
In submission

Backpack to Work:
Towards Practical Mixin Linking for Haskell

Edward Yang
Stanford University

Scott Kilpatrick
MPI-SWS

Derek Dreyer
MPI-SWS

Simon Peyton Jones
Microsoft Research

Abstract
In this paper, we describe an evolution of the Backpack mixin pack-
age system which respects the division between package manager
and compiler in the Haskell ecosystem: Backpack’16. Programs
written in Backpack’16 are processed in two phases: first, a mixin
linking phase which computes a “wiring diagram” of components
indifferent to the actual Haskell source code, and then a typecheck-
ing phase on the output of mixin linking which processes Haskell
source. This is not merely a paper design: our architecture was prin-
cipally motivated by our experiences implementing Backpack’16 in
the GHC compiler and the Cabal package system.

1. Introduction
The universal organizing principle for large software systems in
programming languages today is the package, the unit by which
reusable code may be versioned and distributed. However, most
package systems provide only a weak form of modularity, where
packages depend directly on other packages. A stronger form of
modularity would support separate modular development, where
a package may be typechecked against an interface of its depen-
dency. While such facilities have been implemented as extensions
to the core language (e.g., the ML module system), these exten-
sions say little about modularity in the package language, which is
generally independent from the core language and implemented by
a separate tool.

The Backpack package system [7] (hereafter called Back-
pack’14) broke new ground, arguing that mixin packages could be
a good fit for providing package-level modularity. Mixin packages
consist of defined modules (provisions) and declared signatures
(requirements); these packages can be combined together through
a process of mixin linking, which wires up provisions with require-
ments. Mixin packages fit very naturally into the existing patterns
of use for packages. Moreover, since they extend only the pack-
age language they can be retrofitted onto Haskell without requiring
“yet another type system extension.” Finally, mixin linking helps
avoid the preponderance of sharing constraints and the so-called
“fully-functorized” style commonly associated with ML functors.

There is just one problem: Backpack’14 was never imple-
mented. Worse, it cannot be implemented—at least, not as an ex-
tension to the package manager. The problem is that the seman-
tics of Backpack’14 were closely entwined with the semantics of
Haskell itself. It did not respect the traditional abstraction barrier
between the compiler and package manager—a direct implementa-
tion would require close coupling between the two.

Thus motivated, we describe how to divide Backpack’14 across
the abstraction barrier between the package manager and the com-
piler; we call our system Backpack’16. We consider separately the
problem of mixin linking, which is indifferent to Haskell source
code, and the problem of typechecking against interfaces, which is
purely the concern of the compiler. To focus the paper, we do not
address mutual recursion between packages, allowing us to avoid
some orthogonal technical complications. We believe that in prac-
tice this is a minor limitation.

Specifically, our contributions are as follows:

• On the package manager side, we describe the new, unordered
package language users program in Section 2, and show how to
mixin link this language while being indifferent to the contents
of Haskell source files (Sections 3.2 and 4). We achieve this by
recasting mixin linking as the process of computing a wiring di-
agram which describes how the requirements of depended upon
components are instantiated. In fact, the algorithm is essentially
equivalent to early descriptions of mixin linking in the litera-
ture; the difference is that the structure of these wiring diagrams
serve as the basis for type equality in the compiler. Mixin link-
ing produces an intermediate representation, the mixed compo-
nent language, which mediates between the compiler and the
package manager.
• On the compiler side, we describe how to typecheck a mixed

component when its requirements are unfilled (Section 3.4) and
how to subsequently compile it when it is instantiated (Sec-
tion 3.5). These operations require only modest changes to
GHC, specifically the ability to compute the type of an instanti-
ated component. We provide a declarative typing judgment for
mixed components, acting as a specification for the implemen-
tation of the former process. (Section 5).
• We have implemented our design in the GHC compiler and the

Cabal package manager.1 Though the true test of Backpack’16
would be “Backpack”ing in the wild and seeing how it can
be used, we give some evidence that Backpack’16 works by
Backpack’ifying two substantial, real world Haskell packages,
alongside a menagarie of synthetic test cases written in alternate
implementation of mixin linking which is implemented entirely
by the compiler (Section 6).

Although the idea of separating the core language and the mod-
ule/package language is not novel [9, 12, 14], we are first to ex-

1 See PC chair for link to open source release.

1 2016/4/15

ploit these ideas in service of an actual implementation, retrofitting
strong modularity to an existing programming language. Some sig-
nificant tasks remain to complete Backpack’16 (Section 7), but we
have enough experience working with Backpack’16 that we believe
that this design is practical.

2. A tour of Backpack’16
In this section, we give a “user’s eye” tour of the extensions to Ca-
bal and GHC which constitute Backpack’16. While Backpack’16
is in many respects similar to Backpack’14 [7], we will not assume
familiarity with Backpack or Cabal; however, we will pay close
attention to aspects of the design which facilitate the split of Back-
pack’16 across the package manager and compiler.

2.1 The current state of affairs
A package is the unit of distribution, versioning, and sharing, and a
package manager allows developers to reuse code written by other
people. In the case of Haskell, Cabal is the package manager for
GHC and Hackage is the site where Cabal packages are uploaded
and indexed. Each Cabal package has a Cabal file, which describes
one or more components (libraries, executables, test-suites, etc.),
each of which defines modules (with source code in separate files,
ommitted from our examples) and specifies dependencies on other
packages. Here are four example Cabal files, each describing a
single component2:

name: base
library

exposed-modules: Prelude

name: bytestring
library

build-depends: base
exposed-modules: Data.ByteString

name: mysql
library

build-depends: base, bytestring
exposed-modules: Db.MySQL

name: mysql-dsl
library

build-depends: base, mysql, bytestring
exposed-modules: DSL.MySQL

Given a package description, Cabal automates the process of re-
trieving its dependencies, determining a build order, interfacing
with GHC to build them and installing the results.3

Status quo “modularity” via versions A build-depends field
also specifies acceptable version range for a dependency:

name: mysql
version: 1.0
library

build-depends: base, bytestring >= 0.9
exposed-modules: Db.MySQL

2 Though a package is not synonymous with a component, they are often
conflated, since in Cabal, a dependency on a package actually specifies a
dependency on the library component of the package.
3 Strictly speaking, Cabal handles the process of building a single package,
while cabal-install handles the process of building multiple packages. In
practice, however, there is a lot of overlap between the functionality the two
implement, so we refer to both as Cabal in this paper.

Figure 1. Programming against an interface. This is the wiring
diagram for mysql-dsl-2.0. The left side of the blocks (repre-
senting components) have input ports (required signatures), while
the right hand side have output ports (provided modules). Ports are
wired up to show how requirements are filled; a kink indicates that
some renaming took place. Mixin linking wires up requirements
and provisions which have the same module name.

name: mysql-dsl
version: 1.0
library

build-depends:
base, mysql == 1.*, bytestring >= 0.10

exposed-modules: DSL.MySQL

Thus, a build-depends constraint is not a completely definite ref-
erence: the specific version of a dependency is chosen by Cabal’s
dependency resolution step, allowing libraries to be reused at dif-
ferent versions of their dependencies.

