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1 Design criteria

Because of different architectures of the computers with which experimental data should be read-
out (at that time Motorola 680x0 under OS-9) and those used for data analysis (like DEC Stations
under Ultrix, VAX under VMS, IBM RS/6000 under AIX, and other systems introduced later), the
data format had to be machine-independent. Data written on any supported computer type should
be readable for all others.

Input and output should be, nevertheless, very efficient. To avoid being limited to a particular
processor type, the data format should support several internal formats and convert as appropriate.
Since internal formats of all CPUs involved only differ in the byte order (0-1-2-3 or 3-2-1-0),
except for the floating-point representation of the VAX, it is sufficient to record the byte order used
together with the data. Only for the VAX, an additional conversion of floating point numbers was
required.

If source and target computers have different byte orders, a conversion is required on one of
them. Since the eventio data format allows to use either byte ordering, this conversion can be
done on the machine where CPU time is least critical. If off-line processing, for example, is done
on just one type of architecture, it would be most efficient recording the data in the native byte order
of that architecture. Other types of machines would – with a small loss of efficiency – still be able
to read the data.

Errors while writing, reading or transferring the data should not result in corruption of all data
following. Therefore, every major data block is preceded by a 4 bytes long synchronization marker.
This marker is recognized in either byte order and serves, at the same time, to indicate the byte order
used for writing.

For flexibility in writing different data types into one data stream and to be able to filter a
selection of data types from a composite data stream, all data blocks have type and identification
(ID) fields. The type represents the scheme how a block is built and should corresponds to a single
function needed to read the block. The ID would typically identify the origin of the data (e.g. the
detector) but other uses are not a problem. In order to be prepared for later changes in the definition
of any type of data block, the data blocks also have a version field. In order to be able to skip
data blocks which are not of interest or for which no decoding function is known to the program, a
length field is included as well.

For flexibility in building up blocks of any type, a hierarchical structure is used. Each ma-
jor block of data can contain a tree of sub-blocks as appropriate, with lowest-level blocks only
containing elementary data types. In view of this flexibility it is more appropriate to talk of data
objects or items than of blocks. The term ‘block’ implies a too fixed and too simple structure for
describing the eventio data structure. Reading or writing one type of objects also can usually be
represented by a method in object-oriented programming (for example in C++) although the basic
programming interface is entirely written in portable C. As long as any of these objects consists of
sub-objects only, but does not contain elementary data, the structure of it can be determined without
knowing anything about the objects or having a decoding function available for it. Sub-objects can
be searched for or skipped at any level, and they can even be deleted without from the tree without
disturbing the consistency of the major objects structure. Only the major or top level object (in the
tree picture: the root) is prefixed by the synchronization marker. In principle, the byte ordering can
be changed from one major object to the next one.

For efficiency reasons every object is filled to the next 4-bytes boundary when ‘writing’ on
(actually: encoding it into an internal I/O buffer). This way, every object should usually start a
4-bytes address, to reduce accessing addresses which cross word limits and have slower memory
access on many CPU types than have word-aligned accesses. To take advantage of that requires,
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of course, that elementary data types within the low-level objects are also aligned. If an object
is made up of a mixture of elementary data types and sub-objects, this efficient alignment cannot
be guaranteed for the sub-objects. Except for efficiency, however, no side-effects should happen
(for example on machines which cannot access integer of floating point numbers on odd memory
addresses). The eventio software does take care of that.

2 Data types and data structures

2.1 Elementary data types

As elementary data types most of those also known in programming languages as C or Fortran are
implemented:

Type Length (Bytes) Description

Byte 1 character or very small number
Short 2 short integer (with or without sign)
Long 4 longer integer (usually an ’int’, with or without sign)
Int16 2 16-bit signed integer = Short
UInt16 2 16-bit unsigned integer
Int32 4 32-bit signed integer = Long
UInt32 4 32-bit unsigned integer
Int64 8 64-bit signed integer
UInt64 8 64-bit unsigned integer = Long64

Count 1 to 9 Natural number (unsigned)
SCount 1 to 9 Signed natural number

SFloat 2 Float16, 16-bit floating point number (as in OpenGL)
Real 4 32-bit floating point number in IEEE format
Double 8 64-bit floating point number in IEEE format

String 2+Length string of characters or bytes prefixed
with a length up to 32767.

LongString 4+Length string of characters or bytes prefixed
with a length up to 2147483647.

VarString var.+Length string of characters prefixed with length.

