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Abstract. In this paper, we present a novel algorithm for dithering
of gray-scale images. Our algorithm is based on the lattice Boltzmann
method, a well-established and powerful concept known from compu-
tational physics. We describe the method and show the consistency of
the new scheme to a partial differential equation. In contrast to widely-
used error diffusion methods our lattice Boltzmann model is rotationally
invariant by construction. In several experiments on real and synthetic
images, we show that our algorithm produces clearly superior results to
these methods.

1 Introduction

Dithering is the problem of binarising a given gray value image such that its
visual appearance remains close to the original image. In this paper, we explore
a novel approach to this problem by employing a lattice Boltzmann (LB) frame-
work. LB methods are usually used for the simulation of highly complex fluid
dynamics, where a discrete environment, the lattice, is provided to model the
propagation of gas or fluid particles [9, 12, 15].

Previous work. So far, LB methods have not been used extensively in im-
age processing applications. In 1999, Jawerth et al. [7] proposed an LB method to
model non-linear diffusion filtering. To our knowledge this is the only published
work on LB methods for image processing.

Standard algorithms for dithering employ the technique of error diffusion.
Choosing a starting point and sweeping direction, pixels are locally thresholded.
The occurring L1-error is then distributed to unprocessed pixels in the neigh-
bourhood according to a specified distribution stencil. This results in a dithered
image with an additional blurring. Prominent examples of such algorithms are
the ones by Floyd and Steinberg [4], Jarvis et al. [6], Shiau and Fan [13], Stucki
[14] and Ostromoukhov [11]. All algorithms follow the same principle, however
they only vary in the choice of the distribution stencil. While error diffusion
algorithms are very fast, they share undesirable properties. By construction,
these algorithms do not consider rotational invariance, resulting in visible sweep
directions (see for example Figure 3). Furthermore, error diffusion methods in-
troduce undesired noisy, worm-like artifacts which are prominent to a greater
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or lesser extent depending on the distribution stencil. In one recent paper it is
proposed to use simulated annealing for solving an optimisation problem related
to dithering. Though this produces visually convincing results, the method is
rather slow, depends on several parameters and needs an already dithered image
(e.g. by error diffusion methods) as initialisation [10].

Our contribution. The goal of our paper is to present a novel dithering
algorithm that does not suffer from problems with respect to rotationally invari-
ance, local blurring and directional bias introduced by distribution stencils. Its
favorable visual quality results from its edge-enhancing properties. All this can
be achieved by choosing lattice Boltzmann strategies in an appropriate way.

Organization of the paper. The paper is organized as follows. In Section 2
we describe our LB framework, followed by the definition of the needed reference
state in Section 3. In Section 4 we summarize the algorithm. Experiments are
presented in Section 5 and the paper is concluded with a summary in Section 6.
In the appendix, we provide a proof for the consistency of our method.

2 Our Lattice Boltzmann Framework

At the heart of the LB method, one distinguishes a macroscopic level and a
microscopic level. Using this as a framework, the underlying idea behind the
scheme is quite intuitive from a physical point of view. The idea is that the state
we observe by the gray values in an image is a macroscopic state. The gray value
density can be understood as an analogon to the density of a fluid. Knowing
that any fluid is naturally a composition of very small molecules, we can explore
that analogy by the following idea: If one would zoom close enough into the
pixels of an image one would observe that the gray values are represented by an
appropriate amount of white particles. These particles constitute the microscopic
state. By movement and collision of the particles, the observable macroscopic
state may change.

The LB method requires a set of rules for movement and collision of the mi-
croscopic particles. After evaluating the microscopic dynamics, the macroscopic
gray values are obtained by summation over the discrete particle distribution.
In what follows, we explain the corresponding steps in detail.

The microscopic set-up. The LB method relies on a discrete grid, or
lattice. Each node of the lattice holds the value of a distribution function uα,
where α is an index that indicates the neighbourhood relation to the center node.
The position of neighbours is identified by a lattice vector eα, where e0 = (0, 0)⊤

points to the center node itself. In this paper we employ a (3×3)-stencil giving the
set of possible directions Λd := {−1, 0, 1} × {−1, 0, 1}. For α ∈ {0, . . . , 8} := Λ
indicating all possible directions in Λd, the corresponding directional unit vector
is eα = (eα1

, eα2
)⊤.

