

ReBucket: A Method for Clustering Duplicate Crash Reports Based on Call Stack

Similarity

Yingnong Dang
§

, Rongxin Wu
†
, Hongyu Zhang

†
, Dongmei Zhang

§
 and Peter Nobel

Ş

§
Microsoft Research Asia, Beijing, China

Dang.Yingnong@microsoft.com, dongmeiz@microsoft.com

†
Tsinghua University, Beijing, China

se.wu.rongxin@gmail.com, hongyu@tsinghua.edu.cn

Ş
Microsoft Corporation, One Microsoft Way, Redmond, WA, USA

pnobel@microsoft.com

Abstract—Software often crashes. Once a crash happens, a crash

report could be sent to software developers for investigation upon

user permission. To facilitate efficient handling of crashes, crash

reports received by Microsoft’s Windows Error Reporting (WER)

system are organized into a set of “buckets”. Each bucket

contains duplicate crash reports that are deemed as

manifestations of the same bug. The bucket information is

important for prioritizing efforts to resolve crashing bugs. To

improve the accuracy of bucketing, we propose ReBucket, a

method for clustering crash reports based on call stack matching.

ReBucket measures the similarities of call stacks in crash reports

and then assigns the reports to appropriate buckets based on the

similarity values. We evaluate ReBucket using crash data

collected from five widely-used Microsoft products. The results

show that ReBucket achieves better overall performance than the

existing methods. In average, the F-measure obtained by

ReBucket is about 0.88.

Keywords: Crash reports, clustering, duplicate crash report

detection, call stack trace, WER

I. INTRODUCTION

A software crash is one of the most severe manifestations
of a defect (bug) in software, and is typically assigned a high
priority to be fixed. To facilitate debugging, many crash
reporting systems such as Windows Error Reporting [10],
Apple crash report [2], and Mozilla crash report [20] have been
deployed to automatically collect crash reports from users at
the time of crash.

Crash reports, which may be considered “telemetry data”,
can include information such as the crashed module’s name
and call stack traces. Such information is useful to software
developers trying to determine the cause of a crash [10, 23]. In
some cases, a large number of crash reports may arrive daily.
Many of these crash reports are actually caused by the same
bug and are therefore duplicate reports. To help developers
reduce debugging efforts, it is important to automatically
organize duplicate crash reports into one group.

In the Microsoft Windows Error Reporting (WER) system,
crash reports are organized according to “buckets”. Ideally,
each bucket contains crash reports that are caused by the same
bug. A number of heuristics are used to generate the buckets
[10]. Developers prioritize bug fixing efforts based on the
number of crash reports received by each bucket (i.e., the
number of hits). A bucket with a higher number of hits will be

investigated with higher priority compared with a bucket with a
lower number of hits. However, it is still not uncommon that
crashes caused by one bug spread to multiple buckets (the
“second bucket problem”) [10]. Also, WER may generate
many buckets that contain only one or a few number of crash
reports (the “long tail” problem). The existence of the second
bucket problem and the long tail problem reduces the
effectiveness of effort prioritization and problem diagnosis.

To improve the accuracy of bucketing, in this paper, we
propose ReBucket, a method for clustering crash reports based
on call stack similarities. To measure the similarity between
two call stacks, we propose a new similarity measure called the
Position Dependent Model (PDM). PDM computes the
similarity between two call stacks based on the number of
functions on two call stacks, the distance of those functions to
the top frame, and the offset distance between the matched
functions. In ReBucket, a training process is also designed to
tune the parameters required by PDM.

We evaluate ReBucket using crash data collected from five
widely-used Microsoft products. The results show that the
performance of ReBucket is promising. On average, the F-
measure achieved by our method is about 0.88. ReBucket also
achieves better overall results than the existing methods,
including the existing WER bucketing method.

We believe the proposed ReBucket method can help
prioritize debugging efforts and facilitate problem diagnosis.
We have worked closely with a Microsoft product team and
they helped review twenty crash report clusters we obtained by
using ReBucket and confirmed that 70% of them are very
meaningful clusters.

The contributions of this paper are as follows:

· We propose a new bucketing method, ReBucket, for
clustering duplicate crash reports.

· In ReBucket, we propose a new metric (Position
Dependent Model) for measuring similarity between two
call stacks.

· We evaluate our approach on five widely-used Microsoft
products.

The remainder of this paper is organized as follows: We
introduce the background information in Section II. Section III
describes the existing crash bucketing method used in
Microsoft and its limitations. Section IV describes our
proposed bucketing method ReBucket. Section V presents our
experimental design and Section VI shows the experimental

results. We discuss the application of ReBucket in practice in
Section VII and threats to validity in Section VIII. Section IX
surveys related work followed by Section X that concludes this
paper.

II. BACKGROUND

A. The Windows Error Reporting System

Although development teams spend much resource and
effort on software testing before releasing products, in reality,
released software still contains bugs [26]. Some bugs manifest
as crashes in the field.

Because of the wide deployment of Microsoft Windows
systems and the large number of Windows applications
including third-party applications, the volume of crash reports
becomes overwhelming. To automatically collect crash
information from the field, Microsoft deployed a distributed
system called Windows Error Reporting (WER) [10]. When a
crash happens on a client’s Windows platform, the WER
system collects the crash information (including
application/module name, application/module version, and the
call stack trace). The crash information is reported to a WER
server after user permission is obtained. The server then checks
the duplication of the crash report and classifies it into a bucket.
Each bucket is a collection of crash reports that are likely
caused by the same bug. A new bucket is created if the crash
report is considered a new one. Finally, WER automatically
generates bug reports for highly hit buckets and presents them
to developers. op

Figure 1. An overview of crash reporting system

WER has proven its value to Microsoft development teams
[10]. During its ten years of operation, it has collected billions
of crash reports. These crash reports have helped developers
diagnose problems. For example, the Windows Vista team
found and fixed over 5,000 bugs isolated by WER in the beta
release of Vista alone.

