Consumption of Ultra-Processed Foods Increases the Likelihood of Having Obesity in Korean Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Subjects
2.2. Obesity Indicator
2.3. Dietary Assessment
2.4. Covariates
2.5. Statistical Analysis
3. Results
3.1. General Characteristics of Subjects
3.2. Energy and Nutrient Intakes According to Relative Energy Intake from Ultra-Processed Foods
3.3. Association between Ultra-Processed Foods and Obesity
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/mediacentre/factsheets/fs311/en/ (accessed on 1 December 2020).
- Popkin, B.M. Relationship between shifts in food system dynamics and acceleration of the global nutrition transition. Nutr. Rev. 2017, 75, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, C.A.; Moubarac, J.C.; Levy, R.B.; Canella, D.S.; Louzada, M.; Cannon, G. Household availability of ultra-processed foods and obesity in nineteen European countries. Public Health Nutr. 2018, 21, 18–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moubarac, J.C. Ultra-Processed Food and Drink Products in Latin America; Pan American Health Organization: Washington, DC, USA, 2019. [Google Scholar]
- Moubarac, J.-C.; Batal, M.; Louzada, M.L.; Martinez Steele, E.; Monteiro, C.A. Consumption of ultra-processed foods predicts diet quality in Canada. Appetite 2017, 108, 512–520. [Google Scholar] [CrossRef]
- Baraldi, L.G.; Martinez Steele, E.; Canella, D.S.; Monteiro, C.A. Consumption of ultra-processed foods and associated sociodemographic factors in the USA between 2007 and 2012: Evidence from a nationally representative cross-sectional study. BMJ Open 2018, 8, e020574. [Google Scholar] [CrossRef] [Green Version]
- Rauber, F.; da Costa Louzada, M.L.; Steele, E.M.; Millett, C.; Monteiro, C.A.; Levy, R.B. Ultra-processed food consumption and chronic non-communicable diseases-related dietary nutrient profile in the UK (2008–2014). Nutrients 2018, 10, 587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louzada, M.; Ricardo, C.Z.; Steele, E.M.; Levy, R.B.; Cannon, G.; Monteiro, C.A. The share of ultra-processed foods determines the overall nutritional quality of diets in Brazil. Public Health Nutr. 2018, 21, 94–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cediel, G.; Reyes, M.; Corvalán, C.; Levy, R.B.; Uauy, R.; Monteiro, C.A. Ultra-processed foods drive to unhealthy diets: Evidence from Chile. Public Health Nutr. 2020. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Moubarac, J.C.; Cannon, G.; Ng, S.W.; Popkin, B. Ultra-processed products are becoming dominant in the global food system. Obes. Rev. 2013, 14 (Suppl. 2), 21–28. [Google Scholar] [CrossRef]
- Monteiro, C.A.; Cannon, G.; Moubarac, J.-C.; Levy, R.B.; Louzada, M.L.C.; Jaime, P.C. The UN Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr. 2018, 21, 5–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteiro, C.A.; Cannon, G.; Levy, R.B.; Moubarac, J.C.; Louzada, M.L.; Rauber, F.; Khandpur, N.; Cediel, G.; Neri, D.; Martinez-Steele, E.; et al. Ultra-processed foods: What they are and how to identify them. Public Health Nutr. 2019, 22, 936–941. [Google Scholar] [CrossRef]
- Monteiro, C.; Cannon, G.; Lawrence, M.; Louzada, M.L.; Machado, P. Ultra-Processed Foods, Diet Quality, and Health Using the NOVA Classification System; FAO: Rome, Italy, 2019. [Google Scholar]
- Martinez Steele, E.; Popkin, B.M.; Swinburn, B.; Monteiro, C.A. The share of ultra-processed foods and the overall nutritional quality of diets in the US: Evidence from a nationally representative cross-sectional study. Popul. Health Metr. 2017, 15, 6. [Google Scholar] [CrossRef] [Green Version]
- Martínez Steele, E.; Juul, F.; Neri, D.; Rauber, F.; Monteiro, C.A. Dietary share of ultra-processed foods and metabolic syndrome in the US adult population. Prev. Med. 2019, 125, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Srour, B.; Fezeu, L.K.; Kesse-Guyot, E.; Alles, B.; Mejean, C.; Andrianasolo, R.M.; Chazelas, E.; Deschasaux, M.; Hercberg, S.; Galan, P.; et al. Ultra-processed food intake and risk of cardiovascular disease: Prospective cohort study (NutriNet-Sante). BMJ 2019, 365, l1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adjibade, M.; Julia, C.; Alles, B.; Touvier, M.; Lemogne, C.; Srour, B.; Hercberg, S.; Galan, P.; Assmann, K.E.; Kesse-Guyot, E. Prospective association between ultra-processed food consumption and incident depressive