The distribution function uα models a microscopic state. The macroscopic
state, in our case the gray value at position x = (x1, x2)

⊤ at time t, is described
by summation over the local (3 × 3)-patch:

u(x, t) =
∑

α∈Λ uα(x, t). (1)
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As indicated, the LB method encodes particle movement and collisions that take
place at the microscopic level. The corresponding fundamental equation reads as

uα(x + eα, t + 1) = uα(x, t) + Ωα(x, t) , (2)

where Ωα(x, t) is the so-called collision operator. The proper modelling of this
operator is vital for any LB algorithm as it describes a set of collision rules that
can be used to simulate arbitrary fluid models.

In a first step to address this issue, we employ a BGK model named after
Bhatnagar, Gross and Krook [1, 12] which has become a standard approach in
the LB literature. The specific BGK model we use for Ωα reads as

Ωα = uref
α − uα . (3)

This model allows to interpret a collision state as the deviation of the current
microscopic distribution uα from a reference distribution uref

α instead of explicitly
defining collision rules. In a second step, we impose as an additional structural
property the conservation of the average gray value of the image via the pointwise
condition

∑

α∈Λ Ωα(x, t) = 0 . (4)

We assume now that the lattice parameters h and τ that denote the spatial
and temporal mesh widths are coupled via a relation τ/h2 = constant. Employing
then a scaling in space and time by the scaling parameter ε, one obtains by (2)-
(3) the relation

uα(x + εeα, t + ε2) = uref
α (x, t) . (5)

In order to define the LB method, we approximate uref
α (x, t) by

uref
α (x, t) = tαu(x, t) (1 + εγα) . (6)

In case of γα = 0, equation (6) would give a LB description for linear diffusion
[15]. By setting γα 6= 0, the reference state can be described as a perturbation of
an equilibrium distribution by some function γα which is crucial to achieve the
dithering effect. In the following chapters we will directly give the reference state,
as the direct description of γα can be derived from that. The tα are normalisation
factors depending on the direction [12]:

tα =







4/9 , eα = (0, 0) ,

1/9 , eα = (0,±1), (±1, 0) ,

1/36 , eα = (±1,±1) .

(7)

As usual for normalisation weights,
∑

α∈Λ tα = 1.
The crucial point about (6) is that it relates the current macroscopic state

u(x, t) to uref
α (x, t) via the introduced perturbation. The logic behind the scheme

definition given as the next step is to model uref
α in such a way that it gives the

desired steady state – i.e. the dithered image – by evolution in time.
Macroscopic limit. The proof of the following assertion is given in the

Appendix:
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Theorem 1. In the scaling limit ε → 0, the LB scheme obeying the proposed

discrete set-up solves the partial differential equation

∂

∂t
u(x, t) =

1

6
∆u(x, t) − div (u(x, t)γ(x, t)) , (8)

where ∆ := ∂2/∂x2
1 + ∂2/∂x2

2 is the Laplace operator, and where the divergence

operator is denoted by div
(
(a1, a2)

⊤
)

:= ∂a1/∂x1 +∂a2/∂x2 and a vector valued

function γ(x, t) given by

γ(x, t) :=
∑

α∈Λ eαtαγα. (9)

The PDE (8) is a diffusion-advection equation. While the diffusion term ∆u
gives an uniform spreading of the macroscopic variable u, this is balanced by the
edge-enhancing advection term div(uγ).

3 Constructing a Reference State for Dithering

We now model the reference state, see especially (6). Our aim is a dithering
strategy that preserves structures and enhances edges by the model.

Structure enhancement can be achieved by enlarging the gradient between
two neighbouring pixels. This is done by transporting particles from darker pixels
to brighter pixels. In the following, we consider three possible scenarios.

1. We distinguish two cases. If a pixel in (x, t) has a larger gray value than its
neighbour in (x + eα, t), then we do not want to allow particles to dissipate
into direction eα. In the opposite case, we allow the neighbouring pixel in
(x + eα, t) to take into account – and take away – the amount tαu(x, t)
particles, as long as the neighbour is not already saturated.

