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Abstract—In the statistics community, outlier detection for time series data has been studied for decades. Recently, with
advances in hardware and software technology, there has been a large body of work on temporal outlier detection from a
computational perspective within the computer science community. In particular, advances in hardware technology have enabled
the availability of various forms of temporal data collection mechanisms, and advances in software technology have enabled a
variety of data management mechanisms. This has fueled the growth of different kinds of data sets such as data streams, spatio-
temporal data, distributed streams, temporal networks, and time series data, generated by a multitude of applications. There
arises a need for an organized and detailed study of the work done in the area of outlier detection with respect to such temporal
datasets. In this survey, we provide a comprehensive and structured overview of a large set of interesting outlier definitions for
various forms of temporal data, novel techniques, and application scenarios in which specific definitions and techniques have
been widely used.

Index Terms—temporal outlier detection, time series data, data streams, distributed data streams, temporal networks, spatio-
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1 INTRODUCTION

OUTLIER detection is a broad field, which has
been studied in the context of a large number

of application domains. Aggarwal [1], Chandola et
al. [2], Hodge et al. [3] and Zhang et al. [4] provide
an extensive overview of outlier detection techniques.
Outlier detection has been studied in a variety of
data domains including high-dimensional data [5],
uncertain data [6], streaming data [7], [8], [9], network
data [9], [10], [11], [12], [13] and time series data [14],
[15]. Outlier detection is very popular in industrial
applications, and therefore many software tools have
been built for efficient outlier detection, such as R
(packages ‘outliers’1 and ‘outlierD’ [16]), SAS2, Rapid-
Miner3, and Oracle datamine4.

The different data domains in outlier analysis typ-
ically require dedicated techniques of different types.
Temporal outlier analysis examines anomalies in the
behavior of the data across time. Some motivating
examples are as follows.
• Financial Markets: An abrupt change in the stock

market, or an unusual pattern within a specific
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window such as the flash crash of May 6, 2010 is
an anomalous event which needs to be detected
early in order to avoid and prevent extensive
disruption of markets because of possible weak-
nesses in trading systems.

• System Diagnosis: A significant amount of data
generated about the system state is discrete in
nature. This could correspond to UNIX system
calls, aircraft system states, mechanical systems,
or host-based intrusion detection systems. The
last case is particularly common, and is an im-
portant research area in its own right. Anomalies
provide information about potentially threaten-
ing and failure events in such systems.

• Biological Data: While biological data is not tem-
poral in nature, the placement of individual
amino-acids is analogous to positions in temporal
sequences. Therefore, temporal methods can be
directly used for biological data.

• User-action Sequences: A variety of sequences
abound in daily life, which are created by
user actions in different domains. These include
web browsing patterns, customer transactions,
or RFID sequences. Anomalies provide an idea
of user-behavior which is deviant for specific
reasons (e.g., an attempt to crack a password will
contain a sequence of login and password actions).

This broad diversity in applications is also reflected
in the diverse formulations and data types relevant
to outlier detection. A common characteristic of all
temporal outlier analysis is that temporal continuity
plays a key role in all these formulations, and unusual
changes, sequences, or temporal patterns in the data are
used in order to model outliers. In this sense, time
forms the contextual variable with respect to which

http://cran.r-project.org/web/packages/outliers/outliers.pdf
http://cran.r-project.org/web/packages/outliers/outliers.pdf
http://www.nesug.org/Proceedings/nesug10/ad/ad07.pdf
http://www.youtube.com/watch?v=C1KNb1Kw-As
http://docs.oracle.com/cd/B28359_01/datamine.111/b28129/anomalies.htm
http://docs.oracle.com/cd/B28359_01/datamine.111/b28129/anomalies.htm


2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 1, JANUARY 2014

Outlier Detection for Temporal Data

Time Series

Data

Data

Streams

Distributed 

Data

Spatio-Temporal

Data

Network

Data

Time 

Series 

Database

Single 

Time 

Series

Direct Detection

Time Series Outliers

Window based Detection

Time Series Outliers

Outlier 

Subsequences

Point 

Outliers

Subsequence 

Outliers

Evolving

Prediction

Models

Distance

Based

Outliers

High

Dimensional

Data

Streams

Global

Outliers

Local

Outliers

Other

Variants

Temporal 

Distributed

Data

Spatial

Sensor

Data

ST Outlier

Detection

ST Outlier

Tracking

Trajectory

Outlier

Detection

Graph

Similarity

Outliers

Online

Graph

Outliers

Community

Based

Outliers
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all analysis is performed. Temporal outlier analysis
is closely related to change point detection, and event
detection, since these problems represent two instan-
tiations of a much broader field. The problem of
forecasting is closely related to many forms of temporal
outlier analysis, since outliers are often defined as
deviations from expected values (or forecasts). Never-
theless, while forecasting is a useful tool for many
forms of outlier analysis, the broader area seems to
be much richer and multi-faceted.
Different Facets of Temporal Outlier Analysis: Out-
lier analysis problems in temporal data may be cate-
gorized in a wide variety of ways, which represent
different facets of the analysis. The area is so rich
that no single type of abstract categorization can
fully capture the complexity of the problems in the
area, since these different facets may be present in
an arbitrary combination. Some of these facets are as
follows.

• Time-series vs Multidimensional Data Facet: In time-
series data (e.g., sensor readings) the importance
of temporal continuity is paramount, and all anal-
ysis is performed with careful use of reasonably
small windows of time (the contextual variable).
On the other hand, in a multi-dimensional data
stream such as a text newswire stream, an ap-
plication such as first-story detection, might not
rely heavily on the temporal aspect, and thus
the methods are much closer to standard multi-
dimensional outlier analysis.

• The Point vs Window Facet: Are we looking for
an unusual data point in a temporal series (e.g.,
sudden jump in heart rate in ECG reading),
or are we looking for an unusual pattern of
changes (contiguous ECG pattern indicative of
arrythmia)? The latter scenario is usually far more
challenging than the former. Even in the context
of a multi-dimensional data stream, a single point
deviant (e.g., first story in a newswire stream)
may be considered a different kind of outlier
than an aggregate change point (e.g., sudden
change in the aggregate distribution of stories

over successive windows).
• The Data Type Facet: Different kinds of data such

as continuous series (e.g., sensors), discrete series
(e.g., web logs), multi-dimensional streams (e.g.,
text streams), or network data (e.g., graph and so-
cial streams) require different kinds of dedicated
methods for analysis.

• The supervision facet: Are previous examples of
anomalies available? This facet is of course com-
mon to all forms of outlier analysis, and is not
specific to the temporal scenario.

These different facets are largely independent of one
another, and a large number of problem formulations
are possible with the use of a combination of these
different facets. Therefore, this paper is largely orga-
nized by the facet of data type, and examines different
kinds of scenarios along this broad organization.
Specific Challenges for Outlier Detection for Tem-
poral Data: While temporal outlier detection aims to
find rare and interesting instances, as in the case of
traditional outlier detection, new challenges arise due
to the nature of temporal data. We list them below.
• A wide variety of anomaly models are possible

depending upon the specific data type and sce-
nario. This leads to diverse formulations, which
need to be designed for the specific problem.
For arbitrary applications, it may often not be
possible to use off-the-shelf models, because of
the wide variations in problem formulations. This
is one of the motivating reasons for this survey to
provide an overview of the most common com-
binations of facets explored in temporal outlier
analysis.

• Since new data arrives at every time instant, the
scale of the data is very large. This often leads
to processing and resource-constraint challenges.
In the streaming scenario, only a single scan
is allowed. Traditional outlier detection is much
easier, since it is typically an offline task.

• Outlier detection for temporal data in distributed
scenarios poses significant challenges of minimiz-
ing communication overhead and computational
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load in resource-constrained environments.
In this work, we aim to provide a comprehensive

and structured overview of outlier detection tech-
niques for temporal data. Figure 1 shows the or-
ganization of the survey with respect to the data
type facet. For each data type, we discuss specific
problem classes in various subsections. We begin with
the easiest scenario for temporal data – discrete time
series data (Section 2). However a lot of data gets
sampled over very short time intervals, and keeps
flowing in infinitely leading to data streams. We
will study techniques for outlier detection in streams
in Section 3. Often times, data is distributed across
multiple locations. We study how to extract global
outliers in such distributed scenarios in Section 4. For
some applications like environmental data analysis,
data is available over a continuum of both space
and time dimensions. We will study techniques to
handle such data in Section 5. Finally, networks can
capture very rich semantics for almost every domain.
Hence, we will discuss outlier detection mechanisms
for network data in Section 6. We will also present a
few applications where such temporal outlier detec-
tion techniques have been successfully employed in
Section 7. The conclusions are presented in Section 8.

2 TIME SERIES OUTLIER DETECTION

A significant amount of work has been performed in
the area of time series outliers. Parametric models for
time series outliers [15] represents the first work on
outlier detection for time series data. Several models
were subsequently proposed in the statistics literature,
including autoregressive moving average (ARMA),
autoregressive integrated moving average (ARIMA),
vector autoregression (VARMA), CUmulative SUM
Statistics (CUSUM), exponentially weighted moving
average, etc. While a detailed exposition is beyond the
scope of this survey, we will provide an overview of
the key ideas in this topic, especially from a computer
science perspective. We direct the reader to [17], [18],
[19] for further reading from the statistics point of
view. In this section, we will focus on two main types
of outlier detection techniques for time series studied
in the data mining community. The first part concerns
techniques to detect outliers over a database of time
series, whereas the second part deals with outliers
within a single time series.

