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ABSTRACT 

Background: The coronavirus disease 2019 (COVID-19) has become a pandemic, placing 

significant burdens on the healthcare systems. In this study, we tested the hypothesis that a machine 

learning approach incorporating hidden nonlinear interactions can improve prediction for Intensive 

care unit (ICU) admission. 

Methods: Consecutive patients admitted to public hospitals between 1st January and 24th May 2020 

in Hong Kong with COVID-19 diagnosed by RT-PCR were included. The primary endpoint was 

ICU admission.  

Results: This study included 1043 patients (median age 35 (IQR: 32-37; 54% male). Nineteen 

patients were admitted to ICU (median hospital length of stay (LOS): 30 days, median ICU LOS: 16 

days). ICU patients were more likely to be prescribed angiotensin converting enzyme 

inhibitors/angiotensin receptor blockers, anti-retroviral drugs lopinavir/ritonavir and remdesivir, 

ribavirin, steroids, interferon-beta and hydroxychloroquine. Significant predictors of ICU admission 

were older age, male sex, prior coronary artery disease, respiratory diseases, diabetes, hypertension 

and chronic kidney disease, and activated partial thromboplastin time, red cell count, white cell count, 

albumin and serum sodium. A tree-based machine learning model identified most informative 

characteristics and hidden interactions that can predict ICU admission. These were: low red cells 

with 1) male, 2) older age, 3) low albumin, 4) low sodium or 5) prolonged APTT. A five-fold cross 

validation confirms superior performance of this model over baseline models including XGBoost, 

LightGBM, random forests, and multivariate logistic regression.  
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Conclusions: A machine learning model including baseline risk factors and their hidden interactions 

can accurately predict ICU admission in COVID-19.  

 

Introduction 

Coronavirus disease 2019 (COVID-19), the third coronavirus epidemic in the recent two decades 

after severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), has 

become a pandemic, placing significant burdens on healthcare systems worldwide 1. The number of 

people confirmed with COVID-19 worldwide exceeded 7.4 million on June 11, 2020, including at 

least 416,000 deaths across 188 countries and territories 2. The coronavirus pandemic remains 

unresolved, even though countries around the world have moved to lift quarantines, stay-at-home 

orders and other social restrictions. A particular challenge countries face in the COVID-19 pandemic 

is the surge in demand for intensive care unit (ICU) care 3, 4. Recent studies have exposed an 

astonishing case fatality rate of 61.5% for critical cases, increasing sharply with older age and for 

patients with underlying comorbidities 5. The unfulfilled ICU demand would immediately lead to 

elevated fatality rate. The critical question on the clinical characteristics and relevant biomarkers for 

efficient ICU management of COVID-19 patients remains unanswered 6. Identification of prognostic 

biomarkers to distinguish patients that require immediate medical attention has become an urgent yet 

challenging necessity. Therefore, the aim of this study is to identify significant risk factors or 

characteristics as well as hidden interaction effects associated with ICU admission by using an 

interpretable machine learning approach. 
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Methods 

Study design and population 

This study was approved by the Institutional Review Board of the University of Hong Kong/Hospital 

Authority Hong Kong West Cluster. This was a retrospective, territory-wide cohort study of patients 

infected with COVID-19, as confirmed by RT-PCR, between 1st January and 24th May 2020. The 

patients were identified from the Clinical Data Analysis and Reporting System (CDARS), a 

territory-wide database that centralizes patient information from individual local hospitals to 

establish comprehensive medical data, including clinical characteristics, disease diagnosis, 

laboratory results, and drug treatment details. The system has been previously used by both our team 

and other teams in Hong Kong 7-10. Clinical data include primary diagnoses after admission (1st 

January 2020 to 24th May 2020) and comorbidities (1st January 1999 to 31st December 2019) in the 

past decade. The list of conditions identified is detailed in the Supplementary Appendix. Diagnosis 

of COVID-19 was made by RT-PCR. Other respiratory viruses, including influenza A virus (H1N1, 

H3N2, H7N9), influenza B virus, respiratory syncytial virus, parainfluenza virus, adenovirus, SARS 

coronavirus (SARS-CoV), and MERS coronavirus (MERS-CoV) were also examined with RT-PCR.  

 

Outcomes and statistical analysis 

The primary outcome was ICU admission. Continuous variables were presented as median (95% 

confidence interval [CI] or interquartile range [IQR]) and categorical variables were presented count 
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(%). The Mann- Whitney U test was used to compare continuous variables. The χ2 test with Yates’ 

correction was used for 2×2 contingency data, and Pearson’s χ2 test was used for contingency data 

for variables with more than two categories. To identify the significant risk factors associated with 

ICU admission of COVID-19 patients, univariate logistic regression was used to estimate odds ratios 

(ORs) and 95% CIs, adjusting for age, sex, comorbidities. A two-sided α of less than 0.05 was 

considered statistically significant. Statistical analyses (including univariate logistic regression) were 

performed using RStudio software (Version: 1.1.456) and Python (Version: 3.6). 

