and extracted lane information on the road
manually. These information was used as prior information
to estimate the lane level position of vehicle. Other groups
[15, 5] used the 3D data generated from a camera and LiDAR
sensor as the prior information. These papers, in particular,
used mutual information between an image from synthetic
3D data and an image at the current frame to estimate
vehicle pose. However, a relatively expensive sensor (e.g.,
3D LiDAR) is required to create such prior information, and
manual work is often necessary to obtain accurate labeled
data.

To avoid the high cost of aerial sensors, studies have
focused on vision-only systems and estimated poses from
on-board camera images [16]. This line of research is most
similar to ours, which detect road markings and lanes on
pavement converted into features for lane-level localization



Fig. 2: Road-SLAM algorithm pipeline. Given a road image, each module is performed in a thread working in real-time.

and SLAM. Ranganathan et al., [17] extracted the corners
from each road marking and estimated exact positions by
comparing them with a lightweight prior map that was
previously generated using the high-accuracy GPS. Rehder et
al., [18] used the camera images and odometry to generate a
local grid map and estimated the ego-motion of a vehicle by
matching each map. In similar studies, road marking features
are stored and used for pose error correction by comparing
the current road features to the previously saved features
[19, 20]. The main limitation of these methods is the high
ambiguity caused when the markings and the lanes have
similar shapes and repetitive patterns.

To tackle this ambiguity issue, the proposed method trains
random forest trees to classify only the distinguishable road
markings. This classification substantially improves match-
ing performance by avoiding visual aliasing from markings
with similar shapes. We then recognize a place by matching
sub-maps constructed from these salient markings and the
surrounding lanes. By doing so, we can recognize places
using only visual road markings, which are less sensitive
to environmental changes (e.g., lighting, time, and the sur-
roundings). The overall SLAM implementation is as shown
in Fig. 1 and has the following contributions:
• Robust matching using informative feature selection
• Real-time performance with fully automated match de-

tection
• Accurate localization (cm-level) from visual loop-

closure
The rest of the paper is organized as follows. Section II

describes our sensor system and provides an overview of
the proposed method. The details of the proposed method
are described in Section III. The evaluation of our results is
shown in Section IV, and Section V finally concludes with
a discussion.

II. SYSTEM OVERVIEW

A mapping system on a car-like platform was used for the
experiments. The platform is shown in Fig. 3 and equipped
with a forward-looking ZED camera, an IMU, and two

wheel encoders. Two in-vehicle sensors, an IMU and a wheel
encoder, are used for navigation, and images are used for the
road markings and lane detection. A RTK-GPS is mounted
on the vehicle only to set the position and direction of the
vehicle initially as well as to provide ground truth. Although
the ZED camera also provides a high-precision depth image
when used with Graphics Processing Unit (GPU), we use it
as a mono camera (10 Hz) without using GPU in this paper.

The overall algorithm architecture is shown in Fig. 2
and Road-SLAM.mp4. First, the point cloud generation
module creates an Inverse Perspective Mapping (IPM) image
that removes the perspective effect from the image obtained
from the camera. To extract the points belonging to the
road marking, the IPM image is binarized with an adaptive
binarization algorithm [21]. Using the generated point cloud,
the segmentation module divides the sub-map obtained by
accumulating a point cloud into several segments. Then, each
segment constituting the sub-map is classified into six classes
using a machine learning approach called random forest. To
improve the matching accuracy of the sub-map, only the
segments that can reduce the ambiguity of the sub-map are

Fig. 3: The sensor system is equipped with a ZED camera,
a MTi IMU, two wheel encoders and a RTK GPS. The RTK
GPS is only used to initially set the direction and position
of the vehicle at the start of the algorithm.



(a) Camera Image (b) IPM Image (c) Binary Image

Fig. 4: Adaptive IPM and binarization applied for the pro-
posed method. The red box in (a) is the ROI of the original
image used to create a point cloud. The white box in (b)
and (c) is the converted ROI from the camera image to the
IPM image. The sub-map creation criteria is determined by
evaluating the pixels in the yellow box (c).

selected and included in the final sub-map for the matching
process. Lastly, the sub-map matching module detects the
loop through point matching of the sub-maps determined in
the previous pipeline process.