2.1 Outliers in Time Series Databases

Given a time series database, we will discuss methods
to identify a few time series sequences as outliers,
or to identify a subsequence in a test sequence as
an outlier. An outlier score for a time series can be
computed directly, or by first computing scores for
overlapping fixed size windows and then aggregating
them. We discuss these techniques in this subsection.

2.1.1 Direct Detection of Outlier Time Series
Given: A database of time series
Find: All anomalous time series

It is assumed that most of the time series in the
database are normal while a few are anomalous. Sim-
ilar to traditional outlier detection, the usual recipe for
solving such problems is to first learn a model based
on all the time series sequences in the database, and
then compute an outlier score for each sequence with
respect to the model. The model could be supervised or
unsupervised depending on the availability of training
data.
Unsupervised Discriminative Approaches

Discriminative approaches rely on the definition
of a similarity function that measures the similarity
between two sequences. Once a similarity function is
defined, such approaches cluster the sequences, such
that within-cluster similarity is maximized, while
between-cluster similarity is minimized. The anomaly
score of a test time series sequence is defined as the
distance to the centroid (or medoid) of the closest
cluster. The primary variation across such approaches,
are the choice of the similarity measure, and the
clustering mechanism.
Similarity Measures: The most popular sequence
similarity measures are the simple match count based
sequence similarity [20], and the normalized length of
the longest common subsequence (LCS) [21], [22],
[23], [24]. The advantage of the former is its greater
computational efficiency, whereas the latter can adjust
to segments in the sequences containing noise, but is
more expensive because of its dynamic programming
methodology.
Clustering Methods: Popular clustering methods in-
clude k-Means [25], EM [26], phased k-Means [27],
dynamic clustering [24], k-medoids [21], [22], single-
linkage clustering [28], clustering of multi-variate time
series in the principal components space [29], one-
class SVM [30], [31], [32], [33] and self-organizing
maps [34]. The choice of the clustering method
is application-specific, because different clustering
methods have different complexity, with varying
adaptability to clusters of different numbers, shapes
and sizes.
Unsupervised Parametric Approaches

In unsupervised parametric approaches, anomalous
instances are not specified, and a summary model is
constructed on the base data. A test sequence is then
marked anomalous if the probability of generation of
the sequence from the model is very low. The anomaly
score for the entire time series is computed in terms
of the probability of each element. Popular models
include Finite state automata (FSA), Markov models
and Hidden Markov Models (HMMs).

FSA can be learned from length l subsequences
in normal training data. During testing, all length l
subsequences can be extracted from a test time series
and fed into the FSA. An anomaly is then detected
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if the FSA reaches a state from where there is no
outgoing edge corresponding to the last symbol of the
current subsequence. FSAs have been used for outlier
detection in [23], [35], [36], [37]. The methods to gen-
erate the state transition rules depend on particular
application domains.

Some Markov methods store conditional informa-
tion for a fixed history size=k, while others use a
variable history size to capture richer temporal depen-
dencies. Ye [38] proposes a technique where a Markov
model with k=1 is used. In [39], [40], the conditional
probability distribution (CPD) are stored in proba-
bilistic suffix trees (PSTs) for efficient computations.
Sparse Markovian techniques estimate the conditional
probability of an element based on symbols within the
previous k symbols, which may not be contiguous or
immediately preceding to the element [41], [42].

HMMs can be viewed as temporal dependency-
oriented mixture models, where hidden states and
transitions are used to model temporal dependencies
among mixture components. HMMs do not scale well
to real life datasets. The training process may require
judicious selection of the model, the parameters, and
initialization values of the parameters. On the other
hand, HMMs are interpretable and theoretically well
motivated. Approaches that use HMMs for outlier
detection include [23], [43], [44], [45], [46].
Unsupervised OLAP based Approach

Besides traditional uni-variate time series data,
richer time series are quite popular. For example, a
time series database may contain a set of time series,
each of which are associated with multi-dimensional
attributes. Thus, the database can be represented
using an OLAP cube, where the time series could
be associated with each cell as a measure. Li et
al. [47] define anomalies in such a setting, where given
a probe cell c, a descendant cell is considered an
anomaly if the trend, magnitude or the phase of its
associated time series are significantly different from
the expected value, using the time series for the probe
cell c.
Supervised Approaches

In the presence of labeled training data, the fol-
lowing supervised approaches have been proposed in
the literature: positional system calls features with the
RIPPER classifier [48], subsequences of positive and
negative strings of behavior as features with string
matching classifier [34], [49], neural networks [50],
[51], [52], [53], [54], Elman network [53], motion fea-
tures with SVMs [55], bag of system calls features
with decision tree, Naı̈ve Bayes, SVMs [56]. Sliding
window subsequences have also been used as features
with SVMs [57], [58], rule based classifiers [59], and
HMMs [44].

2.1.2 Window based Detection of Outlier Time Series

Given: A database of time series
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Fig. 2. Window Based Time Series Outlier Detection

Find: All anomalous time windows, and hence
anomalous time series

Compared to the techniques in the previous sub-
section, the test sequence is broken into multiple
overlapping subsequences (windows). The anomaly
score is computed for each window, and then the
anomaly score (AS) for the entire test sequence is
computed in terms of that of the individual windows.
Window-based techniques can perform better local-
ization of anomalies, compared to the techniques that
output the entire time series as outliers directly. These
techniques need the window length as a parameter.
Windows are called fingerprints, pattern fragments,
detectors, sliding windows, motifs, and n-grams in
various contexts. In this methodology, the techniques
usually maintain a normal pattern database, but some
approaches also maintain a negative pattern or a
mixed pattern database. Figure 2 shows a general
sketch of the method.
Normal Pattern Database Approach

In this approach, normal sequences are divided into
size w overlapping windows. Each such window sub-
sequence is stored in a database with its frequency. For
a test sequence, subsequences of size w are obtained,
and those subsequences that do not occur in normal
database are considered mismatches. If a test sequence
has a large number of mismatches, it is marked as
an anomaly [44], [49], [51], [53], [60]. Rather than
looking for exact matches, if a subsequence is not
in the database, soft mismatch scores can also be
computed [20], [61], [62], [63].

Besides contiguous window subsequences, a looka-
head based method can also be used for building
a normal database [64]. For every element in every
normal sequence, the elements occurring at distance
1,2,. . ., k in the sequence are noted. A normal database
of such occurrences is created. Given a new test
sequence, a lookahead of the same size k is used. Each
pair of element occurrence is checked with the normal
database, and the number of mismatches is computed.
Negative and Mixed Pattern Database Approaches

Besides the dictionaries for normal sequences,
anomaly dictionaries can also be created [34], [50],
[65], [66], [67]. All normal subsequences of length w
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are obtained from the input string. Next, all sequences
of size w not in the set are considered detectors or
negative subsequences. Detectors can be generated
randomly or by using some domain knowledge of
situations that are not expected to occur in normal
sequences. A test sequence is then monitored for
presence of any detector. If any detector matches, the
sequence can be considered an outlier.

2.1.3 Outlier Subsequences in a Test Time Series
Given: A database of time series D and a test time
series t
Find: An outlier subsequence (or a pattern) p in t

The anomaly score for a pattern p can be computed
as the difference between the frequency of pattern
p in test time series and the expected frequency in
database D. Keogh et al. [68] define a soft match
version of the problem where the frequency of pattern
p in the database D is defined using the largest
number l such that every subsequence of p of length
l occurs at least once in D. Another form of soft
matching is defined in [69], where rather than an
exact match of pattern p, any permutation of p is
also considered a match. To make the computations
efficient, the TARZAN algorithm was proposed which
exploits suffix trees [68], [70], [71]. Also Gwadera
et al. [72], [73] have proposed Interpolated Markov
Models (IMM) to efficiently compute the match score
of a pattern or its permutations within any time series.

2.2 Outliers Within a Given Time Series
Given a single time series, one can find particular
elements (or time points) within the time series as
outliers, or one can also find subsequence outliers. In
this subsection, we will discuss techniques for both
these cases.

2.2.1 Points as Outliers
Given: A time series t
Find: Outlier points in t

Various methodologies have been proposed to find
outlier points for a time series. A large number of
prediction models and profile based models have
been proposed. An information-theoretic compression
based technique has also been proposed to find “de-
viants”. We will discuss these techniques below. Apart
from these, a number of clustering and classification
approaches described in Section 2.1.1, can also be used
to detect point outliers.
Prediction Models

The outlier score for a point in the time series is
computed as its deviation from the predicted value
by a summary prediction model. The primary variation
across models, is in terms of the particular prediction
model used.

Given a time series, one can predict the value at
time t as a median of the values in the size-2k window

from t−k to t+k [74], or as an average of all the points
in the cluster that the value at time t maps to [75], or
using regression models. Single-layer linear network
predictor (or AR model) has been used in a large num-
ber of studies including [75]. Other prediction models
include Multilayer perceptron (MLP) predictor [75]
and support vector regression [76]. Mixture transition
distribution (MTD) have been proposed for outlier
detection for general non-Gaussian time series [77].
Tsay et al. [78] propose a vector ARIMA model to
identify additive outliers, innovation outliers, level
shifts, and temporary changes from multi-variate time
series. Besides individual points, multiple outliers can
also be discovered using prediction models, e.g., using
re-weighted maximum likelihood estimates [79] or
using Gibbs sampling and block interpolation [80].

