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Abstract

Phonological judgments are often gradidsiick > ?bwick > *bnick The theoretical interpre-

tation of gradient acceptability remains controversial, however, with some authors maintaining
that it is a performance/task effect based on similarity to the lexioeigfiborhood effects

and others attributing it to a probabilistic grammar regulating possible sequeresofac-

tics). In a study that directly compared the predictions of similarity-based and sequential
models against experimental ratings of non-words, Bailey and Hahn (2001) argued that both
types of knowledge are needed, though the relative contribution of sequential models was quite
small. In this paper, additional phonotactic models are considered, including the widely used
positional phonotactic probability model|of Vitevitch and Luce (2004), and a model based on
phonological features and natural classes. The performance of all models is tested against Bai-
ley and Hahn’s data and against data fiom Albright and Hayes (2003). The results show that
probabilistic phonotactic models do not play a minor role; in fact, they may actually account
for the bulk of gradient phonological acceptability judgments.

1 Introduction

When native speakers are asked to judge made-up (nonce) words, their intuitions are rarely all-or-
nothing. In the usual case, novel items fall along a gradient cline of accept@blilﬁtgrmediate

levels of acceptability are illustrated for a selection of novel pseudo-English words in (1). These
range from words like [sh], which speakers tend to deem quite plausible as a possible word of
English, to [oeb], which is typically judged to be implausible or outlandish.

1] use the term gradiertcceptabilityrather than gradiemwordlikenes®r phonotacticssince those terms presup-
pose at least implicitly a particular underlying mechanism.



Albright—Gradient phonological acceptability 2

(1) “How good would ... be as a word of English?”

Best stin[stin] , mip [mip]
blick [blik], skell[skel]
Intermediate blafe [blerf], smy[smal]
bwip [bwip], smum{smam]
dlap [dlaep], mrock[mrak]
Worst bzarshi{bzark], shob [[ceb]

Numerous studies have demonstrated a relation between gradient acceptability and the statistics
of the lexicon, using data from different domains and different experimental methodologies. The
relation between behavior on nonce words and the number of similar existing words has been
explored extensively in the area of morphological productivity (Bybee|1985; Anshen and Aronoff
1988;/ Bybee 1995; Plag 1999; Bauer 2001; Albright 2002a; Albright and Hayes 2003; and many
others), and in the area of morphophonological alternations (Berko 1958; Bybee and Pardo 1981,
Eddington 1996; Zuraw 2000; Bybee 2001; Pierrehumbert[2002; Ernestus and Baayen 2003). Of
more immediate relevance to the current study, gradient phonological acceptability has also been
shown to relate to lexical statisti¢s (Greenberg and Jenkins 1964; Scholes 1966; Ohala and Ohala
1986; Coleman and Pierrehumbert 1997; Frisch, Large, and Pisoni|2000; Bailey and Hahn 2001;
Hay, Pierrehumbert, and Beckman 2004). The strategy for demonstrating a lexicostatistic effect is
to quantify differences between novel items, typically in terms of neighborhood density (Greenberg
and Jenkins 1964; Coltheart, Davelaar, Jonasson, and Besnér 1977; Luce 1986; Newman,Sawusch,
and Luce 1997; Luce and Pisoni 1998) or biphone probabilities (Vitevitch, Luce, Charles-Luce, and
Kemmerer 1997; Vitevitch and Luce 1998), and show that there is a positive correlation between
speakers’ behavior and the number of similar existing words.

Such work has made it abundantly clear that speakers’ behavior is guided in some fashion by
knowledge of lexical statistics. The exact mechanism by which this happens is considerably more
controversial, however. As Bailey and Hahn (2001) point out, lexical statistics such as neighbor-
hood density and biphone probability are often highly correlated with one another, so special care
is required to tease apart any independent predictions that they might have (e.g., Vitevitch, Luce,
Pisoni, and Auer 1999). More typically, gradient effects are simply assumed to arise either from
neighborhood similarity to the lexicon or to a stochastic grammar, according to the authors’ theo-
retical predisposition. According to one prevalent point of view, gradient phonological effects do
not have anything to do with grammar, but rather arise as part of the task of processing and judging
novel sequences. This point of view is held by those who deny grammar altogether and attribute all
aspects of linguistic behavior to properties of language|use (Bybeé 2001). It is also the view held
by linguists who view grammar as categorical, and fundamentally unable to derive gradient effects
(for discussion, see Sitee 2005). For proponents of this view, grammar defines whaiassible
word, whereas acceptability tasks require speakers to judgetohablethe novel item would be
as a word of the language. This calculation may invoke a variety of different non-grammatical
calculations, such as assessing the number of similar words that are activated during the attempt
to carry out lexical access, or performing some more elaborate form of analogical reasoning. For
scholars of both stripes, gradient acceptability is seen as a performance effect, accessing types of
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knowledge that go beyond what is encoded in the grammar (which, if it exists, is categorical and
non-probabilistic).

These views can be contrasted with one in which grammar itself is seen as probabilistic and gra-
dient. Under such a view, grammaticality is not merely a matter of set membership (grammatical
vs. ungrammatical), but reflects a probability distribution over sequences of segments. Under this
view grammatical knowledge of probabilities is informed by (or even completely determined by)
statistics of the lexicon, but the grammar represents a learned abstraction that is independent from
the lexicon itself. A stochastic grammar can assess the probability of strings regardless of their
existence as actual words, and gradient acceptability judgments directly mirror gradient grammat-
icality intuitions (Coleman and Pierrehumbert 1997; Frisch, Large, and Pisoni|2000; Albright and
Hayes 2003; Hammond 2004; Hay and Baayen 2005; Hayes and Wilson pear).Of course, it is also
possible that gradient acceptability judgments rely on both a stochastic grammar and also lexical
comparison; (Bailey and Hahn 2001) explicitly claim that both kinds of knowledge are needed.

How do we distinguish among these possibilities? Simply demonstrating that there are gra-
dient effects clearly cannot settle the issue, since the disagreement is not about the existence of
such effects, but rather, about their proper interpretation. Unfortunately, in most cases, lexical
vs. grammatical accounts of gradient experimental results are not tested in parallel and weighed
against one another—and indeed, doing so can be difficult, given their high degree of intercorre-
lation. [Bailey and Hahn (2001) present side-by-side comparisons of both lexical and sequential
models on the same batch of gradient acceptability judgments, finding independent effects of each,
but with a rather greater contribution of lexical neighborhood effects. This result is ambiguous
from the point of view of motivating a probabilistic phonological grammar. On the one hand, the
authors did find a significant contribution of gradient knowledge of possible sound sequences, con-
trary to their initial hypothesis. On the other hand, the contribution was quite small, adding only
single-digit gains (6%—9%) to their overall model. The goal of the current study is to examine in
greater detail the evidence for probabilistic phonotactic knowledge, both to determine whether it
is truly necessary in explaining gradient phonological acceptability, and also to situate the finding
that it is relatively unimportant compared to knowledge of lexical neighborhoods. The form of the
study is directly inspired by Bailey and Hahn’s comparison, and is in fact partly a direct replication
of their Experiment 2. In sectidj 2, | will consider several computationally implemented models
of gradient acceptability, including similarity-based neighborhood models (capturing the role of
on-line lexical access) and sequence-based phonotactic models (reflecting the role of probabilistic
grammars). The performance of these models is tested in spftion 3 against two data sets: one from
Bailey and Hahn’s own study, and one collected by Albright and Hayes (2003). The two data sets
show strikingly different results: whereas item-by-item differences in the Bailey and Hahn data are
largely ambiguous (though slightly better explained as neighborhood effects), the differences in the
Albright and Hayes data diagnose a primarily phonotactic effect. In sedtion 4, | consider possible
reasons for this discrepancy, concluding that currently available data sets most likely underestimate
the importance of phonotactic knowledge in assessing gradient phonological well-formedness. Itis
argued that the role of probabilistic phonological knowledge cannot be dismissed, and that gradient
acceptability judgments are at their core grammaticality judgments.



