
Temporally Coherent Completion of Dynamic Video

Jia-Bin Huang Sing Bing Kang Narendra Ahuja Johannes Kopf
Virginia Tech∗ Microsoft Research University of Illinois, Facebook

Urbana-Champaign

In
pu

t+
m

as
k

O
ur

co
m

pl
et

io
n

Figure 1: We present a fully automatic algorithm for plausibly completing missing regions in videos of dynamic scenes and captured with a
moving camera in a temporally coherent manner. The top row shows sample frames from a hand-held video of a dancer. Both the foreground
and background, as well as the camera are moving throughout the video. The red masks are user-selected regions to be removed. The bottom
row shows our automatic completion result.

Keywords: Video completion, patch-based synthesis

Concepts: •Computing methodologies → Computational pho-
tography; Image manipulation;

Abstract

We present an automatic video completion algorithm that synthe-
sizes missing regions in videos in a temporally coherent fashion.
Our algorithm can handle dynamic scenes captured using a mov-
ing camera. State-of-the-art approaches have difficulties handling
such videos because viewpoint changes cause image-space motion
vectors in the missing and known regions to be inconsistent. We
address this problem by jointly estimating optical flow and color
in the missing regions. Using pixel-wise forward/backward flow
fields enables us to synthesize temporally coherent colors. We for-
mulate the problem as a non-parametric patch-based optimization.
We demonstrate our technique on numerous challenging videos.

1 Introduction

Video completion methods are designed to fill user-specified spatio-
temporal holes with plausible content using remaining parts of the
video. An effective video completion method has many practical

∗Part of this work was done while Jia-Bin was a research assistant at
University of Illinois, Urbana-Champaign.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. c© 2016 ACM.
SA ’16 Technical Papers,, December 05-08, 2016, , Macao
ISBN: 978-1-4503-4514-9/16/12$15.00
DOI: http://dx.doi.org/10.1145/2980179.2982398

applications in video post-production, such as unwanted object re-
moval, full-frame video stabilization (as a byproduct), logo or wa-
termark removal in broadcast videos, and restoration of damaged
vintage films.

Much progress has been made on automatic single-image comple-
tion, to a point of where commercial solutions are now available.1
However, automatic video completion algorithms have fared less
well. This is due to the additional time dimension which introduces
major challenges: (1) viewpoint changes cause non-trivial appear-
ance changes in image-space; (2) the synthesized content needs to
be temporally coherent; (3) there is exponentially increased com-
putational complexity due to the larger number of missing pixels.

Many state-of-the-art video completion algorithms synthesize the
missing (target) regions by sampling spatio-temporal patches from
the known (source) regions [Wexler et al. 2007; Newson et al. 2014]
or by solving spatio-temporal shift-maps using graph cuts [Grana-
dos et al. 2012b]. While good results have been shown, these ap-
proaches have two major limitations.

One limitation for translation-based sampling is the degradation
caused by source and target regions having inconsistent color, tex-
ture, or motion, which may be caused by viewpoint changes in
hand-held videos or non-periodic object motion. The inconsistency
problems can be partially alleviated by warping spatio-temporal ob-
ject samples [Jia et al. 2006], stabilizing the input video [Newson
et al. 2014], or compensating geometric distortion through projec-
tive transformation [Granados et al. 2012a]. However, these ap-
proaches assume either a clean foreground and background layer
separation, simple parametric global motion, or static background
and therefore have difficulties in handling general situations.

Another limitation is that motion is not explicitly reconstructed
even though motion-based features are used as part of the simi-
larity metric. As shown in our experiments, video completion al-
gorithms without explicit motion reconstruction often yield results

1See, for example, http://www.adobe.com/technology/projects/
content-aware-fill.html

http://dx.doi.org/10.1145/2980179.2982398
http://www.adobe.com/technology/projects/content-aware-fill.html
http://www.adobe.com/technology/projects/content-aware-fill.html

Table 1: Comparisons with state-of-the-art video completion algorithms. The cells highlighted in red indicate limitations of an algorithm.
The optimization techniques used in [Newson et al. 2014] and our approach that alternate between patch search and patch voting steps can
be viewed as a “Hard EM” algorithm for estimating maximum-likelihood solution [Wexler et al. 2007]. The visibility assumption refers to
each missing pixel needing to be visible in at least one frame.

Method [Granados et al. 2012a] [Granados et al. 2012b] [Newson et al. 2014] [Strobel et al. 2014] Ours
Synthesis unit Spatial Spatiotemporal Spatiotemporal Spatial Spatial
Optimization Graph-cut Graph-cut Hard-EM Greedy Hard-EM

Dynamic background No Yes Yes No Yes
Visibility assumption Yes No No No No

Flow estimation No No No Yes Yes
Warping Homography N/A Affine N/A Dense flow field

Temporal consistency No No No Yes Yes

that are plausible when viewed as separate images, but are not tem-
porally coherent. Several recent approaches address the temporal
consistency problem by explicitly synthesizing flow field in the tar-
get regions [Strobel et al. 2014; Roxas et al. 2014]. However, these
approaches smoothly interpolate the flow field with diffusion-based
techniques, and are less effective in synthesizing dynamic back-
grounds.

In this paper, we present a new video completion algorithm that
does not make any simplifying assumptions about the video con-
tent; it works on casual hand-held videos with moving camera, dy-
namic content, lighting and color variations, and missing pixels that
are not seen in any of the known regions. Our method can fill miss-
ing regions in such videos with plausible content in a temporally
coherent manner.

Our method jointly estimates appearance (color) and dense flow
fields in the missing regions. The key idea is that the recon-
structed pixel-wise forward and backward flow fields allow us to
explicitly promote temporal coherence. Since our flow field is
non-parametric, it can handle general motion parallax and dynamic
scenes. This is in comparison with existing video completion algo-
rithms that use parametric motion to mostly compensate for camera
motion (e.g., affine [Newson et al. 2014] or homography [Granados
et al. 2012a]). We formulate video completion as non-parametric
patch-based optimization. The combination of non-parametric spa-
tial patch-based optimization and dense flow field estimation facil-
itate synthesizing colors that are spatially coherent (i.e., locally ap-
pear similar to the known regions everywhere) in each frame while
maintaining temporal coherence (i.e., with small flow warp errors)
across frames.