There are many variants of this technique. Outlier-
aware variants of these prediction models estimate
model parameters and outliers together [81], [82], [83],
[84]. In multi-variate time series, prediction could
be made for all constituent time series. In [85], to
compute outliers for multi-variate time series, testing
for outliers is done only in some smartly selected pro-
jection directions rather than testing the multivariate
series directly to compute outliers.
Profile Similarity based Approaches

These approaches maintain a normal profile and
then compare a new time point against this profile
to decide whether it is an outlier. For example, for
multiple OS performance metric time series, the Tire-
sias system [86] maintains a normal profile and also
a variance vector. Any new data point is compared
both with the normal profile and the variance vector
to compute its anomaly score. Here the profile is
the actual smoothed time series data from past data.
In [87], a neural network is used to maintain the
normal profile and an estimation is made for the next
value in the sensor stream based on this profile. We
will discuss more profile based techniques in Section 3
in the context of data streams.
Deviants

Deviants are outlier points in time series from
a minimum description length (MDL) point of
view [88]. If the removal of a point P from the time
sequence results in a sequence that can be represented
significantly more succinctly than the original one,
then the point P is a deviant. These information-
theoretic models explore the space-deviation tradeoff
by fixing the deviation, rather than fixing the space,
as in conventional models. Thus the problem is to
find points whose removal results in a histogram
representation with a lower error bound than the
original, even after the number of buckets has been
reduced to account for the separate storage of these
deviant points. Jagadish et al. [88] propose a dy-
namic programming mechanism to solve the problem.
Muthukrishnan et al. [89] make the observation that
for any bucket, the optimal set of k deviants within
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the bin always consists of the l highest and remaining
k− l lowest values for some l ≤ k. Then, they propose
an approximation to the dynamic programming-based
solution, that maintains a partial solution only for a
few interspersed indexes of the time series rather than
for each value.

2.2.2 Subsequences as Outliers
Given: A time series t
Find: Outlier subsequences in t

In the previous subsection, we looked at techniques
to identify point outliers. In this subsection, we will
visit mechanisms to identify outlier subsequences in
time series.

Given a time series T , the subsequence D of length
n beginning at position l is said to be the discord (or
outlier) of T if D has the largest distance to its nearest
non-overlapping match [90]. The brute force solution
is to consider all possible subsequences s ∈ S of
length n in T and compute the distance of each such s
with each other non-overlapping s′ ∈ S. Top-K prun-
ing can be used to make this computation efficient.
Subsequence comparisons can be smartly ordered for
effective pruning using various methods like heuristic
reordering of candidate subsequences [91], locality
sensitive hashing [92], Haar wavelet and augmented
tries [93], [94], and SAX with augmented trie [95].
To compute the distance between subsequences, most
methods use Euclidean distance while Compression
based Dissimilarity Measure (CDM) is used as a dis-
tance measure in [96]. Yankov et al. [97] solve the
problem for a large time series stored on the disk.

Chen et al. [98] define the subsequence outlier
detection problem for an unequal interval time series
which is a time series with values sampled at unequal
time intervals. For such a time series, a pattern is
defined as a subsequence of two consecutive points.
A pattern p is called an anomaly, if there are very
few other patterns with the same slope and the same
length. To identify anomalies at multiple scales, the
Haar transform is used. Haar transform is also used
in [99] to identify multi-level trends and anomalies.

Besides the aforementioned definitions of outlier
subsequences, some more variants have also been
discussed in the literature. For example, in [100] a
lead and a lag window are defined as adjacent sub-
sequences. The two windows could be of any length.
The subsequence represented by the lead window is
an anomaly, if its similarity with the lag window is
very low. They measure the similarity using chaos
bitmaps. As another example, Zhu et al. [101] com-
pute subsequences of length w with a very high aggre-
gate value as outliers. They use a novel data structure
called Shifted Wavelet Tree to solve the problem.

3 OUTLIER DETECTION FOR STREAM DATA
Compared to static data, streaming data does not
have a fixed length. Streams can be a time-series or
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Fig. 3. Stream Anomaly Detection

multidimensional. Temporal dependencies for mul-
tidimensional streams, are used differently than in
time-series. Rather than using time-series forecasting
methods, these methods are closer to conventional
multidimensional models, but with a temporal com-
ponent, which accounts for temporal drift, and devi-
ations.

3.1 Evolving Prediction Models
Given: A multidimensional data stream s
Find: Outlier points in s

Evolving prediction models are models in which the
parameters or components of the model are updated
as new data arrives in order to better capture the
normal trends in the data. In this subsection, we will
discuss a few such models.
Online Sequential Discounting

Yamanishi et al. [102], [103] present SmartSifter
which employs an online discounting learning algo-
rithm to incrementally learn the probabilistic mix-
ture model, with a decay factor to account for drift.
The outlier score for a data point is computed in
terms of the probabilistic fit value to the learned
mixture model. Such mixture models are used for
conventional multidimensional data, but without the
adjustments for incremental updates and temporal
decay. Figure 3 shows an illustration of the method.

For categorical variables, they propose the Sequen-
tially Discounting Laplace Estimation (SDLE) algo-
rithm. In SDLE, cells are created by partitioning the
space of all values of all categorical variables. The
probability of a symbol in a cell is the number of
occurrences of that symbol in that cell divided by the
total data points with the Laplace smoothing. When a
new data point arrives, the count for all the cells are
adjusted with temporal discounting and appropriate
Laplace smoothing is applied.

For continuous variables, they propose two models:
an independent model and a time series model. The
independent model is a Gaussian mixture model in
the parametric case and a kernel mixture model in
the non-parametric case. For learning the Gaussian
mixture model (GMM), they provide the Sequentially
Discounting EM (SDEM) algorithm which is essen-
tially an incremental EM algorithm with discounting
of effect of past examples. For learning the kernel
mixture model, Yamanishi et al. provide Sequentially
Discounting Prototype Updating (SDPU) algorithm
where the coefficients of the mixture and the variance
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matrix are fixed and so it iteratively learns only the
means of the kernels or the prototypes. For learning
the time series model, they provide the Sequentially
Discounting AR (SDAR) algorithm which learns the
AR model parameters iteratively with time discount-
ing.

The online discounting behavior is also used to
update the “normal” distribution in SRI’s Emerald
system [104], by giving more weight to recent data.
Online discounting has also been used for mixed
attribute data streams, to maintain the frequency of an
itemset (a set of attribute values) [11], where a point is
called an outlier if it shares the attribute values with
none or very few other points. Exponentially greater
importance (another form of online discounting) is
given to the recent points to learn a polynomial func-
tion in StreamEvent [8] which is an algorithm to ef-
ficiently compute outliers from multiple synchronous
streams, though this model is based on the time-series
scenario.
Dynamic Cluster Maintenance

Other than the online discounting methods, large
number of methods use dynamically maintained clus-
ter models for computing outliers from data streams.
For example, normalized length of the longest com-
mon subsequence (LCS) has been used as the se-
quence similarity measure for dynamic clustering by
Sequeira et al. [24]. In the text domain, online cluster-
ing methods were proposed in [105] to detect outliers.
Dynamic Bayesian Networks

Sometimes updating the parameters of the model
is not enough. The model can be modified by it-
self to incorporate drifts in the data stream. Hill
et al. [106] present an approach that uses Dynamic
Bayesian networks which are Bayesian networks with
network topology that evolves over time, adding
new state variables to represent the system state at
the current time t. They present two strategies for
detecting anomalous data: Bayesian credible interval
(BCI) and maximum a posteriori measurement status
(MAP-ms). The first method uses an HMM model,
where Kalman filtering is used to sequentially infer
the posterior distributions of hidden and observed
states as new measurements become available from
the sensors. The posterior distribution of the observed
state variables is then used to construct a Bayesian
credible interval for the most recent set of measure-
ments. Any measurements that fall outside of the p%
Bayesian credible interval can be classified as anoma-
lous. In the second method, a 2-layered DBN is used.
The status (e.g., normal/anomalous) of each sensor
measurement is also modeled as a hidden state. The
maximum a posteriori estimate, (i.e., the most likely
value given the posterior distribution) of the hidden
state variable, indicating the measurement status, can
be used to classify the sensor measurements as normal
or anomalous.
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Fig. 4. Distance based Outliers for Sliding Win-
dows [108]

3.2 Distance based Outliers for Sliding Windows

Given: A data stream s
Find: Distance based outliers in any time window of
s

Besides defining outliers for data streams using
prediction models, one can also compute distance
based outliers for data streams at any time instant.
Given a set of points, a point o is called a DB(k,R)
distance outlier if there are less than k points within
distance R from o [107]. Given a data stream, at any
time point, one can discover outliers from the set
of points lying within the current sliding window.
Distance based outliers can be discovered both in a
global as well as in a local sense on points within
the current sliding window. Figure 4 shows a 1-
dimensional stream dataset with two time windows
(t3 to t18 and t7 to t22). Consider the window at time
t18. If we consider a point with k < 4 points within
distance R as outliers, o9 (with k=4 neighbors o5, o10,
o14 and o15) and o11 (with k=4 neighbors o3, o4, o6
and o13) are examples of inliers, while o8 (with only 2
neighbors o7 and o16) and o17 (with only 1 neighbor
o18) are examples of outliers.

