Hydrogen as an Energy Carrier—An Overview over Technology, Status, and Challenges in Germany †
Abstract
:1. Introduction
2. Properties of Hydrogen
kWh/kg | kWh//L | |
---|---|---|
H2 at normal conditions | 33 [25] | 0.003 [27] |
H2 at 700 bar | 33 [25] | 1.3 |
H2 liquid at 20 K | 33 [25] | 2.3 [29] |
Petrol | ~12 [25] | 11 [28] |
Diesel | ~12 [25] | 10 [28] |
CH4 at normal conditions | 13.9 [30] | 0.01 [30] |
Methanol | 7.02 [31] | 5.53 [31] |
Li-Ion batteries | ~0.3 [26] | ~0.4 [32] |
3. Current Uses of Hydrogen, Targets, and Potential Future Demand
3.1. Uses in Industry
3.2. Use in Transport
3.3. Use in Electricity
3.4. Use in the Heating Sector
4. Production Technologies of Hydrogen
4.1. Steam Reforming
4.2. Gasification of Coal
4.3. Low-CO2 Technologies
4.4. Electrolysis
4.5. White Hydrogen
5. Green Hydrogen Production in Germany
6. Green Hydrogen Cost
7. H2 Availability Limitations and Trade
8. Storage and Transport
Storage and Transport Using the Natural Gas Grid
9. H2 Infrastructure and Import of Hydrogen to Germany
10. Green Hydrogen Derivatives for Worldwide Transport and Trade
11. Summary
Funding
Conflicts of Interest
References
- Tyndall, J. On the absorption and radiation of heat by gases and vapours, and on the physical connexion of radiation, absorption, and conduction. Philos. Trans. R. Soc. 1861, 151, 1–36. [Google Scholar] [CrossRef]
- Budden, K.T.; Zieger, W.H. Environmental Assessment of Coal Liquefaction: Annual Report; Hittman Associates: Columbia, MD, USA, 1978.
- Simões, F.L.D.; Santos, D.M.F. A SWOT Analysis of the Green Hydrogen Market. Energies 2024, 17, 3114. [Google Scholar] [CrossRef]
- European Commission. Hydrogen. Available online: https://energy.ec.europa.eu/topics/energy-systems-integration/hydrogen_en (accessed on 12 November 2024).
- European Commission. Hydrogen and Decarbonised Gas Market. Available online: https://energy.ec.europa.eu/topics/markets-and-consumers/hydrogen-and-decarbonised-gas-market_en (accessed on 12 November 2024).
- European Commission. The European Green Deal; European Commission: Brussels, Belgium, 2019. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF (accessed on 25 November 2024).
- Deutscher Bundestag-Wissenschafltiche Dienste. Verpflichtungen der Bundesregierung nach dem Bundes-Klimaschutzgesetz Sachstand; German Bundestag: Berlin, Germany, 2022. [Google Scholar]
- Landesrecht Baden-Württemberg. Klimaschutz- und Klimawandelanpassungsgesetz; Baden-Württemberg: Württemberg, Germany, 2023. [Google Scholar]
- Die Bundesregierung. Fortschreibung der Nationalen Wasserstoffstrategie; Bundesministerium für Wirtschaft und Klimaschutz (BMWK): Berlin, Germany, 2023.
- Wasserstoff Leitprojekte. H2Giga: Serienfertigung. Available online: https://www.wasserstoff-leitprojekte.de/leitprojekte/h2giga (accessed on 10 November 2024).
- Wasserstoff Leitprojekte. H2Mare: Offshore-Technologien. Available online: https://www.wasserstoff-leitprojekte.de/leitprojekte/h2mare (accessed on 10 November 2024).
- HyGATE. Informationen zur Wasserstoffkooperation von Deutschland und Australien—BMBF. Available online: https://www.bmbf.de/bmbf/shareddocs/faq/wasserstoff-australien-deutschland-faq.html (accessed on 10 November 2024).
- H2Atlas. Africa. Available online: https://www.h2atlas.de (accessed on 10 November 2024).
- Bundesministerium für Bildung und Forschung. Update der Nationalen Wasserstoffstrategie: Turbo für die H2-Wirtschaft. Available online: https://www.bmbf.de/bmbf/de/forschung/energiewende-und-nachhaltiges-wirtschaften/nationale-wasserstoffstrategie/nationale-wasserstoffstrategie_node.html (accessed on 10 November 2024).
- Bundesministerium für Wirtschaft und Klimaschutz. Bundeskabinett Beschließt Importstrategie für Wasserstoff und Wasserstoffderivate. Available online: https://www.bmwk.de/Redaktion/DE/Pressemitteilungen/2024/07/20240724-importstrategie-wasserstoff.html (accessed on 12 November 2024).
- Bundesministerium für Wirtschaft und Klimaschutz. Importstrategie für Wasserstoff und Wasserstoffderivate; Bundesministerium für Wirtschaft und Klimaschutz: Berlin, Germany, 2024.
- Wasserstoff Leitprojekte. TransHyDE: Wasserstoff-Transport. Available online: https://www.wasserstoff-leitprojekte.de/leitprojekte/transhyde (accessed on 10 November 2024).
- Thyssenkrupp. Steel Carbon2Chem. Available online: https://www.thyssenkrupp-steel.com/de/unternehmen/nachhaltigkeit/carbon2chem/carbon2chem.html (accessed on 12 November 2024).
- Kopernikus Projekte. Kopernikus-Projekt: Ariadne. Available online: https://www.kopernikus-projekte.de/projekte/ariadne (accessed on 10 November 2024).
- Appunn, K.; Haas, Y.; Wettengel, J. Germany’s Energy Consumption and Power Mix in Charts. Available online: https://www.cleanenergywire.org/factsheets/germanys-energy-consumption-and-power-mix-charts (accessed on 8 August 2024).