B. Crash Call Stack

The call stack is part of crash information collected by
WER at the client side. It plays an important role in
understanding a crash. A call stack consists of a list of ordered
frames, which are recorded at the time of crash. A frame in a
call stack consists of a module name and a function name,
representing a function call or procedure.

Table I shows an example of crash call stack. There are 7
frames in the call stack, with the most recently executed
function at the top and the least recently executed at the bottom.
The ordered sequence for each frame indicates the invoking
relationship between frames. For example, the crashed function
at level 0 (QuickSort) is the top frame, which is invoked by the
function at level 1 (MyProgram::SearchRightPart).Often, one
bug could cause different crash stack traces because of the
different execution scenarios.

Table I. An example of crash call stack

Frame Level Module Function

0 SORT.DLL QuickSort

1 FINDPOINT.DLL MyProgram::SearchRightPart

2 FINDPOINT.DLL MyProgram::DivideAndConquer

3 FINDPOINT.DLL MyProgram::SearchLeftPart

4 FINDPOINT.DLL MyProgram::DivideAndConquer

5 FINDPOINT.DLL FindPoint

6 MYPROGRAM.DLL MyMain

III. THE EXISTING BUCKETING METHOD IN WER

For widely used systems, developers could face a large
number of crash reports sent from users all over the world.
Many of these crash reports are actually caused by the same
bug and are therefore duplicates. To help developers reduce
debugging efforts, it is important to automatically organize
duplicate crash reports into one group after receiving a large
number of crash reports.

In WER, the process of organizing crash reports is named
Bucketing [10]. For each bucket, WER counts the occurrence
of crashes (i.e., the number of hits). Once the crash occurrence
for a bucket exceeds a threshold, a bug report will be generated
for this bucket and will be presented to developers. Developers
can also prioritize the bug fixing efforts based on the number of
crash reports received in each bucket. A bucket with a higher
number of hits will be investigated with higher priority
compared to a bucket with lower hits. Therefore, WER helps
focus the effort on the bugs that have a bigger impact on the
users.

WER has implemented more than 500 bucketing heuristics.
Some of the top heuristics include “L7: include offset of
crashing instruction in faulty module”, “L4: include faulty
module name”, “C14: Identify known faulty device”, and “C12:
Known out-of-date program” [10].

Ideally, the bucketing algorithm should organize all the
crash reports caused by the same bug into one unique bucket.
However, in some scenarios, the WER bucketing heuristics
may assign crash reports caused by the same bug to multiple
buckets (the “second-bucket” problem [10]). It is reported that
for products such as PowerPoint 2010, 30.6% reports are
assigned to a second bucket other than the primary bucket for a
bug [10]. In such cases, the accuracy of bucketing is hampered
because the bucket contains crash reports that are actually
caused by different bugs.

Our empirical studies also find that the existing WER
bucketing method can result in the “long tail” problem. That is,
it could produce a large number of small buckets (i.e., buckets

that contains a small number of crash reports). Experiences
have shown that a bug for a popular system can be always
encountered by many users. Therefore, the “long tail”
phenomenon indicates the existence of problematic buckets.
WER may assign crash reports caused by the same bug to some
“long tail” buckets due to the different manifestations of the
bug in different hardware and software settings. Figure 2
illustrates the “long tail” problem for the MS Publisher project
(release 12 RTM). Around 87.26% buckets contain only 20%
of the hits, while 12.7% buckets contain 80% of the hits. The
“long tail” phenomenon is a general case of the “one-hit
wonders” problem identified by the WER designers [10]). The
“one-hit wonders” are buckets that contain exactly one crash
report. In [10], the authors reported that for products such as
Outlook 2010, 10% buckets are “one-hit wonders”. The
existence of the “long tail” behavior and its special case “one-
hit wonders” may cause misunderstanding of the severity of
crashes and thus wrong prioritization.

HITS

BUCKETS

80% HITS 20% HITS

12.7%

Buckets

87.3% Buckets

Figure 2.The long tail behavior of WER bucketing method

In the next section, we will present our proposed method
that can improve the effectiveness of bucketing crash reports.

IV. THE PROPOSED METHOD: REBUCKET

Our proposed bucketing method is called ReBucket. Figure
3 shows the overall structure of ReBucket. For newly arrived
crash reports, ReBucket first preprocesses them to extract the
simplified call stacks. It then calculates the similarities among
the call stacks using a proposed similarity measure called
Position Dependent Model (PDM). Finally, it clusters the crash
reports into corresponding buckets using the hierarchical
clustering method. The parameters used in PDM can be learned
from a trained model constructed by using the historical bucket
data.

Crash

Reports

PreProcessing

Call Stack

Similarity Measure

Using PDM

Hierarchical

Clustering

Bucket 1

Bucket 2

Bucket n

…

Learned

Parameters

Historical

Buckets

Figure 3. The overall structure of ReBucket

A. PreProcessing

Before calculating the similarities among call stacks and
performing clustering, we first preprocess the crash reports by
extracting the call stack data and removing the following
functions from the call stack:

Immune Functions: Immune functions are functions that
are considered to be “immune” from fault in the event of a
software crash. Immune functions may include those functions
that are simple enough, or have been used successfully for long
enough time, therefore are unlikely to be buggy. By eliminating
the immune functions, developers can concentrate on other
areas within which a bug is more likely located. In our
experiments, we use an immune function list provided by the
Microsoft product team that maintains the subject systems.

Recursive Functions: It is common that recursive
functions occur in call stacks. Typically, the recursive functions
are uninformative and could affect the similarity measurement,
especially when the number of the recursive functions is large.
Therefore, we remove the recursive functions using the
removal algorithm proposed by Brodie et al. [6].