3.2.1 Distance based Global Outliers

As the sliding window for a stream moves, old ob-
jects expire and new objects come in. Since objects
expire over time, the number of preceding neighbors
of any object decreases. Therefore, if the number of
succeeding neighbors of an object is less than k, the
object could become an outlier depending on the
stream evolution. Conversely, since any object will
expire before its succeeding neighbors, inliers having
at least k succeeding neighbors will be inliers for any
stream evolution. Such inliers are called safe inliers
(e.g., in Figure 4, for k=3, o9 is a safe inlier as it has 3
succeeding neighbors (o10, o14, o15) while o11 is not,
as it has only 1 succeeding neighbor (o13)).

Angiulli et al. [108] propose an exact algorithm to
efficiently compute distance outliers using a new data
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structure called Indexed Stream Buffer (ISB) which
supports a range query. Further, they also propose an
approximate algorithm which uses two heuristics: (a)
It is sufficient to retain in ISB only a fraction of safe
inliers, (b) Rather than storing the list of k most recent
preceding neighbors, it is enough to store only the
fraction of preceding neighbors, which are safe inliers
to the total number of safe inliers.

Yang et al. [109] propose that maintaining all neigh-
bor relationships across time may be very expensive.
Therefore, abstracted neighbor relationships can be
maintained. However, maintaining such cluster ab-
stractions is expensive too. Hence, they exploit an im-
portant characteristic of sliding windows, namely the
“predictability” of the expiration of existing objects.
In particular, given the objects in the current window,
the pattern structures that will persist in subsequent
windows can be predicted by considering the objects
(in the current window) that will participate in each
of these windows only. These predicted pattern struc-
tures can be abstracted into “predicted views” of each
future window. They propose an efficient algorithm
which makes use of the predicted views to compute
distance based outliers.

The problem of distance-based outlier detection for
stream data can also be solved using dynamic cluster
maintenance, as has been done for similar problems
in [110], [111].

3.2.2 Distance based Local Outliers
Local Outlier Factor (LOF) is an algorithm for finding
anomalous data points by measuring the local devi-
ation of a given data point with respect to its neigh-
bours [112]. The LOF algorithm developed for static
data can be adapted to the incremental LOF problem
(i.e., the stream setting) in three ways: (a) periodic
LOF, i.e., apply LOF on entire data set periodically, or
as (b) supervised LOF, i.e., compute the k-distances,
local reachability density (LRD) and LOF values using
training data and use them to find outliers in test data
or as (c) iterated LOF where the static LOF algorithm
can be re-applied every time a new data record is
inserted into the data set. A better approach is pro-
posed in [113], where the incremental LOF algorithm
computes LOF value for each data record inserted
into the data set and instantly determines whether
the inserted data record is an outlier. In addition, LOF
values for existing data records are updated if needed.
Thus, in the insertion part, the algorithm performs
two steps: (a) insertion of new record, when it com-
putes the reachability distance, LRD and LOF values
of a new point; (b) maintenance, when it updates k-
distances, reachability distance, LRD and LOF values
for affected existing points.

3.3 Outliers in High-dimensional Data Streams
Zhang et al. [114] present Stream Projected Outlier
deTector (SPOT), to deal with outlier detection prob-

Sensor1 Sensor3

Sensor2

Fig. 5. Distributed Data Streams Scenario

lem in high-dimensional data streams. SPOT employs
a window based time model and decaying cell sum-
maries to capture statistics like Relative Density and
Inverse Relative Standard Deviation of data points
in the cell from the data stream. Sparse Subspace
Template (SST), a set of top sparse subspaces ob-
tained by unsupervised and/or supervised learning
processes, is constructed in SPOT. These SSTs are
the subspaces which are explored to find projected
outliers effectively. Multi-Objective Genetic Algorithm
(MOGA) is employed as an effective search method in
unsupervised learning for finding outlying subspaces
from training data. SPOT is also capable of online self-
evolution, to cope with evolving dynamics of data
streams.

4 OUTLIER DETECTION FOR STREAM DATA
IN DISTRIBUTED SCENARIOS

Zhang et al. [4] provide a detailed survey for outlier
detection techniques on wireless sensor networks. The
main challenges for outlier detection in a distributed
setting are as follows.
• Resource constraints: Energy, memory, computa-

tional capacity and communication bandwidth
are all scarce.

• High communication cost: Communication cost
is orders of magnitude greater than the compu-
tation costs.

• Distributed streaming data: Processing data on-
line coming at different rates from multiple dis-
tributed sensors is non-trivial.

• Dynamics: Dynamic network topology, frequent
communication failures, mobility and hetero-
geneity of nodes are a few dynamic features of
such datasets which are challenging to handle.

• Large-scale deployment: Traditional outlier detec-
tion algorithms are not easily scalable.

• Identifying outlier sources: It is important to
make distinctions between errors, events and ma-
licious attacks.

In a distributed stream setting, points are distributed
across various nodes (sensors). Each sensor has an
associated stream of incoming points and the aim is
to find top few distance based outliers based on the
global data (Figure 5). In a distributed spatio-temporal
setting, the position of sensors is also important when
computing outliers. We discuss both settings in this
section.
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4.1 Distributed Temporal Data

Given: A set of sensors each with an associated data
stream
Find: Distance/density based outliers based on global
data
Sharing Local Outliers and Other Data Points: Let us
first discuss an algorithm [115] for a distributed static
setting, where each sensor holds a set of points and
tries to compute the set of the global top-K outliers.
An outlier detection algorithm A is available which
outputs a ranking function R. R is anti-monotonic wrt
data and R should be smooth, e.g., the distance to
the kth nearest neighbor, the average distance to the
k nearest neighbors, etc. Consider a point x in dataset
P . Consider a subset P0 of P . If P0 is the smallest
subset such that R(x, P ) = R(x, P0) then P0 is called
the support set of x over P .

Based on the above basic concepts, we discuss the
algorithm flow as follows. Each sensor exchanges
messages with its neighbors. Each sensor can apply
A to compute top-K outliers for its knowledge where
the knowledge of the sensor is its own points plus the
points received in messages. Sensor pi should send
to pj all of pi’s current outliers and their supports.
If, for any of these points x, pi cannot be certain that
pj has x (i.e. neither previous messages from pi to pj
nor messages from pj to pi contain x), then x must be
sent to pj . Second, pi may have points which would
effect outliers previously sent by pj , but these may
not be accounted for in the first part. It suffices for pi
to send the support of all of the outliers in message
from pj to pi which were not in that message. In a
streaming setting, when a new point is sampled, data
changes at the local sensor itself. This requires that the
same calculation is made as in the case of a change in
knowledge of the sensor due to receiving a message.
If the algorithm needs to only consider points which
were sampled recently (i.e. employ a sliding window),
this can be implemented by adding a time-stamp to
each point when it is sampled. Each node can retire
old points regardless of where they were sampled and
at no communication cost at all.
Sharing Local Outliers Only: Since transmitting the
entire data or even the model to every node could
be expensive, Otey et al. [116] propose that only
the local outliers be exchanged between nodes. If all
nodes agree that a point is an outlier, then we can
assume that the point is a global outlier. The sites only
communicate when some user-specified event occurs.
Examples of such events include a user’s query for
the global outliers, when a node finishes processing a
fixed number of points, or when a node finds a fixed
number of outliers. Clearly, since there is no global
computation, this is an approximate algorithm.
Sharing Local Outliers and Data Distributions: In
this approach, data distributions are also shared along
with the local outliers. The sensor network is orga-

nized in the form of a hierarchy. Kernel density esti-
mators are used to approximate the sensor data dis-
tribution. Once the data distributions are estimated,
the density of the data space around each value can
be computed, and thus outliers can be determined.
For distance based outliers, the goal is to identify,
among all the sensor readings in a sliding window,
those values that have very few close neighbors. The
global distance based outliers are computed by send-
ing the local model and the local outliers to the parent
nodes. For density based method, Subramaniam et
al. [117] propose the Multi Granularity Deviation
Factor (MDEF) metric. A value is flagged as an outlier,
if its MDEF is statistically significantly different from
that of the local averages. To estimate global MDEF
based outliers, each node sends the new observations
to its parent with a probability f , and then the parent
node communicates the new model to the lowest level
of nodes through the intermediate nodes. The hierar-
chical architecture of a sensor network has also been
proposed by Palpanas et al. [118]. The distribution of
the sensed data is assumed to be the kernel density
estimators. When the observed data points do not fit
this model, they are considered as outliers.

4.2 Distributed Sensor Data Streams with Spatial
Considerations

For some applications, the location of the sensors
is also important. In such settings where data is
available across space and time, one can find faulty
sensors.
Given: A set of sensors each with (x,y) coordinates
and an associated data stream
Find: Outlier sensors and outlier regions

In this setting, each sensor is associated with a data
stream based on a part of a source signal received at
its location. Each sensor thus receives data which is
a combination of the source signal plus some noise
where a part of the noise component captures the
outlierness in the signal. The outlier detection process
then consists of four phases: clustering, temporal out-
lier detection, removal of the spatial variation, and
spatial outlier detection. In the beginning, sensors
form a cluster and elect their cluster-head. After that,
the cluster-head receives data from sensors, carries out
most of the computation tasks, and broadcasts results
to sensors. In the next phase, each sensor detects
and recognizes any existing temporal outliers. This
task can be realized by making all sensors operate
simultaneously in parallel. In the third phase, it is
important to remove any geometrical effect caused by
the sensor distribution. The signal power reduces in
proportion to the distance from the source. If this bias
is not accounted for properly, sensors near the source
that receive more energy might be falsely regarded
as outliers, even though they are not. If the data has
some bias, the distribution might be heavily tailed
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Fig. 6. ST-Outlier Detection Framework

with outliers located near the tail of the distribution.
In that case, the min and max values are removed
as outliers iteratively using the property of α-stable
distributions. The last phase is the spatial outlier
detection using the variogram method [119, p. 69-83].
Since this method generally shows the spatial variance
between sensors, outliers can be considered as those
ones that deviate remarkably from the majority of the
data. Note that this method [120] assumes that the
outliers are uncorrelated in time and space, and can
be modeled as an α-stable distribution.