III. ROAD SLAM USING ROBUST SUB-MAP MATCHING

This section illustrates the procedure for generating a sub-
map. Pre-processed and binarized IPM are first segmented
and classified to construct a sub-map. The sub-map is a
matching candidate group for loop detection, and this sub-
map generation module carefully selects only the informative
markings and lanes in a sub-map.

A. Point Cloud Generation

The first module generates the points belonging to the road
marking using an IPM algorithm. IPM creates a bird’s-eye
image by removing the perspective effect from the image.
Since the IPM equation is induced on the assumption that
the road ahead of the vehicle is flat, the small pitch motion
of a vehicle is likely to cause a large distortion in the IPM
image. In order to overcome this problem, the adaptive IPM
model [22] is applied, considering the pitch motion of the
camera. The adaptive binarization algorithm [21] is then
applied to filter only informative markings on the road. The
results of the IPM and binarization process are shown in
Fig. 4.

Followed by this image pre-processing, the binarized
points are fed into the three-dimensional (3D) point cloud
generation phase. In this conversion, we restrict the Region
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Fig. 5: Point segmentation process. Through the filtering
and segmentation processes, each road marking is precisely
segmented.

of Interest (ROI) near to the camera to avoid large perspective
distortion caused by the IPM, as in Fig. 4. Projecting
binarized points over the trajectory induced by navigational
sensors (e.g., wheel encoder and IMU) results in a point
cloud of lanes and markings.

The sub-map is a map consisting of 3D road marking
points in the vehicle local coordinate system for loop de-
tection as shown in Fig. 8. The sub-map is generated when
a road marking is detected in the vehicle’s traveling direction.
Therefore, the point cloud generation module detects the road
marking by checking the number of points in the ROI, which
is the yellow box in Fig. 4c. The algorithm, then, stores the
accumulated 3D point cloud as one initial sub-map when it
is detected.

B. Road Marking Segmentation

Given the binarized point cloud, the segmentation is
followed focusing on the two aspects of the road mark-
ings. First, not all road markings are meaningful for pose
estimation. For example, the center lane fails to capture
motion along the line and is thus limited to estimating a full
six Degree Of Freedom (DOF) transformation; a crosswalk
has abundant feature points, but the repetitive patterns are
confusing even under a small IPM distortion. In the proposed
method, we have decided to remove these less informative
elements and to increase the accuracy of the matching by
applying segmentation. We found that dashed lanes, arrows,
road markings, and numbers can considered informative for
matching.

Second, several road markings and lanes are often captured
in the same scene. As an example, Fig. 6a shows a sample
road map consisting of points extracted from the binarized
IPM image. As shown in the figure, the diamond-shaped
road markings and the dashed lane are located very close to
each other. In the case of numbers on the road, each number
is spaced apart, and the dashed lane may be close to these
numbers. When the road marking is near the lane element,
we apply a two-stage segmentation process by adapting the
coarse-to-fine concept. Small segments are all segmented to
exclude lanes first. Then, using only segments with no lane
elements, we apply a larger segmentation to merge road
markings into a single cluster.

The end-to-end segmentation module is described in
Fig. 5. Since accumulated points are obtained from multiple
images, many points tend to be cluttered and gathered around
one segment. To resolve this issue, the segmentation module
starts with (i) voxelization to efficiently represent duplicated
points, and (ii) radius outlier filtering to remove noise. Our
aims of first segmentation is to exclude large clusters (e.g.,
center lines and stop lines) and dashed lanes in order to
clearly detect salient road markings. The initial segmentation
process divides the points by a small radius. By doing so,
large features will be divided into a single segment, and
dashed lanes will be clustered into several groups. These
initial segments are checked using the linearity of the eigen
feature to detect and classify lanes precedently. Then, the
follow-up segmentation is performed using relatively large



(a) Colored Point Cloud (b) Segmented Point Cloud (c) Classified Point Cloud

Fig. 6: The segmentation and classification results. Resulting segments are color-coded by groups. The center lane and stop
lane are divided into one segment as in (Fig. 6b). These large segments can be removed because we know the actual size
and length of the road markings. In the classification result, the color of the group represents the class to which the segment
belongs to (i.e., green: arrow, blue: road marking, yellow: number, red: cross walk).

