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Abstract—Software often crashes. Once a crash happens, a crash 

report could be sent to software developers for investigation upon 

user permission. To facilitate efficient handling of crashes, crash 

reports received by Microsoft’s Windows Error Reporting (WER) 

system are organized into a set of “buckets”. Each bucket 

contains duplicate crash reports that are deemed as 

manifestations of the same bug. The bucket information is 

important for prioritizing efforts to resolve crashing bugs. To 

improve the accuracy of bucketing, we propose ReBucket, a 

method for clustering crash reports based on call stack matching. 

ReBucket measures the similarities of call stacks in crash reports 

and then assigns the reports to appropriate buckets based on the 

similarity values. We evaluate ReBucket using crash data 

collected from five widely-used Microsoft products. The results 

show that ReBucket achieves better overall performance than the 

existing methods. In average, the F-measure obtained by 

ReBucket is about 0.88. 

Keywords: Crash reports, clustering, duplicate crash report 

detection, call stack trace, WER 

I. INTRODUCTION 

A software crash is one of the most severe manifestations 
of a defect (bug) in software, and is typically assigned a high 
priority to be fixed. To facilitate debugging, many crash 
reporting systems such as Windows Error Reporting [10], 
Apple crash report [2], and Mozilla crash report [20] have been 
deployed to automatically collect crash reports from users at 
the time of crash. 

Crash reports, which may be considered “telemetry data”, 
can include information such as the crashed module’s name 
and call stack traces. Such information is useful to software 
developers trying to determine the cause of a crash [10, 23].  In 
some cases, a large number of crash reports may arrive daily. 
Many of these crash reports are actually caused by the same 
bug and are therefore duplicate reports. To help developers 
reduce debugging efforts, it is important to automatically 
organize duplicate crash reports into one group.  

In the Microsoft Windows Error Reporting (WER) system, 
crash reports are organized according to “buckets”. Ideally, 
each bucket contains crash reports that are caused by the same 
bug. A number of heuristics are used to generate the buckets 
[10]. Developers prioritize bug fixing efforts based on the 
number of crash reports received by each bucket (i.e., the 
number of hits). A bucket with a higher number of hits will be 

investigated with higher priority compared with a bucket with a 
lower number of hits. However, it is still not uncommon that 
crashes caused by one bug spread to multiple buckets (the 
“second bucket problem”) [10]. Also, WER may generate 
many buckets that contain only one or a few number of crash 
reports (the “long tail” problem). The existence of the second 
bucket problem and the long tail problem reduces the 
effectiveness of effort prioritization and problem diagnosis.  

To improve the accuracy of bucketing, in this paper, we 
propose ReBucket, a method for clustering crash reports based 
on call stack similarities. To measure the similarity between 
two call stacks, we propose a new similarity measure called the 
Position Dependent Model (PDM). PDM computes the 
similarity between two call stacks based on the number of 
functions on two call stacks, the distance of those functions to 
the top frame, and the offset distance between the matched 
functions. In ReBucket, a training process is also designed to 
tune the parameters required by PDM. 

We evaluate ReBucket using crash data collected from five 
widely-used Microsoft products. The results show that the 
performance of ReBucket is promising. On average, the F-
measure achieved by our method is about 0.88. ReBucket also 
achieves better overall results than the existing methods, 
including the existing WER bucketing method.  

We believe the proposed ReBucket method can help 
prioritize debugging efforts and facilitate problem diagnosis. 
We have worked closely with a Microsoft product team and 
they helped review twenty crash report clusters we obtained by 
using ReBucket and confirmed that 70% of them are very 
meaningful clusters.  

The contributions of this paper are as follows: 

· We propose a new bucketing method, ReBucket, for 
clustering duplicate crash reports. 

· In ReBucket, we propose a new metric (Position 
Dependent Model) for measuring similarity between two 
call stacks. 

· We evaluate our approach on five widely-used Microsoft 
products. 

The remainder of this paper is organized as follows: We 
introduce the background information in Section II. Section III 
describes the existing crash bucketing method used in 
Microsoft and its limitations. Section IV describes our 
proposed bucketing method ReBucket. Section V presents our 
experimental design and Section VI shows the experimental 



 

results. We discuss the application of ReBucket in practice in 
Section VII and threats to validity in Section VIII. Section IX 
surveys related work followed by Section X that concludes this 
paper.

II. BACKGROUND 

A. The Windows Error Reporting System 

Although development teams spend much resource and 
effort on software testing before releasing products, in reality, 
released software still contains bugs [26]. Some bugs manifest 
as crashes in the field.  

Because of the wide deployment of Microsoft Windows 
systems and the large number of Windows applications 
including third-party applications, the volume of crash reports 
becomes overwhelming. To automatically collect crash 
information from the field, Microsoft deployed a distributed 
system called Windows Error Reporting (WER) [10]. When a 
crash happens on a client’s Windows platform, the WER 
system collects the crash information (including 
application/module name, application/module version, and the 
call stack trace). The crash information is reported to a WER 
server after user permission is obtained. The server then checks 
the duplication of the crash report and classifies it into a bucket. 
Each bucket is a collection of crash reports that are likely 
caused by the same bug. A new bucket is created if the crash 
report is considered a new one. Finally, WER automatically 
generates bug reports for highly hit buckets and presents them 
to developers. op

 
Figure 1. An overview of crash reporting system 

WER has proven its value to Microsoft development teams 
[10]. During its ten years of operation, it has collected billions 
of crash reports. These crash reports have helped developers 
diagnose problems. For example, the Windows Vista team 
found and fixed over 5,000 bugs isolated by WER in the beta 
release of Vista alone. 

