
Exploiting Shared Information for Multi-intent Natural Language Sentence
Classification

Puyang Xu, Ruhi Sarikaya

Microsoft Corporation
{puyangxu, ruhi.sarikaya}@microsoft.com

Abstract
Multi-intent natural language sentence classification aims at
identifying multiple user goals in a single natural language sen-
tence (e.g., “find Beyonce’s movie and music” → find movie,
find music). The main motivation of this work is to exploit the
shared intents across different intent combinations rather than
treating the combination as an atomic label. We propose to
achieve this by (1) adding class features, and (2) adding hid-
den variables to identify segments belonging to each intent. Ex-
perimental results demonstrate significant gains in classification
accuracy over the baseline methods across a number of training
conditions (3%-8% absolute on multi-intent sentences, 2%-3%
absolute on single intent sentences).
Index Terms: spoken language understanding, semantic classi-
fication, hidden variable models

1. Introduction
In spoken dialogue systems, understanding the user’s intent is a
crucial step for the success of human-computer interaction. The
natural language sentences are classified into predefined intent
categories usually through the use of discriminative classifiers.
The examples of such natural language sentences and their cor-
responding intents are shown below.

• search for 60s’ music→ find music

• get movies like independence day→ find similar

In a typical human-to-human dialogue, a single sentence
can often carry multiple intents. The ability of humans to under-
stand and react to such multi-intent sentences allows for much
more natural and smooth conversation than having to express
every intent separately.

In contrast, in most of the existing human-computer dia-
logue systems [1, 2, 3, 4, 5], only one intent is assumed to be
present in each sentence. Such an assumption may limit the
information throughput and lead to unnatural dialogue experi-
ence slowing down the task completion because the user has to
wait until the system has finished processing one intent before
proceeding to the next. In order for the system to process multi-
ple requests in a single dialogue turn, the intent classifier needs
to be able to detect multiple intents for each input sentence as
follows,

• check the weather in NY and book a flight for tomorrow
morning→ check weather, book flight,

• allow no interruptions while i send the following text→
send text, do not disturb.

It is important to point out that such multi-intent sentences
usually contain cues associated with multiple intents. The am-
biguous evidence can cause trouble for the classifiers trained

only on single intents. We have found that the straightforward
solution of taking top-k hypotheses generated by the existing
single intent classifier yields poor accuracy. In order to detect
multiple intents, it is preferable to have multi-intent data avail-
able. When training examples are associated with more than
one labels, many of the multi-class algorithms can not handle
them naturally. Multi-label learning [6] is usually the more ap-
propriate framework for solving this problem.

Multi-label learning problems are usually tackled through
some kind of transformation of the classification problem. A
popular approach is to transform the original |C|-class classifier
into |C| binary classifiers, one for each c ∈ C [7, 8]. Since each
binary classifier is operated independently, arbitrary numbers of
labels can be assigned to a single instance.

Another type of transformation is to directly treat the la-
bel combinations as a single label. Thus the classifier can be
learned and used in the same fashion as the standard single-
label classification. Such an approach can be susceptible to data
sparsity problem – the number of label combinations can be too
large and most of them may not have sufficient samples in the
dataset. However, it was found in [6] that considering the label
combination as an atomic label yields the best classification ac-
curacy on various tasks among a number of multi-label learning
methods. As we will demonstrate, we are able to corroborate
such results in our experiments. Both of the aforementioned
approaches will be investigated as baseline systems to compare
with the techniques we will introduce in this paper.

Although directly predicting multiple labels as a single la-
bel is empirically proven to be an effective technique, there is
clearly room for improvement. For all the instances that are as-
signed multiple labels, they usually bear the characteristics of
each one of the classes to which they belong. Treating them
as an atomic class different from all the others discards the
valuable information that are shared by many classes, making
it more likely to suffer from data sparsity problem. For exam-
ple, the double intent buy game#play game is certainly not en-
tirely different from buy game#play music or the single intent
buy game. The words and phrases that people use to express
the intent buy game usually appear in all these classes, making
it possible for us to improve the performance of the classifier by
leveraging such commonality across different classes.

