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ABSTRACT

In this paper, we introduce R-NET, an end-to-end neural networks model for
reading comprehension style question answering, which aims to answer ques-
tions from a given passage. We first match the question and passage with gated
attention-based recurrent networks to obtain the question-aware passage repre-
sentation. Then we propose a self-matching attention mechanism to refine the
representation by matching the passage against itself, which effectively encodes
information from the whole passage. We finally employ the pointer networks to
locate the positions of answers from the passages. We conduct extensive experi-
ments on the SQuAD and MS-MARCO datasets, and our model achieves the best
results on both datasets among all published results.

1 INTRODUCTION

In this paper, we focus on reading comprehension style question answering which aims to an-
swer questions given a passage or document. We mainly focus on the Stanford Question Answer-
ing Dataset (SQuAD) (Rajpurkar et al., 2016) and Microsoft MAchine Reading COmprehension
(MS-MARCO) dataset, two large-scale datasets for reading comprehension and question answer-
ing which are both manually created through crowdsourcing. SQuAD requires to answer questions
given a passage. It constrains answers to the space of all possible spans within the reference passage,
which is different from cloze-style reading comprehension datasets (Hermann et al., 2015; Hill et al.,
2016) in which answers are single words or entities. Moreover, SQuAD requires different forms of
logical reasoning to infer the answer (Rajpurkar et al., 2016). Another real dataset, MS-MARCO
provides several related documents collected from Bing Index for a question. The answer to the
question in MS-MARCO is generated by human and the answer words can not only come from the
given text.

Rapid progress has been made since the release of the SQuAD dataset. Wang & Jiang (2016b)
build question-aware passage representation with match-LSTM (Wang & Jiang, 2016a), and predict
answer boundaries in the passage with pointer networks (Vinyals et al., 2015). Seo et al. (2016)
introduce bi-directional attention flow networks to model question-passage pairs at multiple levels
of granularity. Xiong et al. (2016) propose dynamic co-attention networks which attend the question
and passage simultaneously and iteratively refine answer predictions. Lee et al. (2016) and Yu et al.
(2016) predict answers by ranking continuous text spans within passages.

Inspired by Wang & Jiang (2016b), we introduce R-NET, illustrated in Figure 1, an end-to-end
neural network model for reading comprehension and question answering. Our model consists of
four parts: 1) the recurrent network encoder to build representation for questions and passages
separately, 2) the gated matching layer to match the question and passage, 3) the self-matching layer
to aggregate information from the whole passage, and 4) the pointer-network based answer boundary
prediction layer. The key contributions of this work are three-fold.

∗ This is the work-in-progress technical report of our system and algorithm, namely R-NET, for the machine
reading comprehension task. We will update this technical report when there are significant improvements of
R-NET on the SQuAD leaderboard. An early version of this technical report, namely “Gated Self-Matching
Networks for Reading Comprehension and Question Answering. Wenhui Wang, Nan Yang, Furu Wei, Baobao
Chang and Ming Zhou”, has been accepted by and will be presented in ACL 2017.

† Please contact Furu Wei and Ming Zhou for the machine reading comprehension research in Microsoft
Research Asia.
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Passage: Tesla later approached Morgan to ask for more funds to build a more powerful transmitter.
When asked where all the money had gone, Tesla responded by saying that he was affected by
the Panic of 1901, which he (Morgan) had caused. Morgan was shocked by the reminder of his part
in the stock market crash and by Tesla’s breach of contract by asking for more funds. Tesla wrote
another plea to Morgan, but it was also fruitless. Morgan still owed Tesla money on the original
agreement, and Tesla had been facing foreclosure even before construction of the tower began.
Question: On what did Tesla blame for the loss of the initial money?
Answer: Panic of 1901

Table 1: An example from the SQuAD dataset.