symptoms in the French NutriNet-Sante cohort. BMC Med. 2019, 17, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiolet, T.; Srour, B.; Sellem, L.; Kesse-Guyot, E.; Alles, B.; Mejean, C.; Deschasaux, M.; Fassier, P.; Latino-Martel, P.; Beslay, M.; et al. Consumption of ultra-processed foods and cancer risk: Results from NutriNet-Sante prospective cohort. BMJ 2018, 360, k322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rico-Campa, A.; Martinez-Gonzalez, M.A.; Alvarez-Alvarez, I.; Mendonca, R.D.; de la Fuente-Arrillaga, C.; Gomez-Donoso, C.; Bes-Rastrollo, M. Association between consumption of ultra-processed foods and all cause mortality: SUN prospective cohort study. BMJ 2019, 365, l1949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Hu, E.A.; Rebholz, C.M. Ultra-processed food intake and mortality in the USA: Results from the Third National Health and Nutrition Examination Survey (NHANES III, 1988–1994). Public Health Nutr. 2019, 22, 1777–1785. [Google Scholar] [CrossRef]
- Machado, P.P.; Steele, E.M.; Levy, R.B.; da Costa Louzada, M.L.; Rangan, A.; Woods, J.; Gill, T.; Scrinis, G.; Monteiro, C.A. Ultra-processed food consumption and obesity in the Australian adult population. Nutr. Diabetes 2020, 10, 39. [Google Scholar] [CrossRef] [PubMed]
- Louzada, M.L.; Baraldi, L.G.; Steele, E.M.; Martins, A.P.; Canella, D.S.; Moubarac, J.C.; Levy, R.B.; Cannon, G.; Afshin, A.; Imamura, F.; et al. Consumption of ultra-processed foods and obesity in Brazilian adolescents and adults. Prev. Med. 2015, 81, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Nardocci, M.; Leclerc, B.S.; Louzada, M.L.; Monteiro, C.A.; Batal, M.; Moubarac, J.C. Consumption of ultra-processed foods and obesity in Canada. Can. J. Public Health 2019, 110, 4–14. [Google Scholar] [CrossRef]
- Juul, F.; Martinez-Steele, E.; Parekh, N.; Monteiro, C.A.; Chang, V.W. Ultra-processed food consumption and excess weight among US adults. Br. J. Nutr. 2018, 120, 90–100. [Google Scholar] [CrossRef] [Green Version]
- Rauber, F.; Steele, E.M.; da Costa Louzada, M.L.; Millett, C.; Monteiro, C.A.; Levy, R.B. Ultra-processed food consumption and indicators of obesity in the United Kingdom population (2008–2016). PLoS ONE 2020, 15, e0232676. [Google Scholar] [CrossRef] [PubMed]
- Beslay, M.; Srour, B.; Méjean, C.; Allès, B.; Fiolet, T.; Debras, C.; Chazelas, E.; Deschasaux, M.; Wendeu-Foyet, M.G.; Hercberg, S.; et al. Ultra-processed food intake in association with BMI change and risk of overweight and obesity: A prospective analysis of the French NutriNet-Santé cohort. PLoS Med. 2020, 17, e1003256. [Google Scholar] [CrossRef]
- Mendonça, R.d.D.; Pimenta, A.M.; Gea, A.; de la Fuente-Arrillaga, C.; Martinez-Gonzalez, M.A.; Lopes, A.C.S.; Bes-Rastrollo, M. Ultraprocessed food consumption and risk of overweight and obesity: The University of Navarra Follow-Up (SUN) cohort study. Am. J. Clin. Nutr. 2016, 104, 1433–1440. [Google Scholar] [CrossRef]
- Rauber, F.; Chang, K.; Vamos, E.P.; da Costa Louzada, M.L.; Monteiro, C.A.; Millett, C.; Levy, R.B. Ultra-processed food consumption and risk of obesity: A prospective cohort study of UK Biobank. Eur. J. Nutr. 2020. [Google Scholar] [CrossRef] [PubMed]
- Hall, K.D.; Ayuketah, A.; Brychta, R.; Cai, H.; Cassimatis, T.; Chen, K.Y.; Chung, S.T.; Costa, E.; Courville, A.; Darcey, V.; et al. Ultra-processed diets cause excess calorie intake and weight gain: An inpatient randomized controlled trial of Ad libitum food intake. Cell Metab. 2019, 30, 67–77.e63. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.; Lee, H.J.; Choue, R.; Wang, Y. Trends in fast-food and sugar-sweetened beverage consumption and their association with social environmental status in South Korea. J. Acad. Nutr. Diet. 2018, 118, 1228–1236.e1221. [Google Scholar] [CrossRef]
- Lee, H.-S.; Duffey, K.J.; Popkin, B.M. South Korea’s entry to the global food economy: Shifts in consumption of food between 1998 and 2009. Asia Pac. J. Clin. Nutr. 2012, 21, 618–629. [Google Scholar]