 

Development of a tree-based interpretable machine learning model 

After the identification of significant predictors for ICU admission, we aim to further construct a 

practically useful ICU use decision-making model by considering both main and interaction effects 

among those important univariable variables. Here the interaction effects, mainly pairwise 

interactions, capture the hidden nonlinear dependence between risk characteristics and can provide 

additional information for ICU outcome identification, besides individual predictors. Significant 

predictors identified on univariate logistic regression were enter into a state-of-the-art interpretable 

boosting machine model: Explainable Boosting Machine (EBM) 11.  

The EBM model is an explainable supervised predictor developed by using modern machine 

learning techniques like bagging, gradient boosting, and automatic main and interaction effects 

detection with high accuracy of state-of-the-art learning models (e.g., random forests 12 and 

XGBoost 13) with its light memory usage and fast prediction time. EBM is constructed with multiple 
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hierarchically organized simple classifiers consisting of sequences of binary decisions. Unlike these 

black-box models, EBM produce lossless explanations for outcome predictions due to its great 

interpretability potential of tree-based decision system, which is desired for clinically operable 

decision-making. In contrast, internally black-box-like learning models are typically difficult to 

interpret. Intrinsic interpretability as equipped in EBM aims to intrinsically interpret the model 

predictions. The contribution of main and interaction effects to identify ICU use can be determined 

by their accumulated use in each decision tree splitting process, which can be easily sorted and 

visualized in descending order to identify the more important variables.  

 

Results 

Baseline characteristics 

The flowchart of patient enrolment in this study is provided in Figure 1. A total of 1043 patients 

admitted to the hospital between 1st January 2020 and 24th May 2020 were included in this study. 

The case distributions with respect to the different districts of Hong Kong are shown in Figure 2. 

There are 373 cases from Hong Kong Island District (36%), 212 cases from Kowloon District (20%), 

398 cases from New Territories District (38%), and 60 cases without district indicators (6%). 

Chinese is the most common nationality (914, 87.6%), followed by Filipino (38, 3.6%), Pakistani (22, 

2.1%), British (14, 1.3%), French (9, 0.9%), Nepalese (9, 0.9%), American (6, 0.58%), Indian (4, 

0.4%), Canadian (2, 0.2%), Australian (2, 0.2%) and Korean, German, New Zealander, Greek, Thai, 

Indonesian, Japanese, and Netherlander (1 each, 0.1%). 
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The baseline demographics, comorbidities, medications, and laboratory test findings are shown 

in Table 1. Of the included patients, 563 were males (54%, median age: 35 [IQR: 32-37], range: 

0-93 years old) and 480 were females (46%, median age: 35 [IQR: 32-37], range 1-96 years old) 

(Figure 3). Most patients (n=776, 74%) were between 18 and 60 years of age. In total, 19 patients 

(14 males, 73.68%, median ICU length of stay [LOS]: 16 days) were admitted to the ICU and the 

numbers within age intervals are also shown in Figure 3. Patients admitted to the ICU has median 

inpatient length of stay (LOS) of 30 days, in comparison to a median of 20 days for patients without 

ICU admission. The timeline of COVID-19 cases after hospitalization is shown in Figure 4. 

Amongst the ICU patients, there are 12 Chinese, 1 Filipino, and 6 of unknown race. The 19 ICU 

patients has median urine output of 1610 ml/24 hours (IQR: 1255-2000, max: 3310). The 

distributions of other physiological parameters are shown in Table 1. In addition, 9 ICU patients 

(47.37%) were on ventilators for respiratory support, and three (15.79%) received renal replacement 

therapy. Four patients died. Two deaths occurred during inpatient hospitalization with single 

admission, one during ICU hospitalization, and one upon admission.  

A total of 535 COVID-19 patients (87.3%) had records of preexisting comorbidities (n=1237) 

between January 1st, 1999 to December 31st, 2019. Of these, 230 patients (42.99%) had respiratory 

diseases, 174 patients (32.52%) had gastrointestinal diseases, 108 patients (20.19%) had 

hypertension, 54 patients (10.09%) had diabetes, 21 patients (3.93%) had chronic kidney diseases, 

and 10 patients (1.87%) had cardiovascular diseases. 

In terms of medications prescribed during the inpatient stay for non-ICU patients, 

lopinavir/ritonavir (Kaletra) is the most commonly used drug (60.8%), followed by ribavirin (53.2%), 
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interferon-beta (32.5%), angiotensin converting enzyme inhibitors (ACEI) or angiotensin receptor 

blockers (ARBs) (18.9%), steroids (14.6%), hydroxychloroquine (13.2%), and remdesivir (2.5%). 

Among the ICU patients, lopinavir/ritonavir was the most frequently prescribed drug (88.9%), 

followed by ribavirin (77.8%), ACEI/ARB (77.8%), hydroxychloroquine (38.9%), interferon-beta 

(38.9%), steroids (27.8%) and remdesivir (5.6%). We find that patients admitted to ICU are more 

likely to be given Kaletra and ribavirin, which may reflect more aggressive treatment towards 

critically ill patients.  