First, we propose a gated attention-based recurrent network, which adds an additional gate to the
attention-based recurrent networks (Bahdanau et al., 2014; Rocktäschel et al., 2015; Wang & Jiang,
2016a), to account for the fact that words in the passage are of different importance to answer a
particular question for reading comprehension and question answering. In Wang & Jiang (2016a),
words in a passage with their corresponding attention-weighted question context are encoded to-
gether to produce question-aware passage representation. By introducing a gating mechanism, our
gated attention-based recurrent network assigns different levels of importance to passage parts de-
pending on their relevance to the question, masking out irrelevant passage parts and emphasizing
the important ones.

Second, we introduce a self-matching mechanism, which can effectively aggregate evidence from
the whole passage to infer the answer. Through a gated matching layer, the resulting question-aware
passage representation effectively encodes question information for each passage word. However,
recurrent networks can only memorize limited passage context in practice despite its theoretical ca-
pability. One answer candidate is often unaware of the clues in other parts of the passage. To address
this problem, we propose a self-matching layer to dynamically refine passage representation with
information from the whole passage. Based on question-aware passage representation, we employ
gated attention-based recurrent networks on passage against passage itself, aggregating evidence rel-
evant to the current passage word from every word in the passage. A gated attention-based recurrent
network layer and self-matching layer dynamically enrich each passage representation with infor-
mation aggregated from both question and passage, enabling subsequent network to better predict
answers.

Lastly, the proposed method yields state-of-the-art results against strong baselines. Our single model
achieves 72.3% exact match accuracy on the hidden SQuAD test set, while the ensemble model
further boosts the result to 76.9%, which currently1 holds the first place on the SQuAD leaderboard.
Besides, our model also achieves the best published results on MS-MARCO dataset (Nguyen et al.,
2016).

2 TASK DESCRIPTION

For reading comprehension style question answering, a passage P and question Q are given, our task
is to predict an answer A to question Q based on information found in P. The SQuAD dataset further
constrains answer A to be a continuous sub-span of passage P. Answer A often includes non-entities
and can be much longer phrases. This setup challenges us to understand and reason about both the
question and passage in order to infer the answer. Table 1 shows a simple example from the SQuAD
dataset. As for MS-MARCO dataset, several related passages P from Bing Index are provided for
a question Q. Besides, the answer A in MS-MARCO is generated by human which can not be a
continuous sub-span of the passage.

3 R-NET STRUCTURE

Figure 1 gives an overview of R-NET. First, the question and passage are processed by a bi-
directional recurrent network (Mikolov et al., 2010) separately. We then match the question and
passage with gated attention-based recurrent networks, obtaining question-aware representation for

1On May. 6, 2017
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Figure 1: R-NET structure overview.

the passage. On top of that, we apply self-matching attention to aggregate evidence from the whole
passage and refine the passage representation, which is then fed into the output layer to predict the
boundary of the answer span.

3.1 QUESTION AND PASSAGE ENCODER

Consider a question Q = {wQ
t }mt=1 and a passage P = {wP

t }nt=1. We first convert the words to
their respective word-level embeddings ({eQt }mt=1 and {ePt }nt=1) and character-level embeddings
({cQt }mt=1 and {cPt }nt=1). The character-level embeddings are generated by taking the final hidden
states of a bi-directional recurrent neural network (RNN) applied to embeddings of characters in the
token. Such character-level embeddings have been shown to be helpful to deal with out-of-vocab
(OOV) tokens. We then use a bi-directional RNN to produce new representation uQ1 , . . . , u

Q
m and

uP1 , . . . , u
P
n of all words in the question and passage respectively:

uQt = BiRNNQ(uQt−1, [e
Q
t , c

Q
t ]) (1)

uPt = BiRNNP (uPt−1, [e
P
t , c

P
t ]) (2)

We choose to use Gated Recurrent Unit (GRU) (Cho et al., 2014) in our experiment since it performs
similarly to LSTM (Hochreiter & Schmidhuber, 1997) but is computationally cheaper.