B. Computing Similarity between Call Stacks

1) Analysis of Call Stacks
Before introducing the proposed method for computing the

similarity between two call stacks, we first introduce two
metrics that are used in our method:
Distance to the Top Frame: the position offset between the
current frame and the top frame of a call stack.
Alignment Offset: the offset between the distances to the top
frame for the two matched functions. In two call stacks,
matched functions are the functions that appear in both call
stacks.

f1

f2

f3

f4

f5

f0'

f1'

f2'

f3'

f4'

f5'

f6'

f7'

f8'

Call Stack C1 Call Stack C2

f0

Distance to Crash Point for f4:4

Distance to Crash Point for f6':6

Alignment Offset between

f4 and f6' : 2

Matched Frame

Other Frame
Figure 4. Illustration of call stack metrics

Figure 4 illustrates the above concepts. For both call stacks
C1 and C2, the crash point is at the top frame. The C1 functions
f0, f1 and f4 match the C2 functions f0

’
, f2

’
 and f6

’
, respectively.

For the f4 function in C1, its distance to the top frame is 4. The
distance to the top frame for f6

’
 in call stack C2 is 6. The

alignment offset between the two functions is measured by the
difference in their distances to the top frame. Since the distance
to the top frame for f4 and f6

’
 is 4 and 6 respectively, the

alignment offset is 2.

2) The Position Dependent Model
Basically, if two call stacks belong to the same bug, they

are more likely to be similar. In this subsection, we introduce

the similarity measure used in ReBucket. Our similarity
measure is called Position Dependent Model (PDM), which is
based on the insights that:

· More weight should be put into frames whose position is
closer to the top, since the frame that is blamed for the
bug is likely to occur near the top of the call stack.

· The alignment offset between two matched functions in
two similar call stacks is likely to be small.

Based on the above insights, the similarity between two call
stacks C1 and C2 is defined as follows.

Let L be the set of all the common frame sequences
between C1 and C2. Let Li be one of the common frame
sequences, where Si,1 ,S i,2 ,…Si,k… are the matched functions that
both C1 and C2 contain.

...},,{ 31 LLLL s=
,

...},...,,{ ,3,2,1, kiiiii SSSSL =

Let Pos(Cq, Si,k) be the position of frame Si,k in the call stack
Cq, l be the minimum of the number of frames in call stacks C1
and C2.

The similarity between the call stack C1 and C2 is defined
as Equation 1.

[]

ï
ï
ï
ï

î

ïï
ï
ï

í

ì

=

=

Î

=

-

Î

å

å
),(),()),(),,(min(

0

21

,2,1,2,1

,

)(

)(max

),(

kikikiki

iki

i

sCPossCPososCPossCPosc

Ls

i

l

j

cj

i
LL

eeLQ

e

LQ

CCsim

 (1)

, where c is a coefficient for the distance to the top frame, o is a
coefficient for the alignment offset. The values of c and o can
be set manually based on past experience. In Section IV.D, we
also propose a learning-based method to automatically obtain

the optimal coefficient values. The function)(iLQ is used to

summarize the similarity values achieved by matched functions
in the common frame sequence Li. Its first exponential function
considers the minimum distance to the top frame between a
pair of matched functions. The second exponential function
considers the minimum alignment offset between a pair of
matched functions. The smaller the distance (or offset), the

larger the returned value of the function)(iLQ .

According to Equation (1), the call stack similarity metric is
determined by the common frame sequence that can achieve

the maximum value for the function)(iLQ . It is inefficient to

exhaustively search all the common frame sequences for the
maximum value. Inspired by the solution to the Longest
Common Subsequence problem [8], we apply a dynamic
programming algorithm to solve Equation (1) as follows:
1) We define a similarity matrix M[i,j], which represents the

similarity between two subsequences. The first
subsequence is from the top frame to the ith

 frame in C1,
and the second subsequence is from the top frame to the
jth

 frame in C2.
2) According to the definition of similarity matrix M[i,j], the

calculation of sim(C1,C2) can be transferred into the
problem of calculating M[m,n], where m is the length of
C1 and n is the length of C2, as shown in Equation (4).

3) The problem of calculating M[i,j] can be divided into
several sub-problems, as shown in Equations (2) and (3)
(the coefficients c and o are the same as the ones shown in

Equation 1).The similarity matrix M[i,j] can be obtained
by progressively calculating matrix elements.

ï
î

ï
í

ì +

=

-

-

--

1,

,1

1,1

,

),(cos

max

ji

ji

ji

ji

M

M

jitM

M

(2)

otherwise

ee
jit

2C of frame jth 1C of frame ith if jiabsojic

î
í
ì

=
=---

0
),(cos

)(*),min(*

 (3)

å =
-

=
l

j

cj

nm

e

M
CCsim

0

,
21),((4)

where m is the length of C1, and n is the length of C2.

Using PDM, the similarity of any two call stacks can be
evaluated. Such an evaluation can be used to determine the
appropriateness of including two crash reports into a cluster.

C. Clustering

The clustering is based on the similarity of the call stacks
computed using PDM. If the call stacks are sufficiently similar,
the associated crash reports are grouped into the same bucket.

In our approach, we apply the Agglomerative Hierarchical
clustering technique [11,12], which is a bottom-up clustering
approach. At the beginning of the agglomerative hierarchical
clustering, each call stack belongs to its own cluster. Then, the
closest pair of clusters is selected and merged. To decide which
pair of clusters should be merged, the distance metric between
the clusters should be defined. In our approach, we adopt the
maximum distance of all element pairs between two clusters as
the cluster distance metric. In other words, the cluster distance
metric depends on the maximum distance between the call
stacks in each cluster. Formally, the distance between clusters
is defined as Equations (5) and (6), where Cli and Clj are a pair
of clusters, C1 and C2 are call stacks in Cli and Clj, , respectively.

),(max),(21, 21
CCdistClCldistance

ji ClCClCji ÎÎ=

(5)

),(1),(2121 CCsimCCdist -=

(6)

Figure 5. Illustration of the Agglomerative Hierarchical

Clustering process

In general cases, the complexity of agglomerative

hierarchical clustering is O(n
3
) if all the elements are merged

as one cluster. In our case, we adopt a distance threshold d as a

stopping criterion for the clustering process. The value of d

can be set manually or learnt through a training process (which

is discussed in Section IV.D). Once the maximum distance

between a pair of clusters is above the distance threshold, the

clustering process for this pair is stopped. Finally, the resulting

clusters are the buckets that contain the similar crash reports.