Therefore, the goal of this work is to investigate whether the
information overlap among different intent combinations can be
exploited to improve multi-intent detection upon the standard
multi-label learning techniques. Specifically, we introduce two
novel approaches, namely (1) the class-based models, where we
add features shared by a set of intent combinations, and (2) the
hidden variable models, where the input sentences are implicitly
segmented to indicate the word sequences belonging to each
single intent.

Although the number of intents to handle is often consid-
ered to be a design choice by many systems, to the best of our
knowledge, there has been no investigation on the classification
techniques that can be used to improve the detection of multiple
intents over basic approaches.

The rest of the paper is organized as follows: We first
briefly describe the feature-based log-linear model and Percep-
tron training in Section 2, as they will be used as the primary
framework throughout our experiments. Adding class features
is the topic of Section 3. The hidden variable model is intro-
duced in Section 4. We compare various techniques in Sec-
tion 5, where the experimental results are presented, followed
by conclusions in Section 6.

2. Log-linear models and Perceptron
training

In this work, an important baseline system is the previously de-
scribed multi-label learning technique in which the combination
of classes are treated as an atomic label. We will adopt log-
linear models together with Perceptron training to implement
this baseline system. The class models and the hidden variable
models are all extensions to this baseline approach. Before we
introduce our methods, we first briefly describe log-linear mod-
els and Perceptron training.

Log-linear models are widely used in the machine learning
community. It allows a flexible framework to incorporate dif-
ferent knowledge sources as feature constraints. Specifically,
the log-linear model defines a probability distribution over C,
namely the set of class labels, as illustrated in equation (1),

P (c|W) =
exp (f(W, c) · θ)∑

c′∈C exp (f(W, c′) · θ) , (1)

where f is the vector of feature functions defined jointly over
the input W and the class label. θ is the corresponding vector
of feature weights. The denominator is a normalizer summing
over all |C| classes.

Perceptron training is an effective technique that dates back
to the 1950s [9]. Compared with other training methods, it has
a much simpler learning procedure. Specifically, for each train-
ing instance (W, c∗), we update the parameters following equa-
tion (2) if the prediction ĉ by the current model differs from the
correct label c∗,

θ+ = η (f(W, c∗)− f(W, ĉ)) . (2)

3. Adding class features
We will mainly look at the n-gram patterns in the query text to
determine which class of intent combination that the query be-
longs to. Therefore, for our purpose, the feature function can be
represented as a string which takes the form of n-gram target,
where target can be a single intent label or a multi-intent label
such as buy game#play game.

As we have discussed, for target labels consisting of multi-
ple intents, it can be advantageous to also model the embedded
intents rather than treating it as an atomic label different from
all others. To enable this, for target label buy game#play game,
besides the standard n-gram buy game#play game features, we
also define n-grams features dependent on each embedded in-
tent, namely n-gram buy game, n-gram play game, ...

Note that these features directly predict buy game and
play game individually as target classes. Thus by having these
features learned also on intent combinations containing each

single intent, we allow the information to be shared across dif-
ferent target labels. Intuitively, if we do not have sufficient ex-
amples for certain combinations, we should still be able to pre-
dict them because the embedded classes in them are modeled
utilizing more data.

Adding such class-level information to improve generaliza-
tion has found success for other tasks in the community. In
statistical language modeling, where the goal is to predict the
next word based on the history, introducing grouping of the
predicted word has been shown to improve the quality of the
language model [10]. The word groups are usually derived ac-
cording to word statistics in a text corpus. For our purpose, the
grouping of target labels can be derived in an easier fashion –
each embedded class in the target label forms a group.

In fact, by inspecting the names of the intents, in addition
to the label-level sharing, a deeper level of sharing can be ex-
ploited. In our dataset, among the 58 intent names, 16 of them
have find as the first word (find movie, find game, etc), 8 of
them have get, 3 of them have buy... Since the first word of the
intent name usually describe the intended action by the user,
this can be seen as the sharing at the action level. We can thus
define new features in the form of ngram action, allowing the
frequent actions to be modeled leveraging data across multiple
target classes.

4. Adding hidden variables
Instead of assuming the entire sentence belongs to multiple
classes, the approach described in this section aims at induc-
ing a segmentation of the sentence, and assigning class labels
using information at the segment level. Such a more refined
modeling strategy enables us to specifically carve out the word
sequences representing each single intent, and identify the parts
of the sentence that are shared by samples belonging to different
intent combinations.