The 64-bit (8-byte) integers (Long64) are only possible on machines with support for such data
types. That includes systems where 64-bit integers are only implemented through the compiler
(e.g. as long long). Beware that the data may not be readable on machines without 64-bit
integer support, unless special provisions are made, like reading the data into two 32-bit integers.
With the Count and SCount type elements, it is also possible to write values on a 64-bit capable
system that cannot be properly read on a system without 64-bit integer support.

Note that the Long type does match an int rather than a long C variable type on 64-bit
machines. The elementary data types are normally used without any declaration included in the
data. The decoding software, therefore, has to know how to deal with the data.

The synchronization marker is written and read as a Long type. If read as 0x378A1FD4 instead
0xD41F8A37, the byte order of all elementary data types has to be reversed, except for Strings
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where only the byte order of the leading length value needs to be reversed. Strictly speaking, all
integer types should be distinguished between signed and unsigned types. As long as the data is
returned to variables of the same type, this should not pose a problem. All machines supported
use (except for byte order) the same representation of negative numbers. On 32-bit machines,
sign propagation of Short types to int or long variables has to be taken care of and, on 64-bit
machines, also of Long types to long variables.

2.2 Object structure

The elementary data types are combined to objects which, in turn, can be part of a hierarchical
structure. Input and output, definition of the byte order as well as synchronization in case of data
corruption are all done for the major (top-level) object only. The structure of the top-level object
and its sub-objects only differs by the fact that the top-level objects has a 4-bytes synchronization
marker prefix one or the other byte order. This marker consists of the integer 0xD41F8A37 (in C
notation, i.e. 3558836791 as an unsigned long or -736130505 as a signed long. Apart
from that, every object has a header of three 4-byte words, representing the type/version, identifi-
cation, and length fields. The body of an object is the data field.

0

Synchroni-
sation
marker

4

Type/
version
field

8

Identifi-
cation
field

12

Length
field

16 16+Length

Data field

Sub-object

D4 1F 8A 37
or

37 8A 1F D4

���
���

���
���

@
@
@

A

Type/
version
field

A+4

Identifi-
cation
field

A+8

Length
field

A+12

Data
field

A+12+Length

0

Synchro-
nisation
marker

4

Type/
version
field
Bit 17=on

8

Identifi-
cation
field

12

Length
field

16

Extension
field

20 20+Length

Data field

Sub-object

D4 1F 8A 37
or

37 8A 1F D4

((((
(((

((((
(((

((((

@
@
@

A

Type/
version
field
Bit 17=on

A+4

Identifi-
cation
field

A+8

Length
field

A+12

Ext.
field

A+16

Data
field

A+16+Length

Figure 1: Schematic structure of a top-level object and a sub-object (top: without any extension,
bottom: top-level object and sub-object with extension active).
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The type/version field combines a type number in bits 0 to 15 (with values between 0 and
65535) and a version number in bits 20 to 31 (values between 0 and 4095). Bit 16 is defined as
’User Bit’ and no interpretation is defined. If Bit 17 is set, it indicates that the extended format is in
use - which implies an addition 4-byte header field, the extension field. Bits 18 and 19 are reserved
for future enhancements and have to be 0 as long as this definition is not changed.

The ID field should identify from where the data come, which event they represent, or some-
thing of that kind. Thus, the ID field has an object-specific meaning. An ID of −1 should be
interpreted as ‘no ID given.’

The length field contains in bits 0 to 29 the length of the data field (in bytes), including 0 to 3
fill bytes at the end to fill up to a length that is divisible by 4. As such, the length should be in the
range 0 to 1073741823 – and divisible by 4. Bit 30 is set if the object contains only sub-objects but
no elementary data types, and therefore its contents can be listed without knowing anything about
specific object types. Bit 31 is reserved and has to be 0.

If bit 17 of the type/version field is set, the extension field follows, with only bits 0-11 defined
so far, extending the 30 bits from the length field by another 12 bits, thus supporting data blocks of
up to 4 TiB length. All other bits are reserved and must be 0 for now.

A data field can contain sub-objects or elementary data types. If containing elementary data
types (or a combination of those and of sub-objects), it can only be decoded by an object-type-
specific function. If containing only sub-objects then bit 30 of the length field will be set and its
contents can be listed and sub-objects can be searched for, without type-specific knowledge.

3 Implementation and programming in C

3.1 Overview

With the present implementation for the eventio data format the top-level objects are always
assembled in memory before any writing is done and they are read completely into memory before
decoding is started. There is only one top-level object in a single I/O buffer. The available functions
can be divided into five groups:

1. memory management for I/O buffers,

2. I/O, search for and skipping of top-level objects,

3. management of objects in an I/O buffer,

4. writing/reading of elementary data types into/from an I/O buffer, and

5. writing/reading of complete objects/object hierarchies (type specific).