We have tested our algorithm on numerous challenging videos that
span a wide variety of situations, including hand-held and station-
ary cameras, static and dynamic backgrounds, and multiple mov-
ing objects. We show representative still frames from the videos
throughout the paper, and full video results can be found in the sup-
plementary material.

2 Related Work

Image and video completion are well-explored topics; surveys by
Guillemot and Le Meur [2014] and Ilan and Shamir [2015] pro-
vide a more comprehensive review. Here we limit our discussion
to state-of-the-art or representative approaches. Table 1 shows a
feature-by-feature comparison with representative techniques.

Patch-based synthesis These methods fill missing regions by
sampling non-local spatio-temporal patches (e.g., 5× 5× 5) from
the known input. Efros and Leung [1999] first introduced non-
parametric sampling techniques for texture synthesis. The approach

was later extended and applied to image completion [Criminisi et al.
2004; Drori et al. 2003] and video completion [Patwardhan et al.
2005; Patwardhan et al. 2007]. However, for video completion,
these techniques either assume static cameras [Patwardhan et al.
2005] or constrained camera motion [Patwardhan et al. 2007] so
that the foreground and background layers can be easily separated
and independently filled. Furthermore, the greedy patch filling pro-
cess inevitably propagates errors at early steps to the subsequent
steps, yielding globally inconsistent results.

To address the global inconsistency issue, patch-based completion
algorithms have been cast as a global optimization problem that is
minimized by alternating between patch search and reconstruction
steps [Wexler et al. 2007; Kwatra et al. 2005]. Newson et al. [2014]
recently extend the patch-based optimization approach by incorpo-
rating texture features, compensate dominant camera motion with
global affine transformation, and use a spatio-temporal version
of PatchMatch [Barnes et al. 2009] for fast approximated nearest
neighbor search.

Our algorithm builds upon the non-parametric optimization frame-
work with three major differentiators. First, we fill the hole by sam-
pling spatial patches rather than spatio-temporal patches. While
spatio-temporal patches provide a simple way for encoding local
appearance and motion, the assumption that spatio-temporal blocks
appear repeatedly through time is typically not valid under the
hand-held camera condition and non-repetitive scene motion. Spa-
tial patches, on the other hand, have no such restriction and thus are
applicable to general scenarios. Second, our approach explicitly
estimates dense forward and backward flow fields. The estimated
dense flow fields allow us to explicitly enforce temporal coherence
of the synthesized contents as well as propagate known content into
the unknown regions. Third, similar to Darabi et al. [2012], we aug-
ment the patch search space to account for texture and structural
inconsistency between the source and the target regions. In addi-
tion to random search, we use the local flow vectors to predict and
propagate transformation parameters from frame to frame.

Segment-based synthesis Such methods pose completion as
a labeling problem by solving a correspondence map (or a shift
map) between the source and target pixels. They typically apply
graph cuts to find optimal seams and thus do not need to specify
patch sizes. Kwatra et al. [2003] propose a texture synthesis al-
gorithm that iteratively selects a shifted version of an input texture
and uses graph cuts to find minimally noticeable seams between
the original and shifted textures. Moving beyond texture synthesis,
Pritch et al. [2009] generalize segment-based approaches to sev-
eral other image editing tasks, including image reshuffling, retar-
geting and completion using a global multi-label graph cut based
optimization. Granados et al. [2012b] extend this method to video
completion and introduce an interactive interface for users to help

Figure 2: Algorithm pipeline. Given the input video and user-selected mask, we start with computing the flow fields. After initialization at
the coarsest scale (Section 4.4), in each scale our algorithm iterates through three steps (Section 4.3): (a) nearest neighbor field estimation:
minimize the color spatial cost by finding dense approximate nearest neighbor source patches for all target patches; (b) color update:
minimize the color spatial and color temporal cost so that the synthesized colors are both spatially and temporally coherent; and (c) flow
update: refine the forward and backward flow fields. We then upsample the solution of the nearest neighbor field and flow fields to the next
finer level. The color at the finer level is estimated by spatial patch voting (using the upsampled nearest neighbor field).

constrain the search space.

The major limitation of segment-based methods is that the synthe-
sized content has to be copied from the unoccluded regions “as
is” in the known input. Therefore, these methods in general can-
not handle objects that undergo appearance changes (e.g., scale
variations when an object moves toward or away from the cam-
era) as well as video captured with a hand-held camera. Grana-
dos et al. [2012a] show that the appearance variations between the
source and target regions can be compensated by homographies.
However, this approach assumes manual labeling of foreground re-
gions, piecewise planar and static background, and visibility of the
occluded region (i.e., the occluded region must be visible in some
other frames). In contrast, our method offers greater flexibility for
handling appearance variations and does not have above mentioned
limitations.

Flow-based synthesis To address the temporal consistency
problem, techniques have been developed to the fill motion field in
missing regions, e.g., through a greedy selection of spatio-temporal
patches of local motion [Shiratori et al. 2006], per frame diffu-
sion [Strobel et al. 2014; Matsushita et al. 2006], or iterative op-
timization [Roxas et al. 2014] with propagated colors from the
known boundary.

Our method differs in two ways. First, instead of treating flow esti-
mation as an independent step from color estimation [Shiratori et al.
2006; Strobel et al. 2014; Matsushita et al. 2006], our approach it-
eratively computes and refines the dense flow field from the synthe-
sized colors and vice versa. Second, filling the colors only through
propagating from the known boundary (e.g., [Shiratori et al. 2006;
Roxas et al. 2014]) inevitably generates blurry results due to suc-
cessive averaging of colors and thus are applicable only for holes
with very narrow temporal span. In contrast, we synthesize color
by patch-based optimization and use the flow to enforce the tem-
poral consistency. As a result, our approach can handle holes with
arbitrary temporal span.

Flow-based video processing Our work is also related to sev-
eral flow-based video synthesis and editing tasks. Flow represen-
tation provides a direct way to enforce temporal consistency for
texture synthesis [Kwatra et al. 2005], fluid animation [Jamriška

Algorithm 1: Proposed video completion algorithm.