 

Predictors of ICU admission 

Univariate logistic regression was conducted to identify significant predictors of ICU admission 

(Table 3). The following are significant predictors for ICU admission of COVID-19 patients: 

(1) Demographic features: Age (OR: 1.06 [1.03 -1.09], p<0.0001) and male (OR: 2.42 

[0.87-6.78], p<0.0001).  

(2) Comorbidities: cardiovascular diseases (OR: 3.12 [0.81-10.12], p<0.0001), respiratory 

diseases (OR: 8.15 [1.85-14.44], p<0.0001), diabetes (OR: 6.17 [2.07-9.36], p<0.0001), hypertension 

(OR: 3.15 [1.25-5.32], p<0.0001) and chronic kidney diseases (OR: 4.87 [2.66-9.71], p=0.0009). The 

analyses demonstrate the importance of baseline comorbidities in affecting the prognosis of patients 

with COVID-19. 

(3) Drugs: ACEI or ARB (OR: 1.10 [0.24-2.14], p<0.0001), lopinavir/ritonavir (OR: 1.73 

[1.02-3.05], p<0.0001), ribavirin (OR: 1.43 [0.37-2.05], p<0.0001), remdesivir (OR: 1.04 [0.39-2.80], 
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p<0.0001), interferon beta (OR: 1.04 [0.39-2.80], p<0.0001) and hydroxychloroquine (OR: 1.24 

[0.90-1.73], p=0.00036).  

(4) Biochemical markers: APTT (OR: 1.19 [1.08-1.30], p=0.0003), neutrophil count (OR: 1.54 

[1.53-1.55] , p<0.0001), red blood cells (OR: 1.47 [1.46-1.48], p<0.0001), white blood cells (OR: 

1.47 [1.21-1.79], p<0.0001), albumin (OR: 0.80 [0.74-0.87], p<0.0001), serum sodium (OR: 1.26 

[1.08-1.93], p<0.0001), lactate dehydrogenase (OR: 1.01 [0.85-1.12], p<0.0001), total cholesterol 

(OR: 1.04 [1.02-1.06], p<0.0001), spot urine glucose (OR: 1.32 [1.31-1.32], p<0.0001), hemoglobin 

A1c  (OR: 1.03 [1.03-1.04]<0.0001), random glucose (OR: 1.05 [1.04-1.06], p<0.0001), serum 

triglycerides (OR: 1.46 [1.43-1.48], p<0.0001).  

 

Main and Hidden Interaction Effects 

The EBM model was employed to distinguish patients in need for ICU admission by accurately 

uncovering the main and hidden interaction effects. This utilized different data modalities such as 

demographics, comorbidities and multiple laboratory results. Significant variables identified by 

univariate logistic regression were entered into the EBM model, which will deal with the trade-off 

between having a minimal number of predictors and the capacity of good model prediction, therefore 

avoiding overfitting. The cohort is randomly classified into training and validation datasets with an 

80:20 split. The obtained importance rankings of significant predictors for ICU admission are shown 

in Figure 5. Red blood cells, APTT, sex, age and white blood cells are the five most informative 

parameters in predicting ICU admission, followed by hypertension, serum sodium, serum albumin, 
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serum triglycerides, and respiratory disease. Significant predictors for ICU admission identification 

are provided in Figure 6. We can observe that the following combination of patient characteristics 

predicts a higher likelihood for ICU admission: 1) male patients with lower level of red blood cells, 2) 

older patients with lower level of red blood cells, 3) patients with both lower levels of red blood cells 

and albumin or sodium, 4) patients with longer APTT and lower level of red blood cells. Important 

hidden pair-wise interaction effects are shown in Figure 7, where green or yellow zones with larger 

values indicate higher probability of ICU admission that can be predicted by examining the pair-wise 

variable interactions. We can observe from the plots of interaction effects that 1) male with lower red 

blood cells, (2) older age with lower red blood cells, 3) lower albumin level and lower red blood 

cells, 4) lower sodium level and lower red blood cells, 5) older age and prolonged APTT, 6) lower 

red bold cells level and higher white blood cells level, 7) lower red blood cells level and prolonged 

APTT, 8) older age and higher level white predicts higher probability of ICU admission.  

EBM can provide predictions on individual cases. For example, a randomly selected patient 

(male, 69 years old) with ICU admission has the characteristics as shown in Figure 8. He has prior 

comorbidities of cardiovascular, chronic kidney, hypertension, diabetes and lung and respiratory 

diseases. EBM predicts that he needs ICU attention with 72% probability, based on his 

characteristics of prior cardiovascular disease, white blood cells at 12.43 (x10^9/L), lactate 

dehydrogenase level at 390 (U/L), APTT at 33.70 (sec), prior comorbidities of hypertension and 

diabetes, and others. But his characteristic of triglycerides at 6.29 provide non-supportive 

information to the prediction outcome.  By contrast, a randomly selected patient (female, 54 years 

old) who did not require ICU admission is exemplified in Figure 9. EBM accurately predicted that 
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she doesn’t need ICU admission. Local explanations provided by EBM can provide precise ICU 

admission predictions based on patient’s main characteristics in a user-friendly visualization way for 

practical clinical use. 