One can certainly think of using existing sentence segmen-
tation algorithms before passing each segment to the standard
intent classifier. However, natural language sentences often do
not have clear boundaries. For sentences like “find avatar and
play it”, segmenting it into two parts and processing them sepa-
rately may cause trouble for the semantic understanding – “play
it” as an isolate unit is not too informative about what the user
intends to do. Instead of taking such a cascade approach, we
introduce hidden variables into the classification model, so that
the segmentation model is optimized jointly for the purpose of
semantic classification.

4.1. Previous work

Adding hidden variables has been investigated before for the
purpose of text classification [11]. However, it was used for
generative modeling (mixture model) as opposed to discrimi-
native modeling and the task was different from ours. In the
discriminative setting, adding hidden variables has been shown
to be an effective technique for tasks such as phone classifica-
tion [12] and gesture recognition [13]. These models are gener-
ally described as hidden conditional random fields.

4.2. Model description

For better illustration of the proposed hidden variable model,
we first represent the baseline log-linear classification model
described in Section 2 as an undirected graphical model, as de-
picted in Figure 1. Without loss of generality, each node in
the figure can represent the entire n-gram history rather than

Figure 1: Graphical model representation of the baseline log-
linear classification model.

Figure 2: Graphical model representation of the hidden vari-
able model.

a single word. Each undirected edge connecting a node in the
word sequence W and the target class c represents a potential
function, which is essentially the exponential sum of a set of
weighted n-gram feature functions (unigram, bigram, up to n-
gram).

The proposed hidden variable model is depicted in Figure 2.
Compared with Figure 1, a hidden variable layer is attached to
the word sequence, indicating the type of intent each word be-
longs to (h ∈ {1, 2, ..., |I|}, where |I| is the number of single
intents). For a particular intent combination c, the hidden vari-
able can only take values corresponding to the types of intents
embedded in c. Thus the sequence of hidden variables intro-
duces a segmentation of the sentence by specifying the words
belonging to each single intent.

Formally, the probability of c given W can be written as

P (c|W) =
∑
h

P (c, h|W)

=
∑
h

e
∑i=|W |

i=1 θ·[g(Wi,c), e(Wi,hi,c), t(hi,hi−1,c)]

Z
, (3)

where Z sums over both c and h. As we can see, aside from
the original n-gram target features g(), which are indicated by
the dashed line, the feature vector is augmented with the hidden
state transition features t() (edges between hidden nodes), and
the hidden state emission features e() (edges between hidden
nodes and word nodes), which essentially measure how likely
the word is generated by the intent type it is assigned to.

4.3. Latent variable Perceptron training

Likelihood-based training can be applied to the model described
in equation (3). However, computing the gradient of the likeli-
hood function with respect to the parameters usually involves

forward-backward passes over the hidden states trellis, which
can be computationally expensive. In [14, 15], it was shown
that Perceptron training can also be used to estimate models
with hidden dependencies. Not only does it reduce the training
time significantly, it also yields competitive results on a number
of tasks.

Under latent variable Perceptron training, the hidden vari-
ables are not marginalized out. It is assumed that P (c|W) ≈
maxh P (c, h|W). Therefore, the correct class c∗ along with
the 1-best sequence of hidden variables hc

∗
becomes the golden

target of Perceptron training. Similarly, the best-scoring class
predicted by the model (ĉ = argmaxc P (c|W)) is also associ-
ated with its 1-best segmentation hĉ. Whenever c∗ differs from
ĉ, parameters are updated in a similar fashion as equation (2),

θ + = η

|W |∑
i=1

[
g(Wi, c

∗), e(Wi, h
c∗
i , c

∗), t(hc
∗
i , h

c∗
i−1, c

∗)
]

−
[
g(Wi, ĉ), e(Wi, h

ĉ
i , ĉ), t(h

ĉ
i , h

ĉ
i−1, ĉ)

]
(4)

5. Experimental Results
5.1. Data & Setup

The dataset consists of 31178 natural language queries in the
domains of movie, music, games and generic commands. 14784
of them are single intent sentences, while 16394 of them contain
double intents. The dataset is divided into 70%, 10% and 20%
partitions, used for training, tuning and testing respectively.