- Umweltbundesamt Indicator. Share of Renewables in Gross Electricity Consumption. Available online: https://www.umweltbundesamt.de/en/indicator-share-of-renewables-in-gross-electricity (accessed on 20 September 2024).
- Payne, C.H. Stellar Atmospheres; A Contribution to the Observational Study of High Temperature in the Reversing Layers of Stars. Ph.D. Thesis, Harvard University, Cambridge, MA, USA, 1925. [Google Scholar]
- Grochala, W. First there was hydrogen. Nat. Chem. 2015, 7, 264. [Google Scholar] [CrossRef] [PubMed]
- American Chemical Society. Hydrogen. Available online: https://www.acs.org/molecule-of-the-week/archive/h/hydrogen.html (accessed on 15 September 2024).
- Lozano-Martín, D.; Moreau, A.; Chamorro, C.R. Thermophysical properties of hydrogen mixtures relevant for the development of the hydrogen economy: Review of available experimental data and thermodynamic models. Renew. Energy 2022, 198, 1398–1429. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Li, G.; Gao, X. Strategy of Enhancing the Volumetric Energy Density for Lithium–Sulfur Batteries. Adv. Mater. 2021, 33, 2003955. [Google Scholar] [CrossRef]
- Preuster, P.; Papp, C.; Wasserscheid, P. Liquid Organic Hydrogen Carriers (LOHCs): Toward a Hydrogen-free Hydrogen Economy. Acc. Chem. Res. 2017, 50, 74–85. [Google Scholar] [CrossRef]
- McKay, D. Sustainable Energy—Without the Hot Air; UIT: Cambridge, UK, 2008. [Google Scholar]
- Friedl, J.; Stimming, U. Model catalyst studies on hydrogen and ethanol oxidation for fuel cells. Electrochim. Acta 2013, 101, 41–58. [Google Scholar] [CrossRef]
- Burmeister, F. H2-Readiness von Gasgeräten. Deutscher Verein des Gas und Wasserfaches. 2021. Available online: https://www.dvgw.de/medien/dvgw/verein/energiewende/h2-wochen-lunch-and-learn-h2-readiness-burmeister-gwi.pdf (accessed on 13 October 2024).
- Fürkus, S. Energie, Chemische. Available online: https://www.geothermie.de/bibliothek/lexikon-der-geothermie/e/energie-chemische (accessed on 8 November 2024).
- Thielmann, A.; Wietschel, M.; Funke, S.; Grimm, A.; Hettesheimer, T.; Langkau, S.; Loibl, A.; Moll, C.; Neef, C.; Plötz, P.; et al. Batterien für Elektroautos: Faktencheck und Handlungsbedarf; Fraunhofer-Institut für System- und Innovationsforschung: Karlsruhe, Germany, 2020. [Google Scholar]
- Stepken, A. Wasserstoff—So Sicher wie Benzin; Mediumforum Deutscher Wasserstofftag 2013. Available online: https://www.yumpu.com/de/document/read/21675079/wasserstoff-so-sicher-wie-benzin-pdf-7038kb-linde-gas (accessed on 12 November 2024).
- European Hydrogen Safety Panel. Clean Hydrogen Partnership. Available online: https://www.clean-hydrogen.europa.eu/get-involved/european-hydrogen-safety-panel-0_en (accessed on 12 November 2024).
- International Energy Agency. Global Hydrogen Review 2023; IEA Publications: Paris, France, 2023. [Google Scholar]
- European Parliament. Directive (EU) 2023/2413 of the European Parliament and of the Council of 18 October 2023 Amending Directive (EU) 2018/2001, Regulation (EU) 2018/1999 and Directive 98/70/EC as Regards the Promotion of Energy from Renewable Sources, and Repealing Council Directive (EU) 2015/652; Official Journal of the European Union, 2023. Available online: https://data.europa.eu/eli/dir/2023/2413/oj (accessed on 31 July 2024).
- Die Bundesregierung. Die Nationale Wasserstoffstrategie; German Federal Ministry of Economic Affairs and Energy: Berlin, Germany, 2020.
- Eitze, J. Wasserstoff-Kompass: Handlungsoptionen für die Wasserstoffwirtschaft; Deutsche Akademie der Technikwissenschaften: Frankfurt am Main, Germany, 2024; ISBN 978-3-89746-245-8. [Google Scholar]
- Produktion von Ammoniak in Deutschland in den Jahren von 2013 bis 2023. Available online: https://de.statista.com/statistik/daten/studie/1285585/umfrage/ammoniakproduktion-in-deutschland/ (accessed on 29 July 2024).
- Verband der Chemischen Industrie, e.V. Chemiewirtschaft in Zahlen. 2023. Available online: https://www.vci.de/vci/downloads-vci/publikation/chiz-historisch/chemiewirtschaft-in-zahlen-2023-2.pdf (accessed on 25 November 2024).
- Engelmann, C. Grünes Ammoniak aus Norwegen: EnBW startet Vermarktungsprozess für Mengen aus dem SkiGA-Projekt. Available online: https://www.enbw.com/presse/vermarktung-von-gruenem-ammoniak-startet.html (accessed on 27 September 2024).
- Marmier, A. Decarbonisation Options for the Cement Industry; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar] [CrossRef]
- Worldsteel Association. Factsheet—Hydrogen (H2)-Based Ironmaking. 2022. Available online: https://worldsteel.org/wp-content/uploads/Fact-sheet-Hydrogen-H2-based-ironmaking.pdf (accessed on 30 July 2024).