- Seo, M.H.; Kim, Y.-H.; Han, K.; Jung, J.-H.; Park, Y.-G.; Lee, S.-S.; Kwon, H.-S.; Lee, W.-Y.; Yoo, S.J. Prevalence of obesity and incidence of obesity-related comorbidities in Koreans based on national health insurance service health checkup data 2006–2015. JOMES 2018, 27, 46–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, S.; Kim, S.-A.; Ha, J.; Lim, K. Sugar-sweetened beverage consumption in relation to obesity and metabolic syndrome among korean adults: A cross-sectional study from the 2012–2016 Korean national health and nutrition examination survey (KNHANES). Nutrients 2018, 10, 1467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, H.J.; Cho, E.; Lee, H.-J.; Fung, T.T.; Rimm, E.; Rosner, B.; Manson, J.E.; Wheelan, K.; Hu, F.B. Instant noodle intake and dietary patterns are associated with distinct cardiometabolic risk factors in Korea. J. Nutr. 2014, 144, 1247–1255. [Google Scholar] [CrossRef] [PubMed]
- Yeon, J.-Y.; Bae, Y.-J. Association of instant noodle intake with metabolic factors in Korea: Based on 2013~2014 Korean National Health and Nutrition Examination Survey. JNH 2016, 49, 247–257. [Google Scholar] [CrossRef]
- Kweon, S.; Kim, Y.; Jang, M.-j.; Kim, Y.; Kim, K.; Choi, S.; Chun, C.; Khang, Y.-H.; Oh, K. Data resource profile: The Korea National Health and Nutrition Examination Survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Korea Centers for Disease Control and Prevention. Manual for the Seventh Korea National Health and Nutrition Examination Survey: Health Examination. Available online: https://knhanes.cdc.go.kr/knhanes/sub04/sub04_02_02.do?classType=4 (accessed on 1 December 2020).
- World Health Organization; Regional Office for the Western Pacific. The Asia-Pacific Perspective: Redefining Obesity and Its Treatment; Health Communications Australia: Sydney, Australia, 2000. [Google Scholar]
- Lee, S.Y.; Park, H.S.; Kim, D.J.; Han, J.H.; Kim, S.M.; Cho, G.J.; Kim, D.Y.; Kwon, H.S.; Kim, S.R.; Lee, C.B.; et al. Appropriate waist circumference cutoff points for central obesity in Korean adults. Diabetes Res. Clin. Pract. 2007, 75, 72–80. [Google Scholar] [CrossRef]
- Rural Development Administration; National Institute of Agricultural Sciences (KR). National Standard Food Composition Table, 9th ed.; Rural Development Administration; National Institute of Agricultural Sciences: Suwon, Korea, 2017. [Google Scholar]
- Korea Centers for Disease Control and Prevention. Questionnaire for the Seventh Korea National Health and Nutrition Examination Survey. Available online: https://knhanes.cdc.go.kr/knhanes/sub04/sub04_01_02.do?classType=2 (accessed on 1 December 2020).
- Diet, nutrition and the prevention of chronic diseases. World Health Organ. Tech. Rep. Ser. 2003, 916, 1–149.
- WHO issues new guidance on dietary salt and potassium. Cent. Eur. J. Public Health 2013, 21, 16.
- WHO Guidelines Approved by the Guidelines Review Committee. In Guideline: Sugars Intake for Adults and Children; World Health Organization: Geneva, Switzerland, 2015.
- Asma, A.; Lokman, N.A.; Hayati, M.Y.; Zainuddin, A.A. Ultra-processed food classification, their contribution to sodium and added sugar availability, and its relationship with nutritional status among adults in Terengganu, Malaysia. IIUM Med. J. Malays. 2020, 18. [Google Scholar] [CrossRef]
- Koiwai, K.; Takemi, Y.; Hayashi, F.; Ogata, H.; Matsumoto, S.; Ozawa, K.; Machado, P.P.; Monteiro, C.A. Consumption of ultra-processed foods decreases the quality of the overall diet of middle-aged Japanese adults. Public Health Nutr. 2019, 22, 2999–3008. [Google Scholar] [CrossRef] [PubMed]
- Machado, P.P.; Steele, E.M.; Levy, R.B.; Sui, Z.; Rangan, A.; Woods, J.; Gill, T.; Scrinis, G.; Monteiro, C.A. Ultra-processed foods and recommended intake levels of nutrients linked to non-communicable diseases in Australia: Evidence from a nationally representative cross-sectional study. BMJ Open 2019, 9, e029544. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.; Kim, S.Y.; Wang, Y.; Lee, S.J.; Oh, K.; Sohn, C.Y.; Moon, Y.M.; Jee, S.H. Preservation of a traditional Korean dietary pattern and emergence of a fruit and dairy dietary pattern among adults in South Korea: Secular transitions in dietary patterns of a prospective study from 1998 to 2010. Nutr. Res. 2014, 34, 760–770. [Google Scholar] [CrossRef]
- Lee, M.-J.; Popkin, B.M.; Kim, S. The unique aspects of the nutrition transition in South Korea: The retention of healthful elements in their traditional diet. Public Health Nutr. 2002, 5, 197–203. [Google Scholar] [CrossRef]
- Statistics Korea. Population and Housing Census. Available online: https://kostat.go.kr/portal/eng/pressReleases/8/1/index.board?bmode=read&bSeq=&aSeq=386088&pageNo=1&rowNum=10&navCount=10&currPg=&searchInfo=&sTarget=title&sTxt= (accessed on 1 December 2020).
