The Effect of the Addition of Silicon Dioxide Particles on the Tribological Performance of Vegetable Oils in HCT600X+Z/145Cr46 Steel Contacts in the Deep-Drawing Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Material
2.2. Experimental Procedure
3. Results and Discussion
3.1. Coefficient of Friction
3.2. Surface Topography
4. Conclusions
- For the entire range of pressures analysed, unmodified sunflower oil showed lower efficiency in reducing the CoF compared to unmodified rapeseed oil.
- The highest lubrication efficiency of unmodified oils was observed at the lowest analysed pressure of 2 MPa: 26.7% for sunflower oil and 37.7% for rapeseed oil.
- At the lowest analysed contact pressure, the effect of the addition of SiO2 particles on the CoF is not clear. Perhaps at this contact pressure, the surface roughness did not change much, and local closed oil pockets were not created. To ensure proper lubrication, it is necessary to generate an appropriate lubricant pressure. In the contact pressure range of 4–8 MPa, biolubricants ensured a reduction in the CoF relative to dry friction conditions.
- In the pressure range of 4–8 MPa, the lubricants with 5 wt.% and 10 wt.% of SiO2 particles were more effective in reducing friction than the biolubricant with addition of 1 wt.% of SiO2. These lubricants reduced the coefficient of friction to almost the same extent, between 26.5% (6 MPa) and 34.9% (4 MPa), relative to dry friction conditions.
- Lubrication with unmodified oil and oil containing 5 wt.% of SiO2 leads to a tendency to reduce the Sa parameter with increasing contact pressure but only up to a contact pressure of 6 MPa. After exceeding this value for all lubrication conditions, as a result of intensive flattening and roughening, an increase in the Sa parameter value occurs relative to the sheet metal in the as-received state.
- The lowest average roughness was observed for lubrication with sunflower oil containing particles at a concentration of 5 wt.%. For rapeseed oil, the addition of 10 wt.% of SiO2 provided a sheet surface with the lowest average roughness.
- The negative value of the skewness of the sheets before and after the friction process indicates the occurrence of relatively deep valleys and flattened peaks of the asperities on the surface. The addition of 10 wt.% of particles to sunflower oil provided the smallest change in skewness compared to the surface of the as-received sheet.
- With the increase in contact pressure, kurtosis increases, and after a certain pressure value, depending on the type of lubricant, kurtosis decreases. This means that the sheet metal surface is subject to the phenomenon of flattening of the surface asperities. At the highest analysed contact pressure for all lubrication conditions with sunflower oil, a decrease in kurtosis was obtained relative to the as-received surface. The same relationship was confirmed for rapeseed oil with the addition of 1 and 5 wt.% of SiO2.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ikumapayi, O.M.; Afolalu, S.A.; Kayode, J.F.; Kazeem, R.A.; Akande, S. A concise overview of deep drawing in the metal forming operation. Mater. Today Proc. 2022, 62, 3233–3238. [Google Scholar] [CrossRef]
- Slota, J.; Šiser, M.; Gajdoš, I. Failure prediction of axi-symmetric cup in deep drawing and expansion processes. Open Eng. 2018, 8, 354–362. [Google Scholar] [CrossRef]
- Trzepiecinski, T.; Lemu, H.G. Recent developments and trends in the friction testing for conventional sheet metal forming and incremental sheet forming. Metals 2020, 10, 47. [Google Scholar] [CrossRef]
- Trzepieciński, T.; Szwajka, K.; Szewczyk, M. Analysis of coefficient of friction of deep-drawing-quality steel sheets using multi-layer neural networks. Lubricants 2024, 12, 50. [Google Scholar] [CrossRef]
- Żaba, K.; Kuczek, Ł.; Puchlerska, S.; Wiewióra, M.; Góral, M.; Trzepieciński, T. Analysis of tribological performance of new stamping die composite inserts using strip drawing test. Adv. Mech. Mater. Eng. 2023, 40, 55–62. [Google Scholar] [CrossRef]