B. Crash Call Stack 

The call stack is part of crash information collected by 
WER at the client side. It plays an important role in 
understanding a crash. A call stack consists of a list of ordered 
frames, which are recorded at the time of crash. A frame in a 
call stack consists of a module name and a function name, 
representing a function call or procedure. 

Table I shows an example of crash call stack. There are 7 
frames in the call stack, with the most recently executed 
function at the top and the least recently executed at the bottom. 
The ordered sequence for each frame indicates the invoking 
relationship between frames. For example, the crashed function 
at level 0 (QuickSort) is the top frame, which is invoked by the 
function at level 1 (MyProgram::SearchRightPart).Often, one 
bug could cause different crash stack traces because of the 
different execution scenarios. 

Table I. An example of crash call stack 

Frame Level Module Function 

0 SORT.DLL QuickSort 

1 FINDPOINT.DLL MyProgram::SearchRightPart 

2 FINDPOINT.DLL MyProgram::DivideAndConquer 

3 FINDPOINT.DLL MyProgram::SearchLeftPart 

4 FINDPOINT.DLL MyProgram::DivideAndConquer 

5 FINDPOINT.DLL FindPoint 

6 MYPROGRAM.DLL MyMain 

III. THE EXISTING BUCKETING METHOD IN WER 

For widely used systems, developers could face a large 
number of crash reports sent from users all over the world. 
Many of these crash reports are actually caused by the same 
bug and are therefore duplicates. To help developers reduce 
debugging efforts, it is important to automatically organize 
duplicate crash reports into one group after receiving a large 
number of crash reports. 

In WER, the process of organizing crash reports is named 
Bucketing [10]. For each bucket, WER counts the occurrence 
of crashes (i.e., the number of hits). Once the crash occurrence 
for a bucket exceeds a threshold, a bug report will be generated 
for this bucket and will be presented to developers. Developers 
can also prioritize the bug fixing efforts based on the number of 
crash reports received in each bucket. A bucket with a higher 
number of hits will be investigated with higher priority 
compared to a bucket with lower hits. Therefore, WER helps 
focus the effort on the bugs that have a bigger impact on the 
users. 

WER has implemented more than 500 bucketing heuristics. 
Some of the top heuristics include “L7: include offset of 
crashing instruction in faulty module”, “L4: include faulty 
module name”, “C14: Identify known faulty device”, and “C12: 
Known out-of-date program” [10]. 

Ideally, the bucketing algorithm should organize all the 
crash reports caused by the same bug into one unique bucket. 
However, in some scenarios, the WER bucketing heuristics 
may assign crash reports caused by the same bug to multiple 
buckets (the “second-bucket” problem [10]). It is reported that 
for products such as PowerPoint 2010, 30.6% reports are 
assigned to a second bucket other than the primary bucket for a 
bug [10]. In such cases, the accuracy of bucketing is hampered 
because the bucket contains crash reports that are actually 
caused by different bugs. 

Our empirical studies also find that the existing WER 
bucketing method can result in the “long tail” problem. That is, 
it could produce a large number of small buckets (i.e., buckets 



 

that contains a small number of crash reports). Experiences 
have shown that a bug for a popular system can be always 
encountered by many users. Therefore, the “long tail” 
phenomenon indicates the existence of problematic buckets. 
WER may assign crash reports caused by the same bug to some 
“long tail” buckets due to the different manifestations of the 
bug in different hardware and software settings. Figure 2 
illustrates the “long tail” problem for the MS Publisher project 
(release 12 RTM). Around 87.26% buckets contain only 20% 
of the hits, while 12.7% buckets contain 80% of the hits. The 
“long tail” phenomenon is a general case of the “one-hit 
wonders” problem identified by the WER designers [10]). The 
“one-hit wonders” are buckets that contain exactly one crash 
report. In [10], the authors reported that for products such as 
Outlook 2010, 10% buckets are “one-hit wonders”. The 
existence of the “long tail” behavior and its special case “one-
hit wonders” may cause misunderstanding of the severity of 
crashes and thus wrong prioritization.  
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Figure 2.The long tail behavior of WER bucketing method 

In the next section, we will present our proposed method 
that can improve the effectiveness of bucketing crash reports. 

IV. THE PROPOSED METHOD: REBUCKET 

Our proposed bucketing method is called ReBucket. Figure 
3 shows the overall structure of ReBucket. For newly arrived 
crash reports, ReBucket first preprocesses them to extract the 
simplified call stacks. It then calculates the similarities among 
the call stacks using a proposed similarity measure called 
Position Dependent Model (PDM). Finally, it clusters the crash 
reports into corresponding buckets using the hierarchical 
clustering method. The parameters used in PDM can be learned 
from a trained model constructed by using the historical bucket 
data. 
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Figure 3. The overall structure of ReBucket 

A. PreProcessing

Before calculating the similarities among call stacks and 
performing clustering, we first preprocess the crash reports by 
extracting the call stack data and removing the following 
functions from the call stack:  

Immune Functions: Immune functions are functions that 
are considered to be “immune” from fault in the event of a 
software crash.  Immune functions may include those functions 
that are simple enough, or have been used successfully for long 
enough time, therefore are unlikely to be buggy. By eliminating 
the immune functions, developers can concentrate on other 
areas within which a bug is more likely located. In our 
experiments, we use an immune function list provided by the 
Microsoft product team that maintains the subject systems.  

