
DNN-Based Prediction Model for Spatial-Temporal Data

Junbo Zhang1, Yu Zheng1,2,3, Dekang Qi4, Ruiyuan Li2, Xiuwen Yi4
1Microsoft Research, Beijing, China

2School of Computer Science and Technology, Xidian University, China
3Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences

4School of Information Science and Technology, Southwest Jiaotong University, Chengdu, China
{junbo.zhang, yuzheng, v-deq, v-ruiyli, v-xiuyi}@microsoft.com

ABSTRACT
The advances in location-acquisition and wireless communi-
cation technologies have led to massive spatio-temporal (ST)
data, which has unique spatial properties (i.e. the geograph-
ical hierarchy and distance) and temporal properties (i.e. se-
quential, periodic and seasonal trend patterns). In this pa-
per, we propose a Deep learning-based prediction model for
Spatial-Temporal data (DeepST). We leverage ST domain
knowledge to design the architecture of DeepST, which is
composed of three components: 1) temporal dependent in-
stances: describing temporal closeness, period and seasonal
trend; 2) convolutional neural networks: capturing near and
far spatial dependencies; 3) early and late fusions: fusing
similar and different domains’ data. Using DeepST, we build
a real-time crowd flow forecasting system UrbanFlow1. The
experimental results on diverse ST datasets verify DeepST’s
capability of capturing ST data’s spatio-temporal proper-
ties, showing the advantages of DeepST beyond four baseline
methods.

Keywords
Deep Learning; Spatio-Temporal Data; Prediction

1. INTRODUCTION
The advances in location-acquisition and wireless com-

munication technologies have resulted in massive data with
spatial coordinates and timestamps, entitled ST data, in a
diversity of domains, ranging from transportation to envi-
ronment science, from communication systems to social net-
working services. Being different from text and image data,
ST data has unique 1) spatial properties, which consists of a
geographical hierarchy and distance, and 2) temporal prop-
erties, which is consisted of a sequential, periodic and sea-
sonal trend pattern.
1) Spatial properties: first, locations at a higher level of a ge-
ographical hierarchy have a coarser granularity, and the ter-
ritory of a parent node is composed of those of its children.

1http://urbanflow.chinacloudsites.cn/

ACM ISBN .

DOI:

For example, a tourist attraction is located in a district,
which further belongs to a city. Second, there is a geograph-
ical distance between two locations, which can measure the
correlation between the two locations. For instance, near
locations are more similar than distant ones, according to
the first law of geography.
2) Temporal properties: The timestamp of each instance in
an ST dataset allows us to order instances chronologically,
generating sequential properties where adjacent timestamps
usually have a higher similarity than distant ones. On the
other hand, ST data usually has a certain periodic pattern,
which repeats with a certain frequency. For instance, traffic
conditions in morning rush hours may be similar in consec-
utive workdays, repeating every 24 hours.

Learning an effective prediction for ST data will signif-
icantly contribute to a variety of urban applications, such
as air quality forecasting [5], crowd flows prediction, bike
rent/return estimation in bike-sharing systems [3]. How-
ever, it is very challenging to capture all spatial and tempo-
ral properties simultaneously. To address these challenges,
we propose a deep neural network (DNN)-based prediction
model (entitled DeepST) which includes three key compo-
nents: temporal dependent instances, convolutional neural
networks, early and late fusions. The contributions of our
work are two-fold:

• We design a novel deep learning architecture for spatial-
temporal data using the domain knowledge and propose to
employ 1) temporal closeness, period, and seasonal trend to
generate input instance, 2) multiple convolutions to describe
spatial near and far dependencies, 3) early and late fusions
to fuse similar and different domains’ ST data.
• We apply the proposed deep learning model to predict
citywide crowd flows, and develop a real-time flow fore-
casting system (called as UrbanFlow), which can effectively
monitor the fine-grained crowd flows and provide the future
ones in cities.

Figure 1: System Framework. Traj: trajectories.