For the management of I/O buffers and of objects two types of structures are used, of which in
the following only those elements are shown which are intended to be used directly by application-
specific functions:

struct _struct_IO_BUFFER
{

...
int input_fileno;
int output_fileno;
FILE *input_file;
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FILE *output_file;
int (*user_function)(unsigned char *, long, int);
...

};
typedef struct _struct_IO_BUFFER IO_BUFFER;

struct _struct_IO_ITEM_HEADER
{

...
unsigned long type;
unsigned version;
long ident;
...

};
typedef struct _struct_IO_ITEM_HEADER IO_ITEM_HEADER;

In the IO_BUFFER structure the elements input_fileno and output_fileno are file
handle numbers as obtained by opening a input or output file with open() or by applying fileno()
to an available FILE structure. They are 0 for standard input or 1 for standard output. When an
IO_BUFFER structure is allocated and initialized, these variables are set to −1, indicating that no
file handles have been assigned. If the IO_BUFFER is only used for input, only input_fileno
needs to be set, and correspondingly only output_fileno for output.

Instead of I/O via the basic I/O functions open, read, write, and close, the ‘stream’ I/O
functions fopen (or popen), fread, fwrite, and fclose (or pclose) can be used as well.
For this purpose the elements input_file and/or output_file should be set with a pointer to
a corresponding FILE structure, instead of setting input_fileno or output_fileno. Data
with small blocks sizes gains quite a lot in performance from the internal buffering by the stream
I/O functions.

If I/O should use some other means rather than files or pipes then, alternatively, the function
pointer user_function can be set to user-defined function of the corresponding type. Then this
function has to take care of the ‘real’ I/O.

In each IO_ITEM_HEADER structure the type number (type), the version number (version)
and the ID number (ident) should be set before starting with a new data object. Before searching
or reading, the type field can be given (any mismatch resulting in an error) while other fields will
be set to values from the data encountered.

3.2 Management of I/O buffers

IO_BUFFER *allocate_io_buffer(size_t length);
This function allocates and initializes an I/O buffer which will have an initial buffer size of length
bytes but can be dynamically extended when needed. After that the file handles or file pointers or
function pointer can be assigned for the I/O buffer.

Example: iobuf = allocate_io_buffer(20000);

The actual size of the buffer can increase dynamically, up to a user-defined maximum size, for
example

iobuf->max_length = 10000000;
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void free_io_buffer(IO_BUFFER *iobuf);
An I/O buffer should be deleted. Note that the corresponding files used for I/O will not be closed
by this function and a user-defined I/O handler function would not be notified.

Example: free_io_buffer(iobuf);

3.3 Low-level input and output functions

int write_io_block (IO_BUFFER *iobuf);
After completing a top-level object and all the data contained in it, including any sub-objects the
contents of the buffer will be written into the file referred to by iobuf->output_fileno or
iobuf->output_file or, if neither of those is set but iobuf->user_function is, the
actual buffer contents and length will be passed to the used function (and a code value of 1).

Example: if ( (rc = write_io_block(iobuf)) != 0 )
return rc;

int find_io_block (IO_BUFFER *iobuf, IO_ITEM_HEADER *item_header);
In the file referred to by iobuf->input_fileno or iobuf->input_file the next synchro-
nization marker will be searched for. Usually this will be just the next four bytes in the input file.
Then the remaining head of the top-level object will be read into the I/O buffer and the described
elements of item_header set accordingly. If iobuf->user_function is used, the user
function has to take care of getting to the next top-level object and storing the item header in the
provided buffer:

int (*user_function) (unsigned char *buffer, long bytes, int code);

with a code value of 2 (see below).

int read_io_block (IO_BUFFER *iobuf, IO_ITEM_HEADER *item_header);
Used to read the data field of the top-level object found with the preceding find_io_block call
(user function would be called with code 3). After that, the data is available for decoding.

int skip_io_block (IO_BUFFER *iobuf, IO_ITEM_HEADER *item_header);
Used to skip over the data field of the top-level object found with the preceding find_io_block
call. This is usually done when not interested in a particular type of data object. A user function
would be called with code 4.

