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Motivating application:
Display ad placement
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 Bipartite graph of pages 
and users who are 
interested in certain pages
 Each edge has a click-

through probability

 Find 𝑘 pages to put ads to 
maximize total number of 
users clicking through the 
ad

 When click-through 
probabilities are known, 
can be solved by 
approximation

 Question: how to learn 
click-through prob. while 
doing optimization?



Main difficulties
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 Combinatorial in nature

 Non-linear optimization 
objective, based on 
underlying random events

 Offline optimization may 
already be hard, need 
approximation

 Online learning: learn while 
doing repeated optimization



Multi-armed bandit problem
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 There are 𝑚 arms 
(machines)

 Arm 𝑖 has an unknown 
reward distribution with 
unknown mean 𝜇𝑖
 best arm 𝜇∗ = max 𝜇𝑖

 In each round, the player 
selects one arm to play and 
observes the reward



Multi-armed bandit problem
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 Regret after playing 𝑛 rounds:
 Regret = 𝑛𝜇∗ − 𝔼[ 𝑡=1

𝑛 𝑅𝑡(𝑖𝑡
𝐴) ]

 Objective: minimize regret in 
𝑛 rounds

 Balancing exploitation-
exploration tradeoff

 Known results:
 Regret lower bound Ω(log 𝑛)
 Upper Confidence Bound 

(UCB) algorithm:
 achieves 𝑂(log 𝑛) regret



Naïve application of MAB to the 
combinatorial setting
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 E.g. online advertising

 every set of k webpages 
is treated as an arm

 reward of an arm is the 
total click-through 
counted by the number 
of people

 Issues

 combinatorial explosion

 ad-user click-through 
information is wasted



Contribution of this paper
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 Stochastic combinatorial multi-armed bandit 
framework
 handling non-linear reward functions
 UCB based algorithm and tight regret analysis
 new applications using CMAB framework

 Comparing with related work
 linear stochastic bandits [Gai et al. 2012]

 CMAB is more general, and has much tighter regret analysis

 online submodular optimizations (e.g. [Streeter& 
Golovin’08, Hazan&Kale’12])
 for adversarial case, different approach, 

 CMAB has no submodularity requirement
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Combinatorial multi-armed bandit 
(CMAB) framework
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 A super arm 𝑆 is a set of (base) arms, 
𝑆 ⊆ [𝑚]

 In round 𝑡, a super arm 𝑆𝑡
𝐴 is played 

according algo 𝐴

 When a super arm 𝑆 is played, all 
based arms in 𝑆 are played

 Outcomes of all played base arms 
are observed

 Outcome of arm 𝑖 ∈ [𝑚] has an 
unknown distribution with unknown 
mean 𝜇𝑖

super arms

(base) arms



Rewards in CMAB
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 Reward of super arm 𝑆𝑡
𝐴 played in 

round 𝑡, 𝑅𝑡(𝑆𝑡
𝐴), is a function of 

the outcomes of all played arms

 Expected reward of playing arm 𝑆, 
𝔼[𝑅𝑡 𝑆 ], only depends on 𝑆 and 
the vector of mean outcomes of 
arms, 𝝁 = (𝜇1, 𝜇2, … , 𝜇𝑚), denoted 
𝑟𝝁(𝑆)

 e.g. independent Bernoulli random 
variables

 Optimal reward: opt𝝁 = max
𝑆

𝑟𝝁(𝑆)

super arms

arms



Handling non-linear reward functions 
--- two mild assumption on 𝑟𝝁 𝑆
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 Monotonicity

 if 𝝁 ≤ 𝝁′ (pairwise), 𝑟𝝁 𝑆 ≤ 𝑟𝝁′ (𝑆), for all super arm 

𝑆

 Bounded smoothness

 there exists a strictly increasing function 𝑓 ⋅ , such 
that for any two expectation vectors 𝝁 and 𝝁′, 

|𝑟𝝁 𝑆 − 𝑟𝝁′ 𝑆 | ≤ 𝑓 Δ , where Δ = max𝑖∈𝑆|𝜇𝑖 − 𝜇𝑖
′|

 Rewards may not be linear, a large class of 
functions satisfy these assumptions



Offline computation oracle --- allow 
approximations and failure probabilities
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 𝛼, 𝛽 -approximation oracle:
 Input: vector of mean outcomes of all 

arms 𝝁 = (𝜇1, 𝜇2, … , 𝜇𝑚), 

 Output: a super arm 𝑆, such that with 
probability at least 𝛽 the expected 
reward of 𝑆 under 𝝁, 𝑟𝝁 𝑆 , is at least 𝛼

fraction of the optimal reward:

Pr 𝑟𝝁 𝑆 ≥ 𝛼 ⋅ opt𝝁 ≥ 𝛽



𝛼, 𝛽 -Approximation regret
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 Compare against the 𝛼𝛽 fraction of 
the optimal

Regret = 𝑛 ⋅ 𝛼𝛽 ⋅ opt𝝁 − 𝔼[ 𝑖=1
𝑛 𝑟𝝁(𝑆𝑡

𝐴)]

 Difficulty: do not know

 combinatorial structure

 reward function

 arm outcome distribution

 how oracle computes the solution



Our solution: CUCB algorithm
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Offline 
computation 

oracle

superarm 𝑆

play 
superarm 𝑆

 𝝁 = (  𝜇1,  𝜇2, … ,  𝜇𝑚)

estimationadjustment

 𝝁 = ( 𝜇1,  𝜇2, … ,  𝜇𝑚)