- Kato, Y. Hydrogen Utilization for Carbon Recycling Iron Making System. ISIJ Int. 2012, 52, 1433–1438. [Google Scholar] [CrossRef]
- Nationaler Wasserstoffrat. Grundlagenpapier Update 2024: Treibhausgaseinsparungen und der Damit Verbundene Wasserstoffbedarf in Deutschland; Nationaler Wasserstoffrat: Berlin, Germany, 2024. [Google Scholar]
- Hebling, C.; Ragwitz, M.; Fleiter, T.; Groos, U.; Härle, D.; Held, A.; Jahn, M.; Müller, N.; Pfeifer, T.; Plötz, P.; et al. Eine Wasserstoff-Roadmap für Deutschland. Fraunhofer Gesellschaft: Karlsruhe, Germany; Freiburg, Germany, 2019. [Google Scholar] [CrossRef]
- Parkes, R. Salzgitter Launches Tender for at Least 120,000 Tonnes of Low-Carbon Hydrogen for Green Steel Production. Available online: https://www.hydrogeninsight.com/industrial/salzgitter-launches-tender-for-at-least-120-000-tonnes-of-low-carbon-hydrogen-for-green-steel-production/2-1-1666499 (accessed on 12 November 2024).
- ArcelorMittal Hamburg H2. Working Towards the Production of Zero-Carbon Emissions Steel with Hydrogen. Available online: https://corporate.arcelormittal.com/climate-action/decarbonisation-technologies/hamburg-h2-working-towards-the-production-of-zero-carbon-emissions-steel-with-hydrogen/ (accessed on 12 November 2024).
- Holcim. Dekarbonisierung Zementwerk Lägerdorf. Available online: https://www.holcim.de/dekarbonisierung-zementwerk (accessed on 12 November 2024).
- Kummer, S. Warum für den Zementhersteller Schwenk die Wasserstoff-Pipeline Schnell Kommen Muss. Available online: https://www.hz.de/lokales/heidenheim/warum-fur-schwenk-die-wasserstoff-pipeline-schnell-kommen-muss (accessed on 12 November 2024).
- Federal Ministry for Economic Affairs and Climate Action. German-Norwegian Energy and Industrial Partnership Roadmap on Expected Hydrogen Off-Take in Germany in the German-Norwegian Context; 2023. Available online: https://www.bmwk.de/Redaktion/DE/Downloads/P-R/240424-roadmap-deu-nor-hydrogen-task-force.pdf?__blob=publicationFile&v=6 (accessed on 31 July 2024).
- European Hydrogen Observatory. Scenarios for Future Hydrogen Demand. Available online: https://observatory.clean-hydrogen.europa.eu/tools-reports/scenarios-future-hydrogen-demand (accessed on 31 July 2024).
- Fleck, A. Infographic: Cars Cause Biggest Share of Transportation CO2 Emissions. Available online: https://www.statista.com/chart/30890/estimated-share-of-co2-emissions-in-the-transportation-sector (accessed on 8 August 2024).
- Ram, V.; Salkuti, S.R. An Overview of Major Synthetic Fuels. Energies 2023, 16, 2834. [Google Scholar] [CrossRef]
- Premiere: Deutsche Bahn und Siemens Mobility Präsentieren Neuen Wasserstoffzug und Wasserstoff-Speichertrailer. Available online: https://www.now-gmbh.de/aktuelles/pressemitteilungen/premiere-deutsche-bahn-und-siemens-mobility-praesentieren-neuen-wasserstoffzug-und-wasserstoff-speichertrailer/ (accessed on 21 August 2024).
- Holtze, B. World’s First Hydrogen-Powered Ship Is Powered by Ballard Fuel Cells. Available online: https://blog.ballard.com/marine/worlds-first-liquid-powered-hydrogen-ship-mf-hydra-is-powered-by-ballards-fuel-cells (accessed on 21 August 2024).
- Thomson, R.; Sachdeva, N.; Nazukin, M.; Martinez, N. Aircraft Electrical Propulsion—The Next Chapter of Aviation? Roland Berger LTD: London, UK, 2017. [Google Scholar]
- Saubere-Fahrzeuge-Beschaffungs-Gesetz vom 9. Juni 2021. In Erstes Gesetz zur Änderung des Saubere-Fahrzeuge-Beschaffungs-Gesetzes; Bundesministerium der Justiz: Berlin, Germany, 2024. Available online: https://www.gesetze-im-internet.de/saubfahrzeugbeschg/BJNR169110021.html (accessed on 8 August 2024).
- Ehret, O. Wasserstoff-Wissen BW: Recthsrahmen Wasserstoff; Institut für Nachhaltige Energietechnik und Mobilität, Hochschule Esslingen: Esslingen am Neckar, Germany, 2024. [Google Scholar]
- H2PURe. Wasserstoff-Planung für die Region Ulm/Neu-Ulm. 2023. Available online: https://www.hy.land/wp-content/uploads/2023/08/H2PURe_Abschlussbericht.pdf (accessed on 10 April 2024).
- Meyer Industry Research. Brennstoffzellen Zulieferer Automotive in Deutschland; Meyer Industry Research: München, Germany, 2022; Available online: https://www.meyer-industryresearch.de/wp-content/uploads/2022/11/TOP50-Zulieferer-Brennstoffzelle_FINAL.pdf (accessed on 30 September 2024).
- Mordor Intelligence Analyse der Größe und des Marktanteils von Brennstoffzellen in Deutschland—Wachstumstrends und Prognosen (2024–2029). Available online: https://www.mordorintelligence.com/de/industry-reports/germany-fuel-cell-market-industry (accessed on 30 September 2024).
- Wie Sich der Markt für Brennstoffzellen Entwickelt. Available online: https://www.springerprofessional.de/brennstoffzelle/elektrofahrzeuge/wie-sich-der-markt-fuer-brennstoffzellen-entwickelt/25984812 (accessed on 30 September 2024).
- Hydrogen Council. Path to Hydrogen Competitiveness: A Cost Perspective. 2020. Available online: https://hydrogencouncil.com/wp-content/uploads/2020/01/Path-to-Hydrogen-Competitiveness_Full-Study-1.pdf (accessed on 27 September 2024).