2.2 Programming against an interface
The build-depends constraints have the limitation of committing
to a specific library (albeit not a specific version) to implement a
dependency. Perhaps this is fine for base, but we may not want
to force mysql on the users of mysql-dsl —they should be able
to use our library with any database that implements the required
interface. In Backpack’16, a direct dependency can be replaced
with a required signature:

name: db-dsl
library

build-depends: base
required-signatures: Data.ByteString, Db
exposed-modules: DSL

Two new files, Db.hsig and Data/ByteString.hsig, accom-
pany the package description and give the signatures of the func-
tions used by db-dsl. A library with requirements is uninstanti-
ated: it can be typechecked but not run. Every signature source file
specifies the types, instances, functions, values, etc., which must be
provided by any module implementing this requirement. For exam-
ple, the source for Db.hsig might be:

signature Db where
import Prelude (IO)
import Data.ByteString (ByteString) -- a sig!
data Connection
run :: Connection -> ByteString -> IO ()

A client can instantiate a requirement merely by having a module
in scope with the same module name as the requirement; a process
called mixin linking instantiates the requirement. Below, we instan-
tiate db-dsl with mysql and bytestring (depicted in Figure 1):

name: mysql-dsl
version: 2.0
library

2 2016/4/15

Figure 2. Reusing libraries like functors. Here, we consider two
instantiations of db-dsl which define data DbConn. The two
DbConns are not type equivalent, because the respective wiring
diagrams they are associated with are not equal.

build-depends: db-dsl, mysql, bytestring
backpack-includes: mysql (Db.MySQL as Db)
reexported-modules: DSL as DSL.MySQL

db-dsl’s requirements Data.ByteString and Db are filled by the
modules provided by packages bytestring and mysql, respec-
tively. Note that in the case of mysql, the module has the wrong
name, so we use the backpack-includes4 to rename it to the cor-
rect name. Additionally, the reexported-modules line reexports
db-dsl’s module under a new name DSL.MySQL.

A practical consideration is whether or not there is any perfor-
mance cost to using signatures. In particular, if one separately com-
piles uninstantiated components to machine code, no cross-package
inlining can occur, since the component is compiled only against a
signature and not against the code that implements the signature.
For Haskell and GHC, cross-module inlining is a major contribu-
tor to performance, so Backpack’16 does not separately compile
uninstantiated packages. Instead, every distinct instantiation of a
component is compiled against the code that implements its re-
quirements. This process is managed by Cabal to avoid unneces-
sary recompilation, similarly to how Cabal avoids recompiling de-
pendencies that are already installed.

2.3 Reusing libraries with different instantiations
Suppose an application wants to use db-dsl with two different
databases at the same time. It can do so by mentioning db-dsl
twice in backpack-includes (depicted in Figure 2):

name: myapp
library

build-depends:
db-dsl, mysql, sqlite, bytestring

backpack-includes:
db-dsl (DSL as DSL.MySQL)

requires (Db as Db.MySQL)
db-dsl (DSL as DSL.SQLite)

requires (Db as Db.SQLite)
exposed-modules: App

This gives us two copies of db-dsl: one with Db filled with
Db.MySQL, and one with Db filled with Db.SQLite.

However, an important subtlety arises in this situation. Ordinar-
ily, two types are considered equivalent if they have the same iden-
tity: an identity consists of both the name of the type and the name
of the module which originally defined the type. Suppose, however,
that db-dsl contained a module which defined a type:

4 Cabal already uses includes to denote C header includes.

Figure 3. Composing libraries with requirements. It is possible to
use components without filling all of their requirements; in that
case, those requirements are propagated to the requirements of the
enclosing component.

module DSL(DbConn) where
import Db
data DbConn = DbConn Connection URL

The identity of DbConn must somehow depend on how we decided
to implement Connection: the DbConn backed by mysql is dis-
tinct from the DbConn backed by sqlite (after all, they may con-
tain utterly different Connection values). Thus, in Backpack’16,
the identity of a type also contains the wiring diagrams of the com-
ponents which defined the types in question. Now, the two DbConns
come from distinct db-dsls which have different wiring diagrams;
thus, they are distinct types in Haskell.

2.4 Composing libraries with requirements
Unlike functors, it is easy to use mixin linking to only partially in-
stantiate components or combine their requirements. For example,
consider this alternate version of mysql with a requirement:

name: mysql-indef
library

build-depends: base
required-signatures: Data.ByteString
exposed-modules: Db.MySQL

One might like to reformulate mysql like this so that it can be used
with any package implemeting the Data.ByteString interface.
We can use this package to create a version of db-dsl which is par-
tially instantiated: that is, it is instantiated with mysql-indef, but
leaves Data.ByteString unimplemented (depicted in Figure 3):

name: mysql-dsl-indef
library

build-depends: db-dsl, mysql-indef
backpack-includes: mysql-indef (Db.MySQL as Db)
reexported-modules: DSL.Db as DSL.Db.MySQL

mysql-dsl-indef has an implicit requirement Data.ByteString,
which is the merge of the requirements of db-dsl and mysql-indef.
For example, if we have the requirements:

-- db-dsl’s requirement
signature Data.ByteString

data ByteString
length :: ByteString -> Int

-- mysql-indef’s requirement
signature Data.ByteString

data ByteString
concat :: [ByteString] -> ByteString

The merged requirement is:

signature Data.ByteString
data ByteString
length :: ByteString -> Int
concat :: [ByteString] -> ByteString

3 2016/4/15

Source component

Resolved component (rcomp)

Mixed component (mcomp)

Dependency resolution

Mixin linking

Typechecking

.hi files

Cabal

GHC/Cabal

Instantiated component DAG

Instantiation

Compilation

.hi and .o files

(for components with no holes)

Figure 4. Diagram of the pipeline

Notice that the two type declarations for ByteString have been
merged to one: this is how mixin linking eliminates the need for
sharing constraints!

3. The pipeline
The implementation and semantics of Backpack’16 is structured as
a series of passes (Figure 4) on several intermediate languages (Fig-
ure 5). The key idea is that some of these passes can be performed
solely by the package manager, without inspecting any Haskell
code. In this section, we will give a detailed summary of all the
phases in this pipeline, starting with the source package language
described in the previous section, and continuing on to two interme-
diate languages that will serve as the basis for our semantic account
for Backpack’16. Our running example will be a simplified version
of the final example from the tour (Figure 3), shown in Figure 8.

3.1 Dependency resolution to a resolved component
The first step in processing a source component is dependency
resolution, the existing Cabal phase that selects the versions and
conditional flags of all direct dependencies of a source component
(and their transitive direct dependencies as well). For example,
Figure 6 shows the results of resolving a few examples from the
tour, with each component renamed to a component identifier,
which records the name, version, and a hash (e.g., aaa) recording
how its direct dependencies were resolved to component identifiers.

The result of dependency resolution is a resolved component
(Figure 7(a)) which has all conditionals and fields irrelevant to
Backpack’16 eliminated, and all direct dependencies resolved to
component identifiers. A resolved component is precisely the frag-
ment of the Cabal package language which is relevant to Back-
pack’16, written in a form convenient for processing (e.g., each
exposed-module is specified individually and explicitly associ-
ated with its source).

Dependency resolution in Cabal is a separate topic in its own
right [4, 10], beyond the scope of this paper. Instead, we simply

Source component The smallest unit of user-written source
which can have its dependencies resolved, e.g., a library,
an executable or a test suite. A source package con-
tains one or more source components, and is the unit of
code that may be distributed (e.g., on Hackage). A source
package is identified by a package identifier consisting
of a package name and package version (e.g., p-0.1); a
source component is in turn identified by a source com-
ponent identitifer consisting of the package identifier
with the name of the component.

Resolved component (rcomp in Figure 7(a)) The output of
dependency resolution on a source component. A re-
solved component is the input source with direct de-
pendencies resolved to other resolved components, and
Backpack’16-irrelevant Cabal fields dropped. As depen-
dency resolution is nondeterministic, a resolved compo-
nent is identified by a component identifier (p), which
augments the source component identifier with the re-
solved component identifiers of the direct dependencies.
(Thus, the component identifier identifies the entire tran-
sitive source a component depends on.) In Backpack’16,
we can treat component identifiers as opaque strings.

Mixed component (mcomp in Figure 7(b)) The output of
mixin linking on a resolved component, where we have
computed the “wiring diagram” for the direct dependen-
cies of the unit, describing how requirements of the re-
solved component’s direct dependencies have been (par-
tially) filled. Mixin linking is deterministic; thus, a mixed
component is also identified by a component identifier. A
mixed component can be typechecked by the compiler.