For example, in Figure 5, two buckets (resulted from Cluster 1

and Cluster 2) are produced.

D. Learning Parameter Values via Training
PDM uses two coefficients: c is a coefficient for the

distance to the top frame, and o is a coefficient for the
alignment offset. The distance threshold for clustering is also a
parameter that should be tuned. The values of these parameters
can be set manually. However, inappropriately set parameters
may lead to significantly different similarity results. The
parameter values can also vary from project to project. In our
method, we propose a training process to learn these
parameters’ values. The training process is described as follows.

First, we construct a training dataset from historical bucket
data and the corresponding bug data. From the historical data,
we extract the duplicate crash reports that are caused by the
same bugs and are confirmed by the developers. We also
extract the same number of dissimilar crash reports from
different buckets that are mapped to different bugs. As the
number of dissimilar crash reports is typically large, the
process of extracting dissimilar crash reports is performed by
random sampling. Based on the obtained duplicate and
dissimilar crash reports, we collect pairs of similar and
dissimilar call stacks, and form the training dataset.

For the coefficients c (for the distance to the top frame), o
(for the alignment offset), and d (the distance threshold for
clustering), their values vary independently. Different
combinations can result in different clustering performance.
We propose a search-based algorithm, which exhaustively
searches for the optimal combination.

DetermineOptimalParameters(D: call stack pairs)

1. Assign the coefficient for the distance to top frame c with a small

initial value 0c

2. Assign the coefficient for the alignment offset o with a small initial

value 0o

3. For each call stack pair p in D

4. Calculate the similarity of p using Equation (1) with c and o

5. EndFor

6. Assign the distance threshold d with a small initial value 0d

7. For each call stack pair p in D

8. If the similarity of p is greater than d-1 , Then

label p as similar

Else

label p as dissimilar

9. EndFor

10. Compute F-measure for all the call stack pairs in D

11. Increase d by a small step 1s

12. Repeat step 7-11 until d reaches the maximum threshold max
d

13. Increase o by a small step 2s

14. Repeat step 3-13 until o reaches the maximum threshold
max

o

15. Increase c by a small step 3s

16. Repeat step 2-15 until c reaches the maximum threshold
max

c

17. Select the value of optimalc , optimalo , optimald that achieve the best F-

measure

18. Return optimalc , optimalo , optimald

Figure 6. Determining the optimal parameter values

Figure 6 shows our training algorithm for determining the
optimal parameter values. D contains the collected pairs of
similar and dissimilar call stacks in the training dataset.
According to our empirical experience, the range for c and o
are bounded by (0, 2). In our training algorithm, we specify
o0=0, omax=2, s2=0.1 and c0=0, cmax=2, s3=0.1, which means that
we increase the values of c and o by 0.1 at each time of
iteration. For the distance threshold, we specify d0=0, dmax=1,
s1=0.01, which means that we try similarity threshold from 0 to
1, with a step of 0.01. Finally, the optimal values that can
achieve the best F-measure are selected.

V. EXPERIMENTAL DESIGN

In this section, we describe our experimental design for
evaluating the proposed bucketing method ReBucket.

A. Experimental Setup

In our experiment, we have selected five products of
Microsoft Corporation as our subjects. These systems are
selected because of their popularity and the availability of the
crash data.

· Microsoft Publisher, which is a desktop publishing
application. In our experiment, we use the version
11.0.4920.

· Microsoft OneNote, which is for information gathering
and multi-user collaboration. We use the version
11.0.4920.

· Microsoft PowerPoint, which is used to create slideshows
for presentation purposes. We use the version 10.0.525.

· Microsoft Project, which is a project management tool.
We use the version 10.0.2002.

· Microsoft Access, which is a relational database
management system from Microsoft. We use the version
10.0.2511.

In the remainder of the paper, for the sake of confidentiality,
we only refer to these products as A, B, C, D, E (the
assignment of a product to a letter is random).We have
collected crash reports for each product from the WER system.
The average number of crash reports is 1198 and the average
number of buckets is 75. The mappings between crash reports
and bugs have already been examined and confirmed by
Microsoft developers. Therefore, we have a high quality
“ground truth” dataset for evaluating the performance of
ReBucket. To learn the parameters required by PDM, we use
the 20% first reported data for training and the remaining 80%
data for testing.

B. Research Questions

To evaluate our approach, we design experiments to
address the following research questions:

RQ1: How accurate are the buckets produced by ReBucket?

RQ2: Can ReBucket reduce the number of buckets ?

RQ1 evaluates the effectiveness of our ReBucket method

for the five Microsoft products and compares it to the existing
WER bucketing method. In Section III, we have described the
“long tail” problem that is faced by the existing WER

bucketing method. RQ2 evaluates if ReBucket can mitigate this
problem.

Besides the WER Bucketing method, there are also some
other methods for measuring call stack similarities and
grouping crash reports. In our experiments, we compare
ReBucket with the following two related methods:

· Prefix Match [19]: This method is based on string matching.
Its basic assumption is that two call stacks caused by the
same problem share the common frames closer to the top of
both stacks. In this algorithm, the longest common prefix is
computed as the number of consecutive frames starting
from the top of the stack. Since the Prefix Match method is
only for measuring the similarity between two call stacks,
we apply the hierarchical clustering algorithm to bucket the
crash reports based on the similarity values computed by
Prefix Match. We then compare the results of ReBucket
with those of Prefix Match.

· Crash Graph [14]: A crash graph is an aggregated graphical
view of multiple crashes in the same bucket. Duplicate
crash reports are identified based on graph similarity
measures and their crash graphs are merged. When
comparing the similarity between two crash graphs, a
similarity threshold is needed. As the Crash Graph method
does not specify a training process for selecting the
similarity threshold value, in our experiment, we choose the
similarity threshold that can achieve the best performance
for the training dataset.

C. Evaluation Metrics

To evaluate the performance of our method, we adopt
metrics Purity [1, 24], Inverse Purity [1], and F-measure [1, 24].
These metrics are based on the precision and recall concepts
inherited from Information Retrieval, and are widely used for
cluster evaluations.