Input : Video III, user-specified mask Ω

Output: Completed video III

1 Compute forward/backward flow fields UUU,VVV in Ω

2 Initialization: filling hole Ω in III,UUU,VVV at coarsest scale (Sec. 4.4)
3 for scale s from 1 to ns do
4 for iteration k from 1 to Ks do
5 (a) NNF estimation:
6 Minimize Eq. 2 w.r.t. {sssi,θi}, with III,UUU,VVV fixed.
7 (b) Color update:
8 Minimize Eq. 5 w.r.t. III, with UUU,VVV,{sssi,θi} fixed.
9 (c) Flow update:

10 Minimize Eqs. 3 and 4 w.r.t. UUU,VVV, with III,{sssi,θi} fixed.
11 end
12 Upsample UUU,VVV using bicubic interpolation.
13 Upsample {sssi,θ} using nearest-neighbor interpolation.
14 end

et al. 2015], video denoising [Liu and Freeman 2010], video edit-
ing [Bhat et al. 2004], morphing [Shechtman et al. 2010], loop-
ing video generation [Sevilla-Lara et al. 2015], high dynamic range
video reconstruction [Kalantari et al. 2013]. The work most related
to our work is that of Xue et al. [2015], which decomposes a set
of images into a clean background and occlusion/reflection layers.
Unlike [Xue et al. 2015], our approach does not require every pixel
in the occluding region to be visible in at least one frame. That
is, we are able to hallucinate plausible contents for the unknown
regions that are not visible in the entire image sequence.

3 Overview

In our video completion algorithm, we jointly estimate the un-
known color values and local motion in the target regions. We start
with computing forward and backward optical flow in the known
region for all adjacent frames using a two-frame optical flow al-
gorithm [Liu 2009]. We implement our color synthesis algorithm
similar to the non-parametric patch-based optimization algorithms
of Wexler et al. [2007] and Kwatra et al. [2005]. In each iteration,
we loop over three main steps: (1) patch search, (2) color update

(a) Input and hole Spatiotemporal Spatial

Figure 3: Limitation of using spatio-temporal patches/segments.
We use a frame from sequence DANCE-TWIRL and synthetically
generate translational motion along the x-axis. (a) A spatio-
temporal x-t slice of the sequence with mask overlay. (b) Using
spatiotemporal patches (2D patches here) is not able to properly
fill the missing region because the motion between the source (yel-
low) and target (green) regions are not consistent. (c) Using spatial
patches (1D slices here), on the other hand, offers greater flexibility
by adapting to the local flow.

and (3) forward/backward flow update. We summarize our method
in Algorithm 1 and illustrate the pipeline in Figure 2.

Patch search In this step, for all overlapping patches in the target
regions, we search their corresponding patches in the source region
with most similar local appearances. Our algorithm differs from
existing non-parametric patch sampling methods in two major as-
pects. First, in contrast to methods using spatio-temporal patches
(e.g., 5×5×5 pixels) for synthesis, we use spatial-only patches
(5×5 patch in our experiments) as synthesis units. We enforce tem-
poral consistency by augmenting the patch matching cost with color
consistency along the flow vectors. Such representation allows us to
handle complex flow fields caused by arbitrary camera motion and
scenes with depth variations. For example, in a video captured by a
hand-held camera, spatial patches with the exact same appearance
may be embedded in significantly different spatio-temporal patches
because the spatially-varying motion field caused by the moving
camera. Therefore, working with spatio-temporal patches would
have fundamental limitations in exploiting the non-local repetition
of patches for video completion. In contrast, working with spatial
patches does not suffer from such cases (Figure 3). Second, in con-
trast to copying exactly the local color patches from the source to
the target region, we augment the patch search space to accommo-
date geometric variations. Specifically, we search additional geo-
metric transformation (scale and rotation) of patches. Similar to the
single-image case [Darabi et al. 2012], the additional patch trans-
formation offers greater flexibility in synthesizing visually plausi-
ble contents even with limited geometric variations in the source
regions.

Color update In the conventional patch-based optimization
framework, the reconstruction step involves “patch voting,” where
the pixel color at an unknown pixel is estimated by averaging the
colors of the corresponding nearest neighbors from all overlapping
patches [Wexler et al. 2007]. This encourages spatial coherence,
i.e., reconstructed patches look similar to some place in the known
region. We extend this step to incorporate also diffused colors from
the nearest transitive temporal neighbors in the known region (i.e.,
found by walking along the flow vectors until a known pixel is
reached). We use forward/backward flow consistency to identify
areas of unreliable flow, e.g., in occluded or dis-occluded regions.

Forward and backward flow update After estimating color in
the target region, we update and refine the forward and backward

flow fields. This step resembles the two-frame optical flow com-
putation in the known region. Here, we fix the flow in the source
regions and only update the flow in the target regions, resulting in an
optical flow estimation algorithm with spatio-temporal hole bound-
ary constraints.

4 Completion as Optimization

In this section, we provide details for our approach. We start by
introducing the problem formulation and objective function. Next,
we describe our optimization procedure for joint color and flow es-
timation.

4.1 Problem formulation

Let III be the input video of height H, width W and number of
frames L, and UUU ,VVV the forward and backward flow fields, respec-
tively. The forward flow at position (x,y, f) is given by UUU(x,y, f) =
(dx,dy,+1), indicating the flow vector (dx,dy) from a point located
at (x,y, f) to a point (x+dx, y+dy, f+1) in the video III. Similarly,
the backward flow at (x,y, f) is VVV (x,y, f) = (dx,dy,−1). We de-
note the set of unknown pixels by Ω (i.e., the user-specified spatio-
temporal regions) and the set of known pixels by Ω.

We define ttt i = (tx
i , t

y
i , t

f
i) ∈Ω as the ith target pixel position, where

(tx
i , t

y
i) is the 2D spatial position and t f

i is the frame index. Our
goal is to estimate the unknown color values III(ttt i) for all target pix-
els, as well as the forward/backward flow vectors UUU(ttt i),VVV (ttt i). We
estimate the colors through non-parametric patch-based optimiza-
tion. Specifically, for the ith target (unknown) pixel, we seek source
(known) pixel position sssi = (sx

i ,s
y
i ,s

f
i) ∈ Ω and 2D patch geomet-

ric transformation θi ∈ R2 (patch scaling and rotation) to minimize
spatial reconstruction errors. Temporal consistency of synthesized
colors III(ttt i) is achieved by enforcing color consistency along for-
ward and backward flow fields UUU ,VVV . We describe the objective
function and iterative optimization steps in the following subsec-
tions.

