Stable Isotope (δ18O, δD) Composition of Magmatic Fluids Exsolved from an Active Alkaline Magma Chamber—The Case of the AD 79 Magma Chamber of Vesuvius
Abstract
:1. Introduction
2. The AD 79 Magma Chamber and Investigated Samples
3. Analytical Methods
4. Results
Measured | Calculated | |||||
---|---|---|---|---|---|---|
Sample | Mineral | Rock Type | δ18O (‰) | δD (‰) | δ18O (‰) Water | δD (‰) Water |
AD 79 eruption | ||||||
79-91 | K-feldspar | foid-bearing syenite | 10.6 | 10.7 * | ||
Vs95-79-7 | K-feldspar | foid-bearing syenite | 12.5 | −90 | 12.6 * | −90 ** |
51 | K-feldspar | foid-bearing syenite | 11.3 | −55 | 11.4 * | −55 ** |
52 | K-feldspar | foid-bearing syenite | 11.3 | −86 | 11.4 * | −86 ** |
53 | K-feldspar | foid-bearing syenite | 11.3 | −62 | 11.4 * | −62 ** |
54 | K-feldspar | foid-bearing syenite | 11.2 | −90 | 11.3 * | −90 ** |
55 | K-feldspar | foid-bearing syenite | 11.3 | −101 | 11.4 * | −101 ** |
56 | K-feldspar | foid-bearing syenite | 11.3 | −97 | 11.4 * | −97 ** |
57 | K-feldspar | foid-bearing syenite | 11.7 | −90 | 11.8 * | −90 ** |
71 | K-feldspar | foid-bearing syenite | 11.2 | −99 | 11.3 * | −99 ** |
72 | K-feldspar | foid-bearing syenite | 10.7 | −111 | 10.8 * | −111 ** |
SAN-5 bt | biotite | foid-bearing syenite | 10.2 | −143 | 12.5 * | |
EU 2 K-feld | K-feldspar | juvenile fraction | 10.1 | |||
KF-79 | K-feldspar | juvenile fraction | 9.8 | |||
EU 2 bt | biotite | juvenile fraction | 8.6 | −52 | −52 *** | |
AD 472 eruption | ||||||
Vs88-48 | biotite | juvenile fraction | 6.3 | −58 | −58 *** |
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Edmonds, M.; Woods, A.W. Exsolved volatiles in magma reservoirs. J. Volcanol. Geotherm. Res. 2018, 368, 13–30. [Google Scholar] [CrossRef] [Green Version]
- Robock, A. Volcanic eruptions and climate. Rev. Geophys. 2000, 38, 191–219. [Google Scholar] [CrossRef]
- Huppert, H.E.; Woods, A.W. The role of volatiles in magma chamber dynamics. Nature 2002, 420, 493–495. [Google Scholar] [CrossRef]
- Halter, W.E.; Webster, J.D. The magmatic to hydrothermal transition and its bearing on ore-forming systems. Chem. Geol. 2004, 210, 1–6. [Google Scholar] [CrossRef]
- Wilkinson, J.J. Triggers for the formation of porphyry ore deposits in magmatic arcs. Nat. Geosci. 2013, 6, 917–925. [Google Scholar] [CrossRef] [Green Version]
- Hedenquist, J.W.; Lowenstern, J.B. The role of magmas in the formation of hydrothermal ore deposits. Nature 1994, 370, 519–527. [Google Scholar] [CrossRef]
- Audetat, A. The metal content of magmatic-hydrothermal fluids and its relationship to mineralization potential. Econ. Geol. 2019, 114, 1033–1056. [Google Scholar] [CrossRef]
- Kamenetsky, V.S.; Naumov, V.B.; Davidson, P.; Van Achterbergh, E.; Ryan, C.G. Immiscibility between silicate magmas and aqueous fluids: A melt inclusion pursuit into the magmatic-hydrothermal transition in the Omsukchan Granite (NE Russia). Chem. Geol. 2004, 210, 73–90. [Google Scholar] [CrossRef]
- Fischer, T.P.; Chiodini, G. Volcanic, Magmatic and Hydrothermal Gases. In The Encyclopedia of Volcanoes, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 779–797. [Google Scholar]