Recursive Functions: It is common that recursive 
functions occur in call stacks. Typically, the recursive functions 
are uninformative and could affect the similarity measurement, 
especially when the number of the recursive functions is large. 
Therefore, we remove the recursive functions using the 
removal algorithm proposed by Brodie et al. [6]. 

B. Computing Similarity between Call Stacks 

1) Analysis of Call Stacks 
Before introducing the proposed method for computing the 

similarity between two call stacks, we first introduce two 
metrics that are used in our method:  
Distance to the Top Frame: the position offset between the 
current frame and the top frame of a call stack. 
Alignment Offset: the offset between the distances to the top 
frame for the two matched functions. In two call stacks, 
matched functions are the functions that appear in both call 
stacks.   

f1
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Distance to Crash Point for f4:4

Distance to Crash Point for f6':6
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f4 and f6' : 2

Matched Frame

Other Frame  
Figure 4. Illustration of call stack metrics 

Figure 4 illustrates the above concepts. For both call stacks 
C1 and C2, the crash point is at the top frame. The C1 functions 
f0, f1  and f4 match the C2 functions f0

’
, f2

’
 and f6

’
, respectively. 

For the f4 function in C1, its distance to the top frame is 4. The 
distance to the top frame for f6

’
 in call stack C2 is 6. The 

alignment offset between the two functions is measured by the 
difference in their distances to the top frame. Since the distance 
to the top frame for f4 and f6

’
 is 4 and 6 respectively, the 

alignment offset is 2. 

2) The Position Dependent Model 
Basically, if two call stacks belong to the same bug, they 

are more likely to be similar. In this subsection, we introduce 



 

the similarity measure used in ReBucket. Our similarity 
measure is called Position Dependent Model (PDM), which is 
based on the insights that: 

· More weight should be put into frames whose position is 
closer to the top, since the frame that is blamed for the 
bug is likely to occur near the top of the call stack. 

· The alignment offset between two matched functions in 
two similar call stacks is likely to be small.  

Based on the above insights, the similarity between two call 
stacks C1 and C2 is defined as follows. 

Let L be the set of all the common frame sequences 
between C1 and C2. Let Li  be one of the common frame 
sequences, where Si,1 ,S i,2 ,…Si,k… are the matched functions that 
both C1 and C2  contain.  

...},,{ 31 LLLL s=
, 

...},...,,{ ,3,2,1, kiiiii SSSSL =  

Let Pos(Cq, Si,k) be the position of frame Si,k in the call stack 
Cq, l be the minimum of the number of frames in call stacks C1 
and C2. 

The similarity between the call stack C1 and C2 is defined 
as Equation 1. 
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, where c is a coefficient for the distance to the top frame, o is a 
coefficient for the alignment offset. The values of c and o can 
be set manually based on past experience. In Section IV.D, we 
also propose a learning-based method to automatically obtain 

the optimal coefficient values. The function )( iLQ  is used to 

summarize the similarity values achieved by matched functions 
in the common frame sequence Li. Its first exponential function 
considers the minimum distance to the top frame between a 
pair of matched functions. The second exponential function 
considers the minimum alignment offset between a pair of 
matched functions. The smaller the distance (or offset), the 

larger the returned value of the function )( iLQ .  

According to Equation (1), the call stack similarity metric is 
determined by the common frame sequence that can achieve 

the maximum value for the function )( iLQ . It is inefficient to 

exhaustively search all the common frame sequences for the 
maximum value. Inspired by the solution to the Longest 
Common Subsequence problem [8], we apply a dynamic 
programming algorithm to solve Equation (1) as follows: 
1) We define a similarity matrix M[i,j], which represents the 

similarity between two subsequences. The first 
subsequence is from the top frame to the ith

 frame in C1, 
and the second subsequence is from the top frame to the 
jth

 frame in C2. 
2) According to the definition of similarity matrix M[i,j], the 

calculation of sim(C1,C2) can be transferred into the 
problem of calculating M[m,n], where m is the length of 
C1 and n is the length of C2,  as shown in Equation (4). 

3) The problem of calculating M[i,j] can be divided into 
several sub-problems, as shown in Equations (2) and (3) 
(the coefficients c and o are the same as the ones shown in 

Equation 1).The similarity matrix M[i,j] can be obtained 
by progressively calculating matrix elements. 
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where m is the length of C1, and n is the length of C2. 

Using PDM, the similarity of any two call stacks can be 
evaluated. Such an evaluation can be used to determine the 
appropriateness of including two crash reports into a cluster. 

C. Clustering 

The clustering is based on the similarity of the call stacks 
computed using PDM. If the call stacks are sufficiently similar, 
the associated crash reports are grouped into the same bucket.   