- Federal Ministry for Digital and Transport. Aufruf zur Skizzeneinreichung Für die Förderung von Bussen mit klimafreundlichen, alternativen Antrieben im Personenverkehr. 2022. Available online: https://bmdv.bund.de/SharedDocs/DE/Anlage/K/presse/2te-foerderaufruf.pdf?__blob=publicationFile (accessed on 27 September 2024).
- Willich, C.; Königsberger, C.; Prickler, P.; Aydin, M.; Heilmann, O.; Schlick, M. Assessing the future hydrogen demand in the mobility sector for the Ulm region in southern Germany. In Proceedings of the 36th International Electric Vehicle Symposium and Exhibition (EVS36), Sacramento, CA, USA, 11–14 June 2023. [Google Scholar] [CrossRef]
- Statistics: Hydrogen Infrastructure. Available online: https://www.h2stations.org/statistics/ (accessed on 9 August 2024).
- H2 Mobility. Anzahl der Wasserstofftankstellen in Deutschland 2023. Available online: https://de.statista.com/statistik/daten/studie/820836/umfrage/anzahl-der-wasserstofftankstellen-in-deutschland/ (accessed on 9 August 2024).
- Hydrogen Refuelling Stations. Available online: https://observatory.clean-hydrogen.europa.eu/hydrogen-landscape/distribution-and-storage/hydrogen-refuelling-stations (accessed on 13 August 2024).
- Now GmbH. Available online: https://www.now-gmbh.de/en/ (accessed on 13 August 2024).
- Now GmbH. Elektromobilitäts Report 06/2024. Available online: https://elektromobilitaetsmonitor.de/datastory/elektromobilitaetsreport-06-2024-2/ (accessed on 13 August 2024).
- Mit der Elektrobahn Klimaschonend in die Zukunft—Das Bahn-Elektrifizierungsprogramm des Bundes. Available online: https://bmdv.bund.de/SharedDocs/DE/Artikel/E/schiene-aktuell/elektrobahn-klimaschonend-zukunft-bahn-elektrifizierungsprogramm.html (accessed on 21 August 2024).
- Roos, T.; Jarrad, G. Wright Powerfuels and Green Hydrogen; Energy Centre CSIR: Pretoria, South Africa, 2021; Available online: https://www.euchamber.co.za/wp-content/uploads/2022/01/CSIR_EC_ESD_RPTi_Powerfuels_Research_Paper_20201126_1.0_public.pdf (accessed on 26 November 2024).
- Zentralverband der Deutschen Seehafenbetriebe e.V. Seehäfen in der Energiewende: Wasserstoff. Available online: https://zds-seehaefen.de/wp-content/uploads/2021/06/2021-06-03_ZDS_Wasserstoff_Arbeitspapier_Juni21.pdf (accessed on 2 October 2024).
- Mahepa. Mahepa Announces: Hydrogen Fuel Cell Driven Hy4 Has Flown. 2020. Available online: https://mahepa.eu/2020/12/11/mahepa-announces-hydrogen-fuel-cell-driven-hy4-has-flown/ (accessed on 21 August 2024).
- Hydrogen Flight Looks Ready for Take-Off with New Advances. Available online: https://nachrichten.idw-online.de/2024/07/11/hydrogen-flight-looks-ready-for-take-off-with-new-advances (accessed on 21 August 2024).
- ZEROe. Low Carbon Aviation—Airbus. Available online: https://www.airbus.com/en/innovation/energy-transition/hydrogen/zeroe (accessed on 21 August 2024).
- Davis, M.; Okunlola, A.; Di Lullo, G.; Giwa, T.; Kumar, A. Greenhouse gas reduction potential and cost-effectiveness of economy-wide hydrogen-natural gas blending for energy end uses. Renew. Sustain. Energy Rev. 2023, 171, 112962. [Google Scholar] [CrossRef]
- Sun, M.; Huang, X.; Hu, Y.; Lyu, S. Effects on the performance of domestic gas appliances operated on natural gas mixed with hydrogen. Energy 2022, 244, 122557. [Google Scholar] [CrossRef]
- Ellamla, H.R.; Staffell, I.; Bujlo, P.; Pollet, B.G.; Pasupathi, S. Current status of fuel cell based combined heat and power systems for residential sector. J. Power Sources 2015, 293, 312–328. [Google Scholar] [CrossRef]
- HyDeploy. HyDeploy2 Project Gas Network Innovation Competition. Cadent 3rd Project Progress Report. 2021. Available online: https://hydeploy.co.uk/app/uploads/2022/06/HYDEPLOY2-THIRD-OFGEM-PPR.pdf (accessed on 21 August 2024).
- Giacomazzi, E.; Troiani, G.; Di Nardo, A.; Calchetti, G.; Cecere, D.; Messina, G.; Carpenella, S. Hydrogen Combustion: Features and Barriers to Its Exploitation in the Energy Transition. Energies 2023, 16, 7174. [Google Scholar] [CrossRef]
- Sprenger, T.; Schäfer, F.; Diehl, M. Datengrundlage für die EON H2Bilanz 2024 1. Halbjahr; Energiewirtschaftliche Institut an der Universität zu Köln: Kölner, Germany, 2024; Available online: https://www.ewi.uni-koeln.de/de/publikationen/datengrundlage-fuer-die-h2bilanz-2024-1-halbjahr/ (accessed on 23 August 2024).