- Roedder, E.; Coombs, D.S. Immiscibility in granitic melts, indicated by fluid inclusions in ejected granitic blocks from Ascension Island. J. Petrol. 1967, 8, 417–451. [Google Scholar] [CrossRef]
- De Vivo, B.; Torok, K.; Ayuso, R.A.; Lima, A.; Lirer, L. Fluid inclusion evidence for magmatic silicate/saline/CO2 immiscibility and geochemistry of alkaline xenoliths from Ventotene Island, Italy. Geochim. Cosmochim. Acta 1995, 59, 2941–2953. [Google Scholar] [CrossRef]
- Gilg, H.A.; Lima, A.; Somma, R.; Belkin, H.E.; De Vivo, B.; Ayuso, R.A. Isotope geochemistry and fluid inclusion study of skarns from Vesuvius. Mineral. Petrol. 2001, 73, 145–176. [Google Scholar] [CrossRef]
- Fulignati, P.; Kamenetsky, V.S.; Marianelli, P.; Sbrana, A.; Mernagh, T.P. Melt inclusion record of immiscibility between silicate, hydrosaline, and carbonate melts: Applications to skarn genesis at Mount Vesuvius. Geology 2001, 29, 1043–1046. [Google Scholar] [CrossRef]
- Fulignati, P.; Marianelli, P.; Santacroce, R.; Sbrana, A. Probing the Vesuvius magma chamber-host rock interface through xenoliths. Geol. Mag. 2004, 141, 417–428. [Google Scholar] [CrossRef]
- Fulignati, P.; Marianelli, P.; Proto, M.; Sbrana, A. Evidences for disruption of a crystallizing front in a magma chamber during caldera collapse: An example from the Breccia Museo unit (Campanian Ignimbrite eruption, Italy). J. Volcanol. Geotherm. Res. 2004, 133, 141–155. [Google Scholar] [CrossRef]
- Fulignati, P.; Panichi, C.; Sbrana, A.; Caliro, S.; Gioncada, A.; Del Moro, A. Skarn formation at the walls of the 79AD magma chamber of Vesuvius (Italy): Mineralogical and isotopic constraints. Neues Jahrb. Für. Mineral. Abh. 2005, 181, 53–66. [Google Scholar] [CrossRef]
- Fulignati, P.; Kamenetsky, V.S.; Marianelli, P.; Sbrana, A.; Meffre, S. First insights on the metallogenic signature of magmatic fluids exsolved from the active magma chamber of Vesuvius (AD 79 “Pompei” eruption). J. Volcanol. Geotherm. Res. 2011, 200, 223–233. [Google Scholar] [CrossRef]
- Sbrana, A.; Fulignati, P.; Marianelli, P.; Boyce, A.J.; Cecchetti, A. Exhumation of an active magmatic-hydrothermal system in a resurgent caldera environment: The example of Ischia (Italy). J. Geol. Soc. Lond. 2009, 166, 1061–1073. [Google Scholar] [CrossRef]
- Barberi, F.; Leoni, L. Metamorphic carbonate ejecta from Vesuvius plinian eruptions: Evidence of the occurrence of shallow magma chambers. Bull. Volcanol. 1980, 43, 107–120. [Google Scholar] [CrossRef]
- Cioni, R.; Civetta, L.; Marianelli, P.; Metrich, N.; Santacroce, R.; Sbrana, A. Compositional layering and syn-eruptive mixing of a periodically refilled shallow magma chamber: The AD 79 Plinian eruption of Vesuvius. J. Petrol. 1995, 36, 739–776. [Google Scholar] [CrossRef]
- Cioni, R.; Marianelli, P.; Santacroce, R. Thermal and compositional evolution of the shallow magma chambers of Vesuvius: Evidence from pyroxene phenocrysts and melt inclusions. J. Geophys. Res. 1998, 103, 18277–18294. [Google Scholar] [CrossRef]