Albright—Gradient phonological acceptability 4

2 Lexical vs. combinatorial models of gradience

Bailey and Hahn (2001) distinguish between two fundamentally different types of models of how
speakers judge the probability of novel words. The first isiaalogical modelwhich makes use

of solely lexical knowledge. Such a model is based on the undeniable premise that that speakers
have knowledge of existing words, and that hearing a novel word activates a set of real words in
the process of attempting to recognize the word. Intuitively, the greater the number of words that
are activated, and the greater their similarity to the novel word, the more lexical support the word
receives, and the higher its score. By contrastpanbinatorial modemakes use of knowledge

of combinatorial phonotactic possibilities of different sounds in the language. This is based on
the premise that speakers are able to decompose words into consituent parts (e.g., segments), and
assess the likelihood of combining those parts in that order. In this type of model, novel words
that consist of probable combinations of sounds receive correspondingly higher scores than those
consisting of improbable/“illegal” sequemﬁsr is not at all implausible to think that speakers

have both lexical and phonotactic knowledge, as is commonly assumed both by generative pho-
nologists (Chomsky and Halle 1968) and by psycholinguists (e.g., Vitevitch and Lucée 2005). It
is nonetheless useful to investigate the predictions of extreme “endpoint models” that make use
of lexical or phonotactic knowledge alone, since such models make maximally distinct predictions
about the factors that should influence gradient acceptability. In particular, if gradient acceptability
depends on consulting the lexicon, then we should effects of factors that are known to play a role
in lexical access, such as lexical (token) frequency, neighborhood density, and so on. If, on the
other hand, gradient acceptability is a result of a probabilistic grammar, we should expect to see a
role for factors that are known to play a role in grammatical descriptions, such as natural classes,
phonological markedness, the type frequency of a generalization, the number of exceptions it has,
and so on. The strategy of this study, therefore, is to contrast models that use either lexical or
sequential knowledge to predict the acceptability of novel sequences, and test to what extent their
ability to use different sources of information helps their performance in modeling experimentally
obtained ratings.

2.1 Lexical models of gradient acceptability

The most widely used technique for estimating the degree of lexical support for a novel item is
to calculate itSNEIGHBORHOOD DENSITY, defined as the number of words that differ from the
target word byn changes (substitutions, additions, or deletions) (Luce [1986). For example, the
nonce worddroff [draf] has neighbors such a®ugh prof, drop, dross anddoss(the exact set
depends, naturally, on the dialect of English). Neighborhood density calculated in this way has
been shown to predict a wide variety of effects, including lexical decision times (Luce and Pisoni
1998), phoneme identification (Newman, Sawusch, and Luce 1997), mishearings (Vitevitch 2002),
and acceptability of novel words (Greenberg and Jenkins|1964; Ohala and Ohala 1986). The

2A categorical model of grammar is a special case of combinatorial grammar, in which sequences are assigned
probabilities of 1 (grammatical) or O (ungrammatical).
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classic definition of neighbors is widely acknowledged to be only a crude estimate of similarity,
since it does not take into account segmental similarity (Frisch|1996; Hahn and Bailey 2005), the
perceptual difference between changing vs. removing a segment, or the relative perceptual salience
of segments in different positions within the word (Vitz and Winkler 1973; Cutler and Norris 1988).
As Bailey and Hahn (2001) point out, this is an issue especially for modeling behavior on non-
words, since even relatively ordinary non-words often have no single-modification neighbors—
e.g.,drusp[drasp], stolf [stalf], andzinth[zin6] have a neighborhood density of zero under the
traditional definition, putting them on a par with words ligb [[ceb] orbzarshk[bzark]. An
adequate model of lexical support must be able to take into account the fact that although words
like drusphave no immediate neighbors, they are nonetheless quite similar to a number of words
(trust, dusk rusk truss dust etc.). This requires a model that can count words more than one
change away, while at the same time paying attention to the severity of different substitutions.

In order to achieve this, Bailey and Hahn propose tE®&ERALIZED NEIGHBORHOODMODEL
(GNM), an adaptation of the BNERALIZED CONTEXT MODEL (GCM; Nosofsky 1986, 1990).
The GCM is a similarity-based classification model that categorizes novel exemplars based on their
aggregate similarity to sets of existing exemplars. Bailey and Hahn’s GNM is adaptation specifi-
cally designed to quantify lexical neighborhood effects. In the GNM, the set of existing exemplars
is defined as the lexicon of known words, and the degree of lexical support for a novel word is pro-
portional to a weighted sum of the perceptual similarities of the novel wiardach existing word
w. The formal definition, given irf {2), uses an exponential function to convert the transformational
distance betweenandw (d;,,) to an estimate of perceived psychological similarity.

(2) Definition of the GNM:
Support for itemi =) " weight, x e~%-/*), where
e weight, = a function of the token frequency of wovd

e d,., = psychological distance between nonce iteand existing wordv

e s = sensitivity, a parameter that controls the magnitude of the advantage that very
similar neighbors have in determining the outcome

e e~2.71828

The distancel; ,, between novel and existing words is calculated by finding their minimum
string edit distance (Kruskal 1983/1999, chap. 1; Jurafsky and Martin 2808), This involves
finding the optimal alignment between the segmentsofl those oiv, combining the best pairing
of phonetically similar segments and the fewest possible insertions and deletions. Phonetic sim-
ilarity between potentially corresponding segments is assessed with a metric based on shared vs.
unshared natural classes, follow|ng Frisch, Pierrehumbert, and Broe |(2004). The cost of insertions
and deletions is a free parameter of the model, whose optimal value must be found b fibing.

SUltimately, it would be desirable to weight similarity according to location of mismatches (syllable position,
word-initial vs. medial, etc.), and prosodic factors like stress. However, since all of the words modgBdrin
monosyllabic, reasonable results can be obtained even without a prosodically sensitive model.
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further details of the GNM, see Bailey and Hahn (2001); for other linguistic applications of the
GCM, see Johnson (1997), Nakisa, Plunkett, and Hahn (1997), Albright and Hayes (2003), and
Wilson (2006).

The concrete result of this model is that nonce words receive greater lexical support from
existing words with lesser phonetic dissimilarity. This is illustratedzfofzin] vs. snulp[snalp] in
(3)—(4); in each case, the five most similar analogs are shown, along with their predicted perceptual
dissimilarity (in arbitrary units).

(3) Lexical support fozzin [zin]: many similar words

Existing word Dissimilarity
zen [zen] 0.609
sin [sin] 0.613
din [din] 0.649
in [1n] 0.700

zing [zi] 0.720
(4) Lexical support forsnulp[snalp]: more distant, and drops off quickly

Existing word Dissimilarity
snub [snab] 1.260
sulk [salk] 1.271
slump  [slamp] 1.283
snuff [smaf]  1.367
null [Nal] 1.400

Finally, it is intuitively possible that in addition to phonetic similarity, lexical frequency may
also play a role in determining the relative contribution of existing words. In a canonical exem-
plar model, every token of an existing word would add its own support, giving greater weight to
high frequency words. However, it has been hypothesized that speakers may treat very high fre-
guency words as idiosyncratic or autonomous entities, with the result that mid-frequency words
may actually have the greatest say in determining the outcome for novel items (Bybee 1995). For
this reason, Bailey and Hahn implement the effect of frequeneyght, in (2)) as a quadratic
function of the log token frequency of womd which is able to capture both monotonic and non-
monotonic frequency effects—and indeed, they find that the optimal function is one which gives
medium frequency words the greatest say. As with the other parameters of the model, the exact
shape of the frequency effect must be determined post hoc by fitting.