- Wurbs, S.; Stöcker, P.; Gierds, J.; Stemmler, C.; Fischedick, M.; Henning, H.; Matthies, E.; Pittel, K.; Renn, J.; Sauer, D.U.; et al. How Important Will Hydrogen Be in the Energy System of the Future? Series on “Energy Systems of the Future” (ESYS); German National Academy of Sciences Leopoldina: Halle, Germany, 2024. [Google Scholar] [CrossRef]
- Dermühl, S.; Riedel, U. A comparison of the most promising low-carbon hydrogen production technologies. Fuel 2023, 340, 127478. [Google Scholar] [CrossRef]
- Schneider, S.; Bajohr, S.; Graf, F.; Kolb, T. Verfahrensübersicht zur Erzeugung von Wasserstoff durch Erdgas-Pyrolyse. Chem. Ing. Tech. 2020, 92, 1023–1032. [Google Scholar] [CrossRef]
- Korányi, T.I.; Németh, M.; Beck, A.; Horváth, A. Recent Advances in Methane Pyrolysis: Turquoise Hydrogen with Solid Carbon Production. Energies 2022, 15, 6342. [Google Scholar] [CrossRef]
- Commercial Progress on Turquoise Hydrogen. Available online: https://www.chemengonline.com/fullscreen/commercial-progress-on-turquoise-hydrogen/ (accessed on 8 November 2024).
- Chisholm, G.; Cronin, L. Chapter 16—Hydrogen from Water Electrolysis. In Storing Energy; Elsevier: Amsterdam, The Netherlands, 2016; pp. 315–343. ISBN 978-0-12-803440-8. [Google Scholar] [CrossRef]
- Allied Market Research Electrolyzer Market Size, Share, Competitive Landscape and Trend Analysis Report, by Application, by Capacity, by Product: Global Opportunity Analysis and Industry Forecast, 2023–2032. Available online: https://www.alliedmarketresearch.com/electrolyzer-market-A10609 (accessed on 12 September 2024).
- Millet, P.; Grigoriev, S. Chapter 2-Water Electrolysis Technologies. In Renewable Hydrogen Technologies; Elsevier: Amsterdam, The Netherlands, 2013; pp. 19–41. ISBN 978-0-444-56352-1. [Google Scholar] [CrossRef]
- Office of Energy Efficiency & Renewable Energy. US Department of Energy Technical Targets for Liquid Alkaline Electrolysis. Available online: https://www.energy.gov/eere/fuelcells/technical-targets-liquid-alkaline-electrolysis (accessed on 12 November 2024).
- Shiva Kumar, S.; Himabindu, V. Hydrogen production by PEM water electrolysis—A review. Mater. Sci. Energy Technol. 2019, 2, 442–454. [Google Scholar] [CrossRef]
- Office of Energy Efficiency & Renewable Energy. US Department of Energy Technical Targets for Proton Exchange Membrane Electrolysis. Available online: https://www.energy.gov/eere/fuelcells/technical-targets-proton-exchange-membrane-electrolysis (accessed on 12 November 2024).
- Henke, M.; Willich, C.; Kallo, J.; Friedrich, K.A. Theoretical study on pressurized operation of solid oxide electrolysis cells. Int. J. Hydrogen Energy 2014, 39, 12434–12439. [Google Scholar] [CrossRef]
- Onda, K.; Kyakuno, T.; Hattori, K.; Ito, K. Prediction of production power for high-pressure hydrogen by high-pressure water electrolysis. J. Power Sources 2004, 132, 64–70. [Google Scholar] [CrossRef]
- Saravia, F.; Graf, F.; Schwarz, S.; Gröschl, F. Genügend Wasser für die Elektrolyse Wieviel Wasser Wird für die Erzeugung von Grünem Wasserstoff Benötigt und Gibt es Ausreichende Ressourcen? Deutscher Verein des Gas- und Wasserfachs e.V.: Bonn, Germany, 2023. [Google Scholar]
- Simoes, S.G.; Catarino, J.; Picado, A.; Lopes, T.F.; Di Berardino, S.; Amorim, F.; Gírio, F.; Rangel, C.M.; Ponce De Leão, T. Water availability and water usage solutions for electrolysis in hydrogen production. J. Clean. Prod. 2021, 315, 128124. [Google Scholar] [CrossRef]
- Chauhan, D.; Ahn, Y.-H. Alkaline electrolysis of wastewater and low-quality water. J. Clean. Prod. 2023, 397, 136613. [Google Scholar] [CrossRef]
- Sjöberg, F.; Singer, M. The medical use of oxygen: A time for critical reappraisal. J. Intern. Med. 2013, 274, 505–528. [Google Scholar] [CrossRef]
- Royal Society of Chemistry Oxygen. Element Information, Properties and Uses. Periodic Table. Available online: https://www.rsc.org/periodic-table/element/8/oxygen (accessed on 6 September 2024).
- Reyes, Á. Balance of Plant (BoP) of an Electrolyser. SynerHy. 2022. Available online: https://synerhy.com/en/2022/02/balance-of-plant-bop-of-an-electrolyser/ (accessed on 23 August 2024).
- Cooper, J.S.; Phuyal, P.; Shah, N. Oxygen Toxicity. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Dieter, F.; Blumenberg, M.; Pein, M. Wasserstoffvorkommen im Geologischen Untergrund; Bundesanstalt für Geowissenschaften und Rohstoffe: Hannover, Germany, 2020.
- The White Gold Rush and the Pursuit of Natural Hydrogen. Available online: https://www.rystadenergy.com/news/white-gold-rush-pursuit-natural-hydrogen (accessed on 12 November 2024).
- Wehrmann, B. Natural “White Hydrogen” Likely to Play Only Limited Role in German Energy System. Available online: https://www.cleanenergywire.org/news/natural-white-hydrogen-likely-play-only-limited-role-german-energy-system-ministry (accessed on 12 November 2024).