The five-fold cross validation performance of EBM was compared with baseline models 

including XGBoost, LightGBM, random forests, and multivariate logistic regression, as shown in 

Table 4. EBM outperforms all baseline models according to evaluation metrics of precision, recall, 

F1 score, and area under the curve (AUC) of the receiving operating characteristics (ROC) curve.  
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Discussion 

The main findings of this territory-wide retrospective cohort study are twofold: (1) Significant 

predictors of ICU admission were older age, male sex, prior coronary artery disease, respiratory 

diseases, diabetes, hypertension and chronic kidney disease, and activated partial thromboplastin 

time, red cell count, white cell count, albumin and sodium; (2) A tree-based interpretable machine 

learning model identified most informative characteristics and hidden interactions that can predict 

ICU admission. These interacting factors were low red cells with 1) male, 2) older age, 3) low 

albumin, 4) low sodium or 5) prolonged APTT around 33 seconds.  

Prior studies have reported that patients with pre-existing medical comorbidities have a poorer 

prognosis in not only COVID-19 but also other infectious diseases such as SARS-CoV and MERS 14, 

15. In COVID-19, hypertension, diabetes, coronary heart disease, chronic kidney disease, 

cerebrovascular disease, hepatitis, and chronic obstructive pulmonary disease (COPD) have been 

identified as predictors of disease severity and mortality in COVID-19 16, 17. In this study, we 

confirm that these comorbidities are predictive of ICU utilization and provide a simple clinical 

approach to quantify the initial risk of ICU admission precisely and quickly. Furthermore, various 

laboratory markers have been shown to predict adverse outcomes. Our study found that prolonged 

APTT and raised D-dimer, reflecting coagulopathy, was predictive of ICU admission. Other 

significant predictors were neutrophil count (inflammation), red cell count (oxygen carrying 

capacity), albumin (nutritional status), sodium (electrolyte homeostasis) and lactate dehydrogenase 

(tissue damage). Troponin was borderline significant, reflecting that myocardial damage is an 

important determinant of ICU use. 
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We further illustrate the novel findings that interacting factors between low red cell count and 

basic demographics such as gender and age, or laboratory findings such as albumin, sodium and 

APTT are also important determinants. Older patients with laboratory examinations of lower red 

cells, lower albumin, lower sodium and prolonged APTT are subject to high ICU admission risk. 

Red cells, albumin, sodium and APTT can be easily collected in any hospital. In crowded hospitals 

with limited medical resources, this simple model can help to quickly prioritize patients for ICU 

attention. 

The optimum medication regimen for COVID-19 is yet to be determined. However, small scale 

observational studies or trials have suggested the use of antivirals 18, antimalarials 19, interferons 20, 

anticoagulants 21 and antibodies 22, though not all have been shown to be beneficial in larger clinical 

trials 23. A better understanding of the pathophysiological mechanisms underlying COVID-19 will 

enable better treatment strategies to be devised 24. In our study, the anti-viral drug lopinavir/ritonavir 

(Kaletra) was the commonest prescribed drug, followed by ribavirin, interferon-beta, ACEIs/ARBs, 

steroids, hydroxychloroquine and the antiviral remdesivir. We found that these medications were 

more frequently prescribed in patients requiring ICU compared to those without. This may reflect the 

increased severity of cases in which clinicians were more likely to prescribe a cocktail of drugs. 

 

Conclusion 

In summary, this study has identified important univariable and interaction effects informing 

intensive care admission in patients hospitalized with COVID-19. Significant univariable predictors 

of ICU admission include older age, male sex, prior coronary artery disease, respiratory diseases, 
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diabetes, hypertension and chronic kidney disease, and activated partial thromboplastin time, red cell 

count, white cell count, albumin and serum sodium. A tree-based interpretable machine learning 

model identified most informative characteristics and hidden interactions (i.e., low red cells with 

male, older age, low albumin, low sodium or prolonged APTT) for COVID-19 prognostic ICU 

admission prediction. The tree-based machine learning model outperforms several baselines, 

enabling early detection of ICU admission, efficient healthcare resource utilization, and potentially 

mortality reduction of hospitalized patients with COVID-19. 
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Tables.  
Table 1. Physiological parameter distributions of patients with ICU admission 

Parameter High: Median (IQR, max) Low: Median (IQR, max) 

White cell count, x 10^9/L  8.11 (5.65-13.85, 24.25) 6 (4.525-9.17, 16.61) 

Urea, mmol/L  5.9 (4.5-8.8, 13.8) - 

Platelet count, x 10^9/L  240 (220.5-318.5, 472) 235 (202-282.5, 461) 

Na+, mmol/L  137.3 (135.35-140.45, 147) 135.6 (133.6-139.95, 145) 