3.2 GATED ATTENTION-BASED RECURRENT NETWORKS

We propose a gated attention-based recurrent network to incorporate question information into pas-
sage representation. It is a variant of attention-based recurrent networks, with an additional gate
to determine the importance of information in the passage regarding a question. Given question
and passage representation {uQt }mt=1 and {uPt }nt=1, Rocktäschel et al. (2015) propose generating
sentence-pair representation {vPt }nt=1 via soft-alignment of words in the question and passage as
follows:

vPt = RNN(vPt−1, ct) (3)
where ct = att(uQ, [uPt , v

P
t−1]) is an attention-pooling vector of the whole question (uQ):

stj = vTtanh(WQ
u u

Q
j +WP

u u
P
t +WP

v v
P
t−1)

ati = exp(sti)/Σ
m
j=1exp(stj)

ct = Σm
i=1a

t
iu

Q
i (4)
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Each passage representation vPt dynamically incorporates aggregated matching information from
the whole question.

Wang & Jiang (2016a) introduce match-LSTM, which takes uPt as an additional input into the re-
current network:

vPt = RNN(vPt−1, [u
P
t , ct]) (5)

To determine the importance of passage parts and attend to the ones relevant to the question, we add
another gate to the input ([uPt , ct]) of RNN:

gt = sigmoid(Wg[uPt , ct])

[uPt , ct]
∗ = gt � [uPt , ct] (6)

Different from the gates in LSTM or GRU, the additional gate is based on the current passage word
and its attention-pooling vector of the question, which focuses on the relation between the question
and current passage word. The gate effectively model the phenomenon that only parts of the passage
are relevant to the question in reading comprehension and question answering. [uPt , ct]

∗ is utilized
in subsequent calculations instead of [uPt , ct]. We call this gated attention-based recurrent networks.

3.3 SELF-MATCHING ATTENTION

Through gated attention-based recurrent networks, question-aware passage representation {vPt }nt=1
is generated to pinpoint important parts in the passage. One problem with such representation is
that it has very limited knowledge of context. One answer candidate is often oblivious to important
cues in the passage outside its surrounding window. Moreover, there exists some sort of lexical or
syntactic divergence between the question and passage in the majority of SQuAD dataset (Rajpurkar
et al., 2016). Passage context is necessary to infer the answer. To address this problem, we propose
directly matching the question-aware passage representation against itself. It dynamically collects
evidence from the whole passage for words in passage and encodes the evidence relevant to the
current passage word and its matching question information into the passage representation hPt :

hPt = BiRNN(hPt−1, [v
P
t , ct]) (7)

where ct = att(vP , vPt ) is an attention-pooling vector of the whole passage (vP ):

stj = vTtanh(WP
v v

P
j +W P̃

v v
P
t )

ati = exp(sti)/Σ
n
j=1exp(stj)

ct = Σn
i=1a

t
iv

P
i (8)

An additional gate as in gated attention-based recurrent networks is applied to [vPt , ct] to adaptively
control the input of RNN.

Self-matching extracts evidence from the whole passage according to the current passage word and
question information.

3.4 OUTPUT LAYER

We follow Wang & Jiang (2016b) and use pointer networks (Vinyals et al., 2015) to predict the start
and end position of the answer. In addition, we use an attention-pooling over the question represen-
tation to generate the initial hidden vector for the pointer network. Given the passage representation
{hPt }nt=1, the attention mechanism is utilized as a pointer to select the start position (p1) and end
position (p2) from the passage, which can be formulated as follows:

stj = vTtanh(WP
h h

P
j +W a

h h
a
t−1)

ati = exp(sti)/Σ
n
j=1exp(stj)

pt = argmax(at1, . . . , a
t
n) (9)