2. For the robustness of the implementation, we also define the following rule.
If a pixel in (x, t) has a very low gray value below a minimal threshold ν > 0
close to zero, we always allow a neighbouring pixel in (x+eα, t) to take away
an amount tαu(x, t) of particles.

3. If the gray value exceeds 255 we distribute superficial particles to neighbour-
ing pixels.

Summarising these considerations, we obtain the reference state as

uref
α (x + eα, t) =







tαu(x, t) if u(x + eα, t) > u(x, t)
and u(x + eα, t) < 255

0 if u(x + eα, t) < u(x, t)

tαu(x, t) if u(x, t) < ν and α 6= (0, 0)
0 if u(x, t) < ν and α = (0, 0)

tα(u(x, t) − 255) if u(x, t) > 255 and α 6= (0, 0)
255 if u(x, t) > 255 and α = (0, 0)

(10)

with tα as in (7). Furthermore, we disallow any flow across the image boundaries.
This suffices as boundary conditions for the reference state.
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4 The Algorithm

We now show how to code an iterative dithering algorithm making use of the
equations (5) and (10). By (5), and setting the scaling parameter to match the
grid, we obtain uα(x, t + 1) = uref

α (x − eα, t) and after taking sums:

∑

α uα(x, t + 1) =
∑

α uref
α (x − eα, t). (11)

By the symmetries incorporated in the directions in Λd and by (1) follows

u(x, t + 1) :=
∑

α uref
α (x + eα, t). (12)

With this knowledge, we can describe the algorithm.

Summary of the algorithm

Step 1: Compute the reference state according to (10)
Step 2: Compute u(x, t + 1) :=

∑

α uref
α (x + eα, t)

Step 3: If ‖u(·, t + 1) − u(·, t)‖2 < ǫ break, otherwise go back to 1.

Implementation details. W.l.o.g. we consider images that already have
grey values that sum up to multiples of 255, otherwise we scale the image such
that it fulfills this property. In this setting, we can say that our algorithm is
grey-value preserving. However, it is possible that at the end of the evolution a
few pixels converge to a state neither zero nor 255. On these pixels, we perform
a gray-value-preserving threshold to obtain the dithered image.

Furthermore, the tα as set in (7) are need to be re-normalised, if for some
α the microscopic state uα is zero. The reason is easily seen by considering an
example where all particles are concentrated at α = 0: Summing up directly
with the weights (7) effectively reduces the local gray value by 5/9. Thus, in the
algorithm one defines a number ηα which is zero for uα = 0 and one otherwise.
Then we renormalise the weights tα via a factor η such that η

∑

α tαηα = 1; in
case the sum is zero we set η to some finite number.

5 Experiments

In this section we present experiments on both real and synthetic images that
show the quality of our approach. Especially, we demonstrate the edge-enhancing

and rotationally invariant properties of our algorithm. We compare the visual
quality of the results to the classical standard method of Floyd and Steinberg [4]
implemented with serpentine pixel order as this is the essential algorithm mostly
identified with error diffusion, as well as to the method of Ostromoukhov [11]
which constitutes the state-of-the art error diffusion algorithm in the field. For
Ostromoukhov’s method we use the original implementation from the author’s
web page 1.

The Poker chip experiment. In the first experiment we deal with a real
world image with large contrasts, see Figure 1. While error diffusion methods

1 http://www.iro.umontreal.ca/ ostrom/varcoeffED/
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Fig. 1. Results of dithering algorithms. Left: Result of the algorithms on a real-world
image of size 600 × 305. Right: close-up of the upper left corner with size 150 × 150.
First row: Original image. Second row: Floyd-Steinberg with serpentine implemen-
tation. Third row: Ostromoukhov. Fourth row: Lattice Boltzmann dithering.

blur important image structures and introduce noisy patterns, the lattice Boltz-
mann method preserves edges very well. Our method even recovers prominent
structures of blurred objects that are out-of-focus in the original image. Compar-
ing the methods of Floyd-Steinberg and Ostromoukhov, we find no significant
visual difference between each other. Let us note that the iteration strategy
relying on the pixel ordering is the same in both error diffusion methods.
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Fig. 2. Comparison of dithering algorithms on images with low contrast areas. Top.