Yet another way to use the location of sensors is to
consider neighbors within distance r. Given spatio-
temporal data from a sensor network, a sensor s can
be considered as an outlier for a time window w, if
the value at sensor s at the end of the window has
less than k measurements from all sensors within win-
dow w, within a distance r. Once outlier sensors are
discovered, Franke et al. [121], [122] propose models
to compute polygonal outlier regions in the sensor
network.

5 OUTLIER DETECTION FOR
SPATIO-TEMPORAL DATA

Some studies find outliers considering only their tem-
poral neighbors, while other work concerns outliers
with respect to their spatial neighbors only. Com-
bining these two notions, a spatio-temporal outlier
(ST-Outlier) is a spatio-temporal object whose be-
havioral/thematic (non-spatial and non-temporal) at-
tributes are significantly different from those of the
other objects in its spatial and temporal neighbor-
hoods. Figure 6 shows a typical ST-Outlier detection
pipeline.

5.1 Techniques for ST-Outlier Detection
Given: A spatio-temporal dataset
Find: ST-Outliers, i.e., spatio-temporal objects whose
behavioral (non-spatial and non-temporal) attributes
are significantly different from those of the other
objects in its spatial and temporal neighborhoods

Most of the ST-Outlier detection techniques first
find spatial outliers and then verify their temporal
neighborhood. The techniques differ in the way spa-
tial outliers are computed. We discuss these tech-
niques below.

Birant et al. [123] propose a density-based ST-
Outlier detection mechanism. First, they run a modi-
fied DBSCAN [124] clustering algorithm on the data
with two main modifications: (1) To support the tem-
poral aspect, a tree is traversed to find both spatial

and temporal neighbors of any object within a given
radius. (2) To find outliers, when clusters have differ-
ent densities, the algorithm assigns a density factor
to each cluster and compares the average value of a
cluster with the new coming value. After clustering,
potential outliers are detected. This is followed by
checking the spatial neighbors to verify whether these
objects are actually spatial outliers. The next step
checks the temporal neighbors of the spatial outliers
identified in the previous step. If the characteristic
value of a spatial outlier does not have significant
differences from its temporal neighbors, this is not an
ST-Outlier. Otherwise, it is confirmed as an ST-Outlier.

Cheng et al. [125], [126] propose a four step ap-
proach. (1) Clustering: Form some regions that have
significant semantic meanings, i.e. the spatio-temporal
objects of interest. (2) Aggregation: Spatial resolution
(scale) of the data is reduced for clustering. It is also
called filtering since the outliers (noise) will be filtered
after the spatial scale change. (3) Comparison: Results
obtained at the two spatial scales are compared to
detect the potential spatial outliers. The objects that
are found in Step 1 and are missed (or filtered) in Step
2 are potential ST-Outliers. The comparison can be
realized either by exploratory visualization analysis
or visual data mining. (4) Verification: Check the tem-
poral neighbors of the suspected ST-Outliers detected
in the previous step to detect ST-Outliers.

Adam et al. [127] studied distance based outlier
detection for a spatio-temporal dataset. Voronoi di-
agrams are used to establish spatial clusters called
micro-clusters. Based on the spatial and semantic
similarity (computed using the corresponding time se-
ries) between two micro-clusters they can be merged
to get macro-clusters. Spatial similarity for micro-
cluster computation uses two measures: the Jaccard
coefficient that represents similarity and the Silhouette
coefficient that represents quality of clustering. Any
datum that differs sufficiently from other points in the
macro neighborhood is then marked as an ST-Outlier.

5.2 Tracking of ST-Outliers

Given: A spatio-temporal dataset
Find: ST-Outlier solids, i.e., a region across time

While previous techniques consider an ST-Outlier
as a point in space and time, an ST-Outlier could be
considered as a solid with its base in the XY space
dimension and volume across the time dimension.
Wu et al. [128] propose an ST-Outlier detection algo-
rithm called Outstretch, which discovers the outlier
movement patterns of the top-K spatial outliers over
several time periods. The top-K spatial outliers are
found using the Exact-Grid Top-K and Approx-Grid
Top-K algorithms (popular spatial outlier detection
algorithms) with a well-known spatial scan statistic
known as Kulldorff’s scan statistic. An ST-Outlier may
exist over more than one time period. For example,
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if there is higher than average precipitation in Peru
over the years 1998-2002, then the solid in three
dimensional (X, Y and time) space is an outlier. Using
the top-K spatial outliers for each time period, they
find all the sequences of outliers over time and store
into a tree. The Outstretch algorithm takes as input
the top-K values for each year period under analysis,
and a variable r, the region stretch, which is the
number of grids to ‘stretch’ by, on each side of an
outlier. Outstretch then examines the top-K values
of the second to last available year periods. For all
the years, each of the outliers from the current year
are examined to see if they are framed by any of
the stretched regions from the previous year. If they
are, the item is added to the end of the previous
year’s child list. As a result, all possible sequences
over all years get stored into the outlier tree and can
be retrieved for analysis.

Similarly, Lu et al. [129] propose a wavelet fuzzy
classification approach to detect and track region out-
liers in meteorological data. First, wavelet transform
is applied to meteorological data to bring up distinct
patterns that might be hidden within the original
data. Then, a powerful image processing technique,
edge detection with competitive fuzzy classifier, is
extended to identify the boundary of region outlier.
After that, to determine the center of the region
outlier, the fuzzy-weighted average of the longitudes
and latitudes of the boundary locations is computed.
By linking the centers of the outlier regions within
consecutive frames, the movement of a region outlier
can be captured and traced.

5.3 Trajectory Outliers

Given: A set of trajectories
Find: Anomalous trajectories

Most of the techniques are based on distance, di-
rection and density of trajectories. However, classifi-
cation and historical similarity based techniques have
also been proposed. We discuss these below.
Distance Between Trajectories: Lee et al. [130] pro-
pose TRAjectory Outlier Detection (TRAOD) algo-
rithm which consists of two phases: (1) Partitioning
Phase and (2) Detection Phase. In the first phase,
each trajectory is split into partitions using a 2-level
partitioning. Distance between trajectory partitions is
calculated as a weighted sum of three components:
perpendicular distance, parallel distance and angle
distance. In the second phase, a trajectory partition
is considered outlying if it does not have sufficient
number of similar neighbors (with appropriate con-
siderations of local density). A trajectory is an outlier
if the sum of the length of its outlying partitions is at
least F times the sum of lengths of all of its partitions.
Direction and Density of Trajectories: Ge et al. [131]
consider two types of outlying trajectories: outliers in
terms of direction and outliers in terms of density.

The continuous space is discretized into small grids
and a probabilistic model is used to turn the direction
information of trajectories in a grid into a vector with
eight values to indicate the probabilities of moving to-
wards eight directions within this grid. The direction
trend is thus generated within a fixed area by sum-
marizing the moving directions from large amounts
of trajectories for a period of time. Then, once some
objects move across this area along the completely
different directions from the summarized directions,
they can be labeled as outliers in a real-time fashion
by measuring the similarity between the directions of
the observed objects and the summarized directions.
Also, with this discretized space, the density of tra-
jectories can be computed in each grid conveniently.
The trajectory density within each grid is estimated
as the number of trajectories across this grid. The
trajectory density distribution can be obtained with
sufficient historical trajectory data. The outlying score
of a new trajectory can then be measured based on the
density of trajectories in the grids where this trajectory
actually passes.
Historical Similarity: While the above techniques
stress on the spatial continuity to define outliers, Li
et al. [132] propose a method for detecting tempo-
ral outliers with an emphasis on historical similarity
trends between data points. At each time step, each
road segment checks its similarity with the other
road segments, and the historical similarity values are
recorded in a temporal neighborhood vector at each
road segment. Outliers are calculated from drastic
changes in these vectors. Given a road segment with
a historically stable set of neighbors (in feature space,
not physical space), an outlier is loosely defined as
a drastic change in the membership of this set. A
change is noted heavily for a pair of road segments
if the two road segments are historically similar but
dissimilar at this time instant, or if the two road
segments are not historically similar but similar at
this time instant. Based on this, each road segment
is given an exponential reward or penalty each day.
The outlier score of an road segment on a particular
day is then equal to the sum of rewards and penalties.
The power of this method compared with a method
that measures only the singular road segment is that
it is robust to population shifts.
Trajectory Motifs: Li et al. [55] propose a motion-
classifier for trajectory outlier detection, which con-
sists of the following three steps. (a) Object movement
features, called motifs, are extracted from the object
paths. Each path consists of a sequence of motif
expressions, associated with the values related to
time and location. (b) To discover anomalies in object
movements, motif based generalization is performed
to cluster similar object movement fragments and gen-
eralize the movements based on the associated motifs.
(c) With motif based generalization, objects are put
into a multi-level feature space and are classified by
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a classifier that can handle high-dimensional feature
spaces to discriminate anomalous trajectories from
normal ones.