The GNM is by no means the only model that attempts to assess the degree of overlap that an
incoming word has to the set of existing words—other popular models include Cohort (Marslen-
Wilson and Welsh 1978), TRACE (McLelland and Elman 1986) and Shortlist (Norris 1994).
Among these, the GNM is one of the most flexible in its ability to accommodate different the-
ories of phonetic similarity and lexical frequency. The large number of free parameters can be a
liability, in that a good deal of post hoc fitting is required; however, for present purposes it is also
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an asset, since it allows us to explore independently the contribution of various factors such as
token frequency, phonetic similarity, and so on.

2.2 Phonotactic models of gradience

In contrast to lexical/analogical models, which assess whole-word similarity to existing items,
phonotactic models evaluate local substrings of words. Every theory of phonological grammar
provides a mechanism for distinguishing grammatical from ungrammatical combinations of sounds
or classes of sounds, usually described in terms of phonological features. For example, both the
rule-based approach of tis®und Pattern of EnglisfChomsky and Halle 1968) and the constraint-
based approach of Optimality Theory (Prince and Smolensky 1993/2004) contain mechanisms for
targeting structural descriptions, stated in terms of matrices of phonological features. Grammars
may restrict co-occurrence of feature values within a single segment, as in the ban on simultaneous
frontness and roundness in English vowefs]((5a)), or they may restrict combinations in nearby
segments, as in the ban on the segnrefdllowed by tautosyllabic obstruents with a different
place of articulation [(5ofj.

(5) a. No front rounded vowels: f —back }

+round

o nas —son
b. Nasal place assimilation: a4 1o
+-coronal —coronal

A simple and widely used class of computational models for calculating the probability of
strings of adjacent elements ateGRAM MODELS (Jurafsky and Martin 2000, chap. 6), which
keep track of the probabilities of substringslements long. For example, a bigram model of
phonology would estimate the probability of a string of phoalesdby considering the probability
of each two phone substringd, ab, bc, cd, d#). Typically, the probability of a substringb is
defined as the conditional probability lofjivena (i.e., theTRANSITIONAL PROBABILITY P(b|a)).

(6) Bigram transitional probability:
Number of timesab occurs in the corpus
Total number of timeg appears before anything

Probability ofb givena =

Various strategies have been employed in the literature to combine local transitional probabil-
ities into an overall score for an entire woatbcd The approach most in keeping with the use
of n-gram models in syntax is to calculate the joint probability of all lazglegment sequences

4The proper characterization of locality has been a major focus of theoretical phonology. In this paper, | will
consider restrictions only among strictly adjacent elements; for an approach to discovering constraints on non-local
(long-distance) elements, see Albright and Hayes (2006).
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co-occurring in the same word ({7a)). In this model, a single unattested sequence within the word
has the consequence of driving the entire score to zero, not unlike the idea in Optimality Theory
that a single violation can prove fatal to a candidate. Coleman and Pierrehumbert (1997) note that
this prediction does not always seem to be true, and propose instead a metric that allows scores
from different parts of the word to trade off against one another. The simplest modification to an
n-gram model that has this property is to consideraterage transitional probabilityas in [7h).

In practice, most studies in the literature that have attempted to examine or control for bigram
probability have used average probabilities (Vitevitch, Luce, Charles-Luce, and Kemmerer 1997;
Vitevitch and Luce 1998; Bailey and Hahn 2001).

(7) Probability of a sequencabcd
a. Joint transitional probability
P@bcd = P(initial a) x P({|a) x P(c|b) x P(d|c) x P(ending afted)
b. Average transitional probability
P(@bcd = Average(P(initiak), P(b|a), P(c|b), Pd|c), P(ending afted))

An additional modification, proposed by Vitevitch and Luce (1998, 2004) is to calculate bi-
phone probabilities separately for each position in the word (initial, second position, third position,
etc.). This is related to, but implementationally quite distinct from, the idea that the probability
of sequences may be sensitive to prosodic position. More refined metrics taking into account
stress and syllable position have also provided significant improvement over simple frequency
scores|(Coleman and Pierrehumbert 1997; Treiman, Kessler, Knewasser, Tincoff, and Bowman
2000; Frisch, Large, and Pisoni 2000; Hay, Pierrehumbert, and Beckman 2004). What all of these
metrics have in common is that they impose structure on novel words, parsing the string into sub-
constituents and evaluating their likelihood of co-occurrence.

Biphone probabilities in one form or another have been shown to correlate with a wide variety
of phenomena, including phoneme identification (Pitt and McQueen 1998), repetition speed in
shadowing tasks (Vitevitch, Luce, Charles-Luce, and Kemmerer 1997; Vitevitch and Luce 1998;
Vitevitch and Luce 2005), response time in same/different tasks (Vitevitch and Luce 1999), looking
times in 9-month olds (Jusczyk, Luce, and Charles-Luce [1994), and most relevant for present
purposes, wordlikeness judgments (Vitevitch, Luce, Charles-Luce, and Kemmerér 1997; Bailey
and Hahn 2001).In theory, one might consider higher order models that take into account the
preceding two segments (trigram model) or more, but in practice, there is a trade-off between
adopting a finer-grained model and having sufficient data available about-sagment sequence.

For example, the novel wordresp[dresp] contains the sequencesp], which is unattested as a
syllable rhyme in Englis.More generally, for larger sequence lengths, the number of possible
grams grows exponentially, meaning a much larger corpus is needed to estimate their frequencies.
In the present case the corpus is the lexicon of attested words, which is of a limited size. Hence,

5The sequence$p] is attested across syllable boundaries, in wordsdésperatetrespassespionagecesspoql
despotanddesperado
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it is not possible to get more data about the goodnessspi] oy simply collecting more words.
Numerous techniques have been proposed to avoid underestimating the goodness of accidentally
unattested sequences, such as reserving some probability mass for unseen sequences (smoothing)
and combining information from shorter and longer values @fackoff); seé Jurafsky and Martin

(2000, chap. 6) for an overview. A strategy suggested by decades of work in phonological theory

is to reason about the well-formedness of underattested sequences based on natural classes—that
is, based on the occurrence of other, featurally similar sequences.

The insight of generalization based on natural classes is the following: although words ending
in [esp] are unattested in English, several minimally different sequences are in fact well attested,
such asisp] (crisp, wisp, lisp), [eesp] €lasp rasp, asp, [est] (best west resd), [esk] (desk and
so on. Taken together, these words strongly suggest that English allows sequences of lax vowels
followed by s and a voiceless stop,(t, kl—a conclusion that has been made explicitly in phono-
logical analyses of English (e.g., Hammond 1999, p. 115). In order to discover this, the learner
must be able to consider not just co-occurrences of segments as atomic units, but also of feature
combinations that define classes of segments.

One proposal for how speakers compare sequences to extract more general patterns of natural
classes is the MiIMAL GENERALIZATION approach (Albright and Hayes 2002, 2003). The idea
of this approach is that learners discover grammatical patterns by abstracting over pairs of strings,
extracting the features that they have in common. The procedure is minimal in the sense that
all shared feature values are retained; the algorithm thus conservatively avoids generalization to
unseen feature values. For example, comparisorspf nd [aesp] yields a generalization covering
all front lax vowels ((Ba)), while further comparison witbsk] extends the generalization to all
front lax vowel+ s + voiceless stop sequenced ((§5)).