Example:

IO_ITEM_HEADER item_header;
...
if ( find_io_block(iobuf,&item_header) != 0 )

printf("Error!\n");
else if ( item_header.type == 2540 )
{

if ( read_io_block(iobuf,&item_header) != 0 )
printf("Also an error!\n");

...
}
else

(void) skip_io_block(iobuf,&item_header);
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int list_io_blocks (IO_BUFFER *iobuf);
This is already a simple application based on the low-level functions. It produces a listing of all
top-level objects found in the input file, with output going to standard output. A complete, although
simple application program would be the following:

#include "io_basic.h"
int main()
{

IO_BUFFER *iobuf;
if ( (iobuf = allocate_io_buffer(1000)) ==

(IO_BUFFER *) NULL )
exit(1);

iobuf->input_fileno = 0;
(void) list_io_blocks(iobuf);
exit(0);
return 0;

}

If I/O is not file-oriented or at least not to be done with the standard functions then, after I/O
buffer allocation, the element iobuf->user_function can be set to the address of a user-
defined function. The elements for input or output file handles or structures should not be set in
that case. The user-defined function must follow this prototype:
int function (unsigned char *buffer, long bytes, int code);
Among the parameters code defines what should be done:

code=1: Write bytes bytes starting at address buffer. This includes the header and the data.

code=2: Find the next top-level object and read its header (16 bytes) into the buffer pointer to by
buffer. If the header indicates that the extension field is used, another four bytes will be
requested from the user function with code=3, before getting or skipping the data field.

code=3: Read the data field of the top-level object which was found before. Here bytes is the
known length of the data field and buffer is the address to which the data field should be
copied (which is 16 bytes after the start of the I/O buffer or more if the extension field is
used). The buffer is guaranteed to be large enough to hold the data.

code=4: Skip a data field of length bytes for the top-level object found before. buffer must
not be used here, not even for temporary purposes, since for skipping of data objects no
memory will be allocated.

The user-defined function must return 0 after proper execution. In case of errors (except end-of-file
while reading) −1 should be returned and in case of end-of-file (for codes 2–4) a value of −2.

3.4 Management of data objects

For proper management of data objects, the functions put_item_begin and put_item_end
are needed before and after putting the data into the I/O buffer. These functions are needed as
a matching pair with respect to each object. Correspondingly, before reading (decoding) from
the buffer, the function get_item_begin is needed as well as get_item_end afterwards.
Additional functions serve for searching, deleting, backspacing, and listings. All functions return 0
in case of proper operation and negative numbers in case of errors.
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int put_item_begin (IO_BUFFER *iobuf, IO_ITEM_HEADER *item_header);
int put_item_end (IO_BUFFER *iobuf, IO_ITEM_HEADER *item_header);
int get_item_begin (IO_BUFFER *iobuf, IO_ITEM_HEADER *item_header);
int get_item_end (IO_BUFFER *iobuf, IO_ITEM_HEADER *item_header);
int unget_item (IO_BUFFER *iobuf, IO_ITEM_HEADER *item_header);
int rewind_item (IO_BUFFER *iobuf, IO_ITEM_HEADER *item_header);
int remove_item (IO_BUFFER *iobuf, IO_ITEM_HEADER *item_header);
int search_sub_item(IO_BUFFER *iobuf, IO_ITEM_HEADER *item_header,

IO_ITEM_HEADER *sub_item_header);
int list_sub_items (IO_BUFFER *iobuf, IO_ITEM_HEADER *item_header,

int maxlevel);

Examples of functions used to write one object and to read it are included later in this paper.
After a successful call to get_item_begin or search_sub_item, the data pointer is

at the beginning of the data field of the corresponding object or sub-object. Its data can now
be decoded (read) or the object can be skipped. Usually, for every call to put_item_begin
or get_item_begin there should be exactly one corresponding call to put_item_endor
get_item_end. If a higher-level object is finished, however, all of its descendents will be closed
too – although at the expense of a warning. The put_item_end call for the top-level object will
start the low-level or real I/O part, depending on the settings for the object (typically writing to
file).

If get_item_begin fails, the data pointer remains at the previous place. On the other hand,
if search_sub_item fails the data pointer is at the end of the object in which a certain type of
sub-object was searched for. The data pointer can be set back to the beginning of the data field with
rewind_item. To get back even before the head of the object, use unget_item. To remove
an object call remove_item after a successful get_item_begin or search_sub_item.
No get_item_end is needed after removing. Function list_sub_items works similar to
sub-objects as list_io_blocks to top-level objects, listing all sub-objects of a given object. If
the argument maxlevel is larger than zero, only sub-objects up to the given nesting level will be
mentioned. After list_sub_items, the data pointer is at the end of the corresponding object.