- Cioni, R.; Santacroce, R.; Sbrana, A. Pyroclastic deposits as a guide for reconstructing the multi-stage evolution of the Somma-Vesuvius Caldera. Bull. Volcanol. 1999, 60, 207–222. [Google Scholar] [CrossRef]
- Marsh, B.D. Solidification fronts and magmatic evolution. Mineral. Mag. 1995, 60, 5–40. [Google Scholar] [CrossRef]
- Sharp, Z.D. A laser-based microanalytical method for the in situ determination of oxygen isotope ratios in silicates and oxides. Geochim. Cosmochim. Acta 1990, 54, 1353–1357. [Google Scholar] [CrossRef]
- Donnelly, T.; Waldron, S.; Tait, A.; Dougans, J.; Bearhop, S. Hydrogen isotope analysis of natural abundance and deuterium-enriched waters by reduction over chromium on-line to a dynamic dual inlet isotope-ratio mass spectrometer. Rapid. Commun. Mass Spectrom. 2001, 15, 1297–1303. [Google Scholar] [CrossRef]
- Ayuso, R.A.; De Vivo, B.; Rolandi, G.; Seal, R.R.; Paone, A. Geochemical and isotopic (Nd-Pb-Sr-O) variations bearing on the genesis of volcanic rocks from Vesuvius, Italy. J. Volcanol. Geotherm. Res. 1998, 82, 53–78. [Google Scholar] [CrossRef]
- Iovine, R.S.; Mazzeo, F.C.; Worner Pelullo, C.; Cirillo, G.; Arienzo, I.; Pack, A.; D’Antonio, M. Coupled δ18O-δ17O and 87Sr/86Sr isotope compositions suggest a radiogenic and 18O-enriched magma source for Neapolitan volcanoes (Southern Italy). Lithos 2018, 316–317, 199–211. [Google Scholar] [CrossRef]
- Zheng, Y.F. Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim. Cosmochim. Acta 1993, 57, 1079–1091. [Google Scholar] [CrossRef]
- Zheng, Y.F. Calculation of oxygen isotope fractionation in hydroxyl-bearing minerals. Earth Planet. Sci. Lett. 1993, 120, 247–263. [Google Scholar] [CrossRef]
- Suzuoki, T.; Epstein, S. Hydrogen isotope fractionation between OH-bearing minerals and water. Geochim. Cosmochim. Acta 1976, 40, 1229–1240. [Google Scholar] [CrossRef]
- Sheppard, S.M.F.; Nielsen, R.L.; Taylor, H.P., Jr. Oxygen and hydrogen isotope ratios of clay minerals from porphyry copper deposits. Econ. Geol. 1969, 64, 755–777. [Google Scholar] [CrossRef]
- Taylor, H.P., Jr. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ. Geol. 1974, 69, 843–883. [Google Scholar] [CrossRef]
- D’Amore, F.; Bolognesi, L. Isotopic evidence for a magmatic contribution to fluids of the geothermal systems of Larderello, Italy, and The Geyser, California. Geothermics 1994, 23, 21–32. [Google Scholar] [CrossRef]
- Goff, F.; McMurtry, G.M. Tritium and stable isotopes in magmatic waters. J. Volcanol. Geotherm. Res. 2000, 97, 347–396. [Google Scholar] [CrossRef]
- Taylor, H.P., Jr.; Sheppard, S.M.F. Igneous Rocks: I. Processes of Isotopic Fractionation and Isotope Systematics. In Stable Isotopes in High Temperature Geological Processes; Valley, J.W., Taylor, H.P., Jr., O’Neil, J.R., Eds.; De Gruyter: Berlin, Cermany, 1986; Volume 16, pp. 227–271. [Google Scholar]
- O’Neil, J.R.; Taylor, H.P., Jr. The oxygen isotope and cation exchange chemistry of feldspars. Am. Mineral. 1967, 52, 1414–1437. [Google Scholar]
- Bottinga, Y.; Javoy, M. Comments on oxygen isotope geothermometry. Earth Planet. Sci. Lett. 1973, 20, 250–265. [Google Scholar] [CrossRef]