We denote C as the set of clusters to be evaluated, L as the
set of categories (actual clusters), Cj as the j

th
cluster, and Li as

the i
th
 category. Then the Precision and Recall of Li

corresponding with Cj are defined as follows:

()
j

ji

ji
C

CL
CL

I
=,Precision

()
i

ji

ji
L

CL
CL

I
=, Recall

Based on the above the definitions, the metrics Purity,
Inverse Purity and F-measure are defined as follows. Here, we
denote N as the total number of clustered elements.

Purity is computed by taking the weighted average of

maximal precision values for each cluster:

{ }),(Precision maxPurity jii

j

j
CL

N

C

å=

The value of Purity is from 0 to 1, the higher the better. Purity

penalizes the noise (wrongly grouped items) in a cluster, but it

does not reward grouping items from the same category

together (i.e., if every cluster contains only one item, the

Purity will be 1).

Inverse Purity is computed by taking the weighted average of

maximal recall values for each category:

{ }),(Recall maxPurity Inverse jij

i

i
CL

N

L

å=

The value of Inverse Purity is from 0 to 1, the higher the better.

Inverse Purity rewards grouping items together, but it does not

penalize noisy items from different categories (i.e., if only one

cluster is identified, the Inverse Purity will be 1). Tradeoffs are

often made between Purity and Inverse Purity: increasing one

at the cost of reducing the other.

F-measure combines Purity and Inverse Purity. In our

evaluation we use Van Rijsbergen’s F-measure [15, 21, 24],

which computes the weighted average of maximal F-measure

values for each category:

{ }),(max measure-F jij

i

i
CLF

N

Lå=

()
),(Recall),(Precision

),(Recall*),(Precision *2
,

jiji

jiji
ji

CLCL

CLCL
CLF

+
=

The value of F-measure is from 0 to 1, the higher the better. It

is a more robust metric that measures the overall quality of a

clustering algorithm.

VI. RESULTS

This section presents our experimental results by addressing
the research questions.

A. Experimental Results for the Research Questions

RQ1: How accurate are the buckets produced by ReBucket?

Table II shows the results achieved by ReBucket for all
subject systems. In general, ReBucket can achieve high Purity
(ranging from 0.828 to 0.969), high Inverse Purity (ranging
from 0.828 to 0.970), and high F-measure (ranging from 0.792
to 0.952). In average, the Purity is 0.925, Inverse Purity is
0.907, and the F-measure is about 0.876.

For all participating products, ReBucket achieves slightly
worse Purity but much better Inverse Purity than the WER
bucketing method. In terms of F-measure, for all products
except Product A, ReBucket achieves better F-measure than the
WER method (the improvement ranging from 3% to 56%). For
Product A, WER only performs slightly better than ReBucket
in terms of F-measure (less than 1%).

As shown in the Table II, in terms of F-measure, ReBucket
performs better than the Prefix Match method in all of the
products. Although the Prefix Match method can achieve high
precision (Purity values are close to 1 for all products), its
recall value (Inverse Purity) is low.

Compared with the Crash Graph method, ReBucket
achieves significantly better F-measures for three out of five
products (Products A, B and E). The improvement ranges from
0.12 to 0.56. For example, for Product A, ReBucket achieves
F-measure 0.792, while Crash Graph achieves 0.676. For the
rest of the two products (Products C and D), Crash Graph
performs just slightly better than ReBucket.

The results show that in general, ReBucket can achieve
better overall performance than the existing methods.

Table II. Evaluation Results of ReBucket

Product

Method Purity

Inverse

Purity F-measure

A

WER Bucketing 0.892 0.840 0.798

ReBucket 0.828 0.925 0.792

Prefix Match 0.977 0.412 0.500

Crash Graph 0.731 0.900 0.676

B

WER Bucketing 0.992 0.466 0.556

ReBucket 0.969 0.828 0.869

Prefix Match 1 0.302 0.415

Crash Graph 0.357 0.957 0.308

C

WER Bucketing 0.995 0.907 0.923

ReBucket 0.969 0.970 0.952

Prefix Match 0.992 0.329 0.452

Crash Graph 0.987 0.959 0.960

D

WER Bucketing 0.918 0.859 0.835

ReBucket 0.907 0.916 0.861

Prefix Match 1 0.520 0.651

Crash Graph 0.932 0.920 0.898

E

WER Bucketing 0.983 0.729 0.791

ReBucket 0.954 0.897 0.906

Prefix Match 1 0.407 0.539

Crash Graph 0.533 0.963 0.493

A

B

C

D

E

The number of Buckets

ReBucket

WER Bucketing

(a)The comparisons on the number of buckets

A

B

C

D

E

The number of Buckets

ReBucket

WER Bucketing

(b)The comparisons on the number of buckets that contains 80%

crash reports

Figure 7. The impact of ReBucket on bucket numbers

0

5

10

15

20

25

30

35

40

1 2

#
 o

f
C

ra
s
h

 R
e

p
o

r
ts

Bucket

ReBucket

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10

#
 o

f
C

ra
s
h

 R
e

p
o

r
ts

Bucket

WER Bucketing

0

1

2

3

4

5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

#
 o

f
C

ra
s
h

 R
e

p
o

r
ts

Bucket

Prefix Match

0

20

40

60

80

100

120

140

160

180

200

1 2

#
 o

f
C

ra
s
h

 R
e

p
o

r
ts

Bucket

Crash Graph

Figure 8. The buckets for Bug 503386

RQ2: Can ReBucket reduce the number of buckets?

Figure 7(a) shows the number of buckets produces by
ReBucket and WER Bucketing methods. For the sake of
confidentiality, the axis labels that indicate the number of
buckets are removed. We can see that after applying ReBucket,
the number of buckets is reduced. For example, for Product A,
ReBucket reduces the number of buckets generated by the
WER bucketing method by 25%.