4.2 Objective function

We solve the following problem:

argmin
III,UUU ,VVV ,{sssi,θi}

EEEcolor-spatial +EEEcolor-temporal +EEEflow-spatial, (1)

where EEEcolor-spatial penalizes spatial patch-based reconstruction er-
rors of colors in the target regions, EEEcolor-temporal penalizes tem-
poral inconsistency of the synthesized colors, and EEEflow-spatial is a
spatial regularization term for the forward and backward flow fields.

Spatial color cost This cost encourages local neighborhoods Pi
in the target region to appear similar to local neighborhoods Qi in
the source region. It also encourages spatial coherence, since we
consider overlapping target patches. The target patch Pi is an axis-
aligned 5×5 spatial color patch, centered around ttt i. The source
patch Qi is also a 5×5 patch that results from the scale and rotation
transformation specified by θi centered at sssi. The spatial color cost
is the sum of square losses for all overlapping patches in Ω and their
correspondences:

EEEcolor-spatial(III,{sssi,θi}) = ∑
i∈Ω

‖Pi−Qi‖2
2 . (2)

We use a Gaussian falloff function with σ = 1 to give higher
weights to pixels closer to the center of the neighborhood.

(a) PatchMatch propagation (b) Flow-guided propagation

Figure 4: Flow-guided temporal propagation. (a) The direct ex-
tension of the PatchMatch algorithm [2009] to 3D [Newson et al.
2014]. Similar to the spatial propagation case in PatchMatch, can-
didate patches are propagated along the temporal axis. (b) The
proposed flow-guided temporal propagation relaxes the constraints
of axis-aligned propagation and uses local forward and backward
flow vectors for accurate prediction of the candidate source patch
position and transformation.

Temporal color cost This cost encourages temporal color con-
sistency between adjacent frames along the forward and backward
flow vectors. We use a term that is commonly employed in optical
flow algorithms:

EEEcolor-temporal(III,UUU ,VVV) =∑
i∈Ω

αφ

(∥∥III(ttt i)− III
(
ttt i +UUU(ttt i)

)∥∥2
2

)
+

αφ

(∥∥III(ttt i)− III
(
ttt i +VVV (ttt i)

)∥∥2
2

)
,

(3)

where the Charbonnier penalty φ(x2) =
√

x2 + ε with a small con-
stant ε is a robust function (a differentiable variant of `1-norm), and
α = 0.5 is the weight coefficient for this cost.2

While this cost in Eq. 3 directly encourages consistency for all tem-
porally neighboring pixels, in practice we find it more effective to
minimize a similar cost that couples the current pixel and its transi-
tive forward/backward neighbor, as described in Section 4.3.

Spatial flow cost To promote piecewise smooth flow fields, we
introduce spatial regularization:

EEEflow-spatial(UUU ,VVV) = β ∑
i∈Ω

φ

(
‖5UUUx(ttt i)‖2

2 +
∥∥5UUUy(ttt i)

∥∥2
2

)
+

β ∑
i∈Ω

φ

(
‖5VVVx(ttt i)‖2

2 +
∥∥5VVVy(ttt i)

∥∥2
2

)
,

(4)

where β = 0.1 is the weight coefficient for this cost, 5 denotes
the gradient operator, and UUUx, UUUy denote the horizontal and vertical
components of the motion field UUU , respectively (similarly for VVVx
and VVVy). This cost penalizes large magnitudes in the gradient of
the flow field with a robust function φ(x) and regularizes the flow
vectors between the synthesized colors in adjacent frames.

4.3 Optimization

Since Eq. 1 is non-convex, we use an iterative optimization algo-
rithm that alternates between minimizing different subsets of the
variables. We apply the optimization in a coarse-to-fine manner to
reduce the chance of prematurely locking into a bad local minimum.
At each iteration, we first fix the colors III and flow fields UUU ,VVV , and
solve for source patch position and transformation (sssi,θi) for each

2Note that we define the Charbonnier penalty as φ(x2) with the intention
of providing more clarity and consistency in our formulation.

target patch ttt i. This corresponds to the patch search step for esti-
mating the dense approximate nearest neighbor field {sssi,θi | i∈Ω}.
We then fix the estimated nearest neighbor field (sssi,θi) and flow
fields UUU ,VVV and estimate colors III. This color synthesis step mini-
mizes local appearance differences between the source and target
patches spatially and the color differences along flow vectors tem-
porally. Finally, we fix the synthesized colors III and update the for-
ward/backward flow fields UUU ,VVV . Algorithm 1 summarizes this pro-
cedure in pseudocode. We now describe each step in detail.

Nearest neighbor field estimation Given the currently esti-
mated color III and forward/backward flow fields UUU,VVV , we want to
search for each target pixel position ttt i (1) the source position sssi,
and (2) the geometric patch transformation θi that minimizes the
overall objective in Eq. 1. This is equivalent to just minimizing the
first term of the objective function Eq. 2. To this end we extend
the generalized PatchMatch algorithm [Barnes et al. 2010] to the
spatio-temporal case. We initialize the source patch position sssi and
patch transformation θi through random sampling, and then update
the estimation by alternating between the random search and prop-
agation steps.

Random search: At this step, we generate a sequence of random
samples (sssi,θi) (i.e., source position, rotation and scale) from an
exponential distribution [Barnes et al. 2010]. We update the nearest
neighbor field if any of the randomly selected sample achieves a
lower cost.

Spatial and temporal propagation: This step involves propagating
good nearest neighbor candidates spatially and temporally. For
the spatial propagation, we follow the generalized PatchMatch al-
gorithm to take into account the geometric transformation of the
source patch. The temporal propagation step, however, has two
important differences regarding candidate patch position and trans-
formation:

(1) Propagating patch position: In a straightforward extension of
the PatchMatch algorithm (e.g., as in [Newson et al. 2014]), for the
target patch centered at (tx

i , t
y
i , t

f
i ±1), the algorithm would consider

candidate source patches centered at (sx
i ,s

y
i ,s

f
i ± 1). However, this

temporal propagation strategy implicitly assumes that the motion at
the target pixel ttt i is the same as the motion at the source pixel sssi. We
avoid this by temporally propagating the candidate patches along
the estimated forward and backward flow vectors; see Figure 4 as
illustration of forward temporal propagation. For target patch ttt i,
we generate the candidate source patch position sssi by: (1) finding
temporal neighbor of ttt i using backward flow: ttt ′i = ttt i +VVV(ttt i), (2)
finding the corresponding source patch sss′i of the target patch ttt ′i from
the current nearest neighbor field, and (3) propagating the source
patch to the next frame using forward flow sssi = sss′i +UUU(sssi). The
backward temporal propagation follows a similar procedure. The
flow-guided temporal propagation removes the assumption that the
motion must be consistent in the source and target patches.