Figure 5. Glossary of representations in Backpack’16

component db-dsl-1.0-aaa
backpack-include: base-4.7-bbb (Prelude)
required-signature: Data.ByteString
required-signature: Db
exposed-module: DSL.Db

component mysql-indef-1.0-ccc
backpack-include: base-4.7-bbb (Prelude)
required-signature: Data.ByteString
exposed-module: Db.MySQL

component mysql-dsl-indef-1.0-ddd
backpack-include: base-4.7-bbb (Prelude)
backpack-include: db-dsl-1.0-aaa (DSL.Db) requires (Db)
backpack-include: mysql-indef-1.0-ccc (Db.MySQL as Db)
required-signature: Data.ByteString
reexported-module: DSL.Db as DSL.Db.MySQL

Figure 6. Resolved components for mysql-dsl-indef-1.0.

4 2016/4/15

m Module name
p, q Component identifier

hsbody Module source
hssig Signature source

rcomp ::= component p {rdecl}
rdecl ::= backpack-include: p rns

| exposed-module:m {hsbody}
| other-module:m {hsbody}
| reexported-module:m asm′

| required-signature:m {hssig}
rns ::= [(rn)] [requires (rn′)]
rn ::= m as m′

| m

(a) Resolved components.

Ξ̃ ::= ∀Θ. {Σ̃} Component shape
Θ ::= 〈m〉 Required module variables
Σ̃ ::= m 7→ M Provided modules
Γ̃ ::= p . Ξ̃ Component shape context

M ::= P :m Module identity
| 〈m〉 Module hole

P ::= p[S] Instantiated component identifier
S ::= m=M Module substitution

mcomp ::= component p Θ {mdecl} Mixed component
mdecl ::= dependency P (r) Direct dependency

| modulem {hsbody} Module definition
| signaturem {hssig} Signature definition

r ::= m 7→ m′ Module renaming

(b) Component shapes and mixed components.

Figure 7. Syntax of intermediate languages

assume that we have a black box which produces resolved com-
ponents. However, we do have to mention one thing about reso-
lution: how are build-depends fields from a source component
translated into backpack-include fields in the resolved com-
ponent? For any package p mentioned in build-depends that
is not mentioned in backpack-includes, it simply translates to
backpack-include: p.

3.2 Mixin linking to a mixed component
The next step is mixin linking, which elaborates a resolved com-
ponent into a mixed component and computes its component shape
(Ξ̃ ::= ∀Θ. Σ̃). The latter describes what modules the component
requires (Θ) and provides (Σ̃). A mixed component essentially de-
scribes the set of command line flags that will eventually be passed
to GHC. The syntax of mixed components is given in Figure 7(b):

• dependency P (r) indicates an external component depen-
dency, which should be brought into scope for imports accord-
ing to the renaming r. P is an instantiated component identifier;
a component identifier augmented with a module substitution
S ::= m=M specifying how every requirement of the com-
ponent is instantiated. (Compare to the backpack-include in
a resolved component, which only gives a component identi-
fier).
• module m {hsbody} indicates that this component defines a

module named m with Haskell source code hsbody .

component p component base
required-signature: A exposed-module: W
required-signature: B
exposed-module: Y component q

required-signature: A
component r exposed-module: X
required-signature: A
backpack-include: base (W)
backpack-include: p (Y) requires (B)
backpack-include: q (X as B)
reexported-module: Y as Z

(a) Heavily simplified version of Figure 6 to serve as the
running example: p is db-dsl, q is mysql-indef and r is
mysql-dsl-indef; signature A is Data.ByteString and signa-
ture B is Db.

component base . {W 7→ base[]:W}
module W(I(..)) {data I = MkI I; f (MkI i) = i}

component p 〈A〉 〈B〉 . {Y 7→ p[A=〈A〉, B=〈B〉]:Y}
signature A {data J}
signature B {data K}
module Y {import A; import B; data L = MkL J K}

component q 〈A〉 . {X 7→ q[A=〈A〉]:X}
signature A (I(..)) {data I = MkI I}
module X (I(..), K(..)) {import A; data K = MkK I}

component r 〈A〉 . {Z 7→ p[A=〈A〉, B= q[A=〈A〉]:X]:Y}
dependency base[] (W 7→ W)
signature A (I(..)) {import W(I(..))}
dependency q[A=〈A〉] (X 7→ B)
dependency p[A=〈A〉, B= q[A=〈A〉]:X] (Y 7→ Y)

(b) Mixed components. Each component is ordered and annotated
with its provided modules, as component p 〈m〉 . {Σ̃}.

base : {} →

W :
iface (base[]:W.I, base[]:W.f)
data I :: * = MkI base[]:W.I
f :: base[]:W.I → base[]:W.I


p : ∀〈A〉〈B〉. ∀{A.J}{B.K}.{

A :
iface ({A.J})
data J :: * , B :

iface ({B.K})
data K :: *

}
→{

Y :
iface (p[A=〈A〉, B=〈B〉]:Y.L)
data L :: * = MkL {A.J} {B.K}

}
q : ∀〈A〉. ∀{A.I}.{

A :
iface ({A.I})
data I :: * = MkI {A.I}

}
→{

X :
iface ({A.I}, q[A=〈A〉]:X.K)
data K :: * = MkK {A.I}

}
r : ∀〈A〉. ∀{A.J}.{

A :
iface (base[]:W.I, {A.J})
data J :: *

}
→ {}

(c) Component types. The full syntax for types is in Figure 9.

Figure 8. Syntax, shapes and types for running example

5 2016/4/15

• signaturem {hssig} indicates that this component has a signa-
ture named m.

The most important part of mixin linking is the computation of
instantiated component identifiers in dependency declarations.
While a syntactic semantics for mixin linking is given in Section 4,
the mixin linking algorithm can actually be understood entirely
pictorially:

Here, we look at the process of mixin linking p and q in the
component r in our running example (Figure 8). The includes of
p and q are represented as boxes, each of which have an input port
for every required module (A for q and A, B for p), and an output
port for every provided module (X for q and Y for p). Every port is
labeled with a module name, which may be renamed according to
the backpack-include (e.g., X from q is renamed to B).

These two components are linked in two ways: first, the (re-
named) output of q is linked to the input of p which has the same B;
second, the input A of p and q are merged together to form a single
input for r. The result is a complete wiring diagram for r5:

With this wiring diagram in hand, we can say what the shape of r is
by successively computing module identities (M) and instantiated
component identifiers (P) for the modules and components defined
in the component. In r, we first bind a module variable 〈A〉 (a
module identity) for our unfilled requirement A. 〈A〉 feeds into
the input port for q: thus we give q the instantiated component
identifier q[A=〈A〉], mapping each of its input ports (A) to the
module identity (〈A〉) that filled it. As X is defined in q, it then gets
the module identity q[A=〈A〉]:X. We continue computing identities
until we know the identity of every exported or reexported module
in r; in this case, Y from p (which is reexported as Z). Then the
component shape of r is ∀〈A〉. {Z 7→ p[. . .]:Y}.

The elaborated mixed component for r can be seen in Fig-
ure 8(b); it too follows straightforwardly from the wiring diagram.
In particular, the dependency requirements that are to be merged
for signature A are from p and q, as is evident from the diagram.