Mean BP, mmHg  110 (100-123.5, 183) 67 (61-74, 93) 

K+, mmol/L  4.17 (3.675-4.45, 5.3) 3.66 (3.15-3.95, 4.39) 

Highest Respiratory Rate, /min  29 (24.5-32, 44) 19 (14-20.5, 30) 

Heart rate, /min  92 (86-110, 154) 60 (52.5-70.5, 84) 

Hematocrit 0.378 (0.355-0.413, 0.5) 0.363 (0.308-0.4095, 0.5) 

Hemoglobin, g/dL  13 (12.35-14, 16.5) 12.6 (10.7-13.65, 16.5) 

Blood glucose, mmol/L  8.6 (6.85-12.35, 25.8) 5.9 (4.9-6.85, 10.5) 

Creat, mmol/L  73 (57-102.45, 266) 69 (54.5-86.5, 173.3) 

Core temperature, oc 38.3 (37.4-39, 40.8) 36.6 (36.15-37.05, 38.4) 

Bilirubin, umol/L  14 (9-22.1, 79) - 

Albumin, g/L  27.6 (23.5-34.15, 48.4) 25 (21-30.6, 48.4) 
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Table 2. Demographic, epidemiological, clinical, medication, laboratory and ICU use outcome information collected from COVID-19 patients 

ICU=intensive unit care; COVID-19 = coronavirus disease 2019; APTT = Activated partial thromboplastin time; IQR = Interquartile range; * for p≤ 0.05, ** for p ≤ 0.01, *** for p ≤ 0.001 

#: Descriptive statistics of individual comorbidities are included in supplementary material 1. 

*: Descriptive statistics of prescribed commodities and therapeutic classifications are included in supplementary material 2. Drug commodities are included in the Appendix. 

£: Random glucose test requires that blood sample is drawn at a laboratory at any time. Fasted or recently eaten will not affect the test.  

Demographics All patients (n=1043) Patients without ICU use (n=1034) Patient with ICU use (n=19) P value 

Age, year, n (IQR, max) 34 (32-36, 96) 34 (32-36, 96) 59 (43-65, 93) <0.0001*** 

Sex, n (%)    0.0040** 

Male 563 (53.98%） 549 (53.61%) 14 (73.68%) - 

Female 480 (46.02 %) 475 (46.39%) 5 (26.32%) - 

Epidemiological feature — n (%) All patients (n=1043) Patients without ICU use (n=1034) Patient with ICU use (n=19) P value 

Hong Kong island 373 (35.67%) 370 (36.13%) 3 (15.79%) 0.0014** 

Kowloon 212 (20.33%) 209 (20.41%) 3 (15.79%) 0.6331 

New Territories 398 (38.16%) 386 (37.70%) 12 (63.16%) 0.0002*** 

Others 60 (5.75%) 59 (5.76%) 1 (5.26%) 0.9847 

Comorbidities
 # — n (%) All patients (n=535) Patients without ICU use (n=524) Patient with ICU use (n=11) P value 

Cardiovascular diseases 10 (1.87%) 3 (0.57%) 7 (63.64%) <0.0001*** 

Lung and respiratory disease 230 (42.99%) 220 (41.98%) 10 (90.91%) <0.0001*** 

Diabetes 54 (10.09%) 47 (8.97%) 7 (63.64%) <0.0001*** 

Hypertension 108 (20.19%) 99 (18.89%) 9 (81.82%) <0.0001*** 

Gastrointestinal diseases 174 (32.52%) 169 (32.25%) 5 (45.45%) 0.1050 

Chronic kidney diseases 21 (3.93%) 18 (3.44%) 3 (27.27%) <0.0001*** 

Drugs * — n (%) All patients (n=976) Patients without ICU use (n=958) Patient with ICU use (n=18) P value 

ACEI or ARB 184 (18.85%) 170 (17.75%) 14 (77.78%) <0.0001*** 

Steroids 143 (14.65%) 138 (14.41%) 5 (27.78%) 0.8831 

Kaletra 593 (60.76%) 577 (60.23%) 16 (88.89%) <0.0001*** 

Ribavirin 519 (53.18%) 505 (52.71%) 14 (77.78%) 0.0002*** 

Remdesivir 24 (2.46%) 23 (2.40%) 1 (5.56%) 0.3783 

Interferon beta 317 (32.48%) 313 (32.67%) 4 (22.22%) 0.1770 
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Hydroxychloroquine 129 (13.22%) 122 (12.73%) 7 (38.89%) <0.0001*** 

Laboratory examinations — median (IQR, max) 

Complete blood counts     

APTT, sec; n=518 31.1 (27.9-34.6, 49.1) 30.8 (27.75-34.35, 47.3); n=499 34.5 (34.5-36.1, 49.1); n=19 0.00065*** 

Basophil, x10^9/L; n=748 0.01 (0-0.02, 0.2) 0.01 (0-0.02, 0.1); n=732 0 (0-0.02, 0.2); n=16 0.3836 