We also find that after applying ReBucket, the number of
head buckets (i.e., buckets that contain most of the crash
reports) is also reduced. For example, for Product A, using the
original WER bucketing method, 80% crash reports are
contained in 54 buckets, while using ReBucket 80% crash
reports are contained in 38 buckets. Figure 7(b) shows the
number of buckets that contains 80% crash reports, for all
studied products.

Note that Table II also shows that ReBucket and WER
Bucketing methods can achieve similar Purity values, therefore,
the reduction of bucket number does not sacrifice precisions.
These results indicate that using ReBucket, the “long tail”
problem described in Section III is mitigated. The debugging
effort can be reduced since developers need to examine less
number of buckets.

To illustrate the differences in the number of buckets
generated by all compared methods, we select the bug 503386
in Microsoft Access as an example. This bug has 37 associated
crash reports. As shown in the Figure 8, ReBucket clusters all
the crashes related to bug 503386 into two buckets. One bucket
contains 36 duplicate crash reports. One crash report was
misclassified into a single bucket. These two buckets have high
precision in that they do not contain crash reports for other
bugs. The existing WER Bucketing approach generates 10
buckets, which all contain a small number of crash reports (less
than or equal to 8). This is a scenario of “long tail”
phenomenon, which may cause difficulties in debugging. The
Prefix Match method generates even more buckets (33 in total).
The above methods all have high precision in that their buckets
do not contain crash reports for other bugs. Although the Crash
Graph method also produces two buckets for bug 503386, there
are 158 unrelated crashes in the first cluster, which are
misclassified and make it difficult for developers diagnosing
the bug.

B. Discussions of the Results

1) Why does ReBucket Work?

In this section, we discuss why ReBucket outperforms other

methods in bucketing crash reports.

The heuristics of the WER bucketing approach [10] are

mainly based on crash information such as program name,

program version, module name, module version, and function

offset where a crash occurs. However, some of the heuristics

could assign the crashes caused by the same bug into different

buckets because the crash reports contain different crash

information. For example, the crash reports 6683165 and

3720507 are both caused by bug 503386 and should be placed

into the same bucket. Although these two crash reports contain

the same Application ID, Module ID and Version ID

information, they have different crashing function offsets.

Therefore, WER classified them into two different buckets.

The Prefix Match method is based on a call stack similarity

metric, which is computed as the number of consecutive

frames starting from the top of the stacks. As shown in Table

II, the Prefix Match method achieves the best Purity, which

indicates that there is little noise in each cluster. However, this

similarity metric has limitations when the shared frames are

not consecutive. This would result in assigning the duplicate

crashes into different buckets. Table II shows that the Prefix

Match method produces the largest number of buckets,

compared to the other methods.

The Crash Graph method uses a similarity metric based on a

graph model. One of the main problems in Crash Graph is that,

if the crash graph for a bucket contains a large amount of

edges, it is likely to introduce noise. Figure 9 shows one such

example, which depicts the crash graphs for Bucket 880522

and Bucket 1016065. Each function is assigned an ID.

According to the Crash Graph method, the similarity between

these two graphs is high (0.89), so these two buckets should be

merged into one bucket. However, the ground truth is that

Bucket 880522 and Bucket 1016065 belong to different bugs.

183 347 173 135 120 1164 984 484137 94

Bucket 880522

Bucket 1016065

Common FrameDifferent Frame

347 173

132 948130

136 1350 1353119 1352

135 120 1164 984 484137 94

331 ...

Figure 9. An unsuccessful example in Crash Graph

Unlike the related methods, ReBucket introduces less noise

into the buckets and reduces the total number of buckets.

There are four reasons. First, ReBucket removes the immune

functions, reducing the impact of uninformative functions on

similarity measurement. Second, related methods such as the

Crash Graph method do not consider the positions of the

frames, while ReBucket considers both the position of the

frames and the alignment offset between the matched frames.

As a result, the unsuccessful example in Figure 9 can be

avoided using ReBucket. Third, ReBucket adopts the

Agglomerative Hierarchical clustering method, and takes the

maximum distance between the call stacks in each cluster as

the clustering distance. Only when a crash is a duplication of

all the crashes in a bucket, this crash can be merged into this

bucket. Fourth, ReBucket introduces a training process to tune

parameters for different projects. We have verified that,

without a training process, if we use fixed values for the

parameters for all projects (such as setting c and o to 0), the

performance of ReBucket would drop dramatically.

2). The Misclassified Cases by ReBucket

Although our evaluation results show that ReBucket can

achieve better overall results than the existing methods,

ReBucket could still misclassify some crash reports.

For example, if the top k frames in two call stacks are the

same, ReBucket is likely to consider these two call stacks

similar. However, if the real buggy frame is close to the

middle or bottom of the call stacks, it is possible that the two

crashes are actually caused by different bugs. One such

example is shown in Figure 10, which is an example taken

from Microsoft Visio project. Two crashes (crash 378686808

and 375508594) share the top eleven frames and thus have a

high similarity (0.927), ReBucket wrongly clusters these two

reports into the same bucket. But actually the buggy frames

(f11 and f’11) contain two different bugs (bug 640606 and

644158). However, our empirical studies show that such case

is rare (in less than 5% of call stacks).

f0

f1

...

f10

f11

...

f15

f0

f1

...

f10

f’11

f’12

Figure 10. An unsuccessful example in ReBucket

The other possible reason that may cause wrong bucketing

is that ReBucket uses parameters learned from historical data

for clustering. Bias may be introduced from the sampling of

the training data.

VII. APPLYING REBUCKET IN PRACTICE

In this section, we discuss several issues when applying the

ReBucket method in practice.

Since a bucket can contain many duplicate crash reports,

manual examination of bucket information could be a time-

consuming activity. In practice, to further help developers

examine the bucketing results produced by ReBucket, we

visualize the bucketing results in a graphical manner. For call

stacks that belong to the same bucket, we construct the call

graph for each call stack and merge all the call graphs together

(based on the common nodes and edges). For example, Figure

11 illustrates a merged call graph for a bucket, where all the

call stacks in a bucket share the same i+1 frames in the bottom

but differ in top frames. The directed edges indicate the

invoking relationship between two frames and the weight for

each edge (such as w0) indicates the number of times the

relationship appears in the crashes. Such graphs can help

developers understand the behavior of crashes in a bucket.