In our approach, we apply the Agglomerative Hierarchical 
clustering technique [11,12], which is a bottom-up clustering 
approach. At the beginning of the agglomerative hierarchical 
clustering, each call stack belongs to its own cluster. Then, the 
closest pair of clusters is selected and merged. To decide which 
pair of clusters should be merged, the distance metric between 
the clusters should be defined. In our approach, we adopt the 
maximum distance of all element pairs between two clusters as 
the cluster distance metric. In other words, the cluster distance 
metric depends on the maximum distance between the call 
stacks in each cluster. Formally, the distance between clusters 
is defined as Equations (5) and (6), where Cli  and Clj  are a pair 
of clusters, C1 and C2 are call stacks in Cli and Clj, , respectively.  

),(max),( 21, 21
CCdistClCldistance

ji ClCClCji ÎÎ=
           

(5) 

),(1),( 2121 CCsimCCdist -=
                                              

(6) 

 
Figure 5. Illustration of the Agglomerative Hierarchical 

Clustering process 

In general cases, the complexity of agglomerative 

hierarchical clustering is O(n
3
) if all the elements are merged 

as one cluster. In our case, we adopt a distance threshold d as a 

stopping criterion for the clustering process. The value of d 

can be set manually or learnt through a training process (which 

is discussed in Section IV.D). Once the maximum distance 

between a pair of clusters is above the distance threshold, the 

clustering process for this pair is stopped. Finally, the resulting 

clusters are the buckets that contain the similar crash reports. 

For example, in Figure 5, two buckets (resulted from Cluster 1 

and Cluster 2) are produced.  



 

D. Learning Parameter Values via Training 
PDM uses two coefficients: c is a coefficient for the 

distance to the top frame, and o is a coefficient for the 
alignment offset. The distance threshold for clustering is also a 
parameter that should be tuned. The values of these parameters 
can be set manually. However, inappropriately set parameters 
may lead to significantly different similarity results. The 
parameter values can also vary from project to project. In our 
method, we propose a training process to learn these 
parameters’ values. The training process is described as follows. 

First, we construct a training dataset from historical bucket 
data and the corresponding bug data. From the historical data, 
we extract the duplicate crash reports that are caused by the 
same bugs and are confirmed by the developers. We also 
extract the same number of dissimilar crash reports from 
different buckets that are mapped to different bugs. As the 
number of dissimilar crash reports is typically large, the 
process of extracting dissimilar crash reports is performed by 
random sampling. Based on the obtained duplicate and 
dissimilar crash reports, we collect pairs of similar and 
dissimilar call stacks, and form the training dataset.  

For the coefficients c (for the distance to the top frame), o 
(for the alignment offset), and d (the distance threshold for 
clustering), their values vary independently. Different 
combinations can result in different clustering performance. 
We propose a search-based algorithm, which exhaustively 
searches for the optimal combination.  

DetermineOptimalParameters(D: call stack pairs) 

1. Assign the coefficient for the distance to top frame c with a small 

initial value 0c  

2. Assign the coefficient for the alignment offset o with a small initial 

value 0o  

3.   For each call stack pair p in D 

4.      Calculate the similarity of p using Equation (1) with c and o  

5.   EndFor 

6. Assign the distance threshold d with a small initial value 0d  

7. For each call stack pair p in D 

8.     If the similarity of p  is greater than d-1 , Then 

label p as  similar 

Else  

label p as dissimilar 

9. EndFor 

10. Compute F-measure for all the call stack pairs in D 

11. Increase d by a small step 1s  

12. Repeat step 7-11 until d reaches the maximum threshold max
d  

13. Increase o by a small step 2s  

14. Repeat step 3-13 until o reaches the maximum threshold 
max

o  

15. Increase c by a small step 3s  

16. Repeat step 2-15 until c reaches the maximum threshold 
max

c  

17. Select the value of optimalc , optimalo , optimald that achieve the best F-

measure 

18. Return optimalc , optimalo , optimald  

Figure 6. Determining the optimal parameter values 
 

Figure 6 shows our training algorithm for determining the 
optimal parameter values. D contains the collected pairs of 
similar and dissimilar call stacks in the training dataset. 
According to our empirical experience, the range for c and o 
are bounded by (0, 2). In our training algorithm, we specify 
o0=0, omax=2, s2=0.1 and c0=0, cmax=2, s3=0.1, which means that 
we increase the values of c and o by 0.1 at each time of 
iteration. For the distance threshold, we specify d0=0, dmax=1, 
s1=0.01, which means that we try similarity threshold from 0 to 
1, with a step of 0.01. Finally, the optimal values that can 
achieve the best F-measure are selected.  

V. EXPERIMENTAL DESIGN 

In this section, we describe our experimental design for 
evaluating the proposed bucketing method ReBucket. 

A. Experimental Setup 

In our experiment, we have selected five products of 
Microsoft Corporation as our subjects. These systems are 
selected because of their popularity and the availability of the 
crash data. 

· Microsoft Publisher, which is a desktop publishing 
application. In our experiment, we use the version 
11.0.4920. 

· Microsoft OneNote, which is for information gathering 
and multi-user collaboration. We use the version 
11.0.4920. 