Eosinophil, x10^9/L; n=752 0.03 (0-0.1, 0.84) 0.03 (0-0.1, 0.84); n=736 0 (0-0.045, 0.2); n=16 0.1499 

Hematocrit, L/L; n=859 0.412 (0.38-0.441, 0.502) 0.413 (0.382-0.441, 0.502); n=845 0.369 (0.369-0.3995, 0.443); n=14 0.0086** 

Hemoglobin, g/dL; n=794 14 (12.9-15, 17.8) 14 (12.95-15, 17.8); n=782 12.35 (12.35-13.75, 15); n=12 0.0221* 

Lymphocyte, %; n=437 26.2 (20-34.7, 64.1) 26.4 (20.2-34.75, 64.1); n=423 15.6 (15.6-32.05, 44.7); n=14 0.1005 

Lymphocyte, x10^9/L; n=753 1.4 (1-1.85, 6.6) 1.4 (1.01-1.85, 6.6); n=737 1.05 (1.05-1.57, 4.5); n=16 0.1392 

Mean corpuscular hemoglobin, pg; n=860 29.8 (28.6-30.8, 36.1) 29.8 (28.6-30.8, 36.1); n=846 29.9 (29.9-30.9, 31.9); n=14 0.9393 

Mean corpuscular hemoglobin concentration,  

g/dL; n=859 

34.1 (33.4-34.8, 37) 34.1 (33.4-34.8, 37); n=845 34.35 (34.35-34.65, 36); n=14 0.4507 

Monocyte, %; n=437 8.74 (6.8-11.8, 21.6) 8.8 (6.8-11.8, 21.6); n=423 7.75 (7.75-10.55, 12.9); n=14 0.3173 

Monocyte, x10^9/L; n=753 0.44 (0.33-0.6, 1.7) 0.44 (0.33-0.6, 1.7); n=737 0.445 (0.445-0.72, 1.2); n=16 0.9827 

Neutrophil, %; n=437 62.2 (53.7-69.5, 95) 62 (53.6-69.25, 87.8); n=423 72.7 (72.7-87.65, 95); n=14 0.0911 

Neutrophil, x10^9/L; n=753 3.37 (2.41-4.5, 18.63) 3.34 (2.41-4.48, 12.22); n=737 5.3 (5.3-7.98, 18.63); n=16 0.0136* 

Platelet count, x10^9/L; n=700 222 (180-272, 625) 222 (181-272, 625); n=689 184 (184-246, 391); n=11 0.4996 

Prothrombin time, sec; n=367 12 (11.45-12.65, 25.4) 12 (11.4-12.6, 25.4); n=354 12.4 (12.4-13.3, 16.1); n=13 0.0214* 

Red blood cells, x10^12/L; n=794 4.76 (4.415-5.16, 7.07) 4.77 (4.42-5.165, 7.07); n=782 4.31 (4.31-4.695, 4.99); n=12 0.0267* 

White blood cells, x10^9/L; n=793 5.56 (4.4-6.82, 21.19) 5.54 (4.4-6.8, 14.38); n=781 6.94 (6.94-11.13, 21.19); n=12 0.1246 

Liver function tests       

Alanine aminotransferase, U/L; n=763 22 (15-33.95, 202) 22 (15-33, 202); n=750 35 (35-47, 74); n=13 0.2356 

Albumin, g/L; n=980 42 (38.8-45, 54.9) 42 (38.96-45, 54.9); n=961 35.7 (35.7-39, 48.4); n=19 0.0009*** 

Alkaline phosphatase, U/L; n=206 64 (52.5-75.5, 490) 63 (52-75, 490); n=199 85 (85-103.5, 145); n=7 0.0170* 

Bilirubin total, umol/L; n=152 8 (6-11, 31.2) 8 (6-11, 31.2); n=146 9 (9-13.65, 23.2); n=6 0.5141 

Creatinine, umol/L; n=980 71.2 (60-84, 412) 71 (60-84, 412); n=961 83 (83-95, 195); n=19 0.1960 

Potassium, mmol/L; n=875 3.9 (3.66-4.2, 5.59) 3.9 (3.66-4.2, 5.59); n=856 3.8 (3.8-4.045, 5.3); n=19 0.5406 

Protein, Total, g/L; n=152 74 (70-77, 87.7) 74 (70-76.25, 87.7); n=146 80.35 (80.35-84, 86.8); n=6 0.3180 
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Serum sodium, mmol/L; n=876 139 (137.235-141, 146) 139 (137.43-141, 146); n=857 136.2 (136.2-137.5, 143); n=19 0.0008*** 

Alkaline phosphatase, U/L; n=105 64 (51-75, 389) 65 (51.5-75, 389); n=102 55 (55-58, 61); n=3 0.3915 

Bilirubin, umol/L; n=720 7 (5-9.65, 42.1) 7 (5-9.55, 42.1); n=707 8 (8-10.5, 14.2); n=13 0.6877 

Protein, g/L; n=765 75 (71.5-78.9, 92.24) 75 (71.55-78.9, 92.24); n=752 70.6 (70.6-75, 80.9); n=13 0.0635 