6 OUTLIER DETECTION FOR TEMPORAL
NETWORKS

Given a stream of graphs, how does one identify
an outlier graph? Given a temporal network with
community distributions for each of its nodes, how
does one track community evolution, and thereby
define community outliers? In this section, we will
study techniques that help us answer these questions.

6.1 Graph Similarity based Outlier Detection Al-
gorithms

Given: A series of graph snapshots
Find: Outlier graph snapshots

Various graph distance metrics can be used to cre-
ate time series of network changes by sequentially
comparing graphs from adjacent periods. These time
series are individually modeled as univariate autore-
gressive moving average (ARMA) processes and then
outliers can be detected.

Let V be the set of nodes when both the graph
snapshots G and H contain the same set of nodes,
else VG and VH are used to denote the respective
vertex sets of the two graphs. EG and EH are edges
in graphs G and H . Let wG(u, v) and wH(u, v) denote
the edge weights for edge (u, v) in the graphs G and
H respectively. The distance/similarity measures to
compute distances between two graphs G and H are
mentioned below.

(1) Weight Distance [133]: It is a function of the
difference between the edge weights of the graphs
G and H normalized by the maximum of the edge
weights in G or H .

(2) MCS Weight Distance [133]: It computes weight
distance based on the edges in MCS where the maxi-
mum common subgraph (MCS) F of G and H is the
common subgraph with the most vertices.

(3) MCS Edge Distance [133]: It is defined in terms
of the number of edges in the MCS as follows.
d(G,H) = 1− |mcs(EG,EH)|

max(|EG|,|EH |) .
(4) MCS Vertex Distance [133]: It is defined in a

similar way as in the MCS edge distance, but vertex
sets of the two graphs rather than edge sets are used
in the distance computation.

(5) Graph Edit Distance [133], [134], [135]: The
simplest form of graph edit distance is given by
d(G,H) = |VG|+|VH |−2|VG∩VH |+|EG|+|EH |−2|EG∩
EH |. This captures the sequence of edit operations
required to make graph G isomorphic to graph H .
Graph edit distance can be expressed in other ways
where the costs of inserting/deleting/substituting a
node/edge are different [136]. Further, node edits and
edge edits can be given different importance levels.

(6) Median Graph Edit Distance [133], [137]: Median
graph can be computed for a fixed window of graphs
using graph edit distance. Median graph edit distance
is the edit distance of the graph from the median
graph.

(7) Modality Distance [133]: The Modality distance
between graphs G and H is the absolute value of the
difference between the Perron vectors of these graphs.
Perron vector is the eigen vector corresponding to the
largest eigen value for the adjacency matrix of the
corresponding graph.

(8) Diameter Distance [133], [138]: The Diameter
distance between graphs G and H is the difference
in the diameters for each graph.

(9) Entropy Distance [133], [138]: The Entropy dis-
tance between graphs G and H is defined using
entropy-like measures associated with edge weights
for the corresponding graphs.

(10) Spectral Distance [133], [138]: The Spectral dis-
tance between graphs G and H is defined in terms
of the k largest eigenvalues of the Laplacian for the
graphs G and H respectively.

(11) Umeyama graph distance [139]: The Umeyama
graph distance is defined as the sum of the squares
of the differences between edge weights for the corre-
sponding edges of the graphs G and H respectively.

(12) Vector Similarity [134]: This is computed as the
Euclidean distance between the principal eigenvectors
of the graph adjacency matrices of the two graphs.

(13) Spearman’s correlation coefficient [134]: This is
calculated as the rank correlation between sorted lists
of vertices of the two graphs. Vertices are sorted based
on the PageRank or some other properties.

(14) Sequence similarity [140], [134]: It is the similar-
ity of vertex sequences of the graphs that are obtained
through a graph serialization algorithm. Such an algo-
rithm creates a serial ordering of graph vertices which
is maximally edge connected. That means that it
maximizes the number of vertices that are consecutive
in the ordering and are edge connected in the graph.

(15) Signature similarity [140], [134]: It is computed
as the Hamming distance between the fingerprints of
two graphs. To get such fingerprints, a similarity hash
function is applied to the graphs being compared.

(16) Vertex/edge overlap (VEO) [140]: Two graphs
are similar if they share many vertices and/or edges.
The Jaccard index is one way to compute the overlap
between two graphs. It is defined as the length of
intersections of vertices/edges divided by that of the
union.

(17) Vertex ranking (VR) [140]: Two graphs are
similar if the rankings of their vertices are similar. The
vertices can be ranked using their qualities, and the
similarity of rankings can be computed using a rank
correlation method such as Spearman’s correlation
coefficient.

For TCP/IP traffic data, it was observed that time
series based on the MCS edge, MCS vertex, edit, me-
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dian and entropy metrics had no false positives. How-
ever, the time series based on the spectral, modality
and diameter distance metrics are considerably more
computationally intensive and also did not lend them-
selves to accurate ARMA modelling [133]. Amongst
vertex ranking, vector similarity, vertex/edge over-
lap, sequence similarity, and signature similarity, Pa-
padimitriou et al. [134] observed that signature simi-
larity and vector similarity were the best at detecting
anomalies from web crawl graphs while not yielding
false positives.

Another measure to define outliers on a pair of
graph snapshots is the shortest path distance between
any pair of nodes. Given two snapshots of a temporal
graph, Gupta et al. [141] study the problem of finding
node pair outliers which are node pairs with maxi-
mum change in shortest path distance across the two
graph snapshots.

6.2 Online Graph Outlier Detection Algorithms

Given: A stream of graphs
Find: Outlier graph snapshots or outlier localized
regions

The techniques in the previous subsection are usu-
ally applied over a fixed length time series of graphs.
Next, we will discuss an eigenvector based approach
and a structural outlier detection approach for graph
streams.

Ide et al. [142] proposed an eigenvector-based
method for anomaly detection over graph streams.
The principal eigenvector of the graph weight matrix
at time t is called activity vector u(t). Activity vectors
over time interval h are stored in the matrix U(t) =
[u(t), u(t− 1), . . ., u(t−h+1)]. Then the “typical pat-
tern” is defined to be the left singular vector of U(t).
For any new data point at time t, this U(t− 1) matrix
is constructed, the typical pattern is extracted and
then the typical pattern vector is compared against
the activity vector at time t. The angle between the
vectors gives similarity between the activity vector
and the typical pattern of the data in the last h time
snapshots. The authors provide an online algorithm to
calculate the threshold for the angle as well. A similar
method is also proposed by Akoglu et al. [143] to spot
anomalous points in time at which many agents in an
agent network change their behavior in a way such
that it deviates from the norm.

While Ide et al. take a spectral approach, Aggarwal
et al. [9] propose the problem of structural outlier
detection in massive network streams. They use a
structural connectivity model to define outliers in
graph streams as those graph objects which contain
such unusual bridging edges. To handle the sparsity
problem of massive networks, the network is dy-
namically partitioned to construct statistically robust
models of the connectivity behavior. These models are
maintained using an innovative reservoir sampling
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Fig. 7. A Framework for Community Outlier Detection

approach for efficient structural compression of the
underlying graph stream. Using these models, edge
generation probability is defined and then graph ob-
ject likelihood fit is defined as the geometric mean
of the likelihood fits of its constituent edges. Those
objects for which this fit is t standard deviations
below the average of the likelihood probabilities of all
objects received so far are reported as outliers. Further,
in [162], the authors maintain the information about
the changes in the different neighborhoods of the net-
work using a localized principal component analysis
algorithm. Localized regions of sudden change in the
underlying network are then reported as outliers.

6.3 Community based Outlier Detection Algo-
rithms
Given: A series of graph snapshots
Find: Outlier nodes with anomalous temporal com-
munity changes

Given two snapshots of a network, the commu-
nities evolve across the two snapshots. While most
objects follow the popular community distribution
change trends, some objects do not. Such rare objects
are called Evolutionary Community Outliers (ECOut-
liers) [13]. Figure 7 shows a typical framework to
discover community outliers from network data. To
begin with, communities can be discovered indepen-
dently in both snapshots. To discover ECOutliers,
it is important to first identify the usual transition
trends of community evolution. A key problem in
discovering the community transition trends is com-
puting matching communities across both snapshots.
ECOutlier detection can then be performed using
these patterns. However, community matching itself
suffers from ECOutliers and hence must be done
in an outlier-aware way. The framework discussed
in [13] integrates outlier detection and community
matching together in an iterative manner. Such an
integrated formulation performs much better than
performing outlier detection after community match-
ing separately.

Moreover, the authors investigated the task of out-
lier detection in a general setting of multiple network
snapshots [12]. Such outliers are called Community
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Trend Outliers (CTOutliers). This study exploits the
subtle temporal community evolution trends to per-
form outlier detection. While ECOutliers [13] cap-
ture the notion of anomalous community transi-
tions, CTOutliers [12] capture anomalous community
changes across multiple time snapshots, and in a more
subtle way. Two main challenges were (1) computing
patterns from a sequence of community membership
probability distributions (soft sequences) associated
with every object for a series of timestamps, and
(2) computing the outlier score of individual soft
sequences based on such patterns. The authors pro-
posed an effective two-step procedure to detect com-
munity trend outliers. They first modeled the normal
evolutionary behavior of communities across time
using soft patterns discovered from the dataset. In
the second step, they proposed effective measures to
evaluate probability of an object deviating from the
normal evolutionary patterns.