Figure 2: UrbanFlow: A real-time crowd flow forecasting system

1.1 System Framework
The framework of the system is shown in Figure 1. A

case study about “crowd flows prediction” is used through
the demo paper. There are three major components in our
framework: offline training, online inference, and monitor-
ing website. In the offline training, the collected trajectories
(e.g. taxi) from a city are fed in “Calculating Flows” module
that output two types of flows (see Definition 2). Then these
historical flows are used to learn the DeepST model, which
will be introduced in Section 2.2. In the online inference,
starting with calculating crowd flows from real-time trajec-
tories, the learned DeepST model is used to predict future
flows that are concatenated with the real-time flows later.
In the last component, in order to monitor intuitively, we
generate heatmaps from the real-time and predicted crowd
flows that can show the global status in the city. At the same
time, curves in a single region show the more detailed flows.
Section 2 will introduce the details of monitoring website.

1.2 Demonstration of the System
The system is built as a website, named as UrbanFlow.

Users could view the real-time and forecasting crowd flows
in the cities. The user interface of the system is shown in
Figure 2a. Here we apply UrbanFlow to the area of the
Guiyang city, China. The top right corner of the website
shows the buttons which can switch between different types
of flows. A user could select any grid (represents a region)
on the website and click it to see the region’s detailed flows,
as shown in Figure 2b where blue, black and green curves
indicate flows of yesterday, past & future time at today, re-
spectively. The bottom of the website shows a few sequen-
tial timestamps. The heatmap at a certain timestamp will
be shown in the website when a user clicks the associated
timestamp. Intuitively, the user can watch the movie-style
heatmaps by clicking “play button” (Figure 2c).

2. MODELS
In this section, we first formulate the ST prediction prob-

lem and then introduce DNN-based prediction model (DeepST).

2.1 Formulation of ST Prediction Problem

Definition 1 (Region). There are many definitions of
a location in terms of different granularities and semantic
meanings. In this study, we partition a city into an M ×N
grid map based on the longitude and latitude. A grid denotes
a region.

Definition 2 (Measurements). There are different
types of measurements in a region for different ST applica-
tions, such as crowd flows, air quality [5], bike rent/return
[3]. In this study, we use crowd flows as measurements for
the case. Typically, the movement of crowds can be repre-
sented by a collection of trajectories P. For a grid (m,n)
that lies at the mth row and the nth column, two types of
crowd flows at the kth timestamp, namely in-flow, out-flow,
are defined respectively as

xin,m,n
k =

∑
Trk∈P

|{i > 1|gi−1 6∈ (m,n), gi ∈ (m,n)}|

xout,m,n
k =

∑
Trk∈P

|{i ≥ 1|gi ∈ (m,n), gi+1 6∈ (m,n)}|

where Trk : g1 → g2 → · · · → g|Trk| means the trajectory

at the kth timestamp; gi means the geospatial coordinate;
gi ∈ (m,n) means the point gi lies within grid (m,n); | · |
means the cardinality of a set.

At the kth timestamp, in-flow and out-flow in all M × N
regions can be denoted as Xk ∈ R2×M×N where (Xk)0,m,n =
xin,m,n
k , (Xk)1,m,n = xout,m,n

k .
Formally, for a dynamical system over a spatial region

represented by a M × N grid map, there are Q varying
measurements in each grid over time. Thus, the observation
at any time can be represented by a tensor X ∈ RQ×M×N .

Problem 1. Given the historical observations Xk for k =
0, · · · , t− 1, predict Xt.

2.2 DeepST
Figure 3 shows the architecture of DeepST. Input includes

two parts: previous sequences and global features. Previous
sequences consist of three kinds of sequences (closeness, pe-
riod, and seasonal trend), each of which is fed into a convolu-
tional layer. Then these three layers are mixed (early fusion)
followed by three sequential convolutional layers. The global
features are fed into a fully-connected layer and then com-
bined with convolutional layers (late fusion). The target is
the 3D-tensor at time t.

Figure 3: DeepST Architecture.