Urea, mmol/L; n=980 3.9 (3.12-4.7, 15.6) 3.9 (3.11-4.7, 15.6); n=961 4.1 (4.1-5.7, 9.2); n=19 0.5162 

Cardiac function tests        

D-dimer, ng/mL; n=72 334 (228-700, 5167) 315.5 (229-594, 4364); n=70 3048 (3048-3048, 5167); n=2 0.1108 

High sensitive troponin-I, ng/L; n=352 2.275 (0.9-4.4, 652) 2.19 (0.9-4, 98); n=337 7.04 (7.04-19.05, 652); n=15 0.0007*** 

Lactate dehydrogenase, U/L; n=870 185 (158-226, 874) 183 (157-221, 563); n=851 291 (291-437, 874); n=19 <0.0001*** 

Lipid profile       

Cholesterol, mmol/L; n=68 4.335 (3.69-5.247, 9.43) 4.43 (3.68-5.214, 9.43); n=61 3.87 (3.87-5.77, 7.2); n=7 0.9967 

HDL-Cholesterol, mmol/L; n=29 1.084 (0.895-1.4, 1.8) 1.084 (0.895-1.4, 1.8); n=25 1 (1-1.35, 1.6); n=4 0.9954 

LDL-Cholesterol, mmol/L; n=21 2.3818 (1.9764-2.9545, 4.6909) 2.3818 (2.0545-2.9545, 3.7273); n=17 2.3818 (2.3818-3.8227, 4.6909); n=4 0.9908 

Serum triglycerides, mmol/L; n=72 1.35 (0.955-2.0855, 8.6) 1.35 (0.955-2.0695, 8.6); n=70 3.64 (3.64-3.64, 6.294); n=2 0.8595 

Diabetes mellitus tests     

Spot urine glucose, mmol/L; n=123 5.15 (4.7-6.79, 26.3) 5.1 (4.7-6.25, 16.63); n=116 8.4 (8.4-8.9, 26.3); n=7 0.0067** 

Hemoglobin A1c (IFCC), mmol/mol; n=49 34.8 (32.8-37.4, 73.6) 34.8 (32.7-37.05, 73.6); n=47 39.45 (39.45-39.45, 40.9); n=2 0.2668 

Random glucose £, mmol/L; n=183 5.35 (4.8-6.445, 20.8) 5.325 (4.775-6.445, 20.8); n=178 5.87 (5.87-6.06, 9.27); n=5 0.5943 
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Table 3. Predictors of ICU admission in COVID-19 patients 

ICU=intensive unit care; COVID-19 = coronavirus disease 2019; APTT=Activated partial thromboplastin time; IQR=Interquartile range; * for p≤ 0.05, ** for p ≤ 0.01, *** for p ≤ 0.001 

All analyses were adjusted for age, sex, comorbidities and residence districts unless otherwise specified. 

*: Adjusted for sex, comorbidities, and residence districts. 

§: Adjusted for sex, and residence districts.  

£: Adjusted for sex, comorbidities. Univariate analysis results of individual drugs are included in in supplementary material 3. 

†: Adjusted for sex, comorbidities, and residence districts. 

 
Odds Ratio (95%CI) P-value 

Demographics 
  

Age (years)* 1.06 (1.03-1.09) <0.0001*** 
<18; n=0 - - 
18-24; n=1 0.23 (0.03-1.74) 0.1542 
25-49; n=5 0.48 (0.17-1.35) 0.1662 
50-64; n=6 1.80 (0.68-4.79) 0.2395 
65-74; n=6 8.29 (3.03-22.66) <0.0001*** 
≥75; n=1 2.22 (0.29-17.29) 0.4463 

Male sex (vs female) 2.42 (0.87-6.78) <0.0001*** 
Comorbidities § 

Cardiovascular diseases 3.12 (0.81-10.12) <0.0001*** 
Respiratory diseases 8.15 (1.85-14.44) <0.0001*** 
Diabetes diseases 6.17 (2.07-9.36) <0.0001*** 
Hypertension 3.15 (1.25-5.32) 0.00015*** 
Gastrointestinal diseases 1.83 (0.55-6.08) 0.3242 
Chronic kidney diseases 4.87 (2.66-9.71) 0.0009*** 

Drugs £ 
ACEI or ARB 1.10 (0.24-2.14) <0.0001*** 
Steroids 2.27 (0.80-6.46) 0.1256 
Lopinavir/ritonavir 1.73 (1.02-3.05) <0.0001*** 
Ribavirin 1.43 (0.37-2.05) <0.0001*** 
Remdesivir 1.39 (0.35-2.11) 0.0021** 
Interferon beta 1.04 (0.39-2.80) <0.0001*** 
Hydroxychloroquine 1.24 (0.90-1.73) 0.00036*** 

Laboratory examinations † 
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Complete blood counts 
  