(2) Propagating patch transformation: We observe that the local
patches of flow vectors provide cues of the patch transformation
from the current frame to the adjacent frames. For example, the
apparent size of an object increases under camera zoom. Scaling
of patches can be inferred from the relative densities of flow vec-
tors from frame to frame. More specifically, we warp a grid of
pixel positions using optic flow and estimate the propagated candi-
date transformation matrix as T(UUU(sss′i)) S(θ ′i)T(VVV(ttt i)), where S(θ ′i)
is the transformation matrix of source patch sss′i and T(VVV(ttt i)) is the
estimated patch transformation matrix using local flow vectors at
position ttt i. T(UUU(sss′i)) is similarly defined.

Figure 5: Flow-guided color synthesis. For all target pixels, we
find their temporal neighbors in the source regions by traversing
the estimated flow vectors. We then use these temporal neighbors
to enforce temporal coherence.

Flow-guided color synthesis Given the currently estimated for-
ward/backward flow fields UUU,VVV, we estimate the color in the miss-
ing regions by minimizing EEEcolor-spatial +EEEcolor-temporal.

The spatial color cost EEEcolor-spatial by itself could be minimized
using standard patch voting, i.e., computing the weighted aver-
age of the overlapping source patches. Incorporating the temporal
color cost EEEcolor-temporal turns the problem into a 3D Poisson equa-
tion with temporal connections specified by the forward/backward
flow vectors. It can be solved with the Gauss-Seidel method.
Let ZZZ denote the color field obtained by spatial voting, i.e., the
minimizer of EEEcolor-spatial. Applying the Gauss-Seidel method in-
volves iteratively averaging ZZZ and the warped images from the for-
ward/backward flow. However, we found that this algorithm re-
quires many iterations to convergence, particularly when the hole
contains a long temporal span. In addition, the repeated application
of bicubic interpolation (for sampling colors in sub-pixel positions)
introduces unwanted blur and ringing artifacts.

We propose a heuristic to address this issue. First, we categorize
the missing pixels into two classes:

Connected pixels are pixels that are visible somewhere in the
video. By following their forward or backward flow connec-
tions transitively we eventually reach a known pixel. We call
these known pixels the transitive temporal neighbors of the
connected pixel, designated rrr f

i (forward) and rrrb
i (backward)

for the ith pixel. For connected pixels we directly penalize de-
viation from the transitive temporal neighbor colors, avoiding
error accumulation from repeated resampling.

Isolated pixels are not transitively connected to any known pixels.
It is difficult to synthesize isolated pixels consistently using
the Gauss-Seidel solver described above. To address this issue
we find the frame that has most isolated pixels and designate
it a key frame. The isolated pixels in the key frame are treated
as if they are known pixels, i.e., they become the transitive
temporal neighbors for other isolated pixels, turning them into
connected pixels. We greedily pick key frames in this manner
until all isolated pixels are connected. The key frame pixels
themselves do not have temporal neighbors, and use spatial
voting only. In a way they are synthesized like in a standard
single-image completion problem, albeit jointly solved in a
video completion problem.

As both connected and isolated pixels are related to the unknown
backward/forward flow fields, we re-assign connected and isolated
pixels after we update the forward/background flow fields in each
iteration.

Figure 5 illustrates the situations described above. Formally, the
heuristic above is implemented by minimizing the following objec-

tive:

argmin
III,ZZZ

∑
i∈Ω

‖III(ttt i)−ZZZ(ttt i)‖2
2 +αφ

(∥∥∥III(ttt i)− III(rrr f
i)
∥∥∥2

2

)
(5)

+αφ

(∥∥∥III(ttt i)− III(rrrb
i)
∥∥∥2

2

)
.

For pixels that are missing either rrr f
i or rrrb

i we drop the respective
terms (isolated pixels in key frames do not have temporal neighbors,
all other pixels have at least one temporal neighbor).

As the objective function in Eq. 5 decomposes into |Ω| independent
loss functions, we can drop the pixel index i for simplicity. How-
ever, these loss functions are non-linear and the problem cannot be
solved directly. We implement a gradient-descent scheme that it-
eratively converges to a local minimizer. We use the spatial voting
results ZZZ as an initialization, which corresponds to only minimizing
spatial cost and ignoring temporal coherence. We then iteratively
solve the best increment dIII by setting the derivative of the objective
function to zero. Denote the differences of the ZZZ(ttt i)− III(ttt i) as dZZZ,
I(rrr f

i)− III(ttt i) as dIII f , and I(rrrb
i)− III(ttt i) as dIIIb. In each iteration, we

can compute the optimal increment in close-form:

dIII(ttt i) =
1
C

[
dZZZ +α

(
φ
′
(
(dIII f)2

)
dIII f +φ

′
(
(dIIIb)2

)
dIIIb
)]

, (6)

C = 1+α

(
φ
′
(
(dIII f)2

)
+φ
′
(
(dIIIb)2

))
, (7)

where φ ′(x2) = 1√
x2+ε2 is the first-order derivative of the robust

function φ(·). We add the optimal increment dIII(ttt i) back to III(ttt i)
and solve Eq. 7 in the next iteration. We find that five iterations are
sufficient for convergence. Solving the modified objective function
in Eq. 5 strikes a good balance between temporal consistency and
spatial coherence.

Forward and backward flow field estimation In this step, we
fix the color III and refine and update the forward/backward flow
fields UUU ,VVV . The minimization problem corresponds to a typical
two-frame optical flow estimation problem with a data term and a
spatial regularization term. We use the previously estimated flow
as initialization and iteratively estimate the flow increments. We
use the Iterative Reweighted Least Squares (IRLS) formulation [Liu
2009] to compute the forward and background flow field in the tar-
get regions (our method is not tied to this particular optical flow
algorithm, any other state-of-the-art algorithm could be used in-
stead).