Here hat−1 represents the last hidden state of the answer recurrent network (pointer network). The
input of the answer recurrent network is the attention-pooling vector based on current predicted
probability at:

ct = Σn
i=1a

t
ih

P
i

hat = RNN(hat−1, ct) (10)
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When predicting the start position, hat−1 represents the initial hidden state of the answer recurrent
network. We utilize the question vector rQ as the initial state of the answer recurrent network.
rQ = att(uQ, V Q

r ) is an attention-pooling vector of the question based on the parameter V Q
r :

sj = vTtanh(WQ
u u

Q
j +WQ

v V
Q
r )

ai = exp(si)/Σ
m
j=1exp(sj)

rQ = Σm
i=1aiu

Q
i (11)

To train the network, we minimize the sum of the negative log probabilities of the ground truth start
and end position by the predicted distributions.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAILS

We mainly focus on the SQuAD dataset to train and evaluate our model, which has garnered a huge
attention over the past few months. SQuAD is composed of 100,000+ questions posed by crowd
workers on 536 Wikipedia articles. The dataset is randomly partitioned into a training set (80%),
a development set (10%), and a test set (10%). The answer to every question is a segment of the
corresponding passage.

We use the tokenizer from Stanford CoreNLP (Manning et al., 2014) to preprocess each passage
and question. The Gated Recurrent Unit (Cho et al., 2014) variant of LSTM is used throughout our
model. For word embedding, we use pre-trained case-sensitive GloVe embeddings2 (Pennington
et al., 2014) for both questions and passages, and it is fixed during training; We use zero vectors to
represent all out-of-vocab words. We utilize 1 layer of bi-directional GRU to compute character-
level embeddings and 3 layers of bi-directional GRU to encode questions and passages, the gated
attention-based recurrent network for question and passage matching is also encoded bidirectionally
in our experiment. The hidden vector length is set to 75 for all layers. The hidden size used to
compute attention scores is also 75. We also apply dropout (Srivastava et al., 2014) between layers
with a dropout rate of 0.2. The model is optimized with AdaDelta (Zeiler, 2012) with an initial
learning rate of 1. The ρ and ε used in AdaDelta are 0.95 and 1e−6 respectively.

4.2 MAIN RESULTS

Two metrics are utilized to evaluate model performance of SQuAD: Exact Match (EM) and F1 score.
EM measures the percentage of the prediction that matches one of the ground truth answers exactly.
F1 measures the overlap between the prediction and ground truth answers which takes the maximum
F1 over all of the ground truth answers. The scores on dev set are evaluated by the official script3.
Since the test set is hidden, we are required to submit the model to Stanford NLP group to obtain
the test scores.

Table 2 shows exact match and F1 scores on the dev and test set of our model and competing
approaches4. The ensemble model consists of 18 training runs with the identical architecture and
hyper-parameters. At test time, we choose the answer with the highest sum of confidence scores
amongst the 18 runs for each question. As we can see, our method clearly outperforms the baseline
and several strong state-of-the-art systems for both single model and ensembles. R-NET (March,
2017) entry refers to results obtained with our improvement after ACL submission. After the original
self-matching layer of the passage, we utilize bi-directional GRU to deeply integrate the matching
results before feeding them into answer pointer layer. It helps to further propagate the information
aggregated by self-matching of the passage.