Original image. Gray value ramp gradually with low-contrast text with constant gray
value, size 300 × 50. Middle. Ostromoukhov. Bottom. Lattice Boltzmann dithering.

Fig. 3. Evaluation w.r.t. rotation invariance. Left: Gaussian with size 256×256. Mid-

dle: Ostromoukhov. Right: Lattice Boltzmann dithering.

The ramp experiment. We now consider a synthetic image of low contrast,
see Figure 2. The image shows a ramp of gray values decreasing from left to right,
together with a text of constant gray value. The latter has been chosen in such a
way that parts of the text are indistinguishable from the background ramp. The
error diffusion result loses some letters during the dithering process since they
tend to smooth out image structures with low contrast. In contrast, our method
still produces a readable text.

The Gaussian test. In Figure 3 we demonstrate the rotational invariance
of our scheme, though some visible directional artifacts remain due to the chosen
discretisation. Furthermore, it is observable that the result of a error diffusion
method strongly depends on the implementation of the pixel ordering.

Runtimes. While the runtime of the error diffusion algorithms lies in the
range of milliseconds, our diffusion-advection motivated algorithm takes a couple
of seconds to converge on a standard PC with an implementation in C. The
inherent parallelisation potential of lattice Boltzmann methods [3] that would
allow for a further speedup has not been exploited yet. In its current state, the
algorithm is attractive for offline dithering in high quality.



8 K. Hagenburg, M. Breuß, O. Vogel, J. Weickert, M. Welk

6 Conclusion and Future Work

We have derived a novel lattice Boltzmann model for dithering images that is
by construction rotationally invariant. The adaptation of the lattice Boltzmann
framework to this application has been achieved by specifying an appropriate
reference state within the collision operator. We have provided an analysis of the
model that shows that its macroscopic equation is a diffusion-advection equation.

For future work, we plan to perform research on efficient algorithms for our
LB method and to exploit its excellent parallelisation properties. We also plan
to analyse the PDE (8) more thoroughly and eventually extend our algorithm
to colour images.

Acknowledgements. The authors gratefully acknowledge the funding given
by the Deutsche Forschungsgemeinschaft (DFG).
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Appendix: Proof of Theorem 1

The proof proceeds in the following way. As we aim at deriving a PDE, we
want to obtain expressions of u(x, t). In a first step of the proof, we therefore
eliminate all dependencies on shifted variables (x + εeα, t + ε2). In a second
step, we eliminate the reference distribution uref

α from the deduced equations. In
the final step, we summarise the microscopic variables appropriately to obtain
expressions in the macroscopic variable u(x, t).

We begin with substituting uα(x + εeα, t + ε2) from the left hand side of
equation (5). This is done making use of a Taylor expansion around (x, t):

uα(x + εeα, t + ε2) = uα(x, t) + ε
∑2

i=1 eα,i
∂

∂xi
uα(x, t) + O(ε2) . (13)

Substituting this expression in (5) and neglecting the second order error gives

ε
∑2

i=1 eα,i
∂

∂xi
uα(x, t) = uref

α (x, t) − uα(x, t) . (14)

For the second step of the proof, we use the Chapman-Enskog expansion [2].
This works in analogy to the Taylor expansion, and describes uα in terms of
fluctuations about the reference state uref

α that are given by a function Φα:

uα = uref
α + εΦα + O(ε2) . (15)

The actual choice of the reference state is not crucial, cf. [8] where arbitrary
reference states are used. Substituting uα(x, t) in (14) by (15) gives

Φα = −
∑2

i=1 eα,i
∂

∂xi
uα(x, t) + O(ε) . (16)

Having thus computed an expression for the fluctuation Φα, we plug this into
the Chapman-Enskog expansion (15):

uα = uref
α − ε

∑2
i=1 eα,i

∂
∂xi

uα(x, t) + O(ε2) . (17)

We proceed by considering the collision rule (4). Using (3) one obtains
∑

α∈Λ

(
uα(x + εeα, t + ε2) − uα(x, t)