4.4 Initialization

To bootstrap the optimization process we need to initialize color,
flow, and nearest neighbor fields at the coarsest scale. We first ini-
tialize the nearest neighbor field {sssi,θi} with random samples, and
the flow fields UUU ,VVV by smoothly interpolating the known values at
the boundary inward (independently for each frame). Next, we ini-
tialize the colors III by running the nearest neighbor field estimation
and the flow-guided color synthesis step, and finally update the flow
fields using the synthesized colors.

4.5 Implementation details

We use relatively small 5×5 patches in our algorithm. While typ-
ical image completion algorithms use larger patches, e.g., 10× 10
[Darabi et al. 2012], we observe that increasing the patch size does
not substantially improve the visual quality of the results while sig-
nificantly increasing the runtime. We attribute this effect to the ad-
ditional temporal connections by the forward and backward flow

vectors. These connections help efficiently propagate good candi-
dates along the temporal dimension for nearest neighbor search.

To enforce that all pixels in Qi fall in Ω, we compute the 2D dis-
tance transform of the hole mask for each frame, and reject any
source patch Qi whose distance (as measured from the patch center
si) is smaller than the patch radius. For example, for a 5×5 patch
with no scaling, the patch radius is 5

√
2

2 .

We set the color temporal cost weight α = 0.5 and the flow spatial
weight β = 0.1. We fix the weights for all our experiments.

We optimize the objective function in a multi-resolution fashion.
We set the number of image pyramid levels such that the height at
the coarse scale is between 32 and 64 pixels. At the coarsest scale,
we run 20 iterations and decrease iteration count in each subsequent
scale by 4 (though we never use less than 4 iterations).

Our algorithm relies on the estimated flow to enforce temporal con-
sistency. Optical flow algorithms are far from perfect, however, par-
ticularly in occluded/dis-occluded regions. We are thus interested
in identifying unreliable flow pixels. While existing learning-based
flow confidence measures [Mac Aodha et al. 2013] appear to be ro-
bust, they are computationally intensive. Instead, we use forward-
backward flow consistency to identify unreliable flow. Specifically,
we compute confidence scores c f

i ,c
b
i for forward and backward

flow,

c f
i = exp

(
−
‖UUU(ttt i)+VVV (ttt i +UUU(ttt i))‖2

2
2σ2

F

)
, (8)

cb
i = exp

(
−
‖VVV (ttt i)+UUU(ttt i +VVV (ttt i))‖2

2
2σ2

F

)
, (9)

where σF = 1 controls the sensitivity. We label the forward flow
UUU(ttt i) at ttt i as “unreliable” when the confidence score c f

i < 0.5, and
similar for the backward flow. We discard these unreliable flow
vectors when searching for the temporal neighbors of the missing
pixels. As a result, we drop the respective terms in Eq. 5 when
performing the flow-guided color update, preventing the influence
by unreliable flows.

5 Results

We implement the completion algorithm in MATLAB. For optical
flow computation, we use the C++ implementation from Liu [2009].
Processing a short video with 854× 480 pixels and 90 frames and
with a moderately sized missing region (e.g., CAMEL: 6.5M =
17.81% of pixels missing) our non-optimized implementation took
around 3 hours on a desktop computer with 2.8 GHz Intel i7 CPU
(quad-core) and 12GB memory.

Removing dynamically moving objects in natural scenes We
evaluated our algorithm on a variety of challenging sequences from
a recent benchmark dataset [Perazzi et al. 2016]. While the dataset
was intended for evaluating video object segmentation algorithms,
the image sequences present multiple instances of challenges for
evaluating video completion algorithms “in the wild.” The ma-
jor challenges including dynamic background, motion blur, camera
shake, background clutter, and complicated hole shapes. We dilate
the ground truth pixelwise annotation using a 15× 15 structuring
element. We then use the RotoBrush tool in Adobe AfterEffect to
include cast shadows in the mask.

Figure 6 shows sample frames from five input image sequences
with mask overlay (odd rows) and our completion results (even
rows). In the first three sequences CAMEL, BREAKDANCE, and

(a) Sample frame (b) Input + mask

(c) [Newson et al. 2014] (d) Ours

Figure 9: Temporally coherent completion. We take the sequence
CAMEL and visualize the completion results using spatiotemporal
x-t slice of the video along the profile (yellow line) in (a). (b) The
x-t slice of the video with mask marked as red. (c) Results from
[Newson et al. 2014]. (d) Our results. We can clearly see that
the completion results in (c), while seeming locally plausible, fail
to maintain long-term temporal consistency. The combination of
patch-based optimization and dense flow field allows us to preserve
the temporal continuity with high spatial frequency.

KITE-SURF, we demonstrate that our algorithm can seamlessly
fill the missing dynamic background for videos captured with
freely moving camera. The HORSEJUMP-LOW and FLAMINGO se-
quences highlight the advantage of our flow-guided color synthesis
for accurately propagating known colors into the hole.

Comparisons with state-of-the-art methods We qualitatively
compare our method with a recent state-of-the-art patch-based
video completion algorithm [Newson et al. 2014]. We used the code
released by the author and tested it on the image sequences [Perazzi
et al. 2016] using the default parameters provided by the authors.
Figure 7 shows the representative frames from four sequences and
the completion results. Newson et al. [2014] fill the hole by sam-
pling spatio-temporal patches from source regions. We can see that
such a technique introduces severe artifacts because of the incon-
sistent motion between the source and target regions. Our method,
on the other hand, fills the missing regions with convincing content.

In Figure 8, we compare with a segmentation-based techniques
for background [Granados et al. 2012a] and foreground inpaint-
ing [Granados et al. 2012b]. As the code is not publicly available,
we compare with them using sequences from their papers. Our
method achieves comparable quality without the need to provide
dense pixel-wise mask of the foreground objects [Granados et al.
2012a] or spatio-temporal search regions [Granados et al. 2012b].

In Figure 9, we highlight the temporal coherence aspect of the com-
pletion results. In Figure 9(b), we show a spatio-temporal x-t slice
of the video along the marked profile. In Figure 9(c–d), we show
the x-t slice of the completed video by [Newson et al. 2014] and
our approach, respectively. From the x-t slice visualization we can
clearly see that our results are temporally coherent and are adapted
to the non-trivial camera motion in the known regions.