3.3 Ordering a mixed component
There is a minor step which must be done before typechecking a
mixed component: we must order the declarations of a mixed com-
ponent since declarations in the earlier languages in the pipeline are

5 Well, mostly complete; base is omitted since it doesn’t contribute in any
interesting way to linking.

Ξ ::= ∀Θ. ∀θ. {ΣR} → {ΣP } Component type
θ ::= 〈m.n〉 Name variable quantifiers
Σ ::= m : τ Provided/required types
Γ ::= p : Ξ Component typing context

τ ::= iface (Ns) {ty} Module type
Ns ::= N Export specification
ty ::= data n :: kind Defined entity spec

| data n :: kind = · · ·N · · ·
| n :: · · ·N · · ·
| · · ·

n Haskell source-level entity name
N ::= M.n Original name

| {m.n} Name hole
Sn ::= m.n=N Name substitution

Figure 9. Semantic objects of Haskell with Backpack’16.

unordered. At this point, we step into the realm of the GHC com-
piler, as this ordering depends on the import statements within
(Haskell-level) modules and signatures. We can define a topologi-
cal ordering on declarations in a mixed component as follows:

• Obviously, every module/signature declaration depends on any
module/signature/dependency declaration which defines a mod-
ule it imports.
• Every module declaration implicitly depends on every signature

declaration in the component. (This means that it is illegal for a
signature to import a locally defined module. In the absence of
mutual recursion such signatures would not be implementable.)
• A dependency declaration dependencyP depends on the signa-

ture declarations for every free module variable in P . For exam-
ple, in the definition of component r in Figure 8(b), signature A
must precede the dependencies on p and q, because both men-
tion 〈A〉; but can come after the base dependency which does
not depend on A.

A dependency cycle indicates mutual recursion between Haskell
modules and is not allowed by GHC. (In principle, other compilers
might be more permissive.)

3.4 Typechecking a mixed component
After mixin linking has produced a mixed component definition
from a resolved component definition, the component can now be
typechecked into Haskell’s semantic objects (Figure 9). We now
consider how to typecheck each of the declarations in a mixed
component. Broadly speaking, the type of a component Ξ is a
function type ΣR → ΣP , mapping from the required types ΣR
to the provided types ΣP (we’ll say more about the quantifiers
shortly).

Typechecking a module A module is typechecked to produce a
module type τ , consisting of an export specification Ns—what gets
brought into scope when you import this module—and a set of
defined entity specifications ty—the types and values defined by
this module. Syntactically, these are represented with a notation
reminiscent of Haskell module declarations: iface (Ns) {ty}.

For example, the module W in base (Figure 8(b)) type checks to
the following module type (also given syntactically in Figure 8(c)):

6 2016/4/15

In the diagram, the enboxed references to I and f have been wired
up to their definitions. In other words, there are no unresolved
Haskell-source level names in a module type: all names are re-
solved to original names N ::= M.n, which serve as unique iden-
tifiers for any entities; in the diagram, this is shown by wiring them
up. An original name for an entity defined in a module is generated
by joining the identity of the module being compiled—base[]:W in
this case— with the Haskell source level name (e.g., I, f).

Module types serve two key functions. First, the export specifi-
cation denotes the entities made available when resolving a module
import statement of this module.6 Second, the defined entity spec-
ification of base[]:W.I denotes the “type” (or rather, the kind) of
this Haskell type. If, when typechecking another module, we need
to look up the kind of base[]:W.I, we look up the module type of
base[]:W from the context and then find the defined entity specifi-
cation for I within the module type.

Typechecking a signature Typechecking q (Figure 8(b)) from
our running example requires us to deal with a signature declara-
tion. Here is a representation of the final type of q, which we can
think of as a zoomed in version of the diagram from Section 3.2:

In the diagram, the declarations from the signature are drawn ex-
ternally from q. We do not know what module will be used to fill
the requirement A, and consequently, we don’t know what original
name will provide an implementation of I, although we do have a
type which it must satisfy once we do know the original names.

In mixin linking, we bound a module variable 〈A〉 to represent
the unknown module identity. In typechecking, we bind a name
variable {m.n} to represent the unknown entity n required by
requirement m.

In theory, we typecheck a signature source file in much the same
way that we a typecheck a module, assigning a fresh name variable
for each defined entity in the signature. In practice, we want to
avoid forcing the user to explicitly write the full requirement of
the component; rather, we’d rather infer the requirement from the
local signature as well as the dependencies of the component. We
lack a good formal model for this process (see Section 7.2), so in
the formal development in Section 5, we assume that the inferred
requirement type is given nondeterministically.

You may be wondering why name variables are not simply
defined as 〈m〉.n. In fact, names of this form demand that n be
defined by 〈A〉 itself, ruling out the possibility that it reexports n
from another module.

6 The export specification of this module type should also mention the
data constructor MkI. To simplify the presentation, we omit such subordi-
nate names in export specifications. See the espc semantic object of Back-
pack’14 [7].

Typechecking a dependency Now we can define the key opera-
tion for typechecking in Backpack’16: how to compute the type of
q instantiated with an implementation for its requirements. These
instantiations are specified to the compiler via dependency decla-
rations. Let’s consider a simple one: filling q’s requirement with W
from base, i.e., dependency q[A= base[]:W].

There are two key steps in this diagram: first, we take the required
export specification from q, and the provided export specification
from base, and we perform export matching, instantiating the name
variable with its true identity (diagramatically, it’s just a line.)
Obviously, you can provide more exports than you require, but if
you don’t provide enough this step fails.

The second step is signature matching: we check if the type
provided by base matches the required type of q. This step must
occur after export matching: otherwise, we don’t know that Is
mentioned in the constructor MkI are the same.

The final types of q are the same types as before, but now with
their module variables and name variables resolved according to
the module substitution and name matching. What the final original
names of K and I exported by q? I is easy: it’s just base[]:W.I. K is
not too difficult either; recall that the uninstantiated original name
for K is q[A=〈A〉]:X.K. Then, applying the module substitution A=
base[]:W will give you the final module name. Alternately, just read
it off the diagram!

3.5 Instantiation and compilation
Typechecking is all very well and good, but what about running our
programs? For both soundness reasons (Section 7) and performance
reasons, it is desirable to defer compiling until we know how all the
requirements of a component are to be filled.

When we have a mixed component which has no unfilled re-
quirements, the package manager computes the instantiated com-
ponent graph, reflecting all of the concrete code dependencies of
the component. Specifically, given a closed instantiated compo-
nent identity p[S], for every dependency P of p’s mixed com-
ponent, recursively instantiate P JSK. Furthermore, for every m=
P :m′ ∈ S, recursively instantiate P . Then, we compile each in-
stantiated component in topological order. This compilation is ex-
actly like ordinary compilation without Backpack’16. The only
new feature is that signatures compile into trivial module which re-
export entities from the backing implementation; otherwise, mod-
ules that imported the signature might see entities from the backing
implementation that were not exported by the signature.

It is important that the package manager computes the instanti-
ated component graph: applicative semantics of instantiation mean
that completely independent components could instantiate a library
in the same way: in such cases we should share the compiled code.
A traditional compiler cannot do this: it is solely responsible for
transforming source files into object code.

4. Mixin linking
We now formalize mixin linking and describe some of its proper-
ties. In particular, we define two major operations on component
shapes: link(), which wires up the components in two shapes, and
rnthin(), which thins and renames the input and output ports of a
shape; then, we say how to mixin link a resolved component.

7 2016/4/15

4.1 Preliminaries
Definition 1 (Module substitutions). A module substitution of
the form S ::= m=M can be applied to a semantic object x
with the notation xJSK (using double brackets). The application
of substitution is functorial for most semantic objects, but we give
some representative cases below:

(p[S])JS′K =P p[SJS′K]
〈m〉J·K =M 〈m〉

〈m〉Jm=M,SK =M M
〈m〉Jm′ =M,SK =M 〈m〉JSK (m 6= m′)

(P :m)JSK =M P JSK:m

(m=M)JSK =S m=MJSK
(M.n)JSK =N MJSK.n

(m 7→ M)JSK =Σ̃ m 7→ MJSK
(m : τ)JSK =Σ m : τJSK

(dependency P (r))JSK =mdecl dependency P JSK (r)

(iface (Ns) {ty})JSK =τ iface (NsJSK) {tyJSK}

For example, (p[A = 〈A〉]:X)JA=〈B〉K is equal to p[A=〈B〉]:X. An
important case where substitution does not occur is {m.n}Jm=
〈m′〉K: the result is {m.n}, not {m′.n}.