It is worth pointing out that although the described tech-
niques are not restricted to handling only double intent sen-
tences, it is often rare for a single sentence to carry more than
two intents in a natural dialogue. Therefore, we did not attempt
to collect query data containing more than two intents.

When measuring the classification accuracy for double in-
tent sentences, a prediction is considered to be correct only
when both intents are predicted correctly. The order of intents
are not considered in this work.

5.2. Two baseline approaches

In Boostexter [16], the well-known Adaboost algorithm was
adapted to handle multi-label classification. Internally, it re-
places each training example with a set of {0, 1}-labeled exam-
ples (one for each output class), so that the standard binary Ad-
aboost can be used. As we discussed in Section 1, such reduc-
tion to binary problems naturally extends itself to multi-label
scenarios. In our experiments, one of the baseline systems is
Boostexter. We use its publicly available implementation icsi-
boost [17].

Another baseline approach we will compare with is the
classification model treating combinations of intents as an
atomic label. As we mentioned, this is also one of the com-
monly used technique for multi-label learning. The class mod-
els and the hidden variable models are both extension within
this framework (directly predicting intent combinations). We
will call this method the atomic model for the rest of the paper.

5.3. Model features

We use label dependent n-gram features up to trigrams for icsi-
boost and the atomic model. In addition, the class-based mod-
els also use various sub-label (single intent, action) dependent
n-gram features as we have described.

For the hidden variable model, the order of state dependent
n-grams (emission features) can impact the complexity of train-
ing and inference. Constrained by the Markov assumption of
the underlying model, using trigram emission features in addi-
tion to bigrams for double intent sentences would increase the
number of hidden states from 2 to 4, which leads to a 4 times
larger complexity of inference. Therefore, we constrain our-
selves to using only bigrams for the state-level emission fea-
tures.

5.4. Results

The first set of experiments are conducted making use of only
double intent data (DI). Table 1 demonstrates the classifica-
tion accuracy of using the various approaches. The class-based

Table 1: Intent detection accuracy (%) on DI test set using dif-
ferent models trained on DI data

Model Accu
multi-label icsiboost 78.7

atomic model 81.7
class model (label) 83.6

class model (label+act) 83.0
hidden variable model 82.8

model and the hidden variable model, both outperform the two
baseline approaches by noticeable margins. The class model
with label-level sharing appears to be the best approach in this
setup.

In the second setup, we also add single intent sentences (SI)
in training and testing. This is often necessary because the in-
tent classifier should be able to handle both SI and DI sentences
simultaneously. We also vary the amount of DI data to simulate
more data-scarce training conditions. This is also a realistic sit-
uation as it is usually more difficult to collect DI data than SI
data. If we scale up to support more intent combinations, data
sparsity can become a more serious problem – most of the intent
combinations may not have sufficient examples in our training
set.

In Figure 3 and 4, the detection accuracy on DI and SI are
plotted with varying amounts of DI data (10%, 25%, 50% and
100%). Comparing Table 1 and the right-most column of Fig-
ure 3, adding SI data into training degrades the accuracy on DI
data noticeably for all of the methods. As we reduce the amount
the DI data, the performance drops significantly, indicating the
importance of DI training data for classifying DI sentences.

Meanwhile, both of the proposed techniques are able to
achieve higher classification accuracy over the baseline ap-
proaches. Such an advantage is particularly obvious on the
DI test set with small amounts of DI training data. For class-
based models, adding action-level sharing helps in some cases
but does not seem to be consistent. The hidden variable model
appears to be the best method under all training conditions, out-
performing also the class-based techniques substantially.

Another important observation to note here is that multi-
label learning using icsiboost (10000 iterations are run) yields
significantly lower accuracy than the others, the difference is
much more conspicuous than in the previous scenario, where
only DI data were used. As opposed to methods that directly
predict the label combinations, binarization-based techniques
such as icsiboost, which predict each label separately, usually
rely on a threshold (0 by default) to decide the number of labels

Figure 3: Intent detection accuracy (%) on DI test set with mod-
els trained on SI data plus various amounts of DI data.