Another benefit of such graphical representation is that

developers can easily detect patterns associated with certain

types of bugs. For example, developers have found that the

pattern shown in Figure 11 actually indicates the existence of

Heap-related bugs.

…

…

w0

w1

wi

Wk Wi+1Wi+2Wi+3

Figure 11. A merged call graph for a bucket

Computing cost is a practical concern when applying our
method. For the five subject systems we evaluated, the
computing cost ranges from 15 minutes to 2 hours. To reduce
the time for computation, the clustering process can be
accelerated by distributing computing. This is because most of
the computing time is spent on the calculation of call stack
similarity and the calculation of similarity for every call stack
pair is independent with each other.

ReBucket requires historical data in order to train the PDM
model to obtain the optimal parameters. For new projects that
do not have sufficient historical data, the training process could
be an iterative process, in that the parameters can be set with
initial values, and then later tuned when sufficient data is
accumulated.

To evaluate the effectiveness of ReBucket in practice, we

have closely worked with a Microsoft product team and they

have helped review 20 buckets produced by ReBucket. The

developers confirmed that 70% of buckets are very meaningful

clusters, because these buckets helped them understand the

problems and debug. As an example, ReBucket successfully

helped developers identify crash reports that were associated

with a known bug (http://support.microsoft.com/kb/837320).

VIII. THREATS TO VALIDITY

We identify the following threats to validity:

· Subject selection bias: We use only Microsoft product
data in our experiments. Projects of other companies may
have different crash properties and the same experiments
on open source projects may yield different results.

· Data accuracy: We assume that the crash data used in
our evaluation is of high quality. Although the mappings
between a crash report and a bucket are examined and
confirmed by developers, it is possible that some data
might be incorrect due to occasional human errors.
However, although we cannot ensure the 100% accuracy
for the mapping, we are confident with the overall quality
of the data.

· Popular systems: Our bucketing method is based on the
assumption that the software has a large customer base
and can receive a large number of crash reports reported
by the users. If the number of crash reports is small, the
performance of ReBucket could be affected.

IX. RELATED WORK

In recent years, many studies have been dedicated to the
analysis of crashes of real-world, large-scale software systems.
These work studied the construction of crash reporting system
[10], the replication of crash [3], the cause of crash [9], the
prediction of crash-prone modules [13], and statistical
debugging [7,17]. Our work focuses on bucketing crash reports.

Recently, some researchers have proposed methods for
detecting duplicate crash reports. We have already discussed
and compared the Prefix Match and Crash Graph methods in
previous sections. Liu and Han [16] proposed R-Proximity,
which regards two failing traces as similar if the same fault
locations are suggested by fault localization methods. Bartz et
al. [5] proposed a method for finding similar crash reports
based on call stack similarity. They used a tuned call stack edit
distance with five different edit operation costs. Their method
requires to set many penalty parameters. For example, their full
model requires to tune 11 parameters. We also found that the
automatically learning of the optimal values of these
parameters incurs heavy computational cost and is thus difficult
to implement.

Lohman et al. [18] proposed an architecture for quickly
detecting the recurrences of crashes. They also proposed a call
stack matching metric. Similar to our work, they also
considered the distance to the top frame and alignment offset.
However, our method differs in the way the similarity metrics
are formulated and in the way the parameters are tuned.

Modani et al. [19] also proposed to automatically identify
known crash problems by comparing call stack similarities.
They proposed two similarity metrics, top-k indexing and
inverted index. The top-k indexing method is based on the
intuition that two crash call stacks are likely caused by the
same bug if both stacks share the same top k frames. The
inverted index method is based on the assumption that two call
stacks sharing more common functions have higher similarity.
Their evaluation results show that their similarity methods are
comparable to the Prefix Match method. Our proposed method
is also based on similarity measures between call stacks. We
take more information into consideration, such as the distance
to the top frame, and an offset distance between the common
functions. Our evaluation results show that our method
outperforms the Prefix Match method.

Our work is also related to the detection of duplicate bug
reports. The bug reports recorded by bug tracking systems
(such as Bugzilla) contain detailed bug descriptions and can be
treated as textual documents. Therefore, researchers have
applied information retrieval techniques to compare the textual
similarity between two bug reports and determine if they are
duplicates [22]. Wang et al. [25] also combined the text
similarity and execution trace similarity to detect the duplicate
bug reports. The accuracies of their methods are around
40%~60%. DebugAdvisor [4] is a recommendation system that
can detect similar bugs for a new bug and automatically
recommend relevant information (such as experts and source

files) useful for debugging. It can extract call stack from bug
reports (if any) and use the call stack similarity as one feature
for estimating the similarity of bug reports. Our method targets
at clustering duplicate crash reports based on call stack
information that is collected by a crash reporting system. We
do not assume the availability of detailed bug descriptions.

X. CONCLUSIONS

A widely-used, large scale software system could receive a
large number of crash reports, among which many are
duplicates. In Microsoft, the Windows Error Reporting system
(WER) implemented a bucketing method to automatically
group duplicate crash reports into buckets. However, the
performance of WER bucketing method can be improved as it
may classify crash reports caused by the same bugs into
multiple buckets.

In this paper, we have proposed a novel bucketing method
called ReBucket. Our method is based on the Position
Dependent Model (PDM), which is a similarity measure for
call stacks. PDM computes the similarity between two call
stacks based on the number of functions on two call stacks, the
distance of those functions to the top frame, and the offset
distance between the matched functions. We have also
designed a training process for ReBucket to tune the
parameters required by PDM.

We have evaluated ReBucket using crash data collected
from five widely-used Microsoft products. The results show
that ReBucket achieves better overall performance than the
related methods. In average, the F-measure achieved by our
method is about 0.88. A Microsoft product team has also
confirmed the usefulness of 20 sampled buckets produced by
ReBucket.

We believe the proposed ReBucket method can help
developers prioritize debugging efforts and facilitate problem
diagnostic. In the future, we will investigate if the proposed
bucketing method can be applied to projects of other
organizations, as well as open source projects.