Besides these, a variety of metrics have been pro-
posed in [144], that can be used for community
based temporal outlier detection in graphs. These in-
clude consistency between two clusterings, snapshot
clustering quality, social stability and sociability of
objects. Though community based outlier detection
has been studied for a static heterogeneous graph
recently [145], there is no technique yet for temporal
heterogeneous graphs.

7 APPLICATIONS OF TEMPORAL OUTLIER
DETECTION TECHNIQUES

In this section, we briefly discuss different environ-
mental, industrial, surveillance, computer network,
biological, astronomy, web, information network and
economics applications, which are relevant to tempo-
ral outlier detection.

7.1 Environmental Sensor Data

Hill et al. [75], [106] use dynamic Bayesian networks
to identify measurement errors in a wind speed data
stream from WATERS Network Corpus Christi Bay
testbed. Angiulli et al. [108] extract distance outliers
from the rain, sea surface temperature, relative hu-
midity, precipitation time series obtained from the
Pacific Marine Environmental Laboratory of the U.S.
National Oceanic and Atmospheric Administration
(NOAA). Birant et al. [123] identify spatio-temporal
outliers from the wave height values of four seas: the
Black Sea, the Marmara Sea, the Aegean Sea, and the
east of the Mediterranean Sea. The outliers consist of
locations with significantly high wave height values
on a particular date compared to its spatio-temporal
neighbors. Cheng et al. [126] compute spatio-temporal
outliers from the water height data obtained from
Ameland, a barrier island in the north of the Nether-
lands. Sun et al. [146] explore the South China area

dataset from 1992 to 2002 with five variables: cloud
cover percentage, diurnal temperature range, precipi-
tation, temperature, vapor and pressure. They answer
outlier queries like “which locations always have
different temperature from their neighborhoods in the
recent 10 years”. They can find droughts and flood
outliers like flood in Yangzi River Valley in 1998.
Wu et al. [128] find extreme precipitation events from
South American precipitation data set obtained from
the NOAA (Hydrology) for Peru over 1998-2002. Out-
lier detection using rotated PCA has also been used
to discover drought areas, intense fertility loss ar-
eas, hurricanes from Australian district rainfall [147],
Sicily Island yearly Maximum Value Composit of
SPOT/VEGETATION NDVI [148] and NOAA/NCEP
(National Centers of Environmental Prediction) global
reanalysis [129] data sets.

7.2 Industrial Sensor Data
The work in [74] predicts anomalies based on two
different signals obtained from a flight data recorder
(FDR). These correspond to the altitude of the air-
craft and roll angle. These have been used to find
anomalous altitude changes and roll angle using de-
viation from median-based prediction. Anomalies in
jet engines have been discovered by analyzing the
high/low pressure shaft harmonic frequencies in jet
engine vibration data [25] using k-Means clustering.
Similarly, anomalies such as tool breakage detection
have been discovered using cutting force data [149]
with a neural network. Bu et al. [93] discover discords
from power consumption data for a Dutch research
facility using Haar wavelets and augmented tries.

7.3 Surveillance and Trajectory Data
Li et al. [132] discover anomalies from average daily
speed and average daily load dataset for taxicabs in
San Francisco during July 2006. Ge et al. [131] find
anomalies such as vehicle moving to the left side of
the road (wrong way), vehicle taking a wrong short
cut, and people jaywalking. Yankov et al. [97] also find
discords from trajectory data. Trajectory data can also
be used for monitoring the movement of patients and
senior citizens. For example, it can be used to discover
events such as taking a wrong bus, having a bad
fall, encountering a sudden slow-down and getting
lost [110]. They use dynamic cluster maintenance to
discover such outlier activities.

Surveillance data can be useful in smart homes
to discover anomaly situations. An example would
be the situation where the resident has turned on
the bathwater, but has not turned it off before going
to bed [150]. Similarly, data from health and med-
ical monitoring sensors attached to patients can be
used to identify symptoms or diseases. Surveillance
videos can be explored to discover outliers, such as
the appearance of a new object, object zooming in
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a camera and novel video content [113] using the
distance based local outliers for data streams. Pokrajac
et al. [113] study trajectories from surveillance videos
to identify anomalous behaviors such as people first
walking right and then back left, or people walking
very slowly.

7.4 Computer Networks Data
Techniques for outlier detection from temporal data
have been widely used for intrusion detection [24],
[61], [62], [63], [108], [151]. Lakhina et al. [152] use
multivariate timeseries of origin-destination flows
measuring the number of bytes, packets, and IP-level
flows to discover anomalies such as high rate point-
to-point byte transfer, denial of service (DOS), dis-
tributed denial of service (DDOS) attacks, flash crowd
(large demand for a resource/service), host scanning
for a vulnerable port or network scanning for a tar-
get port, WORM5, OUTAGE6, etc. They find outliers
using the subspace method which is borrowed from
the multivariate statistical process control literature.
Domain-specific features, such as duration, protocol
type, number of bytes transferred for TCP connection
with Euclidean distance are used with a variant of
single-linkage clustering in [28]. Ye [38] uses Markov
models on the audit data of a Sun Solaris system
from MIT Lincoln lab to detect intrusion scenarios,
such as password guessing, root privileges access
through symbolic links, remote unauthorized access
attempt, etc. Sequences of Unix user commands are
examined in [33] using SVMs to discriminate between
normal sequences and intrusion sequences. A variant
of the online sequential discounting algorithm has
been used in [153] to characterize probabilistic corre-
lation between flow-intensities measured at multiple
points in a computer network using GMMs. An Au-
toRegressive model with eXogenous inputs (ARX) has
been proposed in [154] to learn the relationship be-
tween flow intensities measured at multiple points in
a computer network, and thereby detect correlation-
based faults.

7.5 Biological Data
Keogh et al. [91] discover anomalous subsequences
(discords) from electrocardiograms. Shape discords
(unusual shapes) have been found to be useful in zo-
ology, anthropology, and medicine [92]. Wei et al. [92]
use shape discords to discover an odd butterfly, given
a group of seemingly similar butterflies. Given a
dataset of red blood cells, they use their techniques to
discover teardrop shaped cells, or dacrocytes, which
is indicative of several blood disorders. A fungus
dataset has been studied to discover spores that have

5A self propagating code that spreads across a network by
exploiting security flaws

6Events causing decrease in traffic exchanged between a pair
of nodes

sprouted an “appendage” known as a germ tube.
Endangered species equipped with sensors have been
studied to discover abnormal migration behaviors of
the species.

7.6 Astronomy Data
Keogh et al. [91] discover discords from Space teleme-
try data. These discords correspond to manually
noted errors, such as “Poppet pulled significantly
out of the solenoid before energizing”. Yankov et
al. [97] find discords from star light-curve data. Zhu et
al. [101] detect high gamma ray bursts from Milagro
Gamma Ray data stream.

7.7 Web Data
Given multiple crawls of the web graph, Papadim-
itriou et al. [140], [134] find a crawl graph with
anomalies. These anomalies refer either to failures
of the web hosts that do not allow the crawler to
access their content or hardware/software problems
in the search engine infrastructure that can corrupt
parts of the crawled data. They use graph similarity
measures like vertex/edge overlap, vertex ranking,
vertex/edge vector similarity, sequence similarity and
signature similarity to derive respective time series
and then detect outliers. Yankov et al. [97] study the
MSN query logs to discover both anticipated bursts
(e.g., “easter”, “hanukkah”) and unanticipated bursts
(e.g., unexpected events like death of a celebrity) of
web queries as discords. Lappas et al. [155] use the
notion of spatiotemporal term burstiness to compute
highly spatiotemporally impactful events as outliers.
Mathioudakis et al. [156] also propose efficient dy-
namic programming algorithms for the similar task
of identifying notable geographically focused events
from user generated content.

7.8 Information Network Data
Aggarwal et al. [9] discover graphs representing inter-
disciplinary research papers as outliers from the DBLP
dataset using structural outlier detection in massive
network streams. They also discover movies with
a cast from multiple countries as outliers from the
IMDB dataset. Gupta et al. [13] discover those authors
from DBLP co-authorship network as outliers which
show a significant deviation in the changes of their re-
search areas compared with other authors. This work
explores the difference across two network snapshots
using temporal community outlier detection methods.
Similarly, they discover actors from IMDB as outliers
which show a very unusual change in their movie
genre distributions. Priebe et al. [157] study the com-
munication graph of the Enron data with respect to
the maximum degree and digraph size scan statistics.
Excessive communication outliers which can suggest
insider trading scenarios are discovered.
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7.9 Economics Time Series Data

Various temporal economic datasets have been stud-
ied with respect to outlier detection. Gupta et al. [12]
identify country outliers based on the unusual change
in the constituents of the GDP (Consumption, Invest-
ment, Public Expenditure and Net Exports) across
time, using temporal community outlier detection
methods. They also find US states as outliers from the
Budget dataset with respect to anomalous change in
the distribution of spending with respect to different
components. Otey et al. [116] study the US Census
Bureau’s Income data set to detect outliers, on the ba-
sis of unusual combinations of demographic attribute
values. They also studied the US Congressional Voting
Data to find outliers. An example is a Republican
congressman who voted significantly differently from
his party on four bills. They use distance based outlier
detection for distributed temporal data to obtain such
outliers. Zhu et al. [101] perform outlier subsequence
detection from the NYSE IBM stock time series data
using Shifted Wavelet Trees.