3.5 Use of elementary data types

For each of the elementary data types there is at least one function to put a single element into the
I/O buffer and at least one function to get a single element from the buffer. In either case the data
pointer is incremented correspondingly. Byte operations are implemented as preprocessor macros
– just in case you know what kinds of restrictions this imposes. Except for Strings, there are also
functions writing vectors of many elements, reducing some management overhead. Since the vec-
tor functions have no automatic conversion of arguments or return values, you should check that
vector of the proper type and size are passed (important with pre-ANSI C compilers). This includes
functions put_vector_of_short and put_vector_of_int and their inverse where you
should know that only integers between -32768 and 32767 or between 0 and 65535 can be repre-
sented in the data (depending if the data is interpreted as signed or unsigned) but the elements of the
vectors passed to the functions may have different lengths on different system (2 or 4 bytes long).
Similarly, on 64-bit machines the long type holds more bits of data than the Long data type and
only the 32 lower bits will be written. But as long as the number fits into the corresponding data
type, there is nothing to worry.

Where data needs to be stored internally in variables of a specific length, you should use the
ANSI C99 data types int8_t, uint8_t, ..., int64_t, uint64_t which, after including
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io_basic.h, should be available also for older compilers. Note that the functions involving
64-bit integers are not available on all machines.

Elementary functions:

int put_byte (unsigned char c, IO_BUFFER *iobuf);
int get_byte (IO_BUFFER *iobuf);
void put_count (uintmax_t i, IO_BUFFER *iobuf);
uintmax_t get_count (IO_BUFFER *iobuf);
void put_scount (intmax_t i, IO_BUFFER *iobuf);
intmax_t get_scount (IO_BUFFER *iobuf);
void put_short (int i, IO_BUFFER *iobuf);
int get_short (IO_BUFFER *iobuf);
void put_int32(int32_t num, IO_BUFFER *iobuf)
int32_t get_int32(IO_BUFFER *iobuf)
void put_uint32(uint32_t num, IO_BUFFER *iobuf)
uint32_t get_uint32(IO_BUFFER *iobuf)
void put_long (long l, IO_BUFFER *iobuf);
long get_long (IO_BUFFER *iobuf);
void put_string (char *s, IO_BUFFER *iobuf);
int get_string (IO_BUFFER *iobuf);
int put_long_string (char *s, IO_BUFFER *iobuf)
int get_long_string (char *s, int nmax, IO_BUFFER *iobuf)
int put_var_string (char *s, IO_BUFFER *iobuf)
int get_var_string (char *s, int nmax, IO_BUFFER *iobuf)
void put_real (double d, IO_BUFFER *iobuf);
double get_real (IO_BUFFER *iobuf);
void put_double (double dnum, IO_BUFFER *iobuf)
double get_double (IO_BUFFER *iobuf)

Vector functions:

void put_vector_of_byte (unsigned char *cv, int num, IO_BUFFER *iobuf);
void get_vector_of_byte (unsigned char *cv, int num, IO_BUFFER *iobuf);
void put_vector_of_uint8 (uint8_t *cv, int num, IO_BUFFER *iobuf);
void get_vector_of_uint8 (uint8_t *cv, int num, IO_BUFFER *iobuf);
void put_vector_of_short (short *sv, int num, IO_BUFFER *iobuf);
void get_vector_of_short (short *sv, int num, IO_BUFFER *iobuf);
void put_vector_of_int (int *iv, int num, IO_BUFFER *iobuf);
void get_vector_of_int (int *iv, int num, IO_BUFFER *iobuf);
void put_vector_of_int16 (int16_t *sv, int num, IO_BUFFER *iobuf);
void get_vector_of_int16 (int16_t *sv, int num, IO_BUFFER *iobuf);
void put_vector_of_uint16 (uint16_t *uval, int num, IO_BUFFER *iobuf)
void get_vector_of_uint16 (uint16_t *uval, int num, IO_BUFFER *iobuf)
void put_vector_of_int32 (int32_t *vec, int num, IO_BUFFER *iobuf)
void get_vector_of_int32 (int32_t *vec, int num, IO_BUFFER *iobuf)
void put_vector_of_uint32 (uint32_t *vec, int num, IO_BUFFER *iobuf)
void get_vector_of_uint32 (uint32_t *vec, int num, IO_BUFFER *iobuf)
void put_vector_of_int64 (int64_t *ival, int num, IO_BUFFER *iobuf)
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void get_vector_of_int64 (int64_t *ival, int num, IO_BUFFER *iobuf)
void put_vector_of_uint64 (uint64_t *uval, int num, IO_BUFFER *iobuf)
void get_vector_of_uint64 (uint64_t *uval, int num, IO_BUFFER *iobuf)
void put_vector_of_long (long *lv, int num, IO_BUFFER *iobuf);
void get_vector_of_long (long *lv, int num, IO_BUFFER *iobuf);
void put_vector_of_real (double *dv, int num, IO_BUFFER *iobuf);
void get_vector_of_real (double *dv, int num, IO_BUFFER *iobuf);
void put_vector_of_float (float *fvec, int num, IO_BUFFER *iobuf)
void get_vector_of_float (float *fvec, int num, IO_BUFFER *iobuf)
void put_vector_of_double (double *dvec, int num, IO_BUFFER *iobuf)
void get_vector_of_double (double *dvec, int num, IO_BUFFER *iobuf)