- Song, H.; Luo, S.; Huang, H.; Deng, B.; Ye, J. Solar-Driven Hydrogen Production: Recent Advances, Challenges, and Future Perspectives. ACS Energy Lett. 2022, 7, 1043–1065. [Google Scholar] [CrossRef]
- Ivanova, M.E.; Peters, R.; Müller, M.; Haas, S.; Seidler, M.F.; Mutschke, G.; Eckert, K.; Röse, P.; Calnan, S.; Bagacki, R.; et al. Technological Pathways to Produce Compressed and Highly Pure Hydrogen from Solar Power. Angew. Chem. Int. Ed. 2023, 62, e202218850. [Google Scholar] [CrossRef]
- Wyss, K.M.; Silva, K.J.; Bets, K.V.; Algozeeb, W.A.; Kittrell, C.; Teng, C.H.; Choi, C.H.; Chen, W.; Beckham, J.L.; Yakobson, B.I.; et al. Synthesis of Clean Hydrogen Gas from Waste Plastic at Zero Net Cost. Adv. Mater. 2023, 35, 2306763. [Google Scholar] [CrossRef] [PubMed]
- Lahafdoozian, M.; Khoshkroudmansouri, H.; Zein, S.H.; Jalil, A.A. Hydrogen production from plastic waste: A comprehensive simulation and machine learning study. Int. J. Hydrogen Energy 2024, 59, 465–479. [Google Scholar] [CrossRef]
- Yi, C.Q.; Bojeng, M.N.B.H.B.H.; Kamis, S.K.B.H.; Mubarak, N.M.; Karri, R.R.; Azri, H. Production of hydrogen using plastic waste via Aspen Hysys simulation. Sci. Rep. 2024, 14, 4934. [Google Scholar] [CrossRef]
- Wettengel, J. German Solar and Wind Could Supply Three Times Today’s Power Demand by 2040. Available online: https://www.cleanenergywire.org/news/german-solar-and-wind-could-supply-three-times-todays-power-demand-2040-study (accessed on 26 August 2024).
- Aurora Energy Research. Cost Potential Curves for Renewables: A Geospatial Analysis. 2020. Available online: https://auroraer.com/insight/cost-potential-curves-for-renewables/ (accessed on 26 August 2024).
- Bayern Innovativ. Green Hydrogen Also Requires the Resource Water. Available online: https://emagazin.bayern-innovativ.de/en/emagazine/detail/en/page/sufficient-water-for-electrolysis (accessed on 11 November 2024).
- Strategy. H2 Readiness of German Industry Unleashing Opportunities in the Wake of the Latest Market Developments. PWC. 2023. Available online: https://www.strategyand.pwc.com/de/en/industries/energy-utilities/hydrogen-economy.html (accessed on 11 November 2024).
- Smolinka, T.; Wiebe, N.; Sterchele, P.; Palzer, A.; Lehner, F.; Jansen, M.; Kiemel, S.; Miehe, R.; Wahren, S.; Zimmermann, F. Study IndWEDe—Brief Overview Industrialisation of Water Electrolysis in Germany: Opportunities and Challenges for Sustainable Hydrogen for Transport, Electricity and Heat; NOW GmbH: Berlin, Germany, 2018. [Google Scholar]
- Elektrolyse Monitor. Available online: https://www.wasserstoff-kompass.de/elektrolyse-monitor (accessed on 26 April 2024).
- Nationaler Wasserstoffrat. Wasserstoffhochlauf in Gefahr—Sofortmaßnahmen Dringend Erforderlich. 2024. Available online: https://www.wasserstoffrat.de/fileadmin/wasserstoffrat/media/Dokumente/2024/2024-06-21_NWR-Stellungnahme_H2-Hochlauf_in_Gefahr.pdf (accessed on 23 August 2024).
- Electrolyzer Prices—What to Expect. Available online: https://www.pv-magazine.com/2024/03/21/electrolyzer-prices-what-to-expect/ (accessed on 12 November 2024).
- International Renewable Energy Agency. Green Hydrogen Cost Reduction: Scaling Up Electrolysers to Meet the 1.5C Climate Goal; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2020. [Google Scholar]
- Witsch, K. Grüner Wasserstoff Ist Deutlich Teurer als Gedacht. Available online: https://www.handelsblatt.com/unternehmen/energie/bcg-studie-gruener-wasserstoff-ist-deutlich-teurer-als-gedacht/29443386.html (accessed on 30 September 2024).
- International Renewable Energy Agency. Making the Breakthrough: Green Hydrogen Policies and Technology Costs; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2021. [Google Scholar]
- Randolph, K.; Vickers, J.; Peterson, D.; McKenzie, H.; Miller, E. Historical Cost Reduction of PEM Electrolyzers; DOE Hydrogen and Fuel Cell Technologies Office, United States of America: 2022. Available online: https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/22002-historical-cost-reduction-pem-electrolyzers.pdf?Status=Master (accessed on 12 November 2024).
- Wasmeier, L.; von Roon, S.; Kern, T. German Electricity Prices on EPEX Spot 2023. Available online: https://www.ffe.de/en/publications/german-electricity-prices-on-epex-spot-2023/ (accessed on 12 September 2024).
- Badgett, A.; Ruth, M.; Pivovar, B. Chapter10—Economic considerations for hydrogen production with a focus on polymer electrolyte membrane electrolysis. In Electrochemical Power Sources: Fundamentals, Systems, and Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 327–364. ISBN 978-0-12-819424-9. [Google Scholar] [CrossRef]
- International Energy Agency. The Future of Hydrogen: Seizing Today’s Opportunities; Organisation for Economic Co-operation and Development: Paris, France, 2019; ISBN 978-92-64-41873-8. [Google Scholar]
- Staudt, C.; Mörs, F.; Schwarz, S. Wasserstoff—Woher, Wie Viel und Wie? Deutscher Verein des Gas- und Wasserfachs e.V.: Bonn, Germany, 2024. [Google Scholar]
- Federal Ministry for Economic Affairs and Climate Action. Climate, Energy and Hydrogen Partnerships and Energy Dialogues. Available online: https://www.bmwk.de/Redaktion/EN/Artikel/Energy/international-energy-policy-2.html (accessed on 5 October 2024).