(8) Minimal Generalization

a. I S p
+ & S p
—back
— —round S p
| —tense |
b. + € S k
—back —sonorant
— —round S [—contin. ‘
| —tense | —voice

5The precise inferences that are available depend intimately on the set of features that is assumed. For example, if
[coronal] is treated as a binary feature with boticpronal] and f-coronal] values, thep andk share a fcoronal]
specification and comparison of [aesp] ansk] would not extend t&/stsequences. In general, bivalent (equipollent)
feature definitions limit abstraction, by creating more “negatively specified” natural classes suetoasnjal] and
preventing generalization to unseen positive values. For present purposes | will assume privative place features (i.e.,
‘+’ values with no corresponding-’ value).
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In the example in[(8), the sequences under comparison differ rather minimally in their feature
values, and the resulting generalizations seem intuitively rather well-supported. Not all compar-
isons yield equally illuminating abstractions, however. Consider, for example, the comparison of
asp[eesp] andboa[boua] in (©). Here, the initial segments of both strings are voiced, but the re-
maining segments have little or nothing in common featurally. The resulting abstraction, therefore,
is simply one in which voiced segments can be followed by two additional segments.

(9) A minimal but sweeping generalization

® S p
+ b (0 T
— [+voi] seg seg

The pattern in[(Q) is well attested in English: voiced segments are very often followed by at
least two additional segments, and segments are frequently preceded by voiced segments two to
their left. Taken seriously, however, this pattern makes undesired predictions: it leads us to expect
thatany combination of three segments in which the first is voiced should be possible. This leads
to the potentially fatal prediction that the nonce womhrshijbzark] should be very acceptable,
since the sequences [bza],[Jaand [fk] get a good deal of support from attestedvjoi] seg sey
sequences.

The challenge, then, is to find a way to count over natural classes so that [sesgpdpddvide
very strong support foregp], while [aesp] and [lg provide little or no support for [bza] or [K].
Intuitively, the inductive leap fromi§p] and [aesp] togsp] is quite small; in fact, the comparison
makes §sp] seem practically inevitable. This is no doubt do at least in part to the fact that the
resulting abstraction, “fback;—round—tenselsp is extremely specific—all we need to specify in
order to get §sp] is the vowel height. In order to getgp] from ‘[+voice] seg sef on the other
hand, we must fill in very many feature values. The former abstraction specifically “speaks to”
[esp] in a way that the latter does not.

To see the same point from a different perspective, consider the situation of a learner who has
heard only the two data pointsp] and [eesp]. The “fback—round—tense]sp pattern describes
a very small set of possible sequences (namedyp]| [esp] and [eesp]). If we were to adopt the
hypothesis that such sequences are legal without making any further assumptions, we would expect
the probability of encountering any one of them at random to be 1/3. Thus, we expect that there is
a very high chance that we might encountes] as well. By contrast, if we adopt the hypothesis
that English allows any “voi] seg segsequence, then the chance of getting attestga pr [sesp]
at random from among all logically possibleyoi] seg segcombinations is tiny. Although both
patterns can describe the existing data, the more specific characterization makes it much less of
a coincidence thati$p] and [eesp] were the two words that we happened to actually receive in
the training data, and for the same reason, makes it much more likely#mtwould also be a
word of the language. The goal of the learner can be defined as finding the set of statements that
characterize the data as tightly as possible, under the assumption that words conform to certain
shapes because the grammar forces them to, and not out of sheer coincidence. This is related to the
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principle of MAXIMUM LIKELIHOOD ESTIMATION (MLE), which seeks to find the description

that makes the training data as likely as posﬂhteis also related to proposals within Optimality
Theory for seeking the most restrictive possible grammar (Prince and Tesar 2004; Hayes 2004;
Tessier 2006), as a way of obeying the subset prindiple (Berwick 1986).

In order to test the usefulness of this principle, a model was constructed that evaluates combi-
nations of natural classes based not only on their rate of attestation, but also on their specificity.
If the n-gram probability of a sequence of two literal segmeatiss defined as in (10a), then the
probability of the segmentsb as members of natural clasgeB respectively can be defined as in

(Z08).

Number of timesab occurs in corpus
Total number of two-item sequences

(10) a. Probability of the sequenadh =

b. Probabilitff of the sequencab, wherea € classA, b € classB

Number of timesAB occurs in corpus . ,
x . P x P(choosing from A) x P(choosing from
Total number of two-item sequences

B)

As mentioned above, one intuitive way to define the probability of selecting a particular mem-
ber of a natural class is to assume that each member of the class is equally probable, so that the
probability of choosing any member at random is inversely proportional to the size of the class
((I7a)). A slightly more sophisticated model would take into account the fact that different seg-
ments independently have different frequencies, and to weight the probabilities of choosing mem-
bers of a natural class accordingly ((11b)). For the simulations reported below | assume the simpler
definition, which is not sensitive to token frequency.

(11) Two definitions of instantiation costs
1

Size ofA (i.e., number of members)

a. Simple: P(membea|classA) =

Token frequency o&
> Token frequency of all members Af

b. Weighted: P(membaea|classA) =

’For an MLE-based approach tegram models that refer to classes of items, see Saul and Pereira| (1997). Un-
fortunately,n-gram models based on classes of elements in syntax tend to assume that each item belongs to ideally
one, or exceptionally a few classe&r€€ is a verb, of is a preposition, etc.). For phonological applications, we
need to consider each segment as a member of many classes simultaneously, and even a single instance of a segment
may be best characterized in different terms with respect to what occurs before it vs. after it. Ultimately, we seek a
learning algorithm that incorporates the principle of MLE, without the assumptions about class structure that existing
class-based-gram models typically make.

8Since natural classes in phonology are characteristically overlapping and each segment belongs to many natural
classes, the equation n (10a) will not yield values that sum to 1 over all segments and natural classes; a normalization
term would be needed to convert these scores to true probabilities.
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Since each segment belongs to multiple natural classgss @ vowel, a front vowel, a front
lax vowel, a sonorant, a voiced segment, etc.), there are many ways to parse a string of seg-
ments into sequences of natural classes. For example, as noted abpyeplld be considered
a member of the trigram “fback,—round—tense]sg, or of the trigram ‘Hvoi] seg seg The
probability of the sequencegp] as a member of the trigram-pack—round;—tenselspg depends
not only on the probability of ‘fback;—round,—tense]spg combinations, but also on the prob-
ability of instantiating the +back, —round, —tense] class as ar][ Although the frequency of
‘[ —back—round;—tensejsp sequences is not especially high in English, the probability of instan-
tiating [-back—round—tense] asq] is quite high & 1/3, given the simple definition i (lL1a)),
yielding a relatively high overall predicted probability. The probability 5] as an instantiation
of the trigram ‘H-voice] seg se on the other hand, relies not only on the frequency ef/pice]
seg segcombinations (which is relatively high) but also on the probability €}fds a voiced seg-
ment & 1/35), as well as andp among the entire set of possible segmentsl(44 each). This
yields an instantiation cost af 1.48 x 10~°, and a correspondingly low predicted probability.
It seems reasonable to assume that among the many possible ways of parsing a given sequence
into natural classes, the one with the highest probability is selected (for a similar assumption, see
Coleman and Pierrehumbert 1997 and Albright and Hayes|2002).

To summarize, | have sketched here a method of evaluating sequences of natural classes in
order to determine which combinations of feature values are supported by the training data. The
model takes into account not only the frequency of the combinations, but also their specificity,
combined according to the definition jn (J0b). Taken together, the need to maximize-pigim
probabilities and minimize instantiation costs should drive the model to seek characterizations that
involve frequent combinations of features while remaining as specific as possible. The result is a
stochastic grammar that permits novel sequences to be assigned likelihood scores, by attempting
to parse them into well-supported combinations of natural classes.