Not all syntactic component shapes are well-formed. Our defi-
nition of well-formedness rules out any “funny business”:

Definition 2 (Well-formedness of component shapes). A shape
∀Θ. Σ̃ is well-formed if:

1. It does not provide a module variables (there is no m such that
〈m〉 ∈ range(Σ̃)), e.g., ∀〈A〉. {B 7→ 〈A〉} is ill-formed,

2. It does not require what it provides (no m s.t. 〈m〉 ∈ Θ and
m ∈ dom(Σ̃)), e.g., ∀〈A〉. {A 7→ p[]:A} is ill-formed,

3. It is closed; e.g., ∀〈A〉. {B 7→ p[A=〈C〉]:B} is ill-formed.

A well-formed shape is not necessarily well-typed.

4.2 Linking component shapes
Definition 3 (Linking on two component shapes). We define
link(∀Θ. Σ̃, ∀Θ′. Σ̃′), the mixin linking operation on two well-
formed component shapes, as follows:

1. Unify Θ with Σ̃′, producing substitution S′. (Observe that
dom(S′) is disjoint from Θ′, by property (2) of well-formedness.)

2. Unify Σ̃JS′K with Θ′JS′K, producing substitution S′′.
3. Let S = S′′ ◦ S′ (the composition of substitutions.)
4. Return new substitution S and shape

∀(Θ ∪Θ′ − dom(S)). Σ̃JSK] Σ̃′JSK

Unification between Θ and Σ̃ entails unifying every 〈m〉 ∈ Θ
with M such that m 7→ M ∈ Σ̃.] is a union which requires the
domains of each Σ̃ to be disjoint. Unification on module identities
is defined in the usual way. This operation can lifted to n-ary
linking by successive linking.

Here are two useful properties about the link() operation:

Lemma 1 (Linking preserves well-formedness). If Ξ̃ and Ξ̃′ are
well-formed, then link(Ξ̃, Ξ̃′) is well-formed.

Lemma 2 (Well-formed component shapes form a commutative
monoid). Let the join operation be link() (made total by outputting
a distinguished “failure shape” in the case of error) and the bottom
element be the empty shape. Then the following properties hold for
all well-formed shapes:

1. Associativity: link(link(Ξ̃, Ξ̃′), Ξ̃′′) = link(Ξ̃, link(Ξ̃′, Ξ̃′′))

2. Commutativity: link(Ξ̃, Ξ̃′) = link(Ξ̃′, Ξ̃)

3. Identity: link(Ξ̃, {}) = Ξ̃

The proof of associativity relies critically on the fact that it is
a failure to link two component shapes which provide the same
module name, even if the provided module identities happen to be
the same.

4.3 Thinning and renaming component shapes
Definition 4 (Thinning and renaming component shapes). We de-
fine rnthin on a well-formed shape Ξ̃, a total module renaming rR
and a partial module renaming rP as follows:

rnthin(rR; Ξ̃; rP) = ∀〈rR(mi)〉
i
. {rP (m′

j) 7→ M ′
jJrRK

j
}

where{
Ξ̃ = ∀〈mi〉

i
. {m′

j 7→ M ′
j

j
,m′′

k 7→ M ′′
k

k}
dom(rP) = m′

j

j

Intuitively, rR applies a renaming on all of the input ports of
the component shape, while rP applies a renaming on the output
ports of a component shape. rR must be total because we are not
allowed to “drop” any requirements; furthermore when we rename
a requirement we must also rename each reference to it in the
provided Ms. rP does not have to be total, and the resulting output
ports of the component shape will only be those mentioned in rP .

For example, if you have a component shaped ∀B. {A 7→
p[A=〈B〉]:A, C 7→ q[]:C} and you apply the renaming (A as X)
requires (B as Y), we should get a new shape ∀Y. {X 7→ p[A=
〈Y〉]:A}.

Lemma 3 (Thinning and renaming preserves well-formedness). If
Ξ̃ is well-formed, for all total rR and partial rP , rnthin(rR; Ξ̃; rP)
is well-formed.

4.4 Component mixin linking
Given link() and rnthin(), we are well equipped to say how to
mixin link an entire resolved component (Figure 10). Our general
strategy will be to compute the component shape of every rdecl
(as well as its elaboration to mdecl) and link them all together in
the component judgment, combining all of the mdecls together to
form the final elaborated mixed component. There is an auxiliary
definition (Definition 6) which computes the final renaming on the
provisions of the component, so that only exposed-modules and
reexported-modules are exposed to the world.

The rules for shaping modules and signatures are straightfor-
ward: a module m provides the module identity P :m, where P is
the component identity of the component currently being shaped;
a signature m adds a requirement 〈m〉. The rule for includes is
more interesting: we look up the shape of the included unit from
the context (Γ̃), and then rename it according to the user provided
renamings rns . There is an auxiliary definition (Definition 5) for
translating renaming syntax into a pair of module renamings.

Our presentation of the judgment is slightly nondeterministic
in that it assumes we know the set of requirements Θ upfront to
compute P ; however it’s easy to see that P is only used for the
module identities assigned to module declarations, and thus does
not actually affect the final requirements of a component.

4.5 Auxiliary definitions
Definition 5 (Interpretation of thinning and renaming).

getrns(∀Θ. Σ̃, [(rnP)] [requires (rnR)]) = (rP , rR)

The syntactic include declaration specifies renamings for provi-
sions and requirements, but users are allowed to omit a renaming
altogether (in which case everything is brought into scope) or give
only a partial requirement renaming (in which case the requirement

8 2016/4/15

Γ̃ ` rcomp mcomp . Ξ̃

P = p[Θ] ∀i : Γ̃;P ` rdecl i mdecl i . Ξ̃i

(Ξ̃, S) = link(Ξ̃i
i

) ∀Θ. Σ̃ = Ξ̃ rP = provs(rdecl i)
i

Γ̃ ` component p {rdecl i
i
} component p Θ {mdecl iJSK

i
}

. rnthin(· ; Ξ̃; rP)

Γ̃;P ` rdecl mdecl . Ξ̃

p . Ξ̃ ∈ ∆ Ξ̃ = ∀Θ. Σ̃
(rR, rP) = getrns(Ξ̃, rns) Ξ̃′ = rnthin(rR; Ξ̃; rP)

Γ̃;P ` backpack-include: p rns
dependency p[rR] (rP) . Ξ̃′

Γ̃;P ` exposed-module:m {hsbody}
modulem {hsbody} . {m 7→ P :m}

Γ̃;P ` other-module:m {hsbody}
modulem {hsbody} . {m 7→ P :m}

Γ̃;P ` required-signature:m {hssig}
signaturem {hssig} . ∀〈m〉. {}

Γ̃;P ` reexported-module:m asm′
∅ . {}

Figure 10. Component mixin linking. We implicitly lift Θ = 〈m〉
into a substitution m=〈m〉.

renaming is extended to be total over Θ.) getrns simply computes
the appropriate rR and rP given this syntax.

Definition 6 (Interpretation of exposed/reexported modules).
provs(exposed-module:m {_}) = m 7→ m
provs(reexported-module:m asm′) = m 7→ m′

provs(_) = ·
Only modules specified with exposed-module or reexported-
module should be put in the final shape of a component. provs
computes the appropriate rP based on these declarations.

5. Type checking
We now give a formal model for how our implementation type-
checks mixed components which still have unfilled requirements.
It’s not possible to give a full semantics, since that would involve
formalizing all of Haskell as implemented by GHC, but we will
informally explain the operation of the judgments we assume are
given to us.