- Gale, F.; Goodwin, D.; Lovell, H.; Murphy-Gregory, H.; Beasy, K.; Schoen, M. Renewable hydrogen standards, certifications, and labels: A state-of-the-art review from a sustainability systems governance perspective. Int. J. Hydrogen Energy 2024, 59, 654–667. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, X.; Xu, P.; Liu, P.; Zhao, Y.; Yang, J. Development of high pressure gaseous hydrogen storage technologies. Int. J. Hydrogen Energy 2012, 37, 1048–1057. [Google Scholar] [CrossRef]
- Jensen, J.O.; Vestbø, A.P.; Li, Q.; Bjerrum, N.J. The energy efficiency of onboard hydrogen storage. J. Alloys Compd. 2007, 446, 723–728. [Google Scholar] [CrossRef]
- Møller, K.T.; Jensen, T.R.; Akiba, E.; Li, H. Hydrogen—A sustainable energy carrier. Prog. Nat. Sci. Mater. Int. 2017, 27, 34–40. [Google Scholar] [CrossRef]
- Al Ghafri, S.Z.; Munro, S.; Cardella, U.; Funke, T.; Notardonato, W.; Trusler, J.P.M.; Leachman, J.; Span, R.; Kamiya, S.; Pearce, G.; et al. Hydrogen liquefaction: A review of the fundamental physics, engineering practice and future opportunities. Energy Environ. Sci. 2022, 15, 2690–2731. [Google Scholar] [CrossRef]
- Morales-Ospino, R.; Celzard, A.; Fierro, V. Strategies to recover and minimize boil-off losses during liquid hydrogen storage. Renew. Sustain. Energy Rev. 2023, 182, 113360. [Google Scholar] [CrossRef]
- Usman, M.R. Hydrogen storage methods: Review and current status. Renew. Sustain. Energy Rev. 2022, 167, 112743. [Google Scholar] [CrossRef]
- Ahluwalia, R.K.; Peng, J.K.; Roh, H.S.; Hua, T.Q.; Houchins, C.; James, B.D. Supercritical cryo-compressed hydrogen storage for fuel cell electric buses. Int. J. Hydrogen Energy 2018, 43, 10215–10231. [Google Scholar] [CrossRef]
- Hydrogen Storage. Available online: https://www.tuev-nord.de/en/company/energy/hydrogen/hydrogen-storage/ (accessed on 8 November 2024).
- Tackie-Otoo, B.N.; Haq, M.B. A comprehensive review on geo-storage of H2 in salt caverns: Prospect and research advances. Fuel 2024, 356, 129609. [Google Scholar] [CrossRef]
- Deutscher Verein des Gas- und Wasserfaches e.V. Die Gasnetze Sind Bereit für Wasserstoff; Deutscher Verein des Gas- und Wasserfaches e.V.: Bonn, Germany, 2021. [Google Scholar]
- Deutscher Verein des; Gas- und Wasserfaches e.V. H2 Eizen mit Wasserstoff: Klimaneutral, Ökonomisch und Sozialverträglich. Available online: https://www.dvgw.de/medien/dvgw/leistungen/publikationen/heizen-mit-h2.pdf (accessed on 23 September 2024).
- Solutions. Hydrogen Gas Turbine. Available online: https://solutions.mhi.com/power/decarbonization-technology/hydrogen-gas-turbine/ (accessed on 13 September 2024).
- GE Vernova. Hydrogen-Fueled Gas Turbines. Available online: https://www.gevernova.com/gas-power/future-of-energy/hydrogen-fueled-gas-turbines (accessed on 13 September 2024).
- Kawasaki Gas Turbine Europe GmbH. Wasserstoff Technologie. Available online: https://www.kawasaki-gasturbine.de/produkte/gasturbinen/wasserstoff-technologie (accessed on 13 September 2024).
- Isaac, T. HyDeploy: The UK’s First Hydrogen Blending Deployment Project. Clean Energy 2019, 3, 114–125. [Google Scholar] [CrossRef]
- Deutscher Bundestag—Wissenschafltiche Dienste. Sachstand Grenzwerte für Wasserstoff (H2) in der Erdgasinfrastruktur. 2022. Available online: https://www.bundestag.de/resource/blob/915112/d1a66b707de8458aa57fb107f240754d/WD-8-046-22-pdf-data.pdf (accessed on 13 September 2024).
- European Hydrogen Backbone. Five Hydrogen Supply Corridors for Europe in 2030: Executive Summary. 2022. Available online: https://ehb.eu/files/downloads/EHB-Supply-corridors-presentation-ExecSum.pdf (accessed on 18 September 2024).
- European Hydrogen Backbone Initiative. Available online: https://ehb.eu/ (accessed on 18 September 2024).
- European Commission. RePowerEU Plan; European Commission: Brussels, Belgium, 2022. [Google Scholar]
- Vision of the Future: European Hydrogen Infrastructure Map. Available online: https://www.politico.eu/sponsored-content/vision-of-the-future-european-hydrogen-infrastructure-map/ (accessed on 18 September 2024).
- H2 Infrastructure Map Europe. Available online: https://www.h2inframap.eu/ (accessed on 18 September 2024).
- European Commision. Press Release Commission Approves €3 Billion German State Aid Scheme to Support the Development of Hydrogen Core Network. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_24_3405 (accessed on 18 September 2024).
- Federal Ministry for Economic Affairs and Climate Action. Germany Pressing Ahead with the Building of a Core Hydrogen Network. Available online: https://www.bmwk-energiewende.de/EWD/Redaktion/EN/Newsletter/2023/11/Meldung/topthema.html (accessed on 18 September 2024).
- Gasnetzgebietstransformationsplan Leitfaden 2024, Version 1.1; Deutscher Verein des Gas- und Wasserfaches e.V.: Bonn, Germany, 2024. Available online: https://www.h2vorort.de/fileadmin/Redaktion/PDF/gtp-2024-Leitfaden_1.1.pdf (accessed on 18 September 2024).