(a) Marking (b) Arrow (c) Number (d) Crosswalk

Fig. 7: Road marking segments. Each segment is classified
into individual classes through a random forest method.

radius values for the points where the lanes and large
segments are excluded. As a result, segments that are sepa-
rated by a certain distance, such as numbers or crosswalks,
are combined into one segment. These segments are also
registered in the candidate group for classification.

C. Classification

Once segmented markings are established, the classifica-
tion thread distinguishes segments that are less affected by
IPM image distortion for robust matching. Using previously
segmented road markings (Fig. 7), we extract a features
via Ensemble of Shape Function (ESF) [23]. The ESF is

(a) Sub-map at intersection (i) (b) Sub-map in straight (i)

(c) Sub-map at intersection (j) (d) Sub-map in straight (j)

Fig. 8: Matching candidate sub-maps pairs when a place is
revisited. (a) and (b) are the previously obtained sub-maps,
and (d) represents the sub-maps when revisiting.

a 640-tuple histogram of the shape function defined by three
parameters, the distance between two randomly selected
points, the area between the three points, and the angle be-
tween the three randomly selected points. The feature vectors
constructed by ESF are used as inputs to the random forest
to distinguish each segment. In the training phase, the maxi-
mum depth of the random forest is set to 100. Classification
candidate segments obtained from the segmentation process
are used for the training and testing of random forests. The
output of the random forest consists of six classes: road
markings, numbers, arrows, lanes, crosswalk, and others. Fi-
nally, among the segments classified as random forests, only
informative classes (e.g., road markings, numbers, arrows,
and lanes) are included in the sub-map for the matching
process. Fig. 6c shows the results of the distinguishing of
each segment using a random forest. Red, green, blue and
yellow indicate crosswalk, arrow, road marking, and number
respectively. In sorting appropriate segments for the sub-
map, the random forest was selected due to its deterministic
characteristic once trained.

D. GICP based Sub-map Matching
When a place is revisited, we perform sub-map matching

given a loop-closure candidate pair. This candidate proposal
is selected using the distance threshold from the current
vehicle position. Examples of these pairs are shown in
Fig. 8. The matching process uses the generalized Iterated
Closest Point (ICP) algorithm [24] to select the sub-map with
the minimum matching cost among candidates. If the ICP
matching is successful, the relative position of the vehicle
between two sub-maps is calculated using the ICP result.
The calculated relative pose is passed to the Incremental
Smoothing and Mapping (iSAM) pose graph as the constraint
information to create a loop [25].

E. Road-SLAM
The proposed method, Road SLAM, is based on pose

graph-based approach that minimizes the error function as
below.



Fig. 9: Pose-graph SLAM illustration. Sub-maps used in
Road-SLAM composed of road markings.

X∗ = arg min
X

∑
t

‖f(xt,xt+1)− zt,t+1‖2Σt

+
∑
i,j

‖f(xi,xj)− zi,j‖2Σi,j

(1)

, where xt = [x, y, z, π, θ, ψ]> represents the pose of
the vehicle at time t and the augmented representation
n poses are presented as X = [x>1 , · · · ,x>t , · · · ,x>n ]>.
The function f( · , · ) is the state transition model for
two poses. Constraints of the pose graph represents
the relative 6 DOF motion from odometry (temporal
links) zt,t+1 = [xt,t+1, yt,t+1, zt,t+1, πt,t+1, θt,t+1, ψt,t+1]>

and ICP based matching (non-temporal links) zi,j =
[xi,j , yi,j , zi,j , πi,j , θi,j , ψi,j ]

>. The covariances of odometry
and loop closure obtained from camera measurements are
denoted as Σt and Σi,j .

For odometry constraints generation, the position of the
vehicle is calculated by synchronizing all the sensors based
on the time when the camera image is obtained. xt is the
position of the vehicle. The 6 DOF transformation (zt,t+1)
between the nodes is obtained from the vehicle wheel en-
coder and the IMU sensor. The proposed method detects the
loop through the matching process between the sub-maps
when the vehicle re-visit the same place it passed before.

The overall SLAM framework is illustrate in Fig. 9. Black
circle dots and edges indicate vehicle nodes (poses) and links
(constraints). Temporal links are constructed by odometry
measurements, and non-temporal links, which cross the
sequential nodes, are generated by sub-map based links. Sub-
maps for corresponding nodes are shown as image snapshots.