5.1 Preliminaries
The context There is a bit of accounting to do:

• The component type context Γ ::= p : Ξ records the types of
all components we have previously typechecked; these compo-
nents are typed but not instantiated. Type lookup will find a
component type and the instantiate it to get an actual type.

• The module variable context Θ ::= 〈m〉 specifies the set of
module variables which are in scope. This context is computed
by mixin linking and recorded in the Θ in mcomp.

• The name variable context θ ::= {m.n} specifies the set of
name variables that are in scope. Each should be ascribed a type
in ΣR (described next.)

Γ; Θ; θ; ∆;L; p0;m ` hsbody : τ

Γ; Θ; θ; ∆;L; p0;m ` hssig

ty <: ty′

Figure 11. Assumed Haskell judgments.

• The local requirements context ΣR ::= m : τ specifies the
module types of the requirements of the current component.
In this formal development, we assume that ΣR is given to us
nondeterministically, see Section 7.2 for more details.
• The local provisions context ΣP ::= m : τ specifies the mod-

ule types of modules defined in the current component. Collec-
tively, ∆ ::= (ΣR; ΣP) is the full local context, which will be
transformed into the final type of the overall component.

• The import context L ::= m 7→ M maps module names
to module identities, and specifies which module is actually
imported by an import declaration in Haskell source, bringing
the exports of that module into scope.
• The current component identifier p0 says what the current com-

ponent is, and is used to generate local module identities and
say when a type is local as opposed to global.

Definition 7 (Name substitutions). Intuitively, name substitutions
refine name variables to more specific original names; in Sec-
tion 3.4, this operation was shown diagrammatically by drawing a
line between two entities. Formally, a name substitution Sn ::=
m.n = N can be applied to a semantic object x with notation
xJSnK (the same notation as module substitution). The application
is also functorial; here are the important cases:

{m.n}J·K =N {m.n}
{m.n}Jm.n=N,SnK =N N
{m.n}Jm′.n′ =N,SnK =N {m.n}JSnK (m.n 6= m′.n′)

(M.n)JSnK =N M.n

NJSnK =Ns NJSnK
{m : τ} JSnK =Σ {m : τJSnK}

(iface (Ns) {ty})JSnK =τ iface (NsJSnK) {tyJSnK}

5.2 Assumed Haskell judgments
In Figure 11, we give the black box judgments which we assume the
compiler provides for us. The module typechecking judgment syn-
thesizes a module type for the given hsbody . Each entity n freshly
defined in this module is given the original name p0[Θ]:m.n,
which will appear in the module type τ . For example, the type of
module Y, defined in the component p from 8(b), exports the freshly
named p[A=〈A〉, B=〈B〉]:Y.L.

The signature judgment does not synthesize a type for a signa-
ture hssig , in contrast to the module typechecking judgment. In-
stead it merely checks that the given hssig is consistent with the
requirement types provided by the local context ∆, which were
nondeterministically chosen. In a type system where requirement
types from dependencies automatically merge together, there is no
reason to expect the syntactic hssig specifies the full requirement
for all the dependencies of the component (the user may have omit-
ted it for it to be inferred.)

Finally, the subtyping judgment specifies whether or not a de-
fined entity specification is a subtype of another specification. Gen-
erally, this is simply equality, except that any type is a subtype of a
same-kinded abstract type (data A with no constructors.)

9 2016/4/15

Γ; Θ; θ; ∆; p0 ` P : ΣP

p 6= p0 p : ∀ΘR. ∀θR.ΣR → ΣP ∈ Γ
Γ; Θ; θ; ∆; p0 ` S : ∀ΘR.∀θR.ΣR ⇒ Sn

Γ; Θ; θ; ∆; p0 ` p[S] : ΣP JSKJSnK

Γ; Θ; θ; (ΣR; ΣP); p0 ` p0[mi =〈mi〉] : ΣP

Γ; Θ; θ; ∆; p0 `M : τ

Γ; Θ; θ; ∆; p0 ` P : ΣP m : τ ∈ ΣP
Γ; Θ; θ; ∆; p0 ` P :m : τ

〈m〉 ∈ Θ ∆ = ΣR; ΣP m : τ ∈ ΣR
Γ; Θ; θ; ∆; p0 ` 〈m〉 : τ

Γ; Θ; θ; ∆; p0 ` N :: ty

Γ; Θ; θ; ∆; p0 `M : τ n :: ty ∈ τ
Γ; Θ; θ; ∆; p0 `M.n :: ty

{m.n} ∈ θ Γ; Θ; θ; ∆; p0 ` 〈m〉 : τ n :: ty ∈ τ
Γ; Θ; θ; ∆; p0 ` {m.n} :: ty

Figure 12. Rules for type lookup

5.3 Type lookup and export/signature matching
We now define the mutually recursive judgments for type lookup
(Figure 12) and export/signature matching (Figure 13), arguably
the most important rules of our type system. Intuitively, computing
the type of p[S] simply involves taking the component type for p,
wiring it up according to S, and then reading off the provided types
under this wiring diagram. Formally, the wiring diagram represents
a name substitution Sn which refines the name variables in p’s type;
we must compute this substitution by export/signature matching.
The export matching rule, in turn, requires us to compute the types
of the module identities in S (we are traversing the whole wiring
diagram). Assuming that module identities are finite, this process
is guaranteed to terminate.

The rules for type lookup are fairly straightforward. There are
special cases for looking up (1) the component type of the local
component p0, (2) the module type of a module variable 〈m〉, and
(3) the Haskell type of a name variable {m.n}.

The rule for export and signature matching is slightly more intri-
cate. The export matching rule takes as input both the module sub-
stitution being applied S, as well as the component requirement ΣR
that the substitution is being applied to. We first must compute the
types for every module in the substitution (the recursive process),
and then compute an appropriate name substitution Sn induced by
the entire substitution which unifies the export lists (intuitively, we
just look at the export lists and unify the ones which have the same
n). Finally, we perform signature matching, which simply checks
that required type τ , after name substitution, is consistent with all
the types in the context. It does this by going through each export
of the requirement which is locally defined and checking the local
type.

5.4 Typechecking a mixed component
The rest of the typechecking process (Figure 14) involves process-
ing each declaration of a mixed component in order, modifying the
local contexts as we process the each declaration of the mixed com-

Γ; Θ; θ; ∆; p0 ` S : ∀ΘR. ∀θR.ΣR ⇒ Sn

S = (mi =Mi
i
)

ΘR = {mi
i}

θR = dom(Sn)

∀i :


Γ; Θ; θ; ∆; p0 `Mi : τ ′i
exps(τ ′i) ⊇ exps(τiJSKJSnK)
Γ; Θ; θ; ∆; p0 ` τiJSKJSnK valid

Γ; Θ; θ; ∆; p0 ` S : ∀ΘR. ∀θR. (mi : τii)⇒ Sn

Γ; Θ; θ; ∆; p0 ` τ valid

∀i : Γ; Θ; θ; ∆; p0 `Mi.ni :: ty′i ∧ ty′i <: tyi

Γ; Θ; θ; ∆; p0 ` iface (Mi.ni, Nj) {ni :: tyi} valid

Figure 13. Rules for export matching and signature matching.
exps(τ) refers to the the export specification of the type τ .

ponent. Most per-declaration rules are fairly straightforward: mod-
ule typechecking produces a τ which is added to ΣP and signature
typechecking just checks for consistency with ΣR.

However, the dependency rule is a little subtle. First, we eagerly
typecheck p[S] to ensure that it indeed has a type; not because we
need to use the type, but because there is no guarantee that p[S]
is a well-typed instantiation; we need to check. Second, we need to
consult the shape context in order to determine what set of modules
(substituted according to S) we actually bring into scope for import.