3 Testing the models

In order to evaluate the usefulness different types of models, it is useful to be able to compare
their performance side-by-side on the same set of data. In this section, | present the results of
simulations using both lexical and phonotactic models to predict native speaker ratings of novel
English words, from two previous nonce word studies: Bailey and Hahn (2001) and Albright and
Hayes (2003). This comparison is in part a replication of Bailey and Hahn’s study, since it includes
some of the same models tested on the same data set. The purpose of this replication is to allow a
direct comparison with data from other studies, and to compare models that Bailey and Hahn did
not consider (in particular, the model based on natural classes, presented in the preceding section).

In all, six models of gradient well-formedness were compared. The first two were lexical mod-
els: one that assigned scores based on the traditional definition of neighborhood density (“differ by
one change”), and the refined model proposed by Bailey and Hahn, the Generalized Neighborhood
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Model (GNM). In addition, four phonotactic models were considered: joint bigram and trigram
transitional probability Kl7) abov@position-dependent bigram probability (Vitevitch and Luce
2004}9, and the model that generalizes based on natural classes, sketched above.

Except for the Vitevitch and Luce model, which uses its own smaller dictionary of training
forms, all of the models were trained on an input file containing all of the unique word forms with
non-zero frequency in the CELEX corpus (Baayen, Piepenbrock, and van Rijn 1993), in phone-
mic transcriptiot] Since CELEX contains many “duplicate” entries (the same word broken up
into two separate entries), these were re-combined into a single type and their token frequencies
were summed. Parallel simulations were also carried out with training sets consisting of just lem-
mas or just monosyllables, but these tended to yield slightly worse results, and are not reported
here. Finally, since CELEX uses British transcriptions, it is possible that for purposes of modeling
American speakers the training set may lead to inaccurate predictions for certain novel words. As
we will see below, this does not appear to be a significant issue for this particular data set (data set
2 below).

3.1 Data set 1: Bailey and Hahn (2001)

The first data set modeled comes from Bailey and Hahn’s (2001) study of wordlikeness judg-
mentsﬁ It consists of 259 monosyllabic non-words of generally moderate acceptability; examples
includedrolf [drolf], smisp[smisp], pruntch[prantf], stulf [stalf], zinth[zin6], andglemp[glemp].

The words were designed to not contain any overt phonotactic violations, though a number of
items did contain sequences of dubious legality in English, sucfttdggweshigwe|t]) or SNVN
(smimp[smimp]). In the task modeled here, words were presented auditorily in a carrier sentence
(“Zinth. How typical sounding iginth?”), and participants rated non-words on a scale from 1 (low)

to 9 (high). Ratings were rescaled and submitted to an arcsine transformation.

The results are shown in Figurgg1-2. We see that none of the models do especially well,
although on the whole the lexical models achieve numerically better correlations (Pe&son’s
Comparing the scatter plots in Figdife 1 with those in Figlre 2, however, we see that the numerical
success of the lexical models may be artificially inflated somewhat by a sparse group of outliers in
the upper right.

On the whole, it is difficult to conclude much from the graphical or numerical comparisons
here, though two points are worth noting. First, this result echoes Bailey and Hahn’s own finding

9Bailey and Hahn usaverage rgram transitional probabilities. These were also considered, but yielded uniformly
worse results, and are not reported here.

OcCalculated via web interface: http://www.people.ku.esyitevit/PhonoProbHome.htm

1CELEX also contains some word forms with frequency of 0. These were excluded, as they constitute a mean-
ingless and very likelynot random sample from among the vast set of actual and potential English word forms that
do not occur in the British National Corpus. Bailey and Hahn’s simulations excluded polysyllabic word forms, for
computational reasons; the simulations reported here include polysyllabic forms.

12Mmany thanks to Todd Bailey for making this data available for modeling purposes.


http://www.people.ku.edu/~mvitevit/PhonoProbHome.html
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that no single model captures their data to any great extent. This result is perhaps not terribly
surprising, given that all of the models under consideration are admittedly quite crude and in-
volve many simplifying assumptions. However, there are also reasons to wonder whether Bailey
and Hahn’s experimental set-up might have introduced additional sources of variability. Their ex-
periment was relatively long and for the most part involved words of intermediate acceptability,
with few or no nonce items falling at the endpoints of the scale (canonical word types or items
with overt phonotactic violations). It seems possible, therefore, that subjects in their experiment
may have had difficulty anchoring their responses to numerical points on the scale in a consistent
way, and may have been guided at least partly by local differences between immediately adjacent
itemslﬁ Furthermore, subjects were not asked to repeat or write down what word they had per-
ceived, leaving no way to exclude ratings of the “wrong” (i.e., misperceived) item. Misperceptions
could distort the data particularly for words containing non-strident fricatives (e.qg., [f]6d)3e [

and indeed, examination of the modeling results for the natural class based model shows that for
several §]-initial words, the model predicts low scores while subjects gave intermediate or high
average ratings (e.gthrusp[0rasp], threlm[6relm], thrupt [6rapt]). Of course, this may simply

be a failing of the model. However, we would be more confident in this conclusion if we knew
for certain that subjects had in fact been ratifjgifitial verbs as intended, and not misperceived
[f]-initial versions.

The second thing to note concerns the relative performance of lexical vs. phonotactic models.
As Bailey and Hahn also observe, the Generalized Neighborhood model provides the greatest
predictive power R* = 20%), followed by biphone transitional probabilitieR®(= 16%E The
predictions of the two types of models also overlap to a large exteat £31), meaning that
once one has been added to the overall model, very little remains for the other to explain (roughly
3% to 6%@ Although these results show significant independent contributions of both types of
knowledge, it is difficult to reason about their relative importance. Bailey and Hahn argue that
the contribution of phonotactic knowledge is quite small, based on the fact that neighborhood
similarity is the overall greater effect, and once it is taken into account, phonotactic knowledge
explains only a small amount of the remaining variance. There is no a priori reason to interpret
the results in this way, however. If we accept the conclusion that both types of knowledge are at
play in shaping acceptability judgments and do not impose the requirement that the variance must
be explained exclusively by one or the other, then we could argue that neighborhood effects and
phonotactic effects are of roughly equal importance (20% vs. 16%, respectively).

Comparing Figures|1 anjd 2, one also observes a striking difference in the distribution of pre-
dicted values. Whereas the phonotactic models in Figure 2 tend to assign scores along a wide
range of predicted values (X-axis), the neighborhood models show a significant clustering at the

13Bailey and Hahn used four different presentation orders, and report a relatively high effect size across subjects of
w? = .21. This value does indeed show that subjects found consistent differences between different non-words, but
does not help us distinguish how much of that variance was due to lexical/phonotactic differences, and how much was
due to confounding factors.

“These values are similar, though not identical to the 22% and 15% that Bailey and Hahn find in their own
calculations.

15Bailey and Hahn report results from a variety of different combinations of factors. Rather than repeating their full
analysis, | focus here on simpler analyses that incorporate only the single best lexical and phonotactic models.
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floor of the scale. For reasons discussed by Bailey and Hahn and taken up in more detail below,
such skewed distributions pose a challenge for comparing performance across different sets of
data. Although the nonwords for this study were designed with care to evoke a normal distribu-
tion of subject ratings, not all models make normally distributed predictions. This makes it rather
difficult to compare the absolute magnitude of the contribution of different factors using multiple
regression.