8 CONCLUSIONS AND LESSONS LEARNED

In this work, we presented an organized overview of
the various techniques proposed for outlier detection
on temporal data. Modeling temporal data is a chal-
lenging task due to the dynamic nature and complex
evolutionary patterns in the data. In the past, there
are a wide variety of models developed to capture
different facets in temporal data outlier detection.
This survey organized the discussion along differ-
ent data types, presented various outlier definitions,
and briefly introduced the corresponding techniques.
Finally, we also discussed various applications for
which these techniques have been successfully used.
This survey provides a number of insights and lessons
as follows.
• The methods for different data types are not easy

to generalize to one another, though some of
them may have similarity in the framework at
the broader level. For example, change detection
in continuous time series and discrete time series
both require forecasting methods. However, the
specific kind of forecasting method is extremely
different in the two scenarios (regression models
in one vs Markov Models in the other).

• Most window based models are currently offline,
whereas online methods do exist for point based
models. Therefore, there is significant opportu-
nity for research in the former.

• While the number of formulations of the tem-
poral outlier detection problem are diverse, they
are generally motivated by the most common
applications which are encountered in the liter-
ature. Many recent applications, especially those
corresponding to novel data types in the context

of web-based applications, may result in combi-
nations of facets, which have not been explored
before.

• There are numerous formulations of temporal
outlier detection, which have not been sufficiently
explored. This is because of the many differ-
ent combinations of facets, which can be used
for defining temporal outlier detection problems.
Complex data types such as social streams in
which two different data types are present in
combination (text and structure) have also not
been studied.

This comprehensive survey provides a good insight
into various techniques that have been applied on
multiple forms of temporal data and can be used
to identify problem settings that can be worked on
in the future. Finally, for further reading, we direct
the reader to a recent book on outlier analysis [1]
and [158] for a tutorial version of this survey. Also,
[159] present outlier detection techniques for time
series data and [160], [161] discuss novelty detection
techniques.
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[142] T. Idé and H. Kashima, “Eigenspace-based Anomaly Detec-
tion in Computer Systems,” in Proc. of the 10th ACM Intl.
Conf. on Knowledge Discovery and Data Mining (KDD), 2004,
pp. 440–449.

[143] L. Akoglu and C. Faloutsos, “Event Detection in Time Series
of Mobile Communication Graphs,” in Proc. of the Army
Science Conf., 2010.

[144] M. Gupta, C. C. Aggarwal, J. Han, and Y. Sun, “Evolutionary
Clustering and Analysis of Bibliographic Networks,” in Proc.
of the 2011 Intl. Conf. on Advances in Social Networks Analysis
and Mining (ASONAM), 2011, pp. 63–70.

[145] M. Gupta, J. Gao, and J. Han, “Community Distribution
Outlier Detection in Heterogeneous Information Networks,”
in Proc. of the 2013 European Conf. on Machine Learning and
Knowledge Discovery in Databases (ECML PKDD), 2013, pp.
557–573.

[146] Y. Sun, K. Xie, X. Ma, X. Jin, W. Pu, and X. Gao, “Detect-
ing Spatio-Temporal Outliers in Climate Dataset: A Method
Study,” in Proc. of the 2005 IEEE Intl. Geoscience and Remote
Sensing Symposium (IGARSS), 2005, pp. 760–763.

[147] W. Drosdowsky, “An Analysis of Australian Seasonal Rainfall
Anomalies: 19501987,” Intl. Journal of Climatology, vol. 13,
no. 1, pp. 1–30, 1993.

[148] R. Lasaponara, “On the Use of Principal Component Anal-
ysis (PCA) for Evaluating Interannual Vegetation Anomalies
from SPOT/VEGETATION NDVI Temporal Series,” Ecologi-
cal Modelling, vol. 194, no. 4, pp. 429–434, 2006.

[149] D. Dasgupta and S. Forrest, “Novelty Detection in Time
Series Data using Ideas from Immunology,” in Proc. of the
5th Intl. Conf. on Intelligent Systems, 1996.

[150] V. Jakkula and D. J. Cook, “Anomaly Detection using Tem-
poral Data Mining in a Smart Home Environment,” Methods
of Information in Medicine, vol. 47, no. 1, pp. 70–75, 2008.

[151] C. Warrender, S. Forrest, and B. Pearlmutter, “Detecting
Intrusions using System Calls: Alternative Data Models,” in
Proc. of the 1999 IEEE Symposium on Security and Privacy, 1999,
pp. 133–145.

[152] A. Lakhina, M. Crovella, and C. Diot, “Characterization of
Network-wide Anomalies in Traffic Flows,” in Proc. of the 4th
ACM SIGCOMM Conf. on Internet Measurement (IMC), 2004,
pp. 201–206.

[153] Z. Guo, G. Jiang, H. Chen, and K. Yoshihira, “Tracking Prob-
abilistic Correlation of Monitoring Data for Fault Detection
in Complex Systems,” in Proc. of the Intl. Conf. on Dependable
Systems and Networks (ICDSN), 2006, pp. 259–268.

[154] G. Jiang, H. Chen, and K. Yoshihira, “Modeling and Tracking
of Transaction Flow Dynamics for Fault Detection in Complex

Systems,” IEEE Transactions on Dependable and Secure Comput-
ing, vol. 3, pp. 312–326, Oct 2006.

[155] T. Lappas, M. R. Vieira, D. Gunopulos, and V. J. Tsotras, “On
The Spatiotemporal Burstiness of Terms,” Proc. of the Very
Large Databases (PVLDB), vol. 5, no. 9, pp. 836–847, 2012.

[156] M. Mathioudakis, N. Bansal, and N. Koudas, “Identifying,
Attributing and Describing Spatial Bursts,” Proc. of the Very
Large Databases (PVLDB), vol. 3, no. 1, pp. 1091–1102, 2010.

[157] C. E. Priebe, J. M. Conroy, D. J. Marchette, and Y. Park, “Scan
Statistics on Enron Graphs,” Computational & Mathematical
Organization Theory, vol. 11, no. 3, pp. 229–247, Oct 2005.

[158] M. Gupta, J. Gao, C. C. Aggarwal, and J. Han, “Outlier
Detection for Temporal Data,” in Proc. of the 13th SIAM Intl.
Conf. on Data Mining (SDM), 2013.

[159] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detec-
tion for Discrete Sequences: A Survey,” IEEE Transactions on
Knowledge and Data Engineering (TKDE), vol. 24, no. 5, pp.
823–839, May 2012.

[160] M. Markou and S. Singh, “Novelty Detection: A Review - Part
1: Statistical Approaches,” Signal Processing, vol. 83, no. 12,
pp. 2481–2497, 2003.

[161] M. Markou and S. Singh, “Novelty Detection: A Review -
Part 2: Neural Network Based Approaches,” Signal Processing,
vol. 83, no. 12, pp. 2499–2521, 2003.

[162] W. Yu, C. C. Aggarwal, S. Ma and H. Wang, “On Anomalous
Hotspot Discovery in Graph Streams,” Proc. of the 2013 IEEE
Intl. Conf. on Data Mining (ICDM), 2003.

Manish Gupta is an applied researcher at
Microsoft Bing, India and also a visiting fac-
ulty at IIIT-Hyderabad, India. He received his
Masters in Computer Science from IIT Bom-
bay in 2007 and his PhD in Computer Sci-
ence from Univ of Illinois at Urbana Cham-
paign in 2013. He worked for Yahoo! Banga-
lore from 2007 to 2009. His research inter-
ests are in the areas of data mining, informa-
tion retrieval and web mining.

Jing Gao received the Ph.D. degree from
University of Illinois at Urbana Champaign in
2011. She is an assistant professor in the
Computer Science and Engineering Depart-
ment of the State University of New York
at Buffalo. She was a recipient of an IBM
PhD fellowship. She is broadly interested in
data and information analysis with a focus
on information integration, ensemble meth-
ods, transfer learning, anomaly detection,
and mining data streams. She is a member

of the IEEE.
Charu C. Aggarwal is a Research Scientist
at the IBM T. J. Watson Research Center in
Yorktown Heights, New York. He completed
his Ph.D. from Massachusetts Institute of
Technology in 1996. He has since worked in
the field of performance analysis, databases,
and data mining. He has published over 200
papers in refereed conferences and journals,
and has applied for or been granted over
80 patents. He has received IBM Corporate
Award (2003), IBM Outstanding Innovation

Award (2008), IBM Research Division Award (2008) and Master
Inventor at IBM thrice. He is a fellow of the ACM and the IEEE.

Jiawei Han is Abel Bliss Professor in the De-
partment of Computer Science at the Univer-
sity of Illinois. He has been researching into
data mining, information network analysis,
and database systems, with more than 500
publications. He received the ACM SIGKDD
Innovation Award (2004), the IEEE Com-
puter Society Technical Achievement Award
(2005), and the IEEE W. Wallace McDowell
Award (2009). His book Data Mining: Con-
cepts and Techniques (Morgan Kaufmann)

has been used worldwide as a textbook. He is a fellow of the ACM
and the IEEE.