· Microsoft PowerPoint, which is used to create slideshows 
for presentation purposes. We use the version 10.0.525. 

· Microsoft Project, which is a project management tool. 
We use the version 10.0.2002. 

· Microsoft Access, which is a relational database 
management system from Microsoft. We use the version 
10.0.2511. 

In the remainder of the paper, for the sake of confidentiality, 
we only refer to these products as A, B, C, D, E (the 
assignment of a product to a letter is random).We have 
collected crash reports for each product from the WER system. 
The average number of crash reports is 1198 and the average 
number of buckets is 75. The mappings between crash reports 
and bugs have already been examined and confirmed by 
Microsoft developers. Therefore, we have a high quality 
“ground truth” dataset for evaluating the performance of 
ReBucket. To learn the parameters required by PDM, we use 
the 20% first reported data for training and the remaining 80% 
data for testing. 

B. Research Questions 

To evaluate our approach, we design experiments to 
address the following research questions: 

RQ1: How accurate are the buckets produced by ReBucket? 

RQ2: Can ReBucket reduce the number of buckets ? 
 
RQ1 evaluates the effectiveness of our ReBucket method 

for the five Microsoft products and compares it to the existing 
WER bucketing method. In Section III, we have described the 
“long tail” problem that is faced by the existing WER 



 

bucketing method. RQ2 evaluates if ReBucket can mitigate this 
problem. 

Besides the WER Bucketing method, there are also some 
other methods for measuring call stack similarities and 
grouping crash reports. In our experiments, we compare 
ReBucket with the following two related methods:  

· Prefix Match [19]: This method is based on string matching. 
Its basic assumption is that two call stacks caused by the 
same problem share the common frames closer to the top of 
both stacks. In this algorithm, the longest common prefix is 
computed as the number of consecutive frames starting 
from the top of the stack. Since the Prefix Match method is 
only for measuring the similarity between two call stacks, 
we apply the hierarchical clustering algorithm to bucket the 
crash reports based on the similarity values computed by 
Prefix Match. We then compare the results of ReBucket 
with those of Prefix Match. 

·  Crash Graph [14]: A crash graph is an aggregated graphical 
view of multiple crashes in the same bucket. Duplicate 
crash reports are identified based on graph similarity 
measures and their crash graphs are merged. When 
comparing the similarity between two crash graphs, a 
similarity threshold is needed. As the Crash Graph method 
does not specify a training process for selecting the 
similarity threshold value, in our experiment, we choose the 
similarity threshold that can achieve the best performance 
for the training dataset. 

C. Evaluation Metrics 

To evaluate the performance of our method, we adopt 
metrics Purity [1, 24], Inverse Purity [1], and F-measure [1, 24]. 
These metrics are based on the precision and recall concepts 
inherited from Information Retrieval, and are widely used for 
cluster evaluations. 

We denote C as the set of clusters to be evaluated, L as the 
set of categories (actual clusters), Cj as the j

th 
cluster, and  Li as 

the i
th
 category. Then the Precision and Recall of  Li 

corresponding with Cj  are defined as follows: 
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Based on the above the definitions, the metrics Purity, 
Inverse Purity and F-measure are defined as follows. Here, we 
denote N as the total number of clustered elements. 

Purity is computed by taking the weighted average of 

maximal precision values for each cluster: 

{ } ),(Precision  maxPurity jii

j

j
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N

C
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The value of Purity is from 0 to 1, the higher the better. Purity 

penalizes the noise (wrongly grouped items) in a cluster, but it 

does not reward grouping items from the same category 

together (i.e., if every cluster contains only one item, the 

Purity will be 1). 

Inverse Purity is computed by taking the weighted average of 

maximal recall values for each category: 

{ } ),( Recall maxPurity Inverse jij

i

i
CL

N

L

å=  

The value of Inverse Purity is from 0 to 1, the higher the better. 

Inverse Purity rewards grouping items together, but it does not 

penalize noisy items from different categories (i.e., if only one 

cluster is identified, the Inverse Purity will be 1). Tradeoffs are 

often made between Purity and Inverse Purity: increasing one 

at the cost of reducing the other.  

F-measure combines Purity and Inverse Purity. In our 

evaluation we use Van Rijsbergen’s F-measure [15, 21, 24], 

which computes the weighted average of maximal F-measure 

values for each category: 
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The value of F-measure is from 0 to 1, the higher the better. It 

is a more robust metric that measures the overall quality of a 

clustering algorithm.  

VI. RESULTS 

This section presents our experimental results by addressing 
the research questions. 

A. Experimental Results for the Research Questions 

RQ1: How accurate are the buckets produced by ReBucket? 

Table II shows the results achieved by ReBucket for all 
subject systems. In general, ReBucket can achieve high Purity 
(ranging from 0.828 to 0.969), high Inverse Purity (ranging 
from 0.828 to 0.970), and high F-measure (ranging from 0.792 
to 0.952). In average, the Purity is 0.925, Inverse Purity is 
0.907, and the F-measure is about  0.876.  

For all participating products, ReBucket achieves slightly 
worse Purity but much better Inverse Purity than the WER 
bucketing method. In terms of F-measure, for all products 
except Product A, ReBucket achieves better F-measure than the 
WER method (the improvement ranging from 3% to 56%). For 
Product A, WER only performs slightly better than ReBucket 
in terms of F-measure (less than 1%). 