ACKNOWLEDGEMENT

We thank Song Ge, Song Huang, and Xiaohui Hou who
helped on the prototype system development. We thank our
Microsoft partners who gave us data access, evaluated our
results and gave us comments, in particular, Meredith McClurg,
Ben Canning, Ben Ross, Mike Hollinshead, and Amanda
Kauffman. We thank our colleagues who discussed with us on
this topic and gave us comments, including Shi Han, Thomas
Moscibroda, and Ryan Kivett. We thank all Microsoft
developers who tried our deployed prototype system and gave
us comments. The Tsinghua co-authors also thank the support
of the NSFC grant 61073006 and Tsinghua University research
grant 2010THZ0.

REFERENCES
[1] E. Amigo, J. Gonzalo, J. Artiles, and F. Verdejo, A comparison of

extrinsic clustering evaluation metrics based on formal constraints. Inf.
Retr. 12, 4, August 2009, 461-486.

[2] Apple, “Technical Note TN2123:CrashReporter”, 2010, available at :
http://developer.apple.com/library/mac/#technotes/tn2004/tn2123.html.

[3] S. Artzi, S. Kim, and M. D. Ernst, ReCrash: Making software failures
reproducible by preserving object states, In Proc.ECOOP 2008, Paphos,
Cyprus, July 2008. pp. 542-565.

[4] B. Ashok, J. Joy, H. Liang, S. Rajamani, G. Srinivasa, and V. Vangala,
DebugAdvisor: A Recommender System for Debugging, in Proc.
ESEC/FSE'09, Amsterdam, The Netherlands, August 2009. pp. 373-382.

[5] K. Bartz, J. W. Stokes, J. C. Platt, R. Kivett, D. Grant, S. Calinoiu, and
G. Loihle, "Finding similar failures using callstack similarity," in
Proceedings of the Third conference on Tackling computer systems
problems with machine learning techniques. San Diego, California:
USENIX Association, 2008.

[6] M. Brodie, S. Ma, L. Rachevsky, and J. Champlin. Automated Problem
Determination Using Call-Stack Matching. Journal of Network and
Systems Management, Vol. 13, No. 2, June 2005.

[7] T. Chilimbi, B. Liblit, K. Mehra, A. Nori, K. Vaswani. “Holmes:
effective Statistical Debugging via Efficient Path Profiling”. In
Proceedings of ICSE 2009, pages 34-44, ACM Press, 2009.

[8] T. Cormen, C. Leiserson, R. Rivest and C. Stein, Introduction to
Algorithms (2nd ed.), MIT Press and McGraw-Hill. pp. 350–355, 2001.

[9] A. Ganapathi, V. Ganapathi, and D. Patterson, "Windows XP kernel
crash analysis," in Proceedings of the 20th conference on Large
Installation System Administration. Washington, DC, USENIX
Association, 2006, pp. 12-12.

[10] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan, G.
Nichols, D. Grant, G. Loihle, and G. Hunt, "Debugging in the (very)
large: ten years of implementation and experience," in Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles. Big
Sky, Montana, USA: ACM, 2009, pp. 103-116.

[11] J. Han and M. Kamber, Data Mining: Concept and Techniques, Elsevier,
2006.

[12] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical
Learning (2nd ed.). New York: Springer, 2009.

[13] D. Kim, X. Wang, S. Kim, A. Zeller, S. C. Cheung, and S. Park.,
"Which Crashes Should I Fix First?: Predicting Top Crashes at an Early
Stage to Prioritize Debugging Efforts," IEEE Trans. Softw. Eng., 2011.

[14] S. Kim, T. Zimmermann, N. Nagappan, Crash graphs: An aggregated
view of multiple crashes to improve crash triage, Proc. 41st
International Conference on Dependable Systems & Networks (DSN),
Hong Kong, June 2011, 486 – 493.

[15] B. Larsen and C. Aone, Fast and effective text mining using linear-time
document clustering. In Proceedings of the fifth ACM SIGKDD
international conference on Knowledge discovery and data mining
(KDD '99), San Diego, CA, 1999, pp. 16–22.

[16] C. Liu and J. Han, Failure Proximity: A Fault Localization-Based
Approach, in Proc FSE'06, Portland, OR, 2006, pp. 286-295.

[17] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, M. Jordan. “Scalable
statistical bug isolation”. In Proceedings of PLDI 2005, pp. 15-26.

[18] G. Lohman, J. Champlin, and P. Sohn. 2005. Quickly Finding Known
Software Problems via Automated Symptom Matching. In Proceedings
of the Second International Conference on Automatic Computing (ICAC
'05). IEEE Computer Society, Washington, DC, USA, 101-110.

[19] N. Modani, R. Gupta, G. Lohman, T. Syeda-Mahmood, and L. Mignet,
Automatically identifying known software problems. In ICDE
Workshops, pages 433–441, 2007.

[20] Mozilla, "Crash Stats", 2010, http://crash-stats.mozilla.com.

[21] C.J. Van Rijsbergen. (1974). Foundation of evaluation. Journal of
Documentation, 30(4), 365–373.

[22] P. Runeson, M. Alexandersson, and O. Nyholm, Detection of Duplicate
Defect Reports Using Natural Language Processing, in Proc. ICSE
2007, Minneapolis,USA, May 2007. pp. 499-510.

[23] A. Schröter, N. Bettenburg, and R. Premraj, “Do stack traces help
developers fix bugs?”, in Proc. MSR 2010, Cape Town, South Africa,
May 2010. pp. 118–121.

[24] M. Steinbach, G. Karypis, and V. Kumar, A comparison of document
clustering techniques, in Proc KDD 2000, Boston, MA, pp. 109–110.

[25] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, "An approach to
detecting duplicate bug reports using natural language and execution
information," in Proc. ICSE’08, Leipzig, Germany, 2008, pp. 461-470.

[26] A. Zeller. Why does my program fail? A guide to automated debugging.
Morgan Kaufmann, May 2005.