2Downloaded from http://nlp.stanford.edu/data/glove.840B.300d.zip.
3Downloaded from http://stanford-qa.com
4Extracted from SQuAD leaderboard http://stanford-qa.com on May. 6, 2017.
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Dev Set Test Set
Single model EM / F1 EM / F1
LR Baseline (Rajpurkar et al., 2016) 40.0 / 51.0 40.4 / 51.0
Dynamic Chunk Reader (Yu et al., 2016) 62.5 / 71.2 62.5 / 71.0
Attentive CNN context with LSTM (NLPR, CASIA) - / - 63.3 / 73.5
Match-LSTM with Ans-Ptr (Wang & Jiang, 2016b) 64.1 / 73.9 64.7 / 73.7
Dynamic Coattention Networks (Xiong et al., 2016) 65.4 / 75.6 66.2 / 75.9
Iterative Coattention Network (Fudan University) - / - 67.5 / 76.8
FastQA (Weissenborn et al., 2017) - / - 68.4 / 77.1
BiDAF (Seo et al., 2016) 68.0 / 77.3 68.0 / 77.3
T-gating (Peking University) - / - 68.1 / 77.6
RaSoR (Lee et al., 2016) - / - 69.6 / 77.7
SEDT+BiDAF (Liu et al., 2017) - / - 68.5 / 78.0
Multi-Perspective Matching (Wang et al., 2016) - / - 70.4 / 78.8
FastQAExt (Weissenborn et al., 2017) - / - 70.8 / 78.9
Mnemonic Reader (NUDT & Fudan University) - / - 69.9 / 79.2
Document Reader (Chen et al., 2017) - / - 70.7 / 79.4
ReasoNet (Shen et al., 2016) - / - 70.6 / 79.4
Ruminating Reader (Gong & Bowman, 2017) - / - 70.6 / 79.5
jNet (Zhang et al., 2017) - / - 70.6 / 79.8
Interactive AoA Reader (Joint Laboratory of HIT and iFLYTEK Research) - / - 71.2 / 79.9
R-NET (Wang et al., 2017) 71.1 / 79.5 71.3 / 79.7
R-NET (March 2017) 72.3 / 80.6 72.3 / 80.7
Ensemble model
Fine-Grained Gating (Yang et al., 2016) 62.4 / 73.4 62.5 / 73.3
Match-LSTM with Ans-Ptr (Wang & Jiang, 2016b) 67.6 / 76.8 67.9 / 77.0
QFASE (NUS) - / - 71.9 / 80.0
Dynamic Coattention Networks (Xiong et al., 2016) 70.3 / 79.4 71.6 / 80.4
T-gating (Peking University) - / - 72.8 / 81.0
Multi-Perspective Matching (Wang et al., 2016) - / - 73.8 / 81.3
jNet (Zhang et al., 2017) - / - 73.0 / 81.5
BiDAF (Seo et al., 2016) - / - 73.7 / 81.5
SEDT+BiDAF (Liu et al., 2017) - / - 73.7 / 81.5
Mnemonic Reader (NUDT & Fudan University) - / - 73.7 / 81.7
ReasoNet (Shen et al., 2016) - / - 75.0 / 82.6
R-NET (Wang et al., 2017) 75.6 / 82.8 75.9 / 82.9
R-NET (March 2017) 76.7 / 83.7 76.9 / 84.0
Human Performance (Rajpurkar et al., 2016) - / - 82.3 / 91.2

Table 2: The performance of our R-NET and competing approaches4 on SQuAD dataset.
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Single Model ROUGE-L / BLEU1
FastQAExt (Weissenborn et al., 2017) 33.7 / 33.9
Prediction (Wang & Jiang, 2016b) 37.3 / 40.7
ReasoNet (Shen et al., 2016) 38.8 / 39.9
R-NET 42.9 / 42.2

Table 3: The performance of our R-NET and competing approaches5 on MS-MARCO dataset.

4.3 MS-MARCO RESULT

We also apply our method to MS-MARCO dataset (Nguyen et al., 2016). MS-MARCO is another
machine comprehension dataset, with two key differences from SQuAD. In MS-MARCO, every
question has several corresponding passages, so we simply concatenate all passages of one question
in the order that given in the dataset. Secondly, the answers in MS-MARCO are not necessarily sub-
spans of the passages so that the metrics in the official tool of MS-MARCO evaluation are BLEU
and ROUGE-L, which are widely used in many domains. In this regard, we choose the span with
the highest ROUGE-L score with the reference answer as the gold span in the training, and predict
the highest scoring span as answer during prediction. We train our model on MS-MARCO dataset,
and the results (Table 3) show that our method out-performs other competitive baselines5.