3.6 Object-type specific functions

Two object-type specific functions are needed, one for ‘reading’ (i.e. decoding from the I/O buffer)
and one for ‘writing’ (putting things into the I/O buffer). These functions should check for consis-
tency of their arguments in the first place and pass any error conditions, e.g. concerning data object
management or buffer management or real I/O, up to the calling function. The calling functions,
in turn, should handle error conditions happening while processing sub-objects. A simple pair of
functions for writing and reading a set of ADC pedestals follows. For more complex functions, the
arguments passed usually include a pointer to an internal data structure (plus perhaps the number
of elements to be written). The pointer to the I/O buffer should always be passed to the function.

#include "initial.h" /* This file includes others as required. */
#include "eventio.h" /* This file includes others as required. */

/* ---------------------- write_offsets ---------------------- */
/**
* @short Reads (previously measured) ADC offset values.

*
* The destination (’offsets’ parameter) will usually be the

* global ’cmpoffset’ data.

*
* @param offsets The destination of the data being read.

* @param nchannels The expected no. of channels, must match

* the actual no. specified in the input.

* @param iobuf The input data iobuf descriptor.

*
* @return 0 (O.k.), -1 (error), or -2 (e.o.f.)

*
*/

int write_offsets (long *offsets, int nchannels, IO_BUFFER *iobuf)
{

IO_ITEM_HEADER item_header;

if ( iobuf == (IO_BUFFER *) NULL )
return -1;

if (offsets == (long *) NULL )
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{
Warning("Attempt to save invalid offset vector");
return -1;

}

item_header.type = 21; /* Offset data is type 21 */
item_header.version = 1; /* Version 1 (preliminary) */
item_header.ident = get_detector_number();
put_item_begin(iobuf,&item_header);

/* Save the time when the data is written although it would */
/* be better to save the time when the offsets were measured. */
put_long(time((time_t *) NULL),iobuf);
put_short(nchannels,iobuf); /* No. of FADC channels */
put_vector_of_long(offsets,nchannels,iobuf);

return(put_item_end(iobuf,&item_header));
}

/* ------------------------ read_offsets ------------------------- */
/**
* @short Reads (previously measured) ADC offset values.

*
* The destination (’offsets’ parameter) will usually be the

* global ’cmpoffset’ data.

*
* @param offsets The destination of the data being read.

* @param nchannels The expected no. of channels, must match

* the actual no. specified in the input.

* @param iobuf The input data iobuf descriptor.

*
* @return 0 (O.k.), -1 (error), or -2 (e.o.f.)

*
*/

int read_offsets (long *offsets, int nchannels, IO_BUFFER *iobuf)
{

IO_ITEM_HEADER item_header;
int rc;

if ( offsets == (long *) NULL )
{

Warning("Invalid call to read_offsets()");
return -1;

}

if ( iobuf == (IO_BUFFER *) NULL )
return -1;
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item_header.type = 21;
if ( (rc = get_item_begin(iobuf,&item_header)) != 0 )

return(rc);

if ( item_header.version != 1 )
{

Warning("Wrong version no. of offset data to be read");
return -1;

}

(void) get_long(iobuf); /* Time is ignored, so far. */

if ( nchannels != get_short(iobuf) )
{

Warning("Wrong no. of channels for reading offsets");
return -1;

}

get_vector_of_long(offsets,nchannels,iobuf);

return(get_item_end(iobuf,&item_header));
}

The comments at the beginning of the functions with special markups are for automatic gener-
ation of documentation with the doxygen program.