- Bottinga, Y.; Javoy, M. Oxygen isotope partitioning among the minerals in igneous and metamorphic rocks. Rev. Geophys. Space Phys. 1975, 13, 401–418. [Google Scholar] [CrossRef]
- Sheppard, S.M.F. Characterization and Isotopic Variations in Natural Waters. In Stable Isotopes in High Temperature Geological Processes; Valley, J.W., Taylor, H.P., Jr., O’Neil, J.R., Eds.; De Gruyter: Berlin, Cermany, 1986; Volume 16, pp. 165–183. [Google Scholar]
- Taylor, B.E. Degassing of H2O from Rhyolite Magma During Eruption and Shallow Intrusion, and the Isotopic Composition of Magmatic Water in Hydrothermal Systems. In Magmatic Contribution to Hydrothermal Systems; Hedenquist, J.W., Ed.; Geological Survey of Japan Report: Tsukuba, Japan, 1992; Volume 279, pp. 190–194. [Google Scholar]
- Hedenquist, J.W.; Arribas, A.; Reynolds, T.J. Evolution of an Intrusion-Centered Hydrothermal System: Far Southeast-Lepanto Porphyry and Epithermal Cu-Au Deposits, Philippines. Econ. Geol. 1998, 93, 373–404. [Google Scholar] [CrossRef] [Green Version]
- Harris, A.C.; Golding, S.D. New evidence of magmatic-fluid-related phyllic alteration: Implications for the genesis of porphyry Cu deposits. Geology 2002, 30, 335–338. [Google Scholar] [CrossRef]
- Meinert, L.D.; Hedenquist, J.W.; Satoh, H.; Matsuhisa, Y. Formation of anhydrous and hydrous skarn in Cu-Au ore deposits by magmatic fluids. Econ. Geol. 2003, 98, 147–156. [Google Scholar] [CrossRef]
- Harris, A.C.; Golding, S.D.; White, N.C. Bajo de la Alumbrera copper-gold deposit: Stable isotope evidence for a porphyry-related hydrothermal system dominated by magmatic aqueous fluids. Econ. Geol. 2005, 100, 863–888. [Google Scholar] [CrossRef]
- Taylor, B.E.; Eichelberger, J.C.; Westrich, H.R. Hydrogen isotopic evidence for rhyolitic magma degassing during shallow intrusion and eruption. Nature 1983, 306, 541–545. [Google Scholar] [CrossRef]
- Javoy, M. Stable isotopes and geothermometry. J. Geol. Soc. Lond. 1977, 133, 603–636. [Google Scholar] [CrossRef]
- Horita, J.; Cole, D.R.; Wesolowski, D.J. The activity-composition relationship of oxygen and hydrogen isotopes in aqueous salt solutions: III. Vapor-liquid water equilibration of NaCl solution to 350 °C. Geochim. Cosmochim. Acta 1995, 59, 1139–1151. [Google Scholar] [CrossRef]
- Shmulovich, K.I.; Landwehr, D.; Simon, K.; Heinrich, W. Stable isotope fractionation between liquid and vapor in water-salt systems up to 600 °C. Chem. Geol. 1999, 157, 343–354. [Google Scholar] [CrossRef]
- Dobson, P.F.; Epstein, S.; Stolper, E.M. Hydrogen isotope fractionation between coexisting vapor and silicate glasses and melts at low pressure. Geochim. Cosmochim. Acta 1989, 53, 2723–2730. [Google Scholar] [CrossRef]
- Taylor, B.E. Magmatic Volatiles: Isotopic Variation of C, H, and S. In Stable Isotopes in High Temperature Geological Processes; Valley, J.W., Taylor, H.P., Jr., O’Neil, J.R., Eds.; De Gruyter: Berlin, Cermany, 1986; Volume 16, pp. 185–225. [Google Scholar]
- Taylor, B.E. Degassing of Obsidian Dome Rhyolite, Inyo Volcanic Chain, California. In Stable Isotope Geochemistry: A Tribute to Samuel Epstein; Taylor, H.P., Jr., O’Neil, J.R., Kaplan, I.R., Eds.; Geochemical Society: Washington, DC, USA, 1991; Volume 3, pp. 339–353. [Google Scholar]