Finally, the overall rule for mcomp nondeterministically syn-
thesizes the local requirement context ΣR and then runs succes-
sively typechecks each declaration, starting with the empty local
contexts. The results are all bundled up into the final component
type of a component. The synthesized requirement has the follow-
ing properties: (1) it is specific enough to permit the component to
typecheck, (2) it doesn’t contain unnecessary exports or type decla-
rations, and (3) it is as abstract as possible with respect to original
names (the more name variables, the better.)

6. Evaluation
Backpack is implemented as a set of patches to GHC and Cabal.
We’ve tested our implementation in a number of ways:

An alternate package language A benefit of having a separation
between mixin linking and typechecking is that it is a simple matter
to swap the frontend language with something else. To assist in
testing Backpack, we implemented a simple alternate frontend,
based off of Backpack’14, which typechecks component definitions
of the form:

component p where
include base
signature H where

data T
module M where

import H

Such inlined module and signature definitions are extremely handy
for test-cases, although they are not so helpful for libraries with
large modules.

Replacing build-depends with signatures To show that Back-
pack’16 supports real-world “modularity in the large,” we took a
few packages in the public Hackage repository and rewrote them
to deprecate some of their build-depends in favor of signatures
instead:

10 2016/4/15

Γ̃; Γ; Θ; p0; θ; ΣR ` {ΣP ;L} mdecl {Σ′
P ;L′}

Γ; Θ; θ; (ΣR; ΣP);L; p0;m ` hsbody : τ

Γ̃; Γ; Θ; p0; θ; ΣR `
{

ΣP
L

}
modulem {hsbody}

{
ΣP ,m : τ
L

}
Γ; Θ; θ; (ΣR; ΣP);L; p0;m ` hssig

Γ̃; Γ; Θ; p0; θ; ΣR `
{

ΣP
L

}
signaturem {hssig}

{
ΣP
L

}
p . ∀Θ′. Σ̃ ∈ Γ̃ Γ; Θ; θ; ∆; p0 ` p[S] : Σ

r = m 7→ m′ M = Σ̃(m′)JSK

Γ̃; Γ; Θ; p0; θ; ΣR `
{

ΣP
L

}
dependency p[S] (r)

{
ΣP

L,m 7→M

}

Γ̃; Γ; Θ; p0; θ; ΣR ` {ΣP ;L} mdecl {Σ′
P ;L′}

Γ̃; Γ; Θ; p0; θ; ΣR ` {ΣP ;L} · {ΣP ;L}

Γ̃; Γ; Θ; p0; θ; ΣR ` {ΣP ;L} mdecl {Σ′
P ;L′}

Γ̃; Γ; Θ; p0; θ; ΣR ` {Σ′
P ;L′} mdecl′ {Σ′′

P ;L′′}
Γ̃; Γ; Θ; p0; θ; ΣR ` {ΣP ;L} mdecl,mdecl′ {Σ′′

P ;L′′}

Γ̃; Γ ` mcomp : Ξ

(∀θ.ΣR) most general s.t.{
Θ = dom(ΣR) ∧ θ = fnv(ΣR) ∧ ∀{m.n} ∈ θ : 〈m〉 ∈ Θ

Γ̃; Γ; Θ; p; θ; ΣR ` {·; ·} mdecl {ΣP ;L}

Γ̃; Γ ` component p Θ {mdecl} : ∀Θ. ∀θ. {ΣR} → {ΣP }

� ≤ � less general than

∀θ1.Σ1 ≤ ∀θ2.Σ2 ⇔ ∃Sn :

{
dom(Sn) = θ2

Σ1 ≤ Σ2JSnK

(m′ : τ ′,m : τ1) ≤ (m : τ2) ⇔ τ1 ≤ τ2
iface (Ns ′,Ns) {ty ′, ty1} ≤ iface (Ns) {ty2} ⇔ ty1 <: ty2

Figure 14. Rules for mixed component language.

• We rewrote binary-0.8.0.07 to have signatures for byte-
string, containers and array, demonstrating that GHC’s
core libraries can be modularized over. (23 signatures)
• We rewrote ghc-simple-0.38 to have signatures for ghc,

demonstrating that the GHC API (a very complicated API)
can be modularized over. (57 signatures)

For example, here is the signature we wrote for Data.Array.
IArray in binary, exercising many of Haskell’s features including
type classes:

{-# LANGUAGE ... #-}
module Data.Array.IArray(

module Data.Array.IArray,
module Data.Ix

7 https://hackage.haskell.org/package/binary-0.8.0.0
8 https://hackage.haskell.org/package/ghc-simple-0.3

) where

import Data.Ix

type role Array nominal representational
class IArray (a :: * -> * -> *) e
data Array i e
instance IArray Array e
bounds :: (IArray a e) => forall i. Ix i

=> a i e -> (i, i)

Adding signatures to packages was a straightforward (if a little te-
dious) process. One thing we discovered, however, was that the lack
of recursively dependent signatures [3] (i.e., signatures that form an
import cycle) sometimes caused problems when a dependency was
implemented using hs-boot files to implement recursion. How-
ever, this could be easily worked around by adding a “synthetic”
signature which collected all of the mutually dependent data types
together, and then have the real signatures reexport from this signa-
ture; the synthetic signature is then implemented using a dummy
module. Here is an example of such a synthetic signature from
ghc-simple’s signatures for GHC:

module RecTypes where

import ConLike (ConLike)
import CoAxiom (Branched, CoAxiom)
import OccName (OccName)

data Id -- from Id, imports Name
data Name -- from Name, imports Type
data TyCon -- from Type
data TyThing -- from Type, imports Id

= AnId Id
| AConLike ConLike
| ATyCon TyCon
| ACoAxiom (CoAxiom Branched)

Without this synthetic signature, the signatures for Id, Name, and
Type would form a cycle.

7. Limitations
Some significant tasks remain to complete Backpack’16. We dis-
cuss some of the limitations of the current system here.

7.1 Metatheory
We have not rigorously done proofs on Backpack’16’s metatheory;
as such, we can only conjecture that in the fragment of Haskell
without type classes and type families, successful separate type-
checking of components implies successful linking as well.

One thing that is troublesome about the theorem in Back-
pack’14, however, is that it simply is not true for full Haskell.
Specifically, open type families [15] are inherently non-modular,
as they introduce axioms to Haskell which cannot be hidden by
signatures. Any module system which supports such open type
families must either (1) impose a strict orphan constraint, so that
declared axioms in separate modules are guaranteed not to con-
flict, or (2) allow for the possibility that linking can fail, even if the
components typechecked separately.

There is a soundness result we can report, however: the sound-
ness of compiled Backpack’16 code reduces to the soundness of
GHC Haskell. This is because we retypecheck and compile every
instantiation of a component, and thus the compilation process re-
duces to ordinary Haskell compilation. The retypechecking step
during compilation is where things like incompatible open type

11 2016/4/15

family axioms are found. Indeed, it would be possible to skip the
typechecking step described in this paper altogether.

7.2 Signature merging
In our tour of Backpack, we stated that requirements from multiple
components automatically merge together when they are brought
into scope. Indeed, we have implemented this; unfortunately, it is
unclear how to formally specify this process without substantially
complicating the typechecking rules, which is why our typecheck-
ing semantics currently nondeterministically guess the “correct” re-
quirement type. The problem is that in our semantics, when we do
component instantiation, it is assumed that you know the module
types of all of the inputs to the component, including the module
types of local requirements. However, to determine a type of a re-
quirement to merge in, you need to be able to instantiate a compo-
nent prior to knowing how all of its holes are instantiated.

We have not yet found a satisfactory way of formalizing this
algorithmically. Of course, using the semantics for Backpack’14,
the merged type can be determined; however, to implement Back-
pack’14 directly would require successively refining the types of
modules we have already typechecked, which is a poor match for a
one source file, one output file compilation model. It is also possi-
ble to assume that the locally written signature is complete (this is
implemented as a flag) and not attempt to do any merging. It would
be simple to adjust the rules for this case.