)
= 0 . (18)

The Taylor approximation of uα(x + εeα, t + 1) reads as

uα(x + εeα, t + 1) = uα(x, t) +
∑

α∈Λ

[

ε2 ∂
∂tuα(x, t) +

∑2
i=1 εeα,i

∂
∂xi

uα(x, t)

+
ε2

2

∑2
i,j=1 eα,ieα,j

∂2

∂xi∂xj
uα(x, t)

]

. (19)

Inserting this expression for uα(x + εeα, t + ε2) in (18) gives

0 = ε2 ∑

α∈Λ
∂
∂tuα(x, t)

︸ ︷︷ ︸

=:A

+ ε
∑

α∈Λ

∑2
i=1 eα,i

∂
∂xi

uα(x, t)
︸ ︷︷ ︸

=:B

+ ε2

2

∑

α∈Λ

∑2
i,j=1 eα,ieα,j

∂2

∂xi∂xj
uα(x, t)

︸ ︷︷ ︸

=:C

. (20)
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We now rewrite the terms A, B and C individually.
Term A.

ε2 ∑

α∈Λ
∂
∂tuα(x, t) = ε2 ∂

∂t

∑

α∈Λ uα(x, t)
(1)
= ε2 ∂

∂tu(x, t) . (21)

Term B.

ε
∑

α∈Λ

∑2
i=1 eα,i

∂
∂xi

uα(x, t)
(17)
= ε

∑

α∈Λ

∑2
i=1 eα,i

∂
∂xi

uref
α (22)

− ε2 ∑

α∈Λ

∑2
i=1 eα,i

∂
∂xi

[
∑2

j=1 eα,j
∂

∂xj
uα(x, t)

]

We consider the first summand in (23). For replacing uref
α in this term, we make

use of assumption (6), yielding

ε
∑

α∈Λ

∑2
i=1 eα,i

∂
∂xi

[tαu(x, t) (1 + εγα)] (23)

= ε
∑2

i=1
∂

∂xi

[
u(x, t)

∑

α∈Λ eα,itα
]
+ ε2

∑2
i=1

∂
∂xi

[
u(x, t)

∑

α∈Λ eα,itαγα

]

By
∑

α∈Λ eα,itα = 0 and (9), the result is

ε
∑

α∈Λ

∑2
i=1 eα,i

∂
∂xi

[tαu(x, t) (1 + εγα)] = ε2
∑2

i=1
∂

∂xi
[u(x, t)γ(x, t)] . (24)

We now employ

uα
(15)
= uref

α + O(ε)
(6)
= tαu(x, t) + O(ε) , (25)

and by plugging it into the second summand of (23) gives

ε2 ∑

α∈Λ

∑2
i=1 eα,i

∂
∂xi

[
∑2

j=1 eα,j
∂

∂xj
tαu(x, t)

]

(26)

= ε2 ∑2
i,j=1

∑

α∈Λ eα,ieα,jtα
︸ ︷︷ ︸

=1/3·δij

∂2

∂xi∂xj
u(x, t) = ε2

3

∑2
i=1

∂2

∂x2

i

∑

α∈Λ uα(x, t)
︸ ︷︷ ︸

=u(x,t) by (1)

.

In summary, Term B (23) results in

ε
∑

α∈Λ

∑2
i=1 eα,i

∂
∂xi

uα(x, t) = ε2div
(
u(x, t)γ(x, t)

)
− ε2

3 ∆u(x, t) . (27)

Term C. In a first step, we substitute uα as in (25), neglecting higher order
terms in ε, giving us a first-order approximation of uα. Using this gives

ε2

2

∑

α∈Λ

∑2
i,j=1 eα,ieα,j

∂2

∂xi∂xj
tαu(x, t))

=
ε2

2

∑2
i,j=1

∂2

∂xi∂xj
u(x, t)

∑

α∈Λ eα,ieα,jtα
︸ ︷︷ ︸

=1/3·δij

= ε2

6 ∆u(x, t) . (28)

Plugging all the three terms A, B, and C together, dividing by ε2 and taking
the limit ε → 0 results in the diffusion-advection equation (8) which concludes
our proof.