- Choi, M.-K.; Park, E.-S.; Kim, M.-H. Home meal replacement use and eating habits of adults in one-person households. KJCN 2019, 24, 476–484. [Google Scholar] [CrossRef]
- Costa de Miranda, R.; Rauber, F.; de Moraes, M.M.; Afonso, C.; Santos, C.; Rodrigues, S.; Levy, R.B. Consumption of ultra-processed foods and non-communicable disease-related nutrient profile in Portuguese adults and elderly (2015–2016): The UPPER project. Br. J. Nutr. 2020. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Duffey, K.J.; Popkin, B.M. Sodium and potassium intake patterns and trends in South Korea. J. Hum. Hypertens. 2013, 27, 298–303. [Google Scholar] [CrossRef] [PubMed]
- Swinburn, B.A.; Caterson, I.; Seidell, J.C.; James, W.P. Diet, nutrition and the prevention of excess weight gain and obesity. Public Health Nutr. 2004, 7, 123–146. [Google Scholar] [CrossRef] [PubMed]
- Youn, S.; Woo, H.D.; Cho, Y.A.; Shin, A.; Chang, N.; Kim, J. Association between dietary carbohydrate, glycemic index, glycemic load, and the prevalence of obesity in Korean men and women. Nutr. Res. 2012, 32, 153–159. [Google Scholar] [CrossRef]
- Fardet, A.; Méjean, C.; Labouré, H.; Andreeva, V.A.; Feron, G. The degree of processing of foods which are most widely consumed by the French elderly population is associated with satiety and glycemic potentials and nutrient profiles. Food Funct. 2017, 8, 651–658. [Google Scholar] [CrossRef]
- Suez, J.; Korem, T.; Zeevi, D.; Zilberman-Schapira, G.; Thaiss, C.A.; Maza, O.; Israeli, D.; Zmora, N.; Gilad, S.; Weinberger, A.; et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014, 514, 181–186. [Google Scholar] [CrossRef]
- Chassaing, B.; Koren, O.; Goodrich, J.K.; Poole, A.C.; Srinivasan, S.; Ley, R.E.; Gewirtz, A.T. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 2015, 519, 92–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez Steele, E.; Khandpur, N.; da Costa Louzada, M.L.; Monteiro, C.A. Association between dietary contribution of ultra-processed foods and urinary concentrations of phthalates and bisphenol in a nationally representative sample of the US population aged 6 years and older. PLoS ONE 2020, 15, e0236738. [Google Scholar] [CrossRef]
- Radke, E.G.; Galizia, A.; Thayer, K.A.; Cooper, G.S. Phthalate exposure and metabolic effects: A systematic review of the human epidemiological evidence. Environ. Int. 2019, 132, 104768. [Google Scholar] [CrossRef] [PubMed]
- Rancière, F.; Lyons, J.G.; Loh, V.H.Y.; Botton, J.; Galloway, T.; Wang, T.; Shaw, J.E.; Magliano, D.J. Bisphenol A and the risk of cardiometabolic disorders: A systematic review with meta-analysis of the epidemiological evidence. Environ. Health 2015, 14, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poti, J.M.; Braga, B.; Qin, B. Ultra-processed food intake and obesity: What really matters for health-processing or nutrient content? Curr. Obes. Rep. 2017, 6, 420–431. [Google Scholar] [CrossRef] [PubMed]
% of Total Daily Energy Intake | |||||||