4.4 DISCUSSIONS

In this section, we report and discuss some efforts that failed to bring improvements in our exper-
iments. As with all empirical findings on SQuAD, results reported here only apply to our exact
settings. The findings do not necessarily indicate the effectiveness of the discussed methods when
used to other datasets or combined with baseline models different from ours. We believe these di-
rections are valuable research topics and we are experimenting these ideas with different models and
implementations.

1. Sentence Ranking In SQuAD, the passage consists of several sentences and the answer
span always falls into one sentence. It is natural to consider whether ranking sentence
would help locate the final answer. We have tried two ways to integrate sentence ranking
information: (a) we trained a separate sentence ranking model, and combined this model
with the span prediction model; (b) we treat span prediction and sentence prediction as
two related task, and trained a multi-task model. Both methods failed to improve the fi-
nal results. Analysis shows that the sentence models consistently under-perform the span
prediction model even on sentence prediction task. Our best sentence model achieves accu-
racy of 86%, while our span prediction model has over 92% accuracy predicting the answer
sentence. This indicates that the exact span information is in fact critical in selecting the
correct answer sentence.

2. Syntax Information We have tried three methods to integrate syntax information into our
model. Firstly, we have tried to add some syntax features as input in encoding layers. These
syntax features include POS tags, NER results, linearized PCFG tree tags and dependency
labels. Secondly, we have tried to integrate a tree-LSTM style module after our encoding
layer. We use a multi-input LSTM to build hidden states following dependency tree paths
in both top-down and bottom-up passes. Lastly, we tried to use dependency parsing as an
additional task in a multi-task setting. All the above failed to bring any benefit to our model
on SQuAD dataset.

3. Multi-hop Inference We have tried to add multi-hop inference modules in the answer
pointer layer, but failed to get improvements on the final results in the context of the current
R-NET network structure. One reason might be that the questions which require such
inference are too complex to learn effectively under current settings, especially considering
there are no annotations about explicit inference process in SQuAD.

5Results except ours are extracted from MS-MARCO leaderboard http://www.msmarco.org/
leaders.aspx on May. 6, 2017.
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4. Question Generation For data-driven approach, labeled data might become the bottleneck
for better performance. While texts are abundant, it is not easy to find question-passage
pairs that match the style of SQuAD. To generate more data, we trained a sequence-to-
sequence question generation model using SQuAD dataset (Zhou et al., 2017), and pro-
duced a large amount of pseudo question-passage pairs from English Wikipedia. We trained
a R-NET model on this pseudo corpus together with SQuAD training data, and we assigned
a smaller weight to auto-generated samples so that the total weights of pseudo corpus and
real corpus are about equal. So far, such approach failed to make any gains in the final
results. Analysis shows that the quality of generated questions needs improvement.

5 RELATED WORK

Reading Comprehension and Question Answering Dataset Benchmark datasets play an impor-
tant role in recent progress in reading comprehension and question answering research. Existing
datasets can be classified into two categories according to whether they are manually labeled. Those
that are labeled by humans are always in high quality (Richardson et al., 2013; Berant et al., 2014;
Yang et al., 2015), but are too small for training modern data-intensive models. Those that are auto-
matically generated from natural occurring data can be very large (Hill et al., 2016; Hermann et al.,
2015), which allow the training of more expressive models. However, they are in cloze style, in
which the goal is to predict the missing word (often a named entity) in a passage. Moreover, Chen
et al. (2016) have shown that the CNN / Daily News dataset (Hermann et al., 2015) requires less
reasoning than previously thought, and conclude that performance is almost saturated.

Different from above datasets, the SQuAD provides a large and high-quality dataset. The answers in
SQuAD often include non-entities and can be much longer phrase, which is more challenging than
cloze-style datasets. Moreover, Rajpurkar et al. (2016) show that the dataset retains a diverse set of
answers and requires different forms of logical reasoning, including multi-sentence reasoning. MS
MARCO (Nguyen et al., 2016) is also a large-scale dataset. The questions in the dataset are real
anonymized queries issued through Bing or Cortana and the passages are related web pages. For
each question in the dataset, several related passages are provided. However, the answers are human
generated, which is different from SQuAD where answers must be a span of the passage.