As shown in the Table II, in terms of F-measure, ReBucket 
performs better than the Prefix Match method in all of the 
products. Although the Prefix Match method can achieve high 
precision (Purity values are close to 1 for all products), its 
recall value (Inverse Purity) is low.  

Compared with the Crash Graph method, ReBucket 
achieves significantly better F-measures for three out of five 
products (Products A, B and E). The improvement ranges from 
0.12 to 0.56. For example, for Product A, ReBucket achieves 
F-measure 0.792, while Crash Graph achieves 0.676. For the 
rest of the two products (Products C and D), Crash Graph 
performs just slightly better than ReBucket. 

The results show that in general, ReBucket can achieve 
better overall performance than the existing methods.  

 
 



 

Table II. Evaluation Results of ReBucket 

Product 

 

Method Purity 

Inverse 

Purity F-measure 

A 

WER Bucketing 0.892 0.840 0.798 

ReBucket 0.828 0.925 0.792 

Prefix Match 0.977 0.412 0.500 

Crash Graph 0.731 0.900 0.676 

B 

WER Bucketing 0.992 0.466 0.556 

ReBucket 0.969 0.828 0.869 

Prefix Match 1 0.302 0.415 

Crash Graph 0.357 0.957 0.308 

C 

WER Bucketing 0.995 0.907 0.923 

ReBucket 0.969 0.970 0.952 

Prefix Match 0.992 0.329 0.452 

Crash Graph 0.987 0.959 0.960 

 

D 

WER Bucketing 0.918 0.859 0.835 

ReBucket 0.907 0.916 0.861 

Prefix Match 1 0.520 0.651 

Crash Graph 0.932 0.920 0.898 

E 

WER Bucketing 0.983 0.729 0.791 

ReBucket 0.954 0.897 0.906 

Prefix Match 1 0.407 0.539 

Crash Graph 0.533 0.963 0.493 
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(a)The comparisons on the number of buckets 
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(b)The comparisons on the number of buckets that contains 80% 

crash reports 

Figure 7. The impact of ReBucket on bucket numbers 
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Figure 8. The buckets for Bug 503386 

RQ2: Can ReBucket reduce the number of buckets? 

Figure 7(a) shows the number of buckets produces by 
ReBucket and WER Bucketing methods. For the sake of 
confidentiality, the axis labels that indicate the number of 
buckets are removed. We can see that after applying ReBucket, 
the number of buckets is reduced. For example, for Product A, 
ReBucket reduces the number of buckets generated by the 
WER bucketing method by 25%. 

We also find that after applying ReBucket, the number of 
head buckets (i.e., buckets that contain most of the crash 
reports) is also reduced. For example, for Product A, using the 
original WER bucketing method, 80% crash reports are 
contained in 54 buckets, while using ReBucket 80% crash 
reports are contained in 38 buckets. Figure 7(b) shows the 
number of buckets that contains 80% crash reports, for all 
studied products. 

Note that Table II also shows that ReBucket and WER 
Bucketing methods can achieve similar Purity values, therefore, 
the reduction of bucket number does not sacrifice precisions. 
These results indicate that using ReBucket, the “long tail” 
problem described in Section III is mitigated. The debugging 
effort can be reduced since developers need to examine less 
number of buckets. 

To illustrate the differences in the number of buckets 
generated by all compared methods, we select the bug 503386 
in Microsoft Access as an example. This bug has 37 associated 
crash reports. As shown in the Figure 8, ReBucket clusters all 
the crashes related to bug 503386 into two buckets. One bucket 
contains 36 duplicate crash reports. One crash report was 
misclassified into a single bucket. These two buckets have high 
precision in that they do not contain crash reports for other 
bugs. The existing WER Bucketing approach generates 10 
buckets, which all contain a small number of crash reports (less 
than or equal to 8). This is a scenario of “long tail” 
phenomenon, which may cause difficulties in debugging. The 
Prefix Match method generates even more buckets (33 in total). 
The above methods all have high precision in that their buckets 
do not contain crash reports for other bugs. Although the Crash 
Graph method also produces two buckets for bug 503386, there 
are 158 unrelated crashes in the first cluster, which are 
misclassified and make it difficult for developers diagnosing 
the bug. 



 

B. Discussions of the Results 

1) Why does ReBucket Work? 

In this section, we discuss why ReBucket outperforms other 

methods in bucketing crash reports. 

The heuristics of the WER bucketing approach [10] are 

mainly based on crash information such as program name, 

program version, module name, module version, and function 

offset where a crash occurs. However, some of the heuristics 

could assign the crashes caused by the same bug into different 

buckets because the crash reports contain different crash 

information. For example, the crash reports 6683165 and 

3720507 are both caused by bug 503386 and should be placed 

into the same bucket. Although these two crash reports contain 

the same Application ID, Module ID and Version ID 

information, they have different crashing function offsets. 

Therefore, WER classified them into two different buckets.  