IV. EXPERIMENTS AND RESULTS

We validate the proposed method using real-world data
obtained from a car-like mapping platform. Our target envi-
ronment is complex urban roads rather than a highway. An
average vehicle speed of 50 to 60 km/h was used, which
has very little impact on the performance of the algorithm.
The code was implemented using an on-board PC (Intel i7-
6700, 16G RAM). For incoming camera images (10 Hz)
and navigational sensors (100 Hz), the algorithm runs in
real-time without using a GPU. The overall trajectory and

experimental area (600 m×400 m) are shown in Fig. 11a.
From the experiment, the proposed algorithm was able to
achieve mean error of 1.0987 m over 4.7 km of the travel
distance.

A. Evaluation Criteria

For the evaluation, we use the vehicle RTK-GPS for a
ground truth. Fig. 11a shows the experimental route of the
vehicle. The green and red dots are the fixed and floating
states of the RTK-GPS, respectively. The error in the fixed
state is about 20 mm on average, and the error in the floating
state ranged from 20 mm to 1 m. The blue dots are normal
GPS conditions depending on the satellite condition and
have meter-level error. In this paper, for accurate quantitative
analysis, the accuracy was compared only when the RTK-
GPS status was fixed.

B. Classification using Random Forest

This section evaluates the results of the random forest
used to select the elements that constitute the sub-map. The
training data for the random forest were obtained from about
25 km of the data collection using the same mapping system.
The extracted data using ESF features were divided into six
classes by hand-labeling (i.e., road marking (1), number (2),
arrow (3), lane (4), crosswalk (5), and others (6)).

Table. I shows the classification result of the datasets.
When examining individual classification error, the classifier
accuracy is about 81.92%. For example, arrows are often
recognized as lanes because the shape of the arrow that
represents straightening is similar to a dashed lane. However,
the purpose of our classification is not increased classification
accuracy but robust matching. To achieve this goal, we use
the classification mainly to determine sub-map inclusion.
The classification results are largely divided into two classes
and included or removed from sub-map. Specifically, the
classifier of the proposed algorithm is used to remove cross-
walk and other error-prone classes (e.g., others). The road
markings in the blue area of table I are included in the sub-
map, and the markings in the red areas are eliminated from
the sub-map. With these criteria, the accuracy of the classifier
is increased to about 98% because only six cases are mis-
classified (i.e., two crosswalks are classified as lanes and four
lanes are classified as crosswalks).

TABLE I: Similarity matrix of random forest classifier.
Marking and cross are abbreviations of road marking and
crosswalk. Row indicates the actual class and column is the
result of random forest classifier.

Classification Result
marking number arrow lane cross others

marking 33 7 2 0 0 0
number 0 12 8 0 0 0
arrow 0 0 87 30 0 0
lane 0 0 0 2 4 0
cross 0 0 0 2 85 0
others 0 0 0 0 37 189



TABLE II: Comparison of accuracy improvement in sub-map
filtering by classification result. No filtering is the result of
matching all points obtained from a binarized IPM image.

Loop Detection Mean
candidate deny success failure error [m]

Rehder [18] 0 0 0 0 41.0293
No filtering 36 15 15 6 95.0159

Proposed 32 18 14 0 1.0984

C. Effect of Filtering

To evaluate the effects of eliminating unnecessary el-
ements through overall filtering process, we compare the
process to another road marking-based localization approach
by Rehder [18]. Rehder [18] obtained lane information from
a camera in an artificially created track and detected the
loop. In their paper, the relative positions of the overlapping
portions of the target point clouds were calculated using
the ICP algorithm. For successful ICP measurements, very
accurate odometry should be assumed when using only
overlapping information of lanes, which is likely to fail in a
larger urban environment due to the accumulated odometry
error.

Unlike [18], the proposed method targets larger scale
urban environments with real-world image data, and it
successfully achieved fully automated and robust sub-map
matching for SLAM implementation. The comparison results
are summarized in Table. II. We compare [18] and the
proposed method both with and without filtering. In the table,
deny denotes cases where matching does not occur in the
matching candidate, success means that the matching is suc-
cessful, and failure indicates registering a wrong matching.
More matches occurs when not applying filtering but mostly
for failure cases (i.e., 15 correct detections and 6 incorrect
detections). We note that the matching candidate should
be chosen carefully because the entire graph is distorted
even if the wrong loop is detected only once. Without
filtering, the pose graph was greatly distorted because six
false loops occurred. In the case of the proposed method
with the filtering process, since the elements that cause error
were eliminated through classification, the loop was detected
correctly, and the mean error was much smaller than those
of the other two cases.