- Vishnoi, M.; Kumar, P.; Murtaza, Q. Surface texturing techniques to enhance tribological performance: A review. Surf. Interfaces 2021, 27, 101463. [Google Scholar] [CrossRef]
- Szewczyk, M.; Szwajka, K.; Trzepieciński, T. Frictional characteristics of deep-drawing quality steel sheets in the flat die strip drawing test. Materials 2022, 15, 5236. [Google Scholar] [CrossRef] [PubMed]
- Zareh-Desari, B.; Davoodi, B. Assessing the lubrication performance of vegetable oil-based nano-lubricants for environmentally conscious metal forming processes. J. Clean. Prod. 2016, 135, 1198–1209. [Google Scholar] [CrossRef]
- Kasaeian-Naeini, M.; Hashemi, R.; Hosseini, A. Lubrication performance of rapeseed oil-based nano-lubricants in parallel tubular channel angular pressing process. J. Cent. South Univ. 2019, 26, 1042–1049. [Google Scholar] [CrossRef]
- Keshtiban, P.M.; Ghaleh, S.S.G.; Alimirzaloo, V. Lubrication efficiency of vegetable oil nano-lubricants and solid powder lubricants. Proc. Inst. Mech. Eng. Part. L J. Mater. Des. Appl. 2018, 233, 1384–1392. [Google Scholar] [CrossRef]
- Biswas, M.A.S.; Rahman, M.M.; Ortega, J.A.; Peña-Parás, L.; Maldonado-Cortés, D.; González, J.A.; Cantú, R.; Campos, A.; Flores, E. Lubrication performance of sunflower oil reinforced with halloysite clay nanotubes (HNT) as lubricant additives. Lubricants 2022, 10, 139. [Google Scholar] [CrossRef]
- Uppar, R.; Dinesha, P.; Kumar, S. A critical review on vegetable oil-based bio-lubricants: Preparation, characterization, and challenges. Environ. Dev. Sustain. 2023, 25, 9011–9046. [Google Scholar] [CrossRef]
- Taheri, R.; Kosasih, B.; Zhu, H.; Tieu, A.K. Dispersion stability and lubrication performance correlation of vegetable oil-in-water emulsions with nanoparticle-shielded oil droplets. Lubricants 2018, 6, 55. [Google Scholar] [CrossRef]
- Syahrullail, S.; Afifah, A.N. Bio-lubricant for metal forming. Mytribos Symp. 2017, 2, 54–56. [Google Scholar]
- Prakash, V.; Kumar, D.R. Performance evaluation of bio-lubricants in strip drawing and deep drawing of an aluminium alloy. Adv. Mater. Process. Technol. 2022, 8, 1044–1057. [Google Scholar] [CrossRef]
- Fox, N.J.; Tyrer, B.; Stachowiak, G.W. Boundary lubrication performance of free fatty acids in sunflower oil. Tribol. Lett. 2004, 16, 275–281. [Google Scholar] [CrossRef]
- Pooja, C.; Sukhneet, S. Polar compounds in frying oils: A review. Appl. Ecol. Environ. Sci. 2021, 9, 21–99. [Google Scholar]
- Alves, S.; Barros, B.; Trajano, M.; Ribeiro, K.; Moura, E. Tribological behavior of vegetable oil-based lubricants with nanoparticles of oxides in boundary lubrication conditions. Tribol. Int. 2016, 65, 28–36. [Google Scholar] [CrossRef]
- Owuna, F.J.; Dabai, M.U.; Sokoto, M.A.; Dangoggo, S.M.; Bagudo, B.U.; Birnin-Yauri, U.A.; Hassan, L.G.; Sada, I.; Abubukar, A.L.; Jibrin, M.S. Chemical modification of vegetable oils for the production of biolubricants using trimethylolpropane: A review. Egypt. J. Pet. 2020, 29, 75–82. [Google Scholar] [CrossRef]
- Bay, N.; Azushima, A.; Groche, P.; Ishibashi, I.; Merklein, M.; Morishita, M.; Nakamura, T.; Schmid, S.; Yoshida, M. Environmentally benign tribo-systems for metal forming. CIRP Ann. 2010, 59, 760–780. [Google Scholar] [CrossRef]
- Karmakar, G.; Ghosh, P.; Sharma, B.K. Chemically modifying vegetable oils to prepare green lubricants. Lubricants 2017, 5, 44. [Google Scholar] [CrossRef]
- Mobarak, H.M.; Mohamad, E.N.; Masjuki, H.H.; Kalam, M.A.; Al Mahmud, K.A.H.; Habibullah, M.; Ashraful, A.M. The prospects of biolubricants as alternatives in automotive applications. Renew. Sustain. Energy Rev. 2014, 33, 34–43. [Google Scholar] [CrossRef]
- Seibert, O.; Kejzlar, P.; Bakalová, T. The effect of SiO2 nanoparticles addition on lubrication properties of 10W-40 engine oil. IOP Conf. Ser. Mater. Sci. Eng. 2020, 723, 012029. [Google Scholar] [CrossRef]
- Sankar, E.; Duraivelu, K. The effect of SiO2-Al2O3-TiO2 nanoparticle additives on lubrication performance: Evaluation of wear and coefficient of friction. Mater. Today Proc. 2022, 68, 2387–2392. [Google Scholar] [CrossRef]