Contributions of each component We evaluate the contribu-
tions of each of the major components to the final performance in
Figure 10. We tested the sequence ROLLERBLADE by disabling
(1) patch-based optimization (i.e., propagate colors from the known

Figure 6: Object removal from video sequences CAMEL, BREAKDANCE, KITE-SURF, HORSEJUMP-LOW, and FLAMINGO. For each input
sequence (odd row), we show representative frames with mask overlay. We show the completed results in even rows.

Input + mask [Newson et al. 2014] Our results

Figure 7: Comparison to [Newson et al. 2014] on sequences BMX-BUMPS, BMX-TREES, SWING, and TENNIS. These sequences are chal-
lenging due to the motion blur from the fast camera motion. Our algorithm seamlessly removes the dynamic object under shaky motion.
Newson et al. [2014], on the other hand, produces visible artifacts spatially and fails to generate temporally coherent results.

(a) Input + mask (b) Our result

(c) w/o patch-based synthesis (d) w/o flow update

Figure 10: Contribution of different components of the proposed
algorithm to the final results. (b) Our result. (c) Without patch-
based synthesis, the algorithm cannot hallucinate regions that are
not visible in the image sequence (see the blue box). (d) Disabling
the flow update introduces visible artifacts.

boundary into the hole) and (2) flow estimation (i.e., using interpo-
lated flow only), respectively.

Comparison to single image completion algorithms Fig-
ure 11 shows the advantage of video completion (or multi-frame
image completion) over conventional image completion from a sin-
gle image. In the sequence DANCE-JUMP, searching for usable tex-

ture from the same source image fails to complete the missing re-
gion with plausible contents. We show in Figure 11 results from two
state-of-the-art image completion algorithms: Photoshop Content
Aware Fill and [Huang et al. 2014]. Our video completion result
(top-right) shows a convincing completion by transferring available
contents that are visible in other frames in the sequence.

Limitations Our approach has several limitations.

Computational complexity: The computational complexity of the
proposed algorithm is high and the runtime is far from being at in-
teractive rates. Our current implementation is impractical for many
video editing applications. In our experiments, about 65% of the
overall computation is spent on iteratively computing and refining
the forward and backward flow fields in the image sequence. Us-
ing GPUs to speed up the flow computation may help speed up the
completion process. Note that our approach is not tied to any partic-
ular flow algorithm, so we could easily switch to a more advanced
optical flow algorithm. Another promising direction is to adopt
PatchTable [Barnes et al. 2015] to significantly reduce the run-time
of the nearest neighbor patch search step. However, several modi-
fications may be required, including generalization to affine trans-
formed patches and incorporation of forward/backward flow con-
nections into the k-coherence step.

Noticeable artifacts: While we considerably expand the range of in-
put videos for completion techniques applicable to videos where
the camera, foreground, and background all are dynamic, artifacts

Input + mask [Granados et al. 2012a] Ours Input + mask [Granados et al. 2012b] Ours

Figure 8: Comparison to segmentation-based methods for background [Granados et al. 2012a] and foreground [Granados et al. 2012b]
inpainting on sequences from their papers. Our approach achieves similar visual quality without the need of manually segmenting out the
dynamic foreground objects in the scene or manually specifying search regions.

Frame #29

Photoshop Content-Aware Fill

Our result

[Huang et al. 2014]

Figure 11: The advantage of video completion over image comple-
tion algorithms. Our video completion algorithm faithfully recover
the missing region by taking all the frames into consideration.

Figure 12: Our algorithm may fail to hallucinate large missing
areas. Here the artifacts are visible with a closer examination.

remain visible in some of our results. We attribute these artifacts
mainly to the following reasons:

1. The dense flow field estimation is sometimes unreliable for
dynamic texture such as water surfaces. Since our algorithm
relies on accurate flow to guide the completion it can produce
visible artifacts in these cases (e.g., Figure 13 and the BOAT
scene).

2. For highly structured scenes with large depth variation our al-
gorithm sometimes fails to synthesize flow fields that respect
the scene geometry (e.g., PARKOUR scene).

3. When a large area is occluded throughout the entire sequence
(i.e., a large number of isolated pixels), the performance of
our algorithm is limited by how well a single-image comple-

Input + mask [Newson et al. 2014] Ours

Figure 13: Comparison with [Newson et al. 2014] on video se-
quences from their paper. Our approach produces reason results
but has more visible artifacts than [Newson et al. 2014] due to in-
correct flow synthesis.

tion algorithm can fill the hole. While our completion will be
temporally coherent, spatial artifacts may be visible at closer
examination (e.g., ELEPHANT scene, Figure 12).

Handling complex foreground motion: In the case of a static cam-
era, such as the BREAKDANCE video, Newson et al. [2014] may
synthesize complex motion (e.g., clapping hands) more success-
fully than our method by exploiting non-local repetition of spatio-
temporal patches. The advantage of our method that uses spatial-
only patches is that it is applicable to videos with a dynami-
cally moving (e.g., hand-held) camera. Exploiting multi-resolution
patches in the temporal domain may combine the best of two worlds
and help improve the temporal consistency in both moving and
static camera scenarios. This will be an interesting direction for
future work.

Mask selection: In this paper, we use user-specified foreground
mask as our input. In practice, interactive or automatic video object
segmentation remains a challenging problem and an active research
field. In the STROLLER sequence, we show a failure case where the
soft shadows and reflections of the moving object are not included
in the user-specified mask, therefore our algorithm cannot remove
them. It is up to the user to include all affected pixels in the mask if
it is desired to remove all traces of an object.

6 Conclusions

In this paper, we presented a robust video completion algorithm that
is capable of handling a wide variety of challenging scenarios. Our
main contribution is to combine the advantages of patch-based op-
timization framework and pixel-wise flow field representation for

temporally coherent synthesis. We formulate the filling process as
a global optimization of color and flow and present an alternating
optimization approach to minimize the objective function. Experi-
mental results show that our approach significantly extends the ca-
pability of video completion to videos containing multiple dynamic
objects, scene depth variations, and captured with a moving cam-
era.

Acknowledgements

J.-B. Huang and N. Ahuja are supported in part by Office of Naval
Research under Grant N00014-16-1-2314.

References

BARNES, C., SHECHTMAN, E., FINKELSTEIN, A., AND GOLD-
MAN, D. 2009. PatchMatch: a randomized correspondence al-
gorithm for structural image editing. ACM Trans. on Graphics
28, 3, 24.