The Prefix Match method is based on a call stack similarity 

metric, which is computed as the number of consecutive 

frames starting from the top of the stacks. As shown in Table 

II, the Prefix Match method achieves the best Purity, which 

indicates that there is little noise in each cluster. However, this 

similarity metric has limitations when the shared frames are 

not consecutive. This would result in assigning the duplicate 

crashes into different buckets. Table II shows that the Prefix 

Match method produces the largest number of buckets, 

compared to the other methods. 

The Crash Graph method uses a similarity metric based on a 

graph model. One of the main problems in Crash Graph is that, 

if the crash graph for a bucket contains a large amount of 

edges, it is likely to introduce noise. Figure 9 shows one such 

example, which depicts the crash graphs for Bucket 880522 

and Bucket 1016065. Each function is assigned an ID. 

According to the Crash Graph method, the similarity between 

these two graphs is high (0.89), so these two buckets should be 

merged into one bucket. However, the ground truth is that 

Bucket 880522 and Bucket 1016065 belong to different bugs. 

183 347 173 135 120 1164 984 484137 94

Bucket 880522

Bucket 1016065

Common FrameDifferent Frame

347 173

132 948130

136 1350 1353119 1352

135 120 1164 984 484137 94

331 ...

 
Figure 9. An unsuccessful example in Crash Graph 

Unlike the related methods, ReBucket introduces less noise 

into the buckets and reduces the total number of buckets. 

There are four reasons. First, ReBucket removes the immune 

functions, reducing the impact of uninformative functions on 

similarity measurement. Second, related methods such as the 

Crash Graph method do not consider the positions of the 

frames, while ReBucket considers both the position of the 

frames and the alignment offset between the matched frames. 

As a result, the unsuccessful example in Figure 9 can be 

avoided using ReBucket. Third, ReBucket adopts the 

Agglomerative Hierarchical clustering method, and takes the 

maximum distance between the call stacks in each cluster as 

the clustering distance. Only when a crash is a duplication of 

all the crashes in a bucket, this crash can be merged into this 

bucket. Fourth, ReBucket introduces a training process to tune 

parameters for different projects. We have verified that, 

without a training process, if we use fixed values for the 

parameters for all projects (such as setting c and o to 0), the 

performance of ReBucket would drop dramatically.  

2). The Misclassified Cases by ReBucket 

Although our evaluation results show that ReBucket can 

achieve better overall results than the existing methods, 

ReBucket could still misclassify some crash reports.  

For example, if the top k frames in two call stacks are the 

same, ReBucket is likely to consider these two call stacks 

similar. However, if the real buggy frame is close to the 

middle or bottom of the call stacks, it is possible that the two 

crashes are actually caused by different bugs. One such 

example is shown in Figure 10, which is an example taken 

from Microsoft Visio project. Two crashes (crash 378686808 

and 375508594) share the top eleven frames and thus have a 

high similarity (0.927), ReBucket wrongly clusters these two 

reports into the same bucket. But actually the buggy frames 

(f11 and f’11) contain two different bugs (bug 640606 and 

644158).  However, our empirical studies show that such case 

is rare (in less than 5% of call stacks).  

f0

f1

...

f10

f11

...

f15

f0

f1

...

f10

f’11

f’12

 
Figure 10. An unsuccessful example in ReBucket 

The other possible reason that may cause wrong bucketing 

is that ReBucket uses parameters learned from historical data 

for clustering. Bias may be introduced from the sampling of 

the training data.  

VII. APPLYING REBUCKET IN PRACTICE  

In this section, we discuss several issues when applying the 

ReBucket method in practice. 

Since a bucket can contain many duplicate crash reports, 

manual examination of bucket information could be a time-

consuming activity. In practice, to further help developers 

examine the bucketing results produced by ReBucket, we 

visualize the bucketing results in a graphical manner. For call 

stacks that belong to the same bucket, we construct the call 

graph for each call stack and merge all the call graphs together 

(based on the common nodes and edges). For example, Figure 

11 illustrates a merged call graph for a bucket, where all the 

call stacks in a bucket share the same i+1 frames in the bottom 

but differ in top frames. The directed edges indicate the 

invoking relationship between two frames and the weight for 



 

each edge (such as w0) indicates the number of times the 

relationship appears in the crashes. Such graphs can help 

developers understand the behavior of crashes in a bucket. 

Another benefit of such graphical representation is that 

developers can easily detect patterns associated with certain 

types of bugs. For example, developers have found that the 

pattern shown in Figure 11 actually indicates the existence of 

Heap-related bugs. 

…

…
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Figure 11. A merged call graph for a bucket 

Computing cost is a practical concern when applying our 
method. For the five subject systems we evaluated, the 
computing cost ranges from 15 minutes to 2 hours. To reduce 
the time for computation, the clustering process can be 
accelerated by distributing computing. This is because most of 
the computing time is spent on the calculation of call stack 
similarity and the calculation of similarity for every call stack 
pair is independent with each other. 

ReBucket requires historical data in order to train the PDM 
model to obtain the optimal parameters. For new projects that 
do not have sufficient historical data, the training process could 
be an iterative process, in that the parameters can be set with 
initial values, and then later tuned when sufficient data is 
accumulated. 

To evaluate the effectiveness of ReBucket in practice, we 

have closely worked with a Microsoft product team and they 

have helped review 20 buckets produced by ReBucket. The 

developers confirmed that 70% of buckets are very meaningful 

clusters, because these buckets helped them understand the 

problems and debug. As an example, ReBucket successfully 

helped developers identify crash reports that were associated 

with a known bug (http://support.microsoft.com/kb/837320). 