 𝜇𝑖 =  𝜇𝑖 +
3 ln 𝑛

2𝑇𝑖

 𝜇𝑖: sample mean 
outcome on arm 𝑖

𝑇𝑖: # of times arm 𝑖 is played; 
key tradeoff between 
exploration and exploitation



Theorem 1
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 The (𝛼, 𝛽)-approximation regret of the CUCB 
algorithm in 𝑛 rounds using an (𝛼, 𝛽)-approximation 
oracle is at most

 Δmin
𝑖 (Δmax

𝑖 ) are defined as the minimum (maximum) 
gap between 𝛼 ⋅ opt𝝁 and reward of a bad super arm 

containing 𝑖. Δmin = min
𝑖

Δmin
𝑖 , Δmax = max

𝑖
Δmax
𝑖

 Here, we define the set of bad super arms as

 Match UCB regret for classic MAB



Proof outline
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 If in round 𝑡, each arm 𝑖 is sufficiently sampled 

𝑇𝑖,𝑡−1 > ℓ𝑡 =
6 ln 𝑡

𝑓−1(Δmin)
2 times, then with probability 

1 − 2𝑚𝑡−2:

 sample mean  𝜇𝑖 and UCB adjustment is close to true 
mean 𝜇𝑖 , 

|  𝜇𝑖,𝑇𝑖,𝑡−1 − 𝜇𝑖| ≤ Λ𝑖,𝑡, Λ𝑖,𝑡 =
3 ln 𝑡

2𝑇𝑖,𝑡−1
(by Hoeffding bound)

|  𝜇𝑖,𝑡 − 𝜇𝑖| ≤ 2Λ𝑖,𝑡 (since  𝜇𝑖,𝑡 =  𝜇𝑖,𝑇𝑖,𝑡−1 + Λ𝑖,𝑡)

 UCB adjustment is at least true mean:  𝝁𝑡 ≥ 𝝁

 super arm 𝑆𝑡 selected in round 𝑡 is not a bad super arm, 
why? …



Proof outline (cont’d)
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 define Λ =
3 ln 𝑡

2ℓ𝑡
, Λ𝑡 = max Λ𝑖,𝑡 𝑖 ∈ 𝑆𝑡}, thus Λ > Λ𝑡

 Then we have: 𝑟𝝁 𝑆𝑡 + 𝑓 2Λ

 > 𝑟𝝁 𝑆𝑡 + 2𝑓(2Λ𝑡) {strict monotonicity of 𝑓}

 ≥ 𝑟 𝝁𝑡 𝑆𝑡 {bounded smoothness of 𝑟𝝁 𝑆 }

 ≥ 𝛼 ⋅ opt 𝝁𝑡 {𝛼-approximation w.r.t.  𝝁𝑡}

 ≥ 𝛼 ⋅ 𝑟 𝝁𝑡 𝑆𝝁
∗ {definition of opt 𝝁𝑡}

 ≥ 𝛼 ⋅ 𝑟𝝁 𝑆𝝁
∗ = 𝛼 ⋅ opt𝝁 {monotonicity of 𝑟𝝁 𝑆 }

 Since 𝑓 2Λ = Δmin, contradiction to def’n of Δmin, so 𝑆𝑡 is 
not a bad super arm with probability 1 − 2𝑚𝑡−2.



Proof outline (cont’d)
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 When some arm is not sufficiently sampled, pay 

regret Δmax. Get a loose bound: 
6 ln 𝑛

(𝑓−1(Δmin))
2
+
𝜋2

3
+ 1 ⋅ 𝑚 ⋅ Δmax

 To tighten the bound, fine-tune bad super arms, 
sufficient sampling, and regret gaps.



Theorem 2
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 Consider a CMAB problem with an (𝛼, 𝛽)-
approximation oracle. If the bounded smoothness 
function 𝑓 𝑥 = 𝛾 ⋅ 𝑥𝜔 for some 𝛾 > 0 and 𝜔 ∈
(0,1], the regret of CUCB is at most: 

 When 𝜔 = 1, the distribution-independent bound 

is 𝑂( 𝑚𝑛 ln 𝑛)
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Application to ad placement
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 Bipartite graph 𝐺 = (𝐿, 𝑅, 𝐸)
 Each edge is a base arm
 Each set of edges linking 𝑘

webpages is a superarm
 Bounded smoothness function

𝑓 Δ = 𝐸 ⋅ Δ
 (1 −  1 𝑒 , 1)-approximation 

regret

 improvement based on clustered 
arms is available



Application to linear bandit problems
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 Linear bandits: matching, shortest path, spanning 
tree (in networking literature)

 Maximize weighted sum of rewards on all arms

 Our result significantly improves the previous 
regret bound on linear rewards [Gai et al. 2012]

 indicating that our general framework does not lose 
fidelity



Application to social influence 
maximization
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 Require a new model extension to allow 
probabilistically triggered arms

 Use the same CUCB algorithm

 See full report arXiv:1111.4279 for complete 
details
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Summary and future work
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 Summary 
 Avoid combinatorial explosion while utilizing low-level 

observed information
 Modular approach: separation between online learning 

and offline optimization 
 Handles non-linear reward functions
 New applications of the CMAB framework

 Future work
 Combinatorial bandits in adversarial and contextual 

bandit settings
 Combinatorial bandits where outcomes of underlying 

arms are only indirectly observed
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