APTT, sec; n=518 1.19 (1.08-1.30) <0.0001*** 
Basophil, x10^9/L; n=748 0.91 (0.86-0.97) 0.9269 
Eosinophil, x10^9/L; n=752 0.55 (0.53-0.56) 0.1106 
Hematocrit, L/L; n=859 0.01 (0.00-0.03) 0.0021** 
Hemoglobin, g/dL; n=794 0.65 (0.64-0.72) 0.0072* 
Lymphocyte, %; n=437 0.92 (0.92-0.92) 0.0067** 
Lymphocyte, x10^9/L; n=753 0.57 (0.36-0.59) 0.2215 
Mean corpuscular hemoglobin, pg; n=860 1.02 (0.84-1.24) 0.8690 
Mean corpuscular hemoglobin concentration,  0.85 (0.84-0.85) 0.0696 
Monocyte, %; n=437 2.30 (2.16-2.44) 0.4054 
Monocyte, x10^9/L; n=753 1.09 (1.09-1.09) 0.0011** 
Neutrophil, %; n=437 1.54 (1.23-1.65) <0.0001*** 
Neutrophil, x10^9/L; n=753 1.00 (0.59-1.20) 0.3242 
Platelet count, x10^9/L; n=700 1.35 (1.34-1.36) 0.0349 
Prothrombin time, sec; n=367 0.25 (0.24-0.26) 0.0152 
Red blood cells, x10^12/L; n=794 1.47 (1.46-1.48) 0.0001*** 
White blood cells, x10^9/L; n=793 1.47 (1.21-1.79) <0.0001*** 
Liver function tests   
Alanine aminotransferase, U/L; n=763 1.01 (0.85-1.11) 0.3982 
Albumin, g/L; n=980 0.80 (0.74-0.87) <0.0001*** 
Alkaline phosphatase, U/L; n=206 1.01 (0.85-1.12) 0.2485 
Bilirubin total, umol/L; n=152 1.08 (1.07-1.08) 0.2300 
Creatinine, umol/L; n=980 1.01 (0.82-1.12) 0.0285 
Potassium, mmol/L; n=875 0.60 (0.58-0.62) 0.3965 
Protein, Total, g/L; n=152 1.21 (1.20-1.22) 0.0225 
Serum sodium, mmol/L; n=876 1.26 (1.08-1.93) <0.0001*** 
Alkaline phosphatase, U/L; n=105 0.95 (0.95-0.95) 0.1859 
Bilirubin, umol/L; n=720 1.01 (0.79-1.12) 0.7903 
Protein, g/L; n=765 0.87 (0.87-1.28) 0.0057** 
Urea, mmol/L; n=980 1.22 (1.02-1.23) 0.0594 

Cardiac function tests    
D-dimer, ng/mL; n=72 1.10 (1.00-1.31) 0.0031** 
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High sensitive troponin-I, ng/L; n=352 1.03 (1.02-1.03) 0.0512 
Lactate dehydrogenase, U/L; n=870 1.02 (1.01-1.03) <0.0001*** 

Lipid profile   
Cholesterol, mmol/L; n=68 1.04 (1.02-1.06) <0.0001*** 
HDL-Cholesterol, mmol/L; n=29 0.94 (0.86-1.03) 0.0015** 
LDL-Cholesterol, mmol/L; n=21 1.09 (1.04-1.13) 0.0159 
Serum triglycerides, mmol/L; n=72 1.46 (1.43-1.48) <0.0001*** 

Diabetes mellitus tests   
Spot urine glucose, mmol/L; n=123 1.32 (1.31-1.32) <0.0001*** 
Hemoglobin A1c (IFCC), mmol/mol; n=49 1.03 (1.03-1.04) <0.0001*** 
Random glucose, mmol/L; n=183 1.05 (1.04-1.06) <0.0001*** 

 

Table 4. Performance analysis of EBM over baseline models 

 Precision Recall F1 Score AUC 

EBM 0.9117 0.9263 0.9189  0.9231  

XGBoost 0.9074 0.8976 0.9025  0.8982  

LightGBM 0.8337 0.8501 0.8418  0.8040  

Random forest 0.8188 0.8215 0.8201  0.8250  

Logistic regression 0.8337 0.8041 0.8186  0.8310  
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Figure 1. Flowchart of patient enrolment. * denotes the imposition of multiple criteria; 
Study baseline was defined as 24 hours after arrival at hospital; COVID-19 = 
coronavirus disease 2019; ICU=intensive care unit. 
 

 

Figure 2. Distribution of COVID-19 patients in Hong Kong districts of residence 
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Figure 3. Age distribution of COVID-19 inpatients in Hong Kong. 

 

Figure 4. Timeline of COVID-19 cases after hospitalization. 

 

 
Figure 5. Importance ranking of significant univariable characteristics for ICU identification. 
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Figure 6. Changing effects of significant predictors on ICU use identification. 
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Figure 7. Interaction effects of important pairwise univariable characteristics for ICU 

identification. 
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Figure 8. Local explanation for a random patient with ICU admission 

 

 
Figure 9. Local explanation for a random patient without ICU admission 
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