VIII. THREATS TO VALIDITY 

We identify the following threats to validity: 

· Subject selection bias: We use only Microsoft product 
data in our experiments. Projects of other companies may 
have different crash properties and the same experiments 
on open source projects may yield different results.  

· Data accuracy: We assume that the crash data used in 
our evaluation is of high quality. Although the mappings 
between a crash report and a bucket are examined and 
confirmed by developers, it is possible that some data 
might be incorrect due to occasional human errors. 
However, although we cannot ensure the 100% accuracy 
for the mapping, we are confident with the overall quality 
of the data.  

· Popular systems: Our bucketing method is based on the 
assumption that the software has a large customer base 
and can receive a large number of crash reports reported 
by the users. If the number of crash reports is small, the 
performance of ReBucket could be affected. 

IX. RELATED WORK 

In recent years, many studies have been dedicated to the 
analysis of crashes of real-world, large-scale software systems. 
These work studied the construction of crash reporting system 
[10], the replication of crash [3], the cause of crash [9], the 
prediction of crash-prone modules [13], and statistical 
debugging [7,17]. Our work focuses on bucketing crash reports.  

Recently, some researchers have proposed methods for 
detecting duplicate crash reports. We have already discussed 
and compared the Prefix Match and Crash Graph methods in 
previous sections. Liu and Han [16] proposed R-Proximity, 
which regards two failing traces as similar if the same fault 
locations are suggested by fault localization methods. Bartz et 
al. [5] proposed a method for finding similar crash reports 
based on call stack similarity. They used a tuned call stack edit 
distance with five different edit operation costs. Their method 
requires to set many penalty parameters. For example, their full 
model requires to tune 11 parameters.  We also found that the 
automatically learning of the optimal values of these 
parameters incurs heavy computational cost and is thus difficult 
to implement. 

Lohman et al. [18] proposed an architecture for quickly 
detecting the recurrences of crashes. They also proposed a call 
stack matching metric. Similar to our work, they also 
considered the distance to the top frame and alignment offset. 
However, our method differs in the way the similarity metrics 
are formulated and in the way the parameters are tuned.  

Modani et al. [19] also proposed to automatically identify 
known crash problems by comparing call stack similarities. 
They proposed two similarity metrics, top-k indexing and 
inverted index. The top-k indexing method is based on the 
intuition that two crash call stacks are likely caused by the 
same bug if both stacks share the same top k frames. The 
inverted index method is based on the assumption that two call 
stacks sharing more common functions have higher similarity. 
Their evaluation results show that their similarity methods are 
comparable to the Prefix Match method. Our proposed method 
is also based on similarity measures between call stacks. We 
take more information into consideration, such as the distance 
to the top frame, and an offset distance between the common 
functions. Our evaluation results show that our method 
outperforms the Prefix Match method. 

Our work is also related to the detection of duplicate bug 
reports. The bug reports recorded by bug tracking systems 
(such as Bugzilla) contain detailed bug descriptions and can be 
treated as textual documents. Therefore, researchers have 
applied information retrieval techniques to compare the textual 
similarity between two bug reports and determine if they are 
duplicates [22]. Wang et al. [25] also combined the text 
similarity and execution trace similarity to detect the duplicate 
bug reports. The accuracies of their methods are around 
40%~60%. DebugAdvisor [4] is a recommendation system that 
can detect similar bugs for a new bug and automatically 
recommend relevant information (such as experts and source 



 

files) useful for debugging. It can extract call stack from bug 
reports (if any) and use the call stack similarity as one feature 
for estimating the similarity of bug reports. Our method targets 
at clustering duplicate crash reports based on call stack 
information that is collected by a crash reporting system. We 
do not assume the availability of detailed bug descriptions. 

X. CONCLUSIONS 

A widely-used, large scale software system could receive a 
large number of crash reports, among which many are 
duplicates. In Microsoft, the Windows Error Reporting system 
(WER) implemented a bucketing method to automatically 
group duplicate crash reports into buckets. However, the 
performance of WER bucketing method can be improved as it 
may classify crash reports caused by the same bugs into 
multiple  buckets. 

In this paper, we have proposed a novel bucketing method 
called ReBucket. Our method is based on the Position 
Dependent Model (PDM), which is a similarity measure for 
call stacks. PDM computes the similarity between two call 
stacks based on the number of functions on two call stacks, the 
distance of those functions to the top frame, and the offset 
distance between the matched functions. We have also 
designed a training process for ReBucket to tune the 
parameters required by PDM. 

We have evaluated ReBucket using crash data collected 
from five widely-used Microsoft products. The results show 
that ReBucket achieves better overall performance than the 
related methods. In average, the F-measure achieved by our 
method is about 0.88. A Microsoft product team has also 
confirmed the usefulness of 20 sampled buckets produced by 
ReBucket.  

We believe the proposed ReBucket method can help 
developers prioritize debugging efforts and facilitate problem 
diagnostic. In the future, we will investigate if the proposed 
bucketing method can be applied to projects of other 
organizations, as well as open source projects. 
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