D. Road-SLAM Result

The SLAM result using the proposed method is shown in
Fig. 11 in the comparison to odometry based map (Fig. 11c).
This large improvement occurs when cumulative odometry
errors are compensated for with accurate loop detection using
only road markings. To qualitatively assess the accuracy of
the localization, we present back-projected road map over
the loop-closure area. By overlaying the road-marking points
on every revisit, we evaluate localization accuracy from the
consistency of the map points. Fig. 12a to Fig. 12d show
the areas where the loop detection occurred (green area). To
assess the accuracy of the loop detection, road marking was
generated based on the corrected vehicle position without

further processing. As can be seen in Fig. 12a to 12d, the road
markings near the loop closure are overlapped correctly, even
though the vehicle has repeatedly passed through the same
area. On the other hand, Fig. 12e to Fig. 12h show the areas
where the loop detection failed. Especially in the case of the
intersection, the loop detection hardly took place, compared
to other areas, because the crosswalks were removed for the
accuracy of the loop detection. Also, in Fig. 12h, the road
marking color was very cloudy, so the loop was not detected.
Even for the area of Fig. 12e and Fig. 12f, the maximum
error is below 2.0 m because the drift is corrected by nearby
loop-closures.

Fig. 10 shows the error calculated from the comparison
of the paths calculated through SLAM and RTK-GPS data.
The blue line is the vehicle’s travel path, and the colored
dot indicates the RTK-GPS data at a fixed state with average
error of about 2 cm. In the northern part of the area where
the data were acquired, the fixed state of RTK-GPS hardly
occurred because there were many mountains and high-rise
buildings. Based on the RTK-GPS data, the maximum error
is about 3 m over 4.7 km of path length. We believe that
adding other measurements such as in [6] will alleviate this
issue. However, to clearly show the improvements from road
marking sub-map matching, we intentionally used minimal
navigation measurements in the tests and focused on the sub-
map matching improvement over large loop-closures.

E. Computation Time
To verify the real-time performance of Road SLAM,

Table. III summarizes the computation time for each module.
Both average and maximum time taken for each module are
listed in the table. Note that the adaptive IPM is performed
whenever the image data is captured, whereas the other
module only occurs when the sub-map is created.

TABLE III: Computation time for each pipeline of Road-
SLAM. The number of points at the maximum cost was
54,457.

Time (sec) IPM Segmentation Classification Matching
Avg. 0.01917 0.11467 0.16203 0.02119
Max. 0.05234 0.18171 0.26312 0.06385

Although the maximum computation time for IPM is
reported as 0.05234 sec, the majority of frames (98.21%)
revealed a computation time between 0.01 sec and 0.03 sec.
Computational cost for adaptive IPM is fairly constant but
critical for the real-time performance, as it runs for every
frame. On the other hand, frames in other modules vary with
respect to the number of points in a sub-map. A sub-map
consists of 80 frames on average, and this guarantees real-
time operation with increased computational time. Overall,
each process is performed in each thread in parallel, and the
algorithm of the entire Road-SLAM has been proven to run
at 30Hz.

V. CONCLUSION

In this paper, we present a SLAM algorithm that uses only
a camera sensor and utilizes road marking information that
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Fig. 10: Accuracy analysis of the proposed method. The blue
line is the final result path of the algorithm, and the colored
dots are the fixed RTK-GPS data. The error values between
SLAM and RTK-GPS are color-coded by magnitude.

is robust to light and environmental changes. The accuracy
of the SLAM algorithm can be improved by classifying
and eliminating elements that increase the ambiguity of
loop detection among various road markings using random
forest. In addition, despite the use of a dead reckoning
sensor without a global position sensor, high global position
accuracy was achieved through very accurate loop detection.
This result also suggests that localization can be achieved
by using preliminary information about road markings. We
found that the influence of the shadow of surrounding objects
can be significant in some cases. Our future work is toward
a light condition invariant algorithm following a similar line
of research [20].
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