1) Temporal-Dependent Instances. For an ST predic-
tion problem, the input may be a very long sequence of
observations, which become very challenging to learn tem-
poral and spatial properties in a single model. On the other
side, some timestamps in the sequence own higher correla-
tion than others for prediction. With domain knowledge,
we can effectively select these higher-dependent timestamp
to reduce the size of the input. To our best knowledge, a
time serials always has one, or two, or all following tempo-
ral properties: 1) temporal closeness; 2) period; 3) seasonal
trend. Based on these insights, the first stage of DeepST is
to generate the input from all given historical observations
which preserves temporal dependencies.
2) Convolutions over Sequences. We here leverage the
CNN module to capture spatial closeness dependency. The
input of the classical convolution is a tensor (e.g. RBG im-
age), therefore it can be written as f(W ∗ X + b) where
∗ denotes the convolution operator followed by an activa-
tion f , W and b are the parameters. Figure 4 shows the
convolutions that naturally provide the capacity of captur-
ing spatial dependencies. We found that one convolutional
layer can commendably describe near dependency in spatial
regions, and two convolutional layers can further depict far
dependency. It means more convolutions can capture much
farther dependency, and even city-wide dependency.

Figure 4: Convolutions for capturing near and far
dependencies. A node represents a spatial region.

In our case, the input are three sequences of tensors (see
Figure 3): 1) the temporal closeness part [Xt−lc , · · · , Xt−1];
2) the period part [Xt−lp·p, Xt−(lp−1)·p, · · · , Xt−p]; 3) the
seasonal trend part [Xt−ls·s, Xt−(ls−1)·s, · · · , Xt−s], where
lc, lp, ls denote lengths of closeness, period, and trend se-
quences, respectively, and p and s are a fixed period (e.g.,
one-day) and seasonal trend span (e.g. one-week), respec-
tively. With these notation, the convolution over sequences

of tensors can be written as

H
(1)
c = f

 lc∑
j=1

W
(1)
cj ∗Xt−j + b

(1)
c


H

(1)
p = f

 lp∑
j=1

W
(1)
pj ∗Xt−j·p + b

(1)
p


H

(1)
s = f

 ls∑
j=1

W
(1)
sj ∗Xt−j·s + b

(1)
s


where ∗ denotes the convolution operator; f is an activation
function, e.g. the rectifier f(z) := max(0, z) [2] in the paper;

W
(1)
· , b

(1)
· are the parameters in the first layer. H

(1)
c , H

(1)
p ,

H
(1)
s are the outputs of the first convolutional layer over

close, periodic, trend sequences, respectively.
3) Fusions. Fusion, also knows as feature-fusion in the
deep learning, can combine multiple datasets within a model
using feature-level-based methods [4]. According to fusing
time, there are two common types in DNN: early and late
fusions [1], which have different functions and will be used
to fuse different types of ST data in our model.

(a) Early Fusion
To capture sequential, periodic and seasonal trend patterns
together, we employ early fusion followed by a convolution
layer which is good at fusing the similar domains’ data [1].
The early fusion based convolution can be written as

H(2) = f
(
W (2)

c ∗H(1)
c + W (2)

p ∗H(1)
p + W (2)

s ∗H(1)
s + b(2)

)
Afterwards, one can stack more convolutional layers upon

it. In our architecture, we continue to stack two convolu-
tional layers. Therefore, there are totally 4 convolutional
layers in the current setting.

(b) Late Fusion
Being different from early fusion, late fusion is more adept
at fusing different domains’ data. Meta feature can provide
some global information such as dayofweek, meteorological
condition, which are always beneficial to predict the crowd
flows, air quality. In our implementation, we use external
factors (i.e. dayofweek, weekday/weekend) as the global fea-
tures. Let Gt be the global feature vector, the late fusion
can be written as

X̂t = tanh
(
W (5) ·H(4) + W

(5)
G ·Gt + b(5)

)
where X̂t is the predicted tensor. tanh is a hyperbolic tan-
gent that ensures the output values are between -1 and 1.

The loss function used is mean squared error: ‖X̂t−Xt‖22.

Table 1: Description on Models
Models Description

Baselines
ARIMA autoregressive integrated moving average
SARIMA seasonal ARIMA
VAR vector autoregressive model
CNN convolutional neural networks, the input is Xt−1

DeepST
C temporal closeness sequence
CP C + periodic sequence
CPT CP + seasonal trend sequence
CPTM CPT + meta data

Note: Convolutions in DeepST and CNN have the similar setting.
There are totally 4 convolutional layers, each of which has 64
feature maps with 3 × 3 kernels.