In sum, the results of this section, while largely replicating those of Bailey and Hahn (2001)
in finding significant effects of both lexical and phonotactic knowledge, also raise questions about
how to assess the relative importance of these effects. The phonotactic models considered here
do not do better than those considered by Bailey and Hahn, though the best one (joint biphone
transitional probability) does approximately as well as what they report for average biphone tran-
sitional probability. The more sophisticated model that parses strings into natural classes does not
do better on this data than a model that phonemes as atomic units, though it does do better than the
positional biphone probability metric commonly used in the literature. For reasons just discussed,
it is somewhat difficult to interpret the relative performance of the models on this data, and we
are also left with the larger question of why ratings in this task were so variable. In the next sec-
tion, we will see a data set that does not contain so much uninterpretable variance, and therefore
may provide a better testing ground for the relative contribution of different types of knowledge in
shaping gradient phonological acceptability judgments.

3.2 Data set 2: Albright and Hayes (2003)

The second data set consists of acceptability ratings for a set of 92 non-words collected by Al-
bright and Hayes (2003), in a pre-test for a past tense study. Compared to the Bailey and Hahn test
items, the Albright and Hayes words cover a relatively broader range of phonotactic plausibility:
62 of them were estimated ahead of time to be relatively acceptable (containing moderately or very
frequent onsets and rhymes—elgp [kip], stire [starr], pank[paak], fleep[fli:p], blafe [blerf]),

while the remaining 30 items were degraded to varying extents by containing unusual or phono-
tactically marginal sequences (e.g., [me] (*pw), [0101ks] (*[01K]), [Jwugz] (* fw), [skik], [snam]
(*sC;VC,, *sNVN)). A few of the 30 less noncanonical items contained completely unattested
rhymes (e.g.smairg[smerg], smeeltk[smi:le] One very un-English itenbgarshi{bzark]) was

used during training as an example of a word that most English speakers felt could not be a possible
word.

In the Albright and Hayes (2003) study, words were presented auditorily in random order in
a carrier sentence Blafe | like to blafe”) Participants repeated the word aloud, and rated it
on a scale from 1 (“impossible as an English word”) to 7 (*“would make a fine English word”).
Repetitions were transcribed by two phonetically trained listeners, and if at least one transcriber
felt that the subject had repeated the word incorrectly, the rating for that trial was excluded from

16These nonwords may be familiar to readers as “distant pseudo-regular” items from Prasada and Pinker’s (1993)
study of English past tenses.
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the analysis. In light of the discussion above regarding potentially noisy data, it is worth noting
that participants in this study showed a relatively high degree of between-subject agreement; the
correlation between participants 1-10 vs. 11-19 was864. Thew? value was 0.45, indicating
substantial word-by-word differences relative to noise.

The results are shown in Figuigg B—4. Both of the lexical models in Higure 3 perform better on
this data than on the previous data set. In both cases, the ratings rise quickly with small amounts
of lexical support and then level off with additional support. This suggests that there could be
a ceiling effect on subjects’ ratings (the fixed 1 to 7 scale preventing higher ratings for better
items), or alternatively, that the relation between lexical support and wordlikeness ratings is non-
linear. As a result, we must treat the quantitative linear fitalJue) with caution, since it may be
artificially lowered by this leveling off effect at the top of the sc@enterestingly, the traditional
simplistic definition of neighborhood density outperforms the refined Generalized Neighborhood
Model, though the difference is not enormous and may simply reflect the non-linear nature of the
effect. More important, both lexical models perform quite poorly at the low end of the scale, failing
to distinguish among a the set of unusual words and assigning them all scores at or near zero. The
experimental subjects, on the other hand, showed distinct preferences for some of these words over
others, as can be seen in the vertical range of ratings for the batch of words at the left of the charts
(average ratings ranging from 1.5 to 3.5). This appears to reflect a fundamental inability of lexical
models to distinguish adequately between unusual vs. phonotactically ill-formed words—a point
that will be discussed in greater detail in secfipn 4 below.

Turning to the phonotactic models in Figlife 4, we see that the Vitevitch and Luce|(2004) model,
which sums over biphone frequencies rather than multiplying to calculate a joint probability, does
rather poorly (Figurgj4c). Joint biphone transitional probabilities, on the other hand, provide a good
fit to subject ratingsr(89) = .775), as does the model based on natural classes ([Figurés9y:
= .763). Both of these models succeed in capturing more than half of the variance in subjects’
ratings R® > .5). Furthermore, their performance is reasonably consistent across the entire range,
requiring no appeals to ceiling or floor effects in the data.

In order to test for independent lexical vs. phonotactic effects, a multiple regression was per-
formed. Since the joint biphone transitional probabilities were the best predictor from individual
regressions, they were entered firsRat= 60%. GNM similarity scores contributed an additional
R? of 3.4%, which was not a significant gaiR(@,89) = 3.14,p = .08)@ As discussed above,
there is no a priori reason to believe that lexical or phonotactic knowledge has “prior” explanatory
status, so it is worth considering whether the same result could be obtained with neighborhood
similarity alone. When the model was run in the opposite direction, we start with GNM similarity
(R* = 33%), but in this case biphone transitional probabilities are still able to contribute signifi-
cant explanatory valueRf = 28%,F(1,89)= 35.38). Thus, we find that neighborhood similarity

171t would not be difficult to get a better estimate of the fit to the data by adopting non-linear models. This option
was not explored because both models suffer from a more serious problem at the low end of the scale, discussed
immediately below, which could not be remedied with non-linear regression.

8An almost identical result was obtained when traditional neighborhood density counts were entered instead of
GNM similarity values.
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is dispensable as a source of explanation for this set of ratings, but phonotactic knowledge is not.
This result is almost the opposite of Bailey and Hahn's result, in which neighborhood models were
the most predictive and phonotactic models contributed a smaller, but significant predictive power.

To summarize: unlike the previous section, where lexical models showed slightly better perfor-
mance, for the Albright and Hayes (2003) data phonotactic models come out significantly ahead
and no significant neighborhood effects could be observed. A traditional bigram model performed
approximately as well as the model that that generalizes by parsing novel strings into combinations
of natural classes, though reasons to believe that this would not generally hold true over larger sets
of words are discussed below. In the next section, | will consider some possible reasons for the
difference between the results for this data as opposed to Bailey and Hahn’s data, as well as some
additional considerations that favor a phonotactic model based on natural classes as an account of
gradient acceptability judgments.

4 Discussion

In the preceding section we saw a puzzling discrepancy: for ratings collected by Bailey and Hahn
(2001), lexical models outperformed phonotactic models, though but no model did particularly
well. For ratings collected in the Albright and Hayes (2003) study, on the other hand, a phonotactic
model that makes reference to the likelihood of various combinations of natural classes is superior.
There are several questions to be addressed: why is there an overall difference in performance
between the two data sets, and why does there appear to be a qualitative difference between the
two studies in whether lexical or phonotactic models work best? What do these results tell us
about the mechanisms that give rise to gradient acceptability intuitions? And what kinds of data
are needed to go beyond the limitations of these existing data sets?