---|---|---|---|---|---|---|---|
Total (n = 7364) | Men (n = 3219) | Women (n = 4145) | |||||
Mean | SE | Mean | SE | Mean | SE | p Value (2) | |
Unprocessed/minimally processed foods | 57.49 | 0.31 | 56.10 | 0.43 | 59.05 | 0.38 | <0.0001 |
Cereal grains and flours | 32.00 | 0.28 | 32.33 | 0.37 | 31.63 | 0.35 | 0.1243 |
Meat and poultry | 8.66 | 0.15 | 9.47 | 0.22 | 7.74 | 0.19 | <0.0001 |
Fruits and vegetables | 6.92 | 0.11 | 5.51 | 0.11 | 8.50 | 0.15 | <0.0001 |
Eggs | 2.32 | 0.05 | 2.24 | 0.07 | 2.41 | 0.07 | 0.0525 |
Fish and seafood | 2.16 | 0.05 | 2.15 | 0.07 | 2.18 | 0.07 | 0.7628 |
Milk and plain yoghurt | 1.67 | 0.05 | 1.37 | 0.07 | 2.01 | 0.08 | <0.0001 |
Potato and other roots | 1.44 | 0.07 | 1.02 | 0.08 | 1.91 | 0.12 | <0.0001 |
Legumes | 0.78 | 0.03 | 0.70 | 0.03 | 0.87 | 0.03 | <0.0001 |
Nuts and seeds | 0.86 | 0.03 | 0.69 | 0.03 | 1.05 | 0.05 | <0.0001 |
Others (a) | 0.68 | 0.01 | 0.62 | 0.02 | 0.75 | 0.02 | <0.0001 |
Processed culinary ingredients | 3.83 | 0.05 | 3.77 | 0.07 | 3.89 | 0.07 | 0.2233 |
Plant oils and animal fats | 2.94 | 0.04 | 2.97 | 0.06 | 2.90 | 0.05 | 0.3254 |
Sugar, honey, and maple syrup | 0.68 | 0.02 | 0.57 | 0.02 | 0.79 | 0.03 | <0.0001 |
Traditional Korean fermented condiments (b) | 0.05 | 0.00 | 0.05 | 0.00 | 0.06 | 0.00 | 0.0604 |
Others (c) | 0.16 | 0.01 | 0.18 | 0.02 | 0.14 | 0.01 | 0.0285 |
Processed foods | 11.86 | 0.20 | 11.77 | 0.28 | 11.97 | 0.24 | 0.5525 |
Noodles and other grain products (d) | 5.83 | 0.18 | 5.48 | 0.24 | 6.22 | 0.21 | 0.0100 |
Fruits, vegetables, and other preserved plant foods (e) | 2.11 | 0.03 | 2.04 | 0.04 | 2.18 | 0.05 | 0.0158 |
Fermented alcoholic drinks (f) | 1.93 | 0.08 | 2.27 | 0.12 | 1.54 | 0.10 | <0.0001 |
Tofu | 0.97 | 0.03 | 0.95 | 0.04 | 0.99 | 0.05 | 0.5071 |
Salted, smoked, or canned meat or fish | 0.72 | 0.04 | 0.75 | 0.05 | 0.69 | 0.05 | 0.3525 |
Others (g) | 0.31 | 0.02 | 0.28 | 0.03 | 0.34 | 0.02 | 0.0988 |
Ultra-processed foods | 26.82 | 0.27 | 28.35 | 0.38 | 25.09 | 0.36 | <0.0001 |
Beverages | 4.34 | 0.09 | 4.75 | 0.12 | 3.89 | 0.12 | <0.0001 |
Instant coffee and coffee drinks | 2.08 | 0.06 | 2.33 | 0.08 | 1.81 | 0.08 | <0.0001 |
Carbonated drinks | 1.12 | 0.05 | 1.34 | 0.07 | 0.87 | 0.06 | <0.0001 |
Fruit drinks and other sugar added drinks | 1.14 | 0.04 | 1.08 | 0.06 | 1.20 | 0.07 | 0.1504 |
Bread, cakes, and bakery products | 3.62 | 0.12 | 3.00 | 0.16 | 4.32 | 0.17 | <0.0001 |
Sauce, dressing, and condiments (h) | 3.53 | 0.06 | 3.49 | 0.08 | 3.58 | 0.08 | 0.3554 |
Instant noodles | 3.46 | 0.14 | 3.89 | 0.21 | 2.98 | 0.16 | 0.0003 |
Distilled alcoholic drinks | 3.08 | 0.14 | 4.75 | 0.23 | 1.21 | 0.12 | <0.0001 |
Meat and seafood products (i) | 2.29 | 0.09 | 2.43 | 0.14 | 2.13 | 0.10 | 0.0672 |
Snacks | 1.91 | 0.07 | 1.74 | 0.10 | 2.09 | 0.10 | 0.0149 |
Sweet snacks | 1.34 | 0.06 | 1.19 | 0.08 | 1.49 | 0.09 | 0.0150 |
Salty snacks | 0.57 | 0.04 | 0.55 | 0.06 | 0.60 | 0.05 | 0.5516 |