BARNES, C., SHECHTMAN, E., GOLDMAN, D., AND FINKEL-
STEIN, A. 2010. The generalized patchmatch correspondence
algorithm. In ECCV.

BARNES, C., ZHANG, F.-L., LOU, L., WU, X., AND HU, S.-M.
2015. PatchTable: Efficient patch queries for large datasets and
applications. ACM Trans. on Graphics 34, 4, 97.

BHAT, K. S., SEITZ, S. M., HODGINS, J. K., AND KHOSLA,
P. K. 2004. Flow-based video synthesis and editing. In ACM
Trans. on Graphics, vol. 23, ACM, 360–363.

CRIMINISI, A., PÉREZ, P., AND TOYAMA, K. 2004. Region filling
and object removal by exemplar-based image inpainting. IEEE
TIP 13, 9, 1200–1212.

DARABI, S., SHECHTMAN, E., BARNES, C., GOLDMAN, D. B.,
AND SEN, P. 2012. Image melding: Combining inconsistent
images using patch-based synthesis. ACM Trans. on Graphics
31, 4, 82.

DRORI, I., COHEN-OR, D., AND YESHURUN, H. 2003.
Fragment-based image completion. In ACM Trans. on Graph-
ics, vol. 22, 303–312.

EFROS, A. A., AND LEUNG, T. K. 1999. Texture synthesis by
non-parametric sampling. In ICCV, vol. 2.

GRANADOS, M., KIM, K. I., TOMPKIN, J., KAUTZ, J., AND
THEOBALT, C. 2012. Background inpainting for videos with
dynamic objects and a free-moving camera. In ECCV.

GRANADOS, M., TOMPKIN, J., KIM, K., GRAU, O., KAUTZ, J.,
AND THEOBALT, C. 2012. How not to be seenobject removal
from videos of crowded scenes. In Computer Graphics Forum,
vol. 31, 219–228.

GUILLEMOT, C., AND LE MEUR, O. 2014. Image inpainting:
Overview and recent advances. IEEE Signal Processing Maga-
zine 31, 1, 127–144.

HUANG, J.-B., KANG, S. B., AHUJA, N., AND KOPF, J. 2014.
Image completion using planar structure guidance. ACM Trans.
on Graphics 33, 4, 129.

ILAN, S., AND SHAMIR, A. 2015. A survey on data-driven video
completion. Computer Graphics Forum 34, 6, 60–85.

JAMRIŠKA, O., FIŠER, J., ASENTE, P., LU, J., SHECHTMAN, E.,
AND SỲKORA, D. 2015. LazyFluids: Appearance transfer for
fluid animations. ACM Trans. on Graphics 34, 4, 92.

JIA, J., TAI, Y.-W., WU, T.-P., AND TANG, C.-K. 2006. Video
repairing under variable illumination using cyclic motions. IEEE
TPAMI 28, 5, 832–839.

KALANTARI, N. K., SHECHTMAN, E., BARNES, C., DARABI,
S., GOLDMAN, D. B., AND SEN, P. 2013. Patch-based high
dynamic range video. ACM Trans. on Graphics 32, 6, 202–1.

KWATRA, V., SCHÖDL, A., ESSA, I., TURK, G., AND BOBICK,
A. 2003. Graphcut textures: Image and video synthesis using
graph cuts. In ACM Trans. on Graphics, vol. 22, 277–286.

KWATRA, V., ESSA, I., BOBICK, A., AND KWATRA, N. 2005.
Texture optimization for example-based synthesis. In ACM
Trans. on Graphics, vol. 24, 795–802.

LIU, C., AND FREEMAN, W. T. 2010. A high-quality video de-
noising algorithm based on reliable motion estimation. In ECCV.

LIU, C. 2009. Beyond pixels: Exploring new representations and
applications for motion analysis. PhD thesis.

MAC AODHA, O., HUMAYUN, A., POLLEFEYS, M., AND BROS-
TOW, G. J. 2013. Learning a confidence measure for optical
flow. IEEE TPAMI 35, 5, 1107–1120.

MATSUSHITA, Y., OFEK, E., GE, W., TANG, X., AND SHUM, H.-
Y. 2006. Full-frame video stabilization with motion inpainting.
IEEE TPAMI 28, 7, 1150–1163.

NEWSON, A., ALMANSA, A., FRADET, M., GOUSSEAU, Y.,
PÉREZ, P., ET AL. 2014. Video inpainting of complex scenes.
SIAM Journal on Imaging Sciences.

PATWARDHAN, K. A., SAPIRO, G., AND BERTALMIO, M. 2005.
Video inpainting of occluding and occluded objects. In ICIP.

PATWARDHAN, K. A., SAPIRO, G., AND BERTALMÍO, M. 2007.
Video inpainting under constrained camera motion. IEEE TIP
16, 2, 545–553.

PERAZZI, F., PONT-TUSET, J., MCWILLIAMS, B., GOOL, L. V.,
GROSS, M., AND SORKINE-HORNUNG, A. 2016. A bench-
mark dataset and evaluation methodology for video object seg-
mentation. In CVPR.

PRITCH, Y., KAV-VENAKI, E., AND PELEG, S. 2009. Shift-map
image editing. In ICCV.

ROXAS, M., SHIRATORI, T., AND IKEUCHI, K. 2014. Video
completion via spatio-temporally consistent motion inpainting.
Information and Media Technologies 9, 4, 500–504.

SEVILLA-LARA, L., WULFF, J., SUNKAVALLI, K., AND
SHECHTMAN, E. 2015. Smooth loops from unconstrained
video. Computer Graphics Forum 34, 4, 99–107.

SHECHTMAN, E., RAV-ACHA, A., IRANI, M., AND SEITZ, S.
2010. Regenerative morphing. In CVPR.

SHIRATORI, T., MATSUSHITA, Y., TANG, X., AND KANG, S. B.
2006. Video completion by motion field transfer. In CVPR.

STROBEL, M., DIEBOLD, J., AND CREMERS, D. 2014. Flow and
color inpainting for video completion. In German Conference
on Pattern Recognition.

WEXLER, Y., SHECHTMAN, E., AND IRANI, M. 2007. Space-
time completion of video. IEEE TPAMI 29, 3, 463–476.

XUE, T., RUBINSTEIN, M., LIU, C., AND FREEMAN, W. T.
2015. A computational approach for obstruction-free photog-
raphy. ACM Trans. on Graphics 34, 4, 79.