8. Related Work
Comparison with Backpack’14 The inspiration for this work was
the original Backpack paper [7]. Backpack was first to pose the
problem of retrofitting Haskell with interfaces, and many of its
design ideas, such as mixin packages, applicativity and module
identities have been preserved in this paper. The contribution of
this paper is an actual implementation of the Backpack design, by
refactoring of these ideas into a form that can be implemented in
two stages: mixin linking handled by the package manager, and
typechecking and compilation handled by the compiler.

This refactoring necessitated a change to one of the core defini-
tions in the package language: in Backpack’14, type equality was
based on a per-module computed module identity. In effect, every
defined module separately kept track of the set of signatures that
it transitively imported. If mixin linking is not allowed to inspect
source code, the notion of identity must be coarsened. In this pa-
per, instantiated component identities track all of the requirements
in the component, which are computed during mixin linking.

A technical accomplishment of the original Backpack was a
solution to the “double vision problem”, where the typechecker can
see two distinct names for the same underlying type in a mutually
recursive module. In Backpack, this problem was solved by way
of a “shaping pass” which first computed the identities of what we
call name variables prior to type checking. In this paper, we do not
permit mutual recursion; thus, the double vision problem does not
occur, and our “shaping pass” only computes a very coarse-grained
shape on the overall wiring structure of components. From this
wiring structure, Backpack’16 can compute the correct identities
for name variables at the same time as type checking.

We have also taken a different approach to defining the seman-
tics of Backpack’16. Instead of elaborating to Haskell, which is not
how you would ever implement a Backpack-like system, we give
an ad hoc semantics which directly reflects how Backpack’16 has
been implemented in GHC.

Modularity in the package manager While there is far more
literature on module systems that can be implemented entirely by
a compiler, there has been some work which has looked at the
problem of modular development at the package level.

One such system is the Functoria DSL9 of MirageOS [11].
MirageOS is a library operating system written in OCaml, which
provides modules and functors for constructing unikernels. Rather
than manually instaitate these functors, users write in the Functoria
DSL, which describes what dependencies to install (via the OCaml
package manager) and how the ML functors should be assembled.
Unlike Backpack’16, their DSL follows the model of explicit func-
tor applications rather than mixin linking.

The Nix package manager [5] is a system for enabling repro-
ducible builds of packages. Nix defines a (pure, functional) lan-
guage of component derivations—i.e., the source code and config-
uration needed to build the derived component—functorized over
configuration parameters and derivations of depended-upon com-
ponents. Components are linked together with explicit functor ap-
plication, albeit with some of the syntactic convenience of mixin
linking. However, there is no type system for components, and thus
the Nix output hashes (similar to our component identifiers) only
serve the role of uniquely identifying derivations.

The SMLSC extension to Standard ML [16], while primarily in-
tended as a mechanism to support separate compilation in Standard
ML, also has some similarities to Backpack’16. Like Backpack,
SMLSC operates at the level of units (our components), and de-
fines interfaces between units to allow them to be separately type-
checked. Unlike Backpack’16, SMLSC does not support reusing
units with different implementations of their interfaces: dependen-
cies in SMLSC are always definite references, and signatures are
used purely to permit separate compilation. In SMLSC, if you want
multiple instantiations, you are expected to use ML functors.

An unusual case of not using a package manager when it would
be useful occurs in C++ templates.10 C++ templates are applica-
tive, in the sense that two occurrences of vector<int> refer to the
same type. However, the C++ compiler must generate code when
a template is instantiated. Implemented naively, this could result
in a lot of duplicate copies of code. One early method of handling
this problem, “Cfront model”, involved a template database where
instances of templates were maintained. However, it was too com-
plicated for most C++ compilers to handle this database, and so the
usual “Borland model” (implemented by GCC, among others) is
to just recompile every template instantiation and deduplicate them
at link time. With Backpack, we already have a package manager,
Cabal, which administers its own installed package database, so
we can offload the caching of instantiated components to it. (This
technique would not work for C++ templates, whose type based
dispatch must be deeply integrated with the compiler.)

ML functors The original Backpack language distinguished itself
from “functors” in (variants of) the ML module system [8, 12]
by the fact that it supported separate type checking for recursive
modules under applicative instantiation. Additionally, by being a
mixin system, it is a better fit for the package language and avoids
the need for sharing constraints.

As this paper does not address mutual recursion, one may won-
der if the mixed component language is not simply just a stylized
applicative functor language. In fact, it is! The reason our technical
presentation is done in the way it is done here is because our pri-
mary goal was integrating with the existing compiler infrastructure.

Mixin linking There is a rich literature in the mixin linking
world, which both Backpack and Backpack’16 draw heavily from
[1, 6, 13]. Indeed, the relationship to this literature is even clearer
in Backpack’16, as the mixin linking step is factored out and is
independent of the Haskell language. For example, the basic algo-
rithm for linking in Cardelli’s linksets calculus [2], at a high level,

9 https://mirage.io/blog/introducing-functoria
10 https://gcc.gnu.org/onlinedocs/gcc/Template-Instantiation.html

12 2016/4/15

is essentially the same algorithm as our mixin linking. The differ-
ence, however, is that we must keep track of the structure of the
“wiring diagram”, as this structure will be used to establish the
identities of types at the Haskell level. In contrast, Cardelli gave
no account of the interaction between module-level linking and
core-level user-defined abstract data types.

The object oriented community has also studied mixin-style
composition in their designs. However, these mechanisms are orga-
nized around dynamic binding and objects; whereas in Backpack-
style systems, the emphasis is on packages. Users of Backpack’16
pay no performance penalty switching from a direct dependency to
an indirect dependency via a signature, because we don’t do sepa-
rate compilation of Backpack’16.

References
[1] Davide Ancona and Elena Zucca. A calculus of module systems. JFP,

12(2), 2002.
[2] Luca Cardelli. Program fragments, linking, and modularization. In

POPL ’97.
[3] Karl Crary, Robert Harper, and Sidd Puri. What is a recursive module?

In PLDI ’99.
[4] Edsko de Vries. Qualified goals in the Cabal solver. Technical report,

Well Typed, 2015.
[5] Eelco Dolstra. The Purely Functional Software Deployment Model.

PhD thesis, Utrecht University, 2006.
[6] Matthew Flatt and Matthias Felleisen. Units: Cool modules for HOT

languages. In PLDI ’98.
[7] Scott Kilpatrick, Derek Dreyer, Simon Peyton Jones, and Simon Mar-

low. Backpack: Retrofitting Haskell with interfaces. In POPL ’14.
[8] Xavier Leroy. The Objective Caml system: Documentation and user’s

manual.
[9] Xavier Leroy. A modular module system. Journal of Functional

Programming, 10(3):269–303, 2000.
[10] Andres Loh and Duncan Coutts. A new modular dependency solver

for cabal-install. Technical report, Well Typed, 2011.
[11] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David

Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand,
and Jon Crowcroft. Unikernels: Library operating systems for the
cloud. In ASPLOS ’13.

[12] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML (Revised). MIT Press, 1997.

[13] Andreas Rossberg and Derek Dreyer. Mixin’ up the ML module
system. ACM TOPLAS, 35(1), 2013.

[14] Andreas Rossberg, Claudio Russo, and Derek Dreyer. F-ing modules.
JFP, 24(5), 2014.

[15] Tom Schrijvers, Simon Peyton Jones, Manuel Chakravarty, and Martin
Sulzmann. Type checking with open type functions. In ICFP ’08,
2008.

[16] David Swasey, Tom Murphy VII, Karl Crary, and Robert Harper. A
separate compilation extension to Standard ML. In ML ’06.

13 2016/4/15