Milk-based drinks, processed cheese, and ice cream | 1.67 | 0.06 | 1.35 | 0.08 | 2.04 | 0.10 | <0.0001 |
Ready to eat, ready to heat products and other home meal replacements | 1.11 | 0.06 | 1.11 | 0.09 | 1.11 | 0.08 | 0.9756 |
Fast foods (hamburger, pizza, and hotdog) | 0.88 | 0.07 | 1.00 | 0.11 | 0.76 | 0.08 | 0.0650 |
Confectionary, jam, and ice pops | 0.70 | 0.04 | 0.61 | 0.06 | 0.80 | 0.05 | 0.0182 |
Breakfast cereals | 0.17 | 0.02 | 0.15 | 0.02 | 0.19 | 0.02 | 0.1935 |
Others (j) | 0.05 | 0.01 | 0.08 | 0.02 | 0.02 | 0.01 | 0.0194 |
% of Total Daily Energy Intake from Ultra-Processed Foods | ||||||||
---|---|---|---|---|---|---|---|---|
Distribution | Crude | Adjusted (2) | ||||||
n | (%) | Mean | SE | p-Value (3) | Mean | SE | p-Value (3) | |
Sex | ||||||||
Men | 3219 | (52.9) | 28.35 | 0.36 | <0.0001 | 27.55 | 0.39 | 0.0165 |
Women | 4145 | (47.1) | 25.09 | 0.38 ** | 26.19 | 0.38* | ||
Age group (years) | ||||||||
19–29 | 1114 | (21.1) | 35.67 | 0.64 | <0.0001 | 34.57 | 0.82 | <0.0001 |
30–49 | 3301 | (45.4) | 27.73 | 0.38 ** | 27.53 | 0.42 ** | ||
50–64 | 2949 | (33.5) | 20.01 | 0.35 ** | 20.64 | 0.41 ** | ||
p for trend | <0.0001 | <0.0001 | ||||||
Household income level (4) | ||||||||
Lowest | 736 | (9.5) | 26.09 | 0.99 | 0.5724 | 26.22 | 0.94 | 0.4254 |
Lower middle | 1792 | (23.4) | 27.36 | 0.56 | 27.58 | 0.53 | ||
Upper middle | 2284 | (31.5) | 26.91 | 0.42 | 26.64 | 0.40 | ||
Highest | 2543 | (35.6) | 26.51 | 0.46 | 26.80 | 0.46 | ||
p for trend | 0.7243 | 0.8007 | ||||||
Education level (5) | ||||||||
Middle school or lower | 1268 | (13.9) | 20.26 | 0.60 | <0.0001 | 24.98 | 0.66 | 0.0022 |
High school | 2632 | (39.1) | 28.56 | 0.47 ** | 27.59 | 0.43 ** | ||
College or higher | 3136 | (47.0) | 27.46 | 0.37 ** | 26.81 | 0.37 * | ||
p for trend | <0.0001 | 0.2662 | ||||||
Residential area | ||||||||
Urban | 6121 | (87.6) | 27.11 | 0.30 | 0.0029 | 27.01 | 0.29 | 0.1138 |
Rural | 1243 | (12.4) | 24.78 | 0.72 ** | 25.88 | 0.66 | ||
Marital status | ||||||||
Single/Separated/Divorced | 2141 | (34.5) | 31.71 | 0.52 | <0.0001 | 27.73 | 0.62 | 0.1169 |
Married | 5222 | (65.5) | 24.24 | 0.30 ** | 26.43 | 0.37 | ||
Households | ||||||||
One-person household | 646 | (8.3) | 29.42 | 0.95 | 0.0040 | 27.57 | 0.29 | 0.4439 |
Multi-person household | 6718 | (91.7) | 26.58 | 0.28 ** | 26.81 | 0.91 | ||
Smoking (6) | ||||||||
Non-smoker | 5777 | (75.7) | 25.61 | 0.28 | <0.0001 | 25.90 | 0.28 | <0.0001 |
Smoker | 1532 | (24.3) | 30.58 | 0.60 ** | 30.21 | 0.68 ** | ||
Alcohol drinker (7) | ||||||||
Non-drinker | 2893 | (35.9) | 24.69 | 0.41 | <0.0001 | 26.25 | 0.42 | 0.0526 |
Drinker | 4419 | (64.1) | 28.00 | 0.34 ** | 27.25 | 0.33 | ||
Physical activity (8) | ||||||||
No | 3919 | (52.7) | 26.54 | 0.38 | 0.1669 | 27.56 | 0.36 | 0.0091 |
Yes | 3109 | (47.3) | 27.29 | 0.41 | 26.20 | 0.37 ** |
Quartile of % Energy Intake from Ultra-Processed Foods | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Men (n = 3219) | Women (n = 4145) | ||||||||||||||||||