- Newman, S.; Epstein, S.; Stolper, E.M. Water, carbon dioxide, and hydrogen isotopes in glasses from the ca.1340A.D. eruption of the Mono Craters, California: Constraints on degassing phenomena and initial volatile content. J. Volcanol. Geotherm. Res. 1988, 35, 75–96. [Google Scholar] [CrossRef]
- Barnes, J.D.; Prather, T.J.; Cisneros, M.; Befus, K.; Gardner, J.E.; Larson, T.E. Stable chlorine isotope behavior during volcanic degassing of H2O and CO2 at Mono Craters, CA. Bull. Volcanol. 2014, 76, 805. [Google Scholar] [CrossRef]
- Burnham, C.W. Energy release in subvolcanic environments: Implications for breccia formation. Econ. Geol. 1985, 80, 1515–1522. [Google Scholar] [CrossRef]
- Shinohara, H.; Kazahaya, K. Degassing Processes Related to Magma-Chamber Crystallization. In Magmas, Fluids, and Ore Deposits; Thompson, J.F.H., Ed.; Mineralogical Association of Canada: Québec, QC, Canada, 1995; Volume 23, pp. 47–70. [Google Scholar]
- Fournier, R.O. Hydrothermal processes related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Econ. Geol. 1999, 94, 1193–1212. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.-H.; Selby, D.; Li, J.-W. Pulsed magmatic fluid release for the formation of porphyry deposits: Tracing fluid evolution in absolute time from Tibetan Qulong Cu-Mo deposit. Geology 2018, 46, 7–10. [Google Scholar] [CrossRef] [Green Version]
- Bain, W.M.; Lecumberri-Sanchez, P.; Marsh, E.E.; Steele-MacInnis, M. Fluids and melts at the magmatic-hydrothermal transition, recorded by unidirectional solidification textures at Saginaw Hil, Arizona, USA. Econ. Geol. 2022, 117, 1543–1571. [Google Scholar] [CrossRef]
- Cioni, R. Volatile content and degassing processes in the AD 79 magma chamber at Vesuvius (Italy). Contrib. Mineral. Petrol. 2000, 140, 40–54. [Google Scholar] [CrossRef]
- Carroll, M.R.; Blank, J.G. The solubility of H2O in phonolitic melts. Am. Mineral. 1997, 82, 549–556. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fulignati, P.; Boyce, A.J. Stable Isotope (δ18O, δD) Composition of Magmatic Fluids Exsolved from an Active Alkaline Magma Chamber—The Case of the AD 79 Magma Chamber of Vesuvius. Minerals 2023, 13, 913. https://doi.org/10.3390/min13070913
Fulignati P, Boyce AJ. Stable Isotope (δ18O, δD) Composition of Magmatic Fluids Exsolved from an Active Alkaline Magma Chamber—The Case of the AD 79 Magma Chamber of Vesuvius. Minerals. 2023; 13(7):913. https://doi.org/10.3390/min13070913
Chicago/Turabian StyleFulignati, Paolo, and Adrian J. Boyce. 2023. "Stable Isotope (δ18O, δD) Composition of Magmatic Fluids Exsolved from an Active Alkaline Magma Chamber—The Case of the AD 79 Magma Chamber of Vesuvius" Minerals 13, no. 7: 913. https://doi.org/10.3390/min13070913
APA StyleFulignati, P., & Boyce, A. J. (2023). Stable Isotope (δ18O, δD) Composition of Magmatic Fluids Exsolved from an Active Alkaline Magma Chamber—The Case of the AD 79 Magma Chamber of Vesuvius. Minerals, 13(7), 913. https://doi.org/10.3390/min13070913