3. EVALUATION
Models: According to different temporal-dependent instances
generating processings, DeepST has 4 variants (i.e. C, CP,
CPT, CPTM). Table 1 shows the detail of these 4 variants
as well as 4 baselines.
Datasets (Figure 5): (a) TaxiBJ15: In-/Out- flows are
calculated from taxi trajectories in Beijing from 3/1/2015 to
6/30/2015 (time interval = 30 minute); (b) TaxiGY16: In-
/Out- flows are calculated from taxi trajectories in Guiyang
from 3/18/2016 to 5/4/2016 (time interval = 30 minute); (c)
LoopGY16: Two types of traffic flows are collected from
loop detectors in Guiyang from 10/1/2015 to 4/1/2016 (time
interval = 30 minute); (d) BikeNYC14: Bike rent/return
numbers are collected from bike stations in NYC from 4/1/2014
to 9/30/2014 (time interval = 1 hour). Each of them are di-
vided into two parts: the last week’s data is used as test set,
the rest is used as training set.

Figure 5: Datasets. TS: tensor shape, i.e., the size
of the instance at certain timestamp.

Evaluation Metric: We measure our method by Root
Mean Square Error (RMSE) as

RMSE =

√
1

z

∑
i

(vi − v̂i)2

where v̂ and v are the predicted value and ground thuth,
respectively; z is the number of all predicted values.

3.1 Diverse ST Applications
We evaluate the proposed deep learning-based prediction

models on different ST datasets, as shown in Table 2. It is
easy to see that our DeepST models outperform 4 baselines
and CPTM is almost the best among them. It means meta
data is beneficial.

Table 2: RMSE. The smaller, the better.
Models TaxiBJ15 TaxiGY16 LoopGY16 BikeNYC14

ARIMA 25.58 23.31 137.83 10.56
SARIMA 29.11 26.51 135.25 10.07

VAR 25.59 22.70 146.16 9.92
CNN 26.08 22.92 183.51 8.55

C 23.63 22.09 132.26 8.39
CP 23.84 21.51 129.13 7.64

CPT 23.33 20.98 130.53 7.56
CPTM 22.59 19.97 130.25 7.43

3.2 Multi-step Ahead Prediction
One can use historical and near predicted future values

to predict farther values in the future, which is called as
multi-step ahead prediction in this paper. Figure 6 shows
the related results on the dataset TaxiBJ15. DeepST here is
the best of 4 DeepST variants. It demonstrates that DeepST

perform best and can also effectively predict a sequence of
values in future.

Figure 6: Multi-step Ahead Prediction

3.3 More Data Much Better?
We here collect more taxi trajectories (more than 400 days

from 2013 to 2016) in Beijing. The data in the last week is
used as testing data. We use previous 7 days, 14 days, ...,
427 days as training data to learn 61 DeepST models with
the same network setting, and evaluate them on testing data,
as shown in Figure 7. We found that the more data make
the model more robust.

Figure 7: More training data

4. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a DNN-based prediction model

for ST data that can capture both temporal and spatial
properties at once. We applied it to build a real-time crowd
flows forecasting system UrbanFlow which help users moni-
tor the past crowd flows and tell them the future ones. We
evaluated DeepST on a variety of ST prediction tasks, in-
cluding crowd flows, rent/return of bikes, traffic flows. We
will continue to improve DeepST, polish UrbanFlow, and do
more experiments & evaluation.

Acknowledgments
The work was supported by the National Natural Science
Foundation of China (Grant No. 61672399 and No. U1401258),
and the China National Basic Research Program (973 Pro-
gram, No. 2015CB352400).

5. REFERENCES
[1] A. Karpathy, G. Toderici, S. Shetty, T. Leung,

R. Sukthankar, and L. Fei-Fei. Large-scale video
classification with convolutional neural networks. In
Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition, pages 1725–1732, 2014.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012.

[3] Y. Li, Y. Zheng, H. Zhang, and L. Chen. Traffic prediction
in a bike-sharing system. In Proceedings of the 23rd
SIGSPATIAL International Conference on Advances in
Geographic Information Systems, page 33. ACM, 2015.

[4] Y. Zheng. Methodologies for cross-domain data fusion: An
overview. IEEE transactions on big data, 1(1):16–34, 2015.

[5] Y. Zheng, F. Liu, and H.-P. Hsieh. U-air: When urban air
quality inference meets big data. In Proceedings of the 19th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 1436–1444. ACM, 2013.