- H2GeNeSiS. Wirtschaftsförderung Region Stuttgart. Available online: https://h2genesis.region-stuttgart.de/projekt/ (accessed on 1 October 2024).
- GET H2 Nukleus. Mit Wasserstoff Bringen Wir Gemeinsam die Energiewende Voran. 2024. Available online: https://www.get-h2.de/ (accessed on 7 October 2024).
- The Suiso Frontier. Available online: https://www.hydrogenenergysupplychain.com/about-the-pilot/supply-chain/the-suiso-frontier/ (accessed on 15 September 2024).
- Ohashi, T. World’s First Liquefied Hydrogen Carrier. In Proceedings of the Gastec Technical and Commercial Conference, Houston, TX, USA, 17–20 September 2022. [Google Scholar]
- Carels, F.; Sens, L.; Kaltschmitt, M.; Janke, L.; Deutsch, M. Wasserstoff-Importoptionen für Deutschland Analyse mit einer Vertiefung zu Synthetischem Erdgas (SNG) bei Nahezu Geschlossenem Kohlenstoffkreislauf; Agora Industrie und TU Hamburg: Hamburg, Germany, 2023; Available online: https://www.agora-energiewende.de/fileadmin/Projekte/2022/A-EW_306_SNG_Imports_WEB.pdf (accessed on 2 October 2024).
- Avci, A.K.; Önsan, Z.I. 2.16 Catalysts. In Comprehensive Energy Systems; Elsevier: Amsterdam, The Netherlands, 2018; pp. 475–523. ISBN 978-0-12-814925-6. [Google Scholar] [CrossRef]
- Zhou, L.; Zhong, L.; Liu, Z.; Wei, H. Toward highly-efficient combustion of ammonia–hydrogen engine: Prechamber turbulent jet ignition. Fuel 2023, 352, 129009. [Google Scholar] [CrossRef]
- Hidalgo, D.; Martín-Marroquín, J.M. Power-to-methane, coupling CO2 capture with fuel production: An overview. Renew. Sustain. Energy Rev. 2020, 132, 110057. [Google Scholar] [CrossRef]
- Raghu, K.A.; Kaisare, S.N. Analysis of the autothermal operability of the Sabatier reaction in a heat-recirculating microreactor using CFD. React. Chem. Eng. 2019, 4, 1823–1833. [Google Scholar] [CrossRef]
- Liu, P.; Choi, Y.; Yang, Y.; White, M.G. Methanol Synthesis from H2 and CO2 on a Mo6S8 Cluster: A Density Functional Study. J. Phys. Chem. A 2010, 114, 3888–3895. [Google Scholar] [CrossRef] [PubMed]
- Poto, S.; Vico Van Berkel, D.; Gallucci, F.; Fernanda Neira d’Angelo, M. Kinetic modelling of the methanol synthesis from CO2 and H2 over a CuO/CeO2/ZrO2 catalyst: The role of CO2 and CO hydrogenation. Chem. Eng. J. 2022, 435, 134946. [Google Scholar] [CrossRef]
- Leinen Los für Grünen Wasserstoff. Available online: https://www.hafen-hamburg.de/de/port-of-hamburg-magazine/gateway-hamburg/leinen-los-fuer-gruenen-wasserstoff/ (accessed on 5 October 2024).
- RWE HyTech Hafen Rostock. Wasserstoff-Pilotprojekt von RWE. Available online: https://www.rwe.com/forschung-und-entwicklung/wasserstoff-projekte/hytech-hafen-rostock/ (accessed on 5 October 2024).
- Stuttgarts Weg zur Grünen Zukunft: Der Green Hydrogen Hub. Available online: https://www.stadtwerke-stuttgart.de/partner-der-energiewende/h2g/ (accessed on 5 October 2024).
- Meyer-Larsen, N.; Knischka, R.M.; Dreyer, M.; Ovens, J.; Zegers, M.; Schories, G.; Hritz-Hagenah, S. Untersuchung zur Entwicklung und dem Aufbau Einer Hafenbezogenen Wasserstoffwirtschaft; Institut für Seeverkehrswirtschaft und Logistik: Bremerhaven/Bremen, Germany, 2023. [Google Scholar]
Petrol | Hydrogen | Conclusion | |
---|---|---|---|
Density ratio to air | 3.2–4 | 0.09 | H2 diffuses quickly; petrol stays on the ground |
Ignition limit | 0.6–8% | 4–75% | H2 burns in a wide range |
Detonation limit | 1.1% | 18% | H2 burns before it explodes |
Ignition energy | 0.24 mJ | 0.02 mJ | H2 and petrol can be ignited by a spark |
Ignition temperature | 220–280 °C | 585 °C | Petrol can be ignited by a hot surface |
Flame | Wide; hot radiation | Narrow; less heat radiation; almost invisible | Risk for burns next to flame lower for H2; H2 flame might not be noticed |
Toxicity | toxic | Not toxic | H2 no risk for ground, water, or wildlife |
Ammonia production | 13 TWh calculated based on [39] |
Methanol production | 8 TWh calculated based on [40] |
Desulphurisation in refineries | 5 TWh [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Willich, C. Hydrogen as an Energy Carrier—An Overview over Technology, Status, and Challenges in Germany. J 2024, 7, 546-570. https://doi.org/10.3390/j7040033
Willich C. Hydrogen as an Energy Carrier—An Overview over Technology, Status, and Challenges in Germany. J. 2024; 7(4):546-570. https://doi.org/10.3390/j7040033
Chicago/Turabian StyleWillich, Caroline. 2024. "Hydrogen as an Energy Carrier—An Overview over Technology, Status, and Challenges in Germany" J 7, no. 4: 546-570. https://doi.org/10.3390/j7040033
APA StyleWillich, C. (2024). Hydrogen as an Energy Carrier—An Overview over Technology, Status, and Challenges in Germany. J, 7(4), 546-570. https://doi.org/10.3390/j7040033