Quartile 1 (2) | Quartile 2 | Quartile 3 | Quartile 4 | p for Trend (3) | Quartile 1 (2) | Quartile 2 | Quartile 3 | Quartile 4 | p for Trend (3) | ||||||||||
Mean | SE | Mean | SE | Mean | SE | Mean | SE | Mean | SE | Mean | SE | Mean | SE | Mean | SE | ||||
Ultra-processed foods (% of total energy) | 7.0 | 0.2 | 18.2 | 0.1 | 30.8 | 0.2 | 53.1 | 0.5 | <0.0001 | 5.4 | 0.1 | 14.7 | 0.1 | 26.1 | 0.1 | 49.0 | 0.5 | <0.0001 | |
Total energy(kcal/d) | 2160.9 | 31.8 | 2391.2 | 35.5 | 2497.4 | 35.5 | 2545.9 | 34.8 | <0.0001 | 1708.4 | 26.5 | 1738.1 | 23.7 | 1773.7 | 21.7 | 1821.0 | 27.4 | 0.0030 | |
Nutrient intake from (% of total energy) | |||||||||||||||||||
Protein | 15.8 | 0.2 | 15.4 | 0.2 | 14.3 | 0.2 | 12.9 | 0.2 | <0.0001 | 14.9 | 0.2 | 15.0 | 0.2 | 14.6 | 0.1 | 13.3 | 0.2 | <0.0001 | |
Total fats | 17.3 | 0.4 | 20.2 | 0.4 | 21.1 | 0.3 | 21.4 | 0.4 | <0.0001 | 17.3 | 0.4 | 18.9 | 0.3 | 21.1 | 0.3 | 24.5 | 0.3 | <0.0001 | |
Saturated fats | 5.1 | 0.1 | 6.5 | 0.1 | 6.9 | 0.1 | 7.6 | 0.1 | <0.0001 | 5.1 | 0.1 | 5.9 | 0.1 | 7.0 | 0.1 | 8.7 | 0.1 | <0.0001 | |
Carbohydrate | 64.7 | 0.5 | 61.0 | 0.5 | 57.3 | 0.5 | 51.6 | 0.6 | <0.0001 | 66.7 | 0.5 | 64.4 | 0.4 | 61.7 | 0.4 | 58.4 | 0.5 | <0.0001 | |
Sugars | 9.4 | 0.2 | 11.5 | 0.3 | 12.2 | 0.3 | 12.2 | 0.3 | <0.0001 | 12.5 | 0.3 | 13.1 | 0.2 | 14.3 | 0.3 | 16.1 | 0.3 | <0.0001 | |
Dietary fiber (g/1000 kcal) | 13.2 | 0.2 | 11.8 | 0.2 | 10.5 | 0.2 | 9.8 | 0.2 | <0.0001 | 15.9 | 0.3 | 13.9 | 0.2 | 12.9 | 0.2 | 11.9 | 0.2 | <0.0001 | |
Sodium (mg/1000 kcal) | 1850.5 | 35.8 | 1800.0 | 25.9 | 1816.3 | 30.2 | 1669.8 | 27.4 | <0.0001 | 1729.1 | 36.3 | 1823.5 | 32.7 | 1791.7 | 33.2 | 1654.8 | 26.8 | 0.0088 | |
Potassium (mg/1000 kcal) | 1538.2 | 18.7 | 1433.3 | 17.3 | 1280.5 | 13.4 | 1104.4 | 13.7 | <0.0001 | 1721.2 | 21.6 | 1621.6 | 17.7 | 1499.2 | 16.3 | 1303.7 | 15.9 | <0.0001 | |
Prevalence of inadequate nutrient intake (4) | |||||||||||||||||||
n | (%) | n | (%) | n | (%) | n | (%) | p-value (5) | n | (%) | n | (%) | n | (%) | n | (%) | p-value (5) | ||
Total fats (≥30% of energy) | 48 | (6.8) | 91 | (12.6) | 106 | (14.8) | 144 | (19.1) | <0.0001 | 79 | (8.0) | 89 | (9.2) | 133 | (13.7) | 279 | (26.2) | <0.0001 | |
Saturated fats (≥10% of energy) | 42 | (5.9) | 91 | (13.3) | 107 | (14.5) | 187 | (25.1) | <0.0001 | 79 | (7.8) | 96 | (9.8) | 155 | (16.1) | 341 | (33.6) | <0.0001 | |
Sugars (≥10% of energy) | 297 | (35.3) | 456 | (55.2) | 448 | (56.6) | 446 | (56.7) | <0.0001 | 574 | (54.8) | 675 | (63.7) | 729 | (69.7) | 782 | (75.4) | <0.0001 | |
Dietary fiber (≤12.5 g/1000 kcal) | 358 | (48.0) | 470 | (61.0) | 587 | (74.6) | 631 | (79.2) | <0.0001 | 316 | (31.5) | 431 | (44.5) | 553 | (54.6) | 727 | (71.7) | <0.0001 | |
Sodium (≥1000 mg/1000 kcal) | 725 | (90.0) | 737 | (91.8) | 729 | (91.2) | 679 | (84.4) | <0.0001 | 860 | (82.7) | 900 | (86.6) | 916 | (87.9) | 879 | (84.3) | 0.0170 | |
Potassium (≤1755 mg/1000 kcal) | 578 | (74.7) | 640 | (80.4) | 746 | (92.8) | 779 | (97.0) | <0.0001 | 580 | (55.2) | 688 | (66.0) | 815 | (80.3) | 929 | (88.9) | <0.0001 |