4.1 Overall variability

The first issue concerns the overall difference in how amenable the two data sets are to modeling.
Bailey and Hahn, in discussing the relatively large proportion of the variance in their data that
cannot be accounted for by any model under consideration, hypothesize that the difference between
their data and other existing studies may be due primarily to the fact that their stimuli were selected
to embody a random distribution of acceptability values. They observe that other studies, such as
Frisch, Large, and Pisoni (2000), tend to select words that fall at extreme endpoints of the range
(canonical or ill-formed), or fall along a flat distribution. They correctly point out that sampling
along a flat or dichotomous distribution inflatB$ values, making it impossible to compare the
overall level of fit in different studies. This is certainly an issue in the present case, as well.
Whereas the ratings in Bailey and Hahn’s study obey a normal distribution, the Albright and Hayes
items have a heavy-tailed (closer to flat) distribution. This can be seen in the normal probability
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plots in Figuré b, which show that the Bailey and Hahn ratings fall closer to the center line (normal
distribution). As a result, we must be cautious in attributing any particular significance to the
guantitative differences in model fits across the two studies.
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Figure 5. Normal probability plots for ratings across the two studies

Nonetheless, if we visually compare the performance of a single model across the two studies,
for example the natural class based model (Figlire 2 vs. Figure 4d), it does not appear to be the
case that the improved performance on the Albright and Hayes data is due solely to the fact that
center of the range is undersampled. Words that are predicted to fall into the intermediate range
are, for the most part, given intermediate ratings—unlike Figlire 2, in which the center of the
plot shows ratings along the entire vertical dimension. As mentioned above, one factor that may
have made Bailey and Hahn's data more variable is the fact that most of their non-words were of
intermediate acceptability, ranging frogaveft[gweft] on the low end tocrendgelkrends] on the
high end. This may have had the effect of making the task more difficult to perform, and could
have yielded greater overall variability in the responses. Some support for this comes from the fact
that word-by-word differences yielded a much larger effect size between subjects in the Albright
and Hayes data.f = .46) than what Bailey and Hahn repow? = .21). In addition, the fact
that low-probability sequences may be repaired perceptually may have systematically increased
the ratings for non-words with easily confused segments (e.g., [f]@hd{[is difficult to assess
the magnitude of such effects, but they provide plausible, if speculative, reasons why data from
the Bailey and Hahn study may be overall more resistant to interpretation with a single simple
model of wordlikeness or phonotactic probability. The Albright and Hayes data included clearly
acceptable and unacceptable non-word endpoints, and eliminated (as much as possible) responses
to misheard items. These features of the experimental design may have contributed to a data set
that more clearly shows the unconfounded effect of wordlikeness/phonotactic probability.
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4.2 Relative importance of lexical vs. phonotactic knowldge

A more important issue concerns the difference between what appears to be a primarily lexical
effect in the Bailey and Hahn data, vs. a primarily phonotactic effect in the Albright and Hayes
data. | Shademan (2006) argues that this is a task-dependent difference, caused by the fact that
Bailey and Hahn included real word fillers among their test items. Shademan hypothesizes that the
inclusion of real words engages a mode of processing that involves the lexicon to a greater extent
than one would find in a task involving exclusively non-words. In support of this idea, Shademan
provides experimental data showing that the relative influence of lexical neighbors can indeed be
modulated by whether or not real word items are included in the task. If this is right, then the
Albright and Hayes data (which did not include real word fi@swould be a more revealing

test of whether a probabilistic phonotactic grammar is needed to explain gradient acceptability
judgments. It should be noted, however, that when we compare the predictive power of lexical
models across the two studies (Fighte 1 vs. Figlire 3), we do not actually see a decrease when
no real words are involved—in fact, quite the opposite. Instead, the comparison reveals that the
models show a similar failing in all cases: failure to adequately differentiate among low-probability
items, resulting in a clustering of predicted values at the low end of the range (left of the plots).

The inability of lexical models to discriminate between somewhat unusual and completely
phonotactically illegal words reveals a deeper reason why they may be fundamentally ill-suited
to the task of modeling gradient acceptability. The attempt to distinguish between possible and
completely impossible sequences is at the heart of traditional phonological analysis. If an exemplar
model did very well at explaining whyank[paak] sounds better thashres [resp], but could not
explain whydlap [dlaep] ormrut [mru:t] are worse than either of them, it would hardly constitute
a general-purpose explanation for gradient acceptability. This is significant, because similarity-
based models are not designed for capturing intuitions about unattested sequences. In fact, novel
words may contain phonotactic violations and yet be very similar to a number of existing words.
For example, the non-wordiew [fru:] andsrew[sru] both have very many neighboisréw, crew,
drew, grew, roux, screw shrew etc.), and indeed, the GNM assigns them very similar scomas:
= 1.96,srew= 1.68 (in arbitrary units). This means traewis predicted to be in the same range
as other moderately well-supported words, sucluas[lam] (1.59), wiss[wis] (1.59), andark
[tark] (1.68), all of which received ratings greater than 5 out of 7 in the Albright and Hayes study.
This ignores that fact tharewcontains the phonotactically illegal sequencsrs#ound only in
very careful/educated pronunciations ®fi Lanka Although neither of the data sets analyzed
provides empirical evidence about the goodness iriBaln particular, | suspect that puttirsgew
on a par with words likdum andwiss highly overestimates its goodness. More generally, the
Albright and Hayes non-words did include some items with at least mild phonotactic violations
(twoo [twu:], pwuds[pwadz], smum[smam]), and the fact that the lexical models falter on items
from the low end in this study appears to reflect the fact that they are simply unable to encode
phonotactic violations (*flabial]w, *Cw+round vowel, etc.).

1%The Albright and Hayes items did include two items that exist as words, but not as skeeafi:] andfrow [frou].
In addition, the wordip [k1p] exists as a noun in some dialects, but not the California dialect spoken by Albright and
Hayes’ subjects. It is not clear whether Shademan’s account predicts that the inclusion of just one or two real words
should force a task-wide shift towards lexical involvement, or whether it is a matter of degree.
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A more concrete demonstration of this can be obtained by focusing on the set of items for which
the GNM predicts values that are too high. These were found by fitting the GNM predictions to the
subjects’ ratings from Albright and Hayes (2003), and calculating the residuals—i.e., the amount
by which the model was off in its predictions. The non-words with the greatest positive residuals,
or those which the GNM most serious overestimated, are shoynl]in (12).

(12) Non-words for which the GNM most seriously overestimates goodness

throiks[0101ks], shwougd fwusg], rin’t [raint], frilg [frilg], krilg [krilg], smairg[smeig],
trilb [trilb], smeelth[smi:l6], smairf [smeif], thweeks[bwiks], ploamph[plosmf],
dwoge [dwouds], ploanth [plounf], dize [daiz], thaped[bept], smeenth[sminb],
sprarf [spraif], bize[baiz], pwuds[pwadz], bzarshi{bzai[k]

The majority of these contain some sort of phonotactic violation, which the GNM is in principle
unable to attend to. Moreover, these errors are only the tip of the iceberg. Neither Bailey and
Hahn nor Albright and Hayes included significant numbers of words with illegal sequences, so
data from these studies allow us to prove only a tiny piece of the overall picture of how well the
models account for gradient acceptability. It seems nearly certain that if more illegal sequences had
been included, embodying a broader range of more serious phonotactic violations, this inability of
neighborhood models to systematically penalize impossible sequences would cause them to suffer.
The fact that lexical models do not perform as well as phonotactic models on the Albright and
Hayes data may simply be a result of the fact that more mild violations were contained in this set
of items, providing a more comprehensive test of the model.

The conclusion, then, is that lexical neighborhood effects are insufficient to explain the gradient
differences in acceptability that subjects express in rating non-words. A probabilistic grammar of
co-occurrence restrictions is also needed, and indeed, may play the major role in explaining speaker
intuitions of wordlikeness. This directly contradicts the conclusion that Bailey and Hahn draw from
their own data, but we have seen that this may be a result of focusing on just one portion of the
task (differentiating among mostly attested sequences), testing too simple a model of phonotactics
(average bigram/trigram transitional probabilities), and perhaps also the inclusion of real words
among non-words in the task.