4 Implementation and programming in C++

4.1 Introduction

In addition to the C language basic implementation and API, there is an additional application
programming interface in C++ which takes care of hiding many of those things the C programmer
has to write explicitly. The C++ API also provides a much cleaner and simpler – even though richer
and more powerfull – collection of methods to get data from or put data to the internal I/O buffer.
Among the added benefits are support for standard library vectors, valarrays and strings.

You should be aware that you may have to link with a different library for the C++ API than for
the C API.

4.2 Example code

With the C++ API, a simple program could look like:

#include "EventIO.hh"
using namespace eventio;

int main()
{

int32_t data[2] = { 17, 10815 };
EventIO iobuf;
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iobuf.OpenOutput("output.file");
EventIO::Item item(iobuf,"put",99,0,123);
if ( item.Status() != 0 )

return 1;
item.PutInt32(data,2);
item.Done();
iobuf.CloseOutput();
return 0;

}

This simple program should write an item of type number 99, version number 0, and ID number
123 to a file. In this case, the item only contains two integers. For a nested item tree, it could look
like:

#include "EventIO.hh"
using namespace eventio;

int main()
{

int32_t data1[2] = { 17, 10815 };
std::string data2("some text");
EventIO iobuf;
iobuf.OpenOutput("output.file");
EventIO::Item item(iobuf,"put",101);
if ( item.Status() != 0 )

return 1;

EventIO::Item item1(item,"put",102);
item1.PutInt32(data1,2);
item1.Done();

EventIO::Item item2(item,"put",103);
item2.PutString(data2);
item2.Done();

item.Done();
iobuf.CloseOutput();
return 0;

}

4.3 The EventIO and EventIO::Item classes

All of the internals of the IO_BUFFER are hidden in the C++ class EventIO which, in its con-
structor and destructor, takes care of the essential initialisation and cleanup. The EventIO class
provides methods to open and close input files or functions, locating top-level blocks in the input
stream and reading them.

The EventIO::Item sub-class is used to get all the items and data into the buffer or get
them from the buffer. If the EventIO::Item constructor is called with an EventIO argument,
a top-level item will be created (after finishing any incomplete operations of the buffer). If it is

14



called with a EventIO::Item argument, the new item will be a sub-item of the given argument.
The whole tree of such items can be created either for "get" or for "put" operations.

4.4 EventIO methods

The methods provided by the EventIO class can be subdivided into two groups:

1. Methods for connection input/output files or functions. These are mainly the OpenInput
and OpenOutput methods (which take either a file name or a FILE * pointer as their
argument), the OpenFunction method taking a IO_USER_FUNCTION argument, as well
as the corresponding CloseInput, CloseOutput, and CloseFunction methods (all
without arguments). All of them return 0 on success and −1 or other negative numbers on
failure.

2. The Find(), Read(), Skip(), and List()methods correspond to the find_io_block,
read_io_block, skip_io_block, and list_io_blockC functions. After a Find()
or Read(), you can also use the ItemType(), ItemVersion(), and ItemIdent()
methods to inspect the properties of the current top-level item.

For low-level access to C methods, the underlying IO_BUFFER can be obtained through the
Buffer() method.

4.5 Data access methods

For an EventIO::Item constructed with a "get" argument, data can be retrieved with the
GetXyz(...) type functions. For an EventIO::Item constructed with a "put" argument,
data can be written to the buffer with the PutXyz(...) type functions. In either case, an item
should normally be finished by the Done() method but will be finished also by the end of its
lifetime or by conflicting operations on its parent item, like creating a new EventIO::Item item
at the same level as the current item or higher up in the hierarchy, or calling the Done() method
at a higher level. The Xyz part here stands for the different data types:

• Uint8 (Byte in C API)

• Count

• SCount

• Int16 (Short in C API)

• UInt16

• Int32 (Long in C API)

• UInt32

• Int64

• Uint64

• Real

• Double
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• String (VarString in C API)

There are no methods directly corresponding to the older C data type String and LongString
but these are easy to emulate where compatibility with older C code is required (see the TestIO
program, for example).

All the GetXyz(...) and PutXyz(...) type functions (with exception of strings) come
in a number of flavours:

• for single values,

• for arrays of values,

• for vector of values, and

• for valarray of values.