Quartile of % Energy Intake from Ultra-Processed Foods | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Quartile 1 (1) | Quartile 2 | Quartile 3 | Quartile 4 | |||||||||
Total (n = 7364) | β/OR | 95% CI | β/OR | 95% CI | β/OR | 95% CI | β/OR | 95% CI | p for Trend (2) | |||
BMI (kg/m2) (β) | 0.0 | Ref | 0.03 | −0.24 | 0.30 | −0.06 | −0.35 | 0.22 | 0.00 | −0.28 | 0.29 | 0.9227 |
BMI ≥25 kg/m2 (OR) | 1.0 | Ref | 0.92 | 0.77 | 1.10 | 0.92 | 0.76 | 1.10 | 0.96 | 0.80 | 1.16 | 0.8788 |
BMI ≥30 kg/m2 (OR) | 1.0 | Ref | 0.94 | 0.66 | 1.35 | 0.90 | 0.62 | 1.32 | 0.88 | 0.61 | 1.26 | 0.4897 |
Waist circumference (cm) (β) | 0.0 | Ref | 0.04 | −0.69 | 0.77 | −0.05 | −0.80 | 0.70 | 0.04 | −0.72 | 0.80 | 0.9534 |
Abdominal obesity (OR) (3) | 1.0 | Ref | 0.94 | 0.78 | 1.15 | 0.99 | 0.82 | 1.19 | 1.09 | 0.91 | 1.31 | 0.2154 |
Men (n = 3219) | ||||||||||||
BMI (kg/m2) (β) | 0.0 | Ref | −0.11 | −0.51 | 0.29 | −0.10 | −0.52 | 0.31 | −0.27 | −0.68 | 0.15 | 0.2334 |
BMI ≥25 kg/m2 (OR) | 1.0 | Ref | 0.84 | 0.66 | 1.06 | 0.91 | 0.71 | 1.16 | 0.81 | 0.64 | 1.03 | 0.1894 |
BMI ≥30 kg/m2 (OR) | 1.0 | Ref | 0.75 | 0.44 | 1.28 | 0.98 | 0.60 | 1.59 | 0.69 | 0.42 | 1.15 | 0.2701 |
Waist circumference (cm) (β) | 0.0 | Ref | −0.29 | −1.38 | 0.80 | −0.03 | −1.10 | 1.05 | −0.45 | −1.54 | 0.64 | 0.5091 |
Abdominal obesity (OR) (3) | 1.0 | Ref | 0.91 | 0.70 | 1.18 | 1.04 | 0.82 | 1.33 | 0.96 | 0.75 | 1.22 | 0.9842 |
Women (n = 4145) | ||||||||||||
BMI (kg/m2) (β) | 0.0 | Ref | 0.32 | −0.04 | 0.68 | 0.22 | −0.14 | 0.59 | 0.61 | 0.23 | 0.99 | 0.0047 |
BMI ≥25 kg/m2 (OR) | 1.0 | Ref | 1.14 | 0.87 | 1.48 | 1.06 | 0.80 | 1.40 | 1.51 | 1.14 | 1.99 | 0.0037 |
BMI ≥30 kg/m2 (OR) | 1.0 | Ref | 1.32 | 0.80 | 2.17 | 0.81 | 0.46 | 1.45 | 1.42 | 0.84 | 2.40 | 0.3288 |
Waist circumference (cm) (β) | 0.0 | Ref | 0.74 | −0.22 | 1.69 | 0.55 | −0.41 | 1.51 | 1.34 | 0.35 | 2.34 | 0.0146 |
Abdominal obesity (OR) (3) | 1.0 | Ref | 1.08 | 0.81 | 1.43 | 1.03 | 0.76 | 1.40 | 1.64 | 1.24 | 2.16 | 0.0004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sung, H.; Park, J.M.; Oh, S.U.; Ha, K.; Joung, H. Consumption of Ultra-Processed Foods Increases the Likelihood of Having Obesity in Korean Women. Nutrients 2021, 13, 698. https://doi.org/10.3390/nu13020698
Sung H, Park JM, Oh SU, Ha K, Joung H. Consumption of Ultra-Processed Foods Increases the Likelihood of Having Obesity in Korean Women. Nutrients. 2021; 13(2):698. https://doi.org/10.3390/nu13020698
Chicago/Turabian StyleSung, Hyuni, Ji Min Park, Se Uk Oh, Kyungho Ha, and Hyojee Joung. 2021. "Consumption of Ultra-Processed Foods Increases the Likelihood of Having Obesity in Korean Women" Nutrients 13, no. 2: 698. https://doi.org/10.3390/nu13020698
APA StyleSung, H., Park, J. M., Oh, S. U., Ha, K., & Joung, H. (2021). Consumption of Ultra-Processed Foods Increases the Likelihood of Having Obesity in Korean Women. Nutrients, 13(2), 698. https://doi.org/10.3390/nu13020698