It is also instructive to examine the non-words which the GNM most seriously underestimated,
listed in (13). For the most part, these are words that contain legal sequences, but happen to be a
bit isolated in the lexicon. Just as speakers are evidently able to focus on phonotactic violations
in spite of similarity to existing words in the case of words with illegal sequences, it appears that
speakers are also not overly bothered by a lack of many similar existing words in the case of legal
sequences.
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(13) Non-words for which the GNM most seriously underestimates goodness

slame[sleim], stire [stau], pank[pagk], snell[srel], rask [raesk],trisk [trisk], stip
[stip], plake[pletk], mip [m1p], wiss[wis], grin’t [grant], skell[skel], spack[spaek],
stin [stin], shilk [f1lk], squill [skwil], gare[ge1], preek[pri:k], glit [glit], murn[mrn]

If this is right, it constitutes additional evidence in favor of a probabilistic grammar distinct
from the lexicon, since similarity-based neighborhood models are apparently not sufficient to dis-
tinguish even among attested sequences. This batch of words should be uniformly grammatical un-
der a categorical account of English phonology, yet the best account of gradient differences among
them is stated not in terms of neighborhood size, but rather, in terms of sequences of phonologi-
cal entities. In order to maintain the view that “grammar is categorical, performance is gradient”,
we would thus need to admit three kinds of knowledge: (1) categorical grammar, (2) stochastic
phonotactics, stated using the same representational language but with probabilities attached, and
(3) lexical knowledge. The simpler theory is one in which (1) and (2) are combined into a single
probabilistic grammar that directly regulates the gradient acceptability of sequences. As stated at
the outset, this conclusion is by no means a new one—»but it is rarely argued for by showing that a
purely lexical similarity-bsaed account of the same data fails.

4.3 Are biphones enough?

A notable feature of the results in section 3 is that a model based on counts of phonemes as
atomistic units (', ' a8, etc.) always outperforms the more sophisticated natural class model
proposed in section 4.2. One might be tempted to consider this a negative result: phonological
abstractions like features and natural classes, at least in the way they are used here, are useless in
modeling phonological acceptability. There is reason to believe that this conclusion is premature,
however. Comparing the results of the biphone and triphone models in Figure 4, we see that the
triphone model incorrectly predicts values at the floor for very many test items. The reason, as
discussed in sectign 2.2, is that the number of possible trigrams is enormous and many logically
possible triphones are, for accidental or for principled reasons, unattested among existing English
words. The triphone model is unable to distinguish between accidental gaps (suel]asing

what would traditionally be termed ungrammatical sequences (such as [bza]). Even within the class
of accidentally unattested sequences, subjects are able to discrimate between relatively better ones
(e.g., [g:z]) and worse ones (e.g.,4n]). The problem of distinguishing among equally unattested
items becomes even more pressing if we turn to ‘'somewhat’ vs. ‘very’ ungrammatical sequences:
[bza] vs. [mgl]. Since the data sets analyzed here contained few rare or unattested bigrams, the
bigram model actually does quite well on these tasks. This should not be taken as victory for such
models, however; one would need only to test for differences between unattested [bw], [dl], [bn],
and [bd] to find cases that the model is unable to distinguish. Moreton (2002) shows that speakers
do in fact show a preference for [bw] over [dl], in spite of the fact that they are equally una@sted.

20At least for some speakers of English; loan words bkeanaor buenohave introduced [#bw] sequences, though
loans likeTlingit have also introduced [#dl]-like sequences.
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It is likely that an ability to refer to natural classes is crucial in modeling the way that speakers
generalize to previously unseen biphones.

4.4 Token frequency

There is one last respect in which ratings from these two studies appear to bear the hallmarks of
a grammatical, rather than lexical effect. none of the models explored here derived any advantage
from their ability to weight the contribution of individual data according to their token frequency.
This is seen in several ways: the GNM and simpler neighborhood density models performed best
when their frequency weighting was turned off; the natural class-based model did best when in-
stantiation costs were calculated without reference to the relative frequency of different segments;
and the Vitevitch and Luce model, which intrinsically takes token frequency into account, did not
come out ahead by virtue of having this ability. This finding contradicts that of Bailey and Hahn
(2001), who found a significant contribution for frequency weighting. The effect they found was
very small, however (a 1% gain in performance for this data set), and | have been unable to repli-
cate it. In fact, in most cases, taking token frequency into account makes very little difference in
the predictions of the models. The reason is that most words in the lexicon are very low frequency,
so a boost for high token frequency words gives more influence to just a small set of items. When
it does make a difference, though, it tends to be a deleterious one. This confirms a number of
previous claims in the literature that pattern strength is determined by type, not token frequency
(Bybee 1995; Albright 2002b; Albright and Hayes 2003; Hay, Pierrehumbert, and Beckmé&n 2004).

| take this finding to be at odds with the idea that gradient acceptability arises as a by-product of
consulting the lexicon, since lexical access is known to be highly sensitive to frequency, and yet
gradient acceptability appears to be completely impervious to it.

5 Conclusion

Based on analysis of currently available data, it appears that gradient phonotactic acceptability
bears the markings of a grammatical effect: it requires reference to statements about combinations
of sequences stated in terms of features and natural classes, often held to be the representational
language of grammars. At the same time, it is insensitive to token frequency, which is widely
observed to influence performance. It must be acknowledged, however, that for reasons discussed
above, the current data is inadequate to provide a complete test of the models under comparison.
Most important, the data sets do not contain sufficient information to calibrate the full range of
acceptability, including canonical and illegal sequences. Furthermore, neither study included items
designed to test specifically for the contribution of token frequency effects, so the conclusions here
must be based tentatively @ost hoccomparisons. Finally, the items in these studies involve a
rather limited rather of word shapes, preventing us from testing the broader range of structures
thought to play a role in phonological grammars. The analyses carried out here highlight some of



Albright—Gradient phonological acceptability 27

the ways in which it is important to expand the range of non-words, and control the experimental
conditions under which acceptability judgments are elicited. Experimental studies carrying out
these goals, and comparing gradient acceptability judgments to other forms of linguistic behavior,
are left for future research.

6 Appendix: list of nonce words from Albright & Hayes (2003)

Word Rating| Word Rating| Word Rating| Word Rating| Word Rating| Word Rating

Jix 6.00 | speek  5.16 | Iam 4.79 | skrad 4.11 | nay 3.28 | Owiks 2.53
frou 5.94 | gex 5.11 | pam 4.79 | kv 4.05 | skwalk  3.26 | smilo 2.47
kip 5.84 | [mn 5.11 | sphy 4,72 | skik 4.00 | twu 3.17 | smerf 2.47
WIS 5.84 | taik 5.11 | gzl 4.63 | flet 4.00 | smam 3.05 | plosmf 2.42
slem 5.84 | dep 511 | tef 4.63 | nouvld 4.00 | sroiks 3.00 dWOUch 2.29

pint 5.67 | skel 5.11 | tip 4.63 brsd% 3.95 | sfund 2.94 | plousnd 2.26
pagk 5.63 | gt 5.11 | baz 4.58 | kwid 3.95 | pwip 2.89 | Oerpt 2.26

rarf 553 |tfak  5.05 |ghp  4.53 | skl 3.89 | rant 2.89 | smind  2.06
stp 5.53 | gliid 5.05 | plim 4.37 | dras 3.84 | sklund 2.83 | spuaf 2.05
mip 5.47 | pii:k 5.00 ﬁamd 4.37 fII(Tg 3.79 | smiig 2.79 | pwadz 1.74
mm 542 | grant 5.00 | gud 4.32 | bhg 3.53 | Broiks 2.68 | bzarfk 1.50
plek  5.39 | [ilk 4.89 | blerdf 4.21 | zeps 3.47 | fulg 2.68
Srel 5.32 | daz 4.84 | gez 421 ﬁu:l 3.42 | [wusg 2.68
stin 5.28 | tagk 484 | za 4.16 | [ant 3.42 | tulb 2.63

trisk 5.21 | nas 4.84 | dnt 4.16 gwmd% 3.32 | smerg 2.58
1esk 5.21 | skwl  4.83 | fli:p 4.16 | Jivks 3.32 | kulg 2.58
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