With vector, valarray, as well as with the special string methods, the corresponding
header files must be included before including EventIO.hh. In addition, the vector and
valarray methods come in two variants:

• PutXyz(vec, nelem);

• PutXyz(vec);

The first variant is analogous to the array flavour and only writes the contents of the ar-
ray/vector/valarray. It assumes that the length of it is stored separately. The second variant, not
available with arrays, will first put the number of elements to be stored into the buffer (as a Count
type), and then all of its data elements. It is therefore the same if you write

PutCount(vec.size());
PutXyz(vec,vec.size());

or

PutXyz(vec);

The same holds true for the corresponding GetXyz methods. The variant without explicit length
assumes that the element count precedes the data, the other only reads the given number of data
elements. With vector and valarray, they will be resized to hold all of the data (in the variant
without explicit length always, in the other variant only when the data would not fit). In the C API
or with the array type flavour, this is not possible. There you always have to provide buffers of
suitable length.

A special variant of array/vector/valarray methods is available for the SCount data type. If
arrays of similar numbers have to be stored, it is often more efficient to store them as differences to
the preceding one, only writing the absolute value for the first element. These methods are called
PutDiffSCount and GetDiffSCount, with the same output for

PutDiffSCount(vec);

or

PutCount(vec.size());
if ( vec.size() > 0 )

PutSCount(vec[0]);
for (size_t i=1; i<vec.size(); i++)

PutSCount(vec[i]-vec[i-1]);
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Appendix

A Object formats (examples)

A.1 Histograms as implemented by histogram.c/io_histogram.c

Object type: 100
Version: 2
ID: ID no. of the first histogram or −1

Variable Type Count Description
nhisto short 1 Number of histograms following
Per Histogram:
type byte 1 Histogram type (’I’, ’i’, ’R’, ’r’, ’F’, ’D’)
title string 1 Histogram title
— byte 0 oder 1 fill byte if type and title

together are of odd length.
ident long 1 Histogram ID no.
nbins short 1 No. of intervals (in x)
nbins_2d short 1 No. of intervals in y or 0
entries long 1 Total number of entries
tentries long 1 Number of entries within limits
underflow long 1 Entries below lower limit in x
overflow long 1 Entries above upper limit in x
For Histograms with floating point boundaries (Types ’R’, ’r’, ’F’ and ’D’):
lower_limit real 1 Lower limit (in x)
upper_limit real 1 Upper limit (in x)
sum real 1 Sum of all entered x values and
tsum real 1 the same within the limits.

For Histograms with integer boundaries (Types ’I’ and ’i’):
lower_limit long 1 Lower limit (in x)
upper_limit long 1 Upper limit (in x)
sum long 1 Sum of all entered x values and
tsum long 1 the same within the limits.

For 2-D histograms only (nbins_2d > 0):
underflow_2d long 1 Entries below lower_limit_2d
overflow_2d long 1 Entries above upper_limit_2d
For Histograms with floating point boundaries (Types ’R’, ’r’, ’F’ and ’D’):
lower_limit_2d real 1 Lower limit in y
upper_limit_2d real 1 Upper limit in y
sum_2d real 1 Not used
tsum_2d real 1 Not used

For Histograms with integer boundaries (Types ’I’ and ’i’):
lower_limit_2d long 1 Lower limit in y
upper_limit_2d long 1 Upper limit in y
sum_2d long 1 Sum of all y values and
tsum_2d long 1 the same within the limits.

Only for Histograms with integer contents (Types ’I’, ’i’, ’R’ and ’r’):
counts long (nbins) Contents if tentries > 0 (1D)

(*nbins_2d) or 2-D Histogram (row by row)
Only for Histograms with weighted contents (Types ’F’ and ’D’):
content_all real 1 Sum of all contents
content_inside real 1 Sum of all within limits
content_outside real 8 and in sectors outside
data real (nbins) Histogram contents if tentries > 0 (1D)

(*nbins_2d) or 2-D Histogram (row by row)
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B Internal C Structures

From the internal data structures, only those elements are being listed here that are intended to be
used by application programs (omissions marked as ‘...’). Concerning terminology for beginners in
‘C’, it should be noted that a declaration like

struct _struct_SOMETHING { ... };
typedef struct _struct_SOMETHING SOMETHING;

or short

typedef struct { ... } SOMETHING;

requires a definition in the application program as

SOMETHING name;

In the following, the shorter form will be used, although in the code the first and longer form is
used.

B.1 Structures for I/O and data object management

See also section 3.1.

typedef struct
{

...
int input_fileno;
int output_fileno;
FILE *input_file;
FILE *output_file;
int (*user_function)(unsigned char *, long, int);
...
long max_length;
...

} IO_BUFFER;

typedef struct
{

...
unsigned long type;
unsigned version;
long ident;
...

} IO_ITEM_HEADER;
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