Figure 4: Intent detection accuracy (%) on SI test set with mod-
els trained on SI data plus various amounts of DI data.

to output – only labels scored higher than the threshold are pre-
dicted. Such a threshold can be optimized on the development
set. In the previous experimental setup, since all sentences con-
tain two intents, the best strategy is therefore always outputting
two intents. Consequently, the difference in accuracy was not
too obvious. However, when the classifier needs to handle both
types of data, it is difficult to have a common threshold, result-
ing in much degraded performance. If we always predict one
intent for SI sentences and two intents for DI sentences (perfect
threshold), we have observed that the accuracy numbers could
reach the same level of the atomic models, which is still worse
than the proposed approaches.

It is worth pointing out that in addition to the superior clas-
sification accuracy, our hidden variable model induces quite rea-
sonable segmentation (shown below, 0 and 1 indicate the intent
the word belongs to).

• find music#play music: find(0) music(0) and(1) lis-
ten(1) to(1) it(1)

• find movie#find duration: display(0) foreign(0) films(0)
how(1) long(1) is(1) the(1) longest(1)

6. Conclusions
In this paper, we proposed two types of techniques to improve
the semantic classification of natural language sentences with
multiple intents. Central to our techniques is to exploit shared
information across different intent combinations. We showed
that the class-based, and the hidden variable-based approaches
both lead to substantially higher classification accuracy than
the baseline approach in which the combinations are treated as
atomic labels, as well as the binarization-based technique com-
monly used for multi-label learning.

7. References
[1] Gorin, A.L., Riccardi, G. and Wright, J.H., “How may I help

you?”, Speech Communication, 23(1):113–127, 1997.

[2] Gorin, A.L., Abella, A., Riccardi, G. and Wright, J.H., “Auto-
mated natural spoken dialogue”, Computer, 35(4):51–56, 2002.

[3] Gupta, N., Tur, G., Hakkani-Tur, D., Bangalore, S., Riccardi, G.
and Gilbert, M., “The AT&T spoken language understanding sys-
tem”, IEEE Transaction on Audio, Speech and Language Process-
ing, 14(1):213–222, 2006.

[4] Young, S., Gasic, M., Keizer. S., Mairesse, F., Thomson, B. and
Yu, K., “The Hidden Information State model: a practical frame-
work for POMDP based spoken dialogue management”, Com-
puter Speech and Language, 24:150-174, 2010.

[5] Sarikaya, R., “Rapid bootstrapping of statistical spoken dialogoue
systems”, Speech Communication, 50(7):580–593, 2008.

[6] Tsoumakas, G. and Katakis, I., “Multi-label classification: An
overview”, International Journal of Data Warehousing & Mining,
3(3):1–13, 2007.

[7] Li, T. and Ogihara, M., “Detecting emotion in music”, Proceed-
ings of the International Symposium on Music Information Re-
trieval, 2003.

[8] Boutell, M., Luo, J., Shen, X. and Brown, C.M., “Learning multi-
label scene classification”, Pattern Recognition, 37(9):1757–
1771, 2004.

[9] Rosenblatt, F., “The Perceptron – a perceiving and recognizing
automaton”, Tech. Rep., 1957.

[10] Goodman, J., “A bit of progress in language modeling”, Computer
Speech and Language., 1957.

[11] McCallum, A.K., “Multi-label text classification with a mixture
model trained by EM”, Proceedings of AAAI Workshop on Text
Learning, 1999.

[12] Gunawardana, A., Mahajan, M., Acero, A. and Platt. J.C., “Hid-
den conditional random field for phone classification”, Proceed-
ings of International Conference on Speech Communication and
Technology, 2005.

[13] Quattoni, A., Wang, S., Morency, L., Collins, M. and Darrel, T.,
“Hidden-state conditional random fields”, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2007.

[14] Sun, X., Matsuzaki, T., Okahohara, D. and Tsuijii, J., “Latent vari-
able Perceptron algorithm for structured classification”, Proceed-
ings of International Joint Conference on Artificial Intelligence,
1236–1242, 2009.

[15] Van der Maaten, L., Welling, M. and Saul, L., “Hidden-unit con-
ditional random fields”, Proceedings of International Conference
on Artificial Intelligence & Statistics, 15:479–488, 2011.

[16] Schapire, R.E. and Singer, Y., “Boostexter: A boosting-based sys-
tem for text categorization”, Machine Learning, 39(2/3):135–168,
2000.

[17] Favre, B., and Hakkani-Tur, D. and Cuendet, S., “Icsiboost”, On-
line:http://code.google.come/p/icsiboost, 2007.