End-to-end Neural Networks for Reading Comprehension Along with cloze-style datasets, sev-
eral powerful deep learning models (Hermann et al., 2015; Hill et al., 2016; Chen et al., 2016; Kadlec
et al., 2016; Sordoni et al., 2016; Cui et al., 2016; Trischler et al., 2016; Dhingra et al., 2016; Shen
et al., 2016) have been introduced to solve this problem. Hermann et al. (2015) first introduce at-
tention mechanism into reading comprehension. Hill et al. (2016) propose a window-based memory
network for CBT dataset. Kadlec et al. (2016) introduce pointer networks with one attention step
to predict the blanking out entities. Sordoni et al. (2016) propose an iterative alternating attention
mechanism to better model the links between question and passage. Trischler et al. (2016) solve
cloze-style question answering task by combining an attentive model with a reranking model. Dhin-
gra et al. (2016) propose iteratively selecting important parts of the passage by a multiplying gating
function with the question representation. Cui et al. (2016) propose a two-way attention mechanism
to encode the passage and question mutually. Shen et al. (2016) propose iteratively inferring the
answer with a dynamic number of reasoning steps and is trained with reinforcement learning.

Neural network-based models demonstrate the effectiveness on the SQuAD dataset. Wang & Jiang
(2016b) combine match-LSTM and pointer networks to produce the boundary of the answer. Xiong
et al. (2016) and Seo et al. (2016) employ variant coattention mechanism to match the question
and passage mutually. Xiong et al. (2016) propose a dynamic pointer network to iteratively infer
the answer. Yu et al. (2016) and Lee et al. (2016) solve SQuAD by ranking continuous text spans
within passage. Yang et al. (2016) present a fine-grained gating mechanism to dynamically combine
word-level and character-level representation and model the interaction between questions and pas-
sages. Wang et al. (2016) propose matching the context of passage with the question from multiple
perspectives.

Different from the above models, we introduce self-matching attention in our model. It dynami-
cally refines the passage representation by looking over the whole passage and aggregating evidence
relevant to the current passage word and question, allowing our model make full use of passage
information. Weightedly attending to word context has been proposed in several works. Ling et al.
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(2015) propose considering window-based contextual words differently depending on the word and
its relative position. Cheng et al. (2016) propose a novel LSTM network to encode words in a sen-
tence which considers the relation between the current token being processed and its past tokens in
the memory. Parikh et al. (2016) apply this method to encode words in a sentence according to word
form and its distance. Since passage information relevant to question is more helpful to infer the
answer in reading comprehension, we apply self-matching based on question-aware representation
and gated attention-based recurrent networks. It helps our model mainly focus on question-relevant
evidence in the passage and dynamically look over the whole passage to aggregate evidence.

Another key component of our model is the attention-based recurrent network, which has demon-
strated success in a wide range of tasks. Bahdanau et al. (2014) first propose attention-based re-
current networks to infer word-level alignment when generating the target word. Hermann et al.
(2015) introduce word-level attention into reading comprehension to model the interaction between
questions and passages. Rocktäschel et al. (2015) and Wang & Jiang (2016a) propose determining
entailment via word-by-word matching. The gated attention-based recurrent network is a variant of
attention-based recurrent network with an additional gate to model the fact that passage parts are of
different importance to the particular question for reading comprehension and question answering.

6 CONCLUSION

In this technical report, we present R-NET for reading comprehension and question answering.
We introduce the gated attention-based recurrent networks and self-matching attention mechanism
to obtain representation for the question and passage, and then use the pointer-networks to locate
answer boundaries. Our model achieves state-of-the-art results on both SQuAD and MS-MARCO
datasets, outperforming several strong competing systems. For future work, we will try to use syntax
and knowledge base information into our system. Besides, we are also working on designing new
network structures to handle questions that require complex inferences.
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