- Mahara, M.; Singh, Y. Tribological analysis of the neem oil during the addition of SiO2 nanoparticles at different loads. Mater. Today Proc. 2020, 28, 1412–1415. [Google Scholar] [CrossRef]
- Peng, D.-X.; Chen, C.-H.; Kang, Y.; Chang, Y.-P.; Chang, S.-Y. Size effects of SiO2 nanoparticles as oil additives on tribology of lubricant. Ind. Lubr. Tribol. 2010, 62, 111–120. [Google Scholar] [CrossRef]
- Li, X.; Cao, Z.; Zhang, Z.; Dang, H. Surface-modification in situ of nano-SiO2 and its structure and tribological properties. Appl. Surf. Sci. 2006, 252, 7856–7861. [Google Scholar] [CrossRef]
- Spinache, E.; Trandafir, A.; Diaconu, M.; Ozuna, G.; Wozniak, M.; Kibiak, P.; Siczek, K. The effect of SiO2 nanoparticles content in engine oil on tribological properties of valvetrain chain transmission components. Combust. Engines 2019, 179, 4–12. [Google Scholar] [CrossRef]
- Prabu, K.; Nalini, B.; Suresh, B.; Sekar, M. Analysis of tribological properties of lubricating gear oil with nano silica particles. J. Achiev. Mater. Manuf. Eng. 2016, 79, 59–65. [Google Scholar] [CrossRef]
- Cortes, V.; Sanchez, K.; Gonzalez, R.; Alcoutlabi, M.; Ortega, J.A. The performance of SiO2 and TiO2 nanoparticles as lubricant additives in sunflower oil. Lubricants 2020, 8, 10. [Google Scholar] [CrossRef]
- Xie, H.M.; Jiang, B.; He, J.J.; Xia, X.S.; Jiang, Z.T.; Dai, J.H.; Pan, F.S. Effect of SiO2 nanoparticles as lubricating oil additives on the cold-rolling of AZ31 magnesium alloy sheet. Mater. Res. Innov. 2015, 19, S127–S132. [Google Scholar] [CrossRef]
- Pang, H.; Ngaile, G. Formulation of SiO2/oil nanolubricant for metal forming using hydrodynamic cavitation. Proc. Inst. Mech. Eng. Part. B J. Eng. Manuf. 2020, 234, 1549–1558. [Google Scholar] [CrossRef]
- Cortes, V.; Ortega, J.A. Evaluating the Rheological and Tribological Behaviors of Coconut Oil Modified with Nanoparticles as Lubricant Additives. Lubricants 2019, 7, 76. [Google Scholar] [CrossRef]
- Taha-Tijerina, J.; Aviña, K.; Diabb, J.M. Tribological and thermal transport performance of SiO2-based natural lubricants. Lubricants 2019, 7, 71. [Google Scholar] [CrossRef]
- Mulidrán, P.; Spišák, E.; Tomáš, M.; Slota, J.; Majerníková, J. Numerical Prediction and Reduction of Hat-Shaped Part Springback Made of Dual-Phase AHSS Steel. Metals 2020, 10, 1119. [Google Scholar] [CrossRef]
- Cmorej, D.; Kaščák, Ľ. Numerical Simulation of Mechanical Joining of Three DP600 and DC06 Steel Sheets. Adv. Mech. Mater. Eng. 2023, 40, 23–29. [Google Scholar] [CrossRef]
- Ambroziak, A.; Białucki, P.; Derlukiewicz, W.; Lange, A. Properties of dual phase steel joints of DP600 welded by MAG. Przegląd Spaw. 2014, 9, 3–8. [Google Scholar]
- Hyrcza-Michalska, M. Methodology of drawability evaluation of high strength thin sheet metals. Hut. Wiadomości Hut. 2017, 84, 310–312. [Google Scholar]
- ISO 25178-2:2021; Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 2: Terms, Definitions and Surface Texture Parameters. International Organization for Standardization: Geneva, Switzerland, 2021.
- Erbel, S.; Kuczyński, K.; Marciniak, Z. Cold Plastic Working; PWN: Warsaw, Poland, 1975. [Google Scholar]
- Szewczyk, M.; Szwajka, K.; Najm, S.M.; Mohammed, S.O. Application of categorical boosting to modelling the friction behaviour of DC05 steel sheets in strip drawing test. Adv. Mech. Mater. Eng. 2024, 41, 69–78. [Google Scholar] [CrossRef]
- Szpunar, M.; Trzepieciński, T.; Żaba, K.; Ostrowski, R.; Zwolak, M. Effect of lubricant type on the friction behaviours and surface topography in metal forming of Ti-6Al-4V titanium alloy sheets. Materials 2021, 14, 3721. [Google Scholar] [CrossRef] [PubMed]
- ISO 3105:1994; Glass Capillary Kinematic Viscometers—Specifications and Operating Instructions. International Organization for Standardization: Geneva, Switzerland, 1994.
- Yalçın, G.; Öztuna, S.; Dalkılıç, A.S.; Wongwises, S. Effect of particle size on SiO2 nano-fluid viscosity determined by a two-step method. J. Therm. Anal. Calorim. 2024, 149, 13681–13696. [Google Scholar] [CrossRef]
- Pastoriza-Gallego, M.J.; Casanovam, C.; Legido, J.L.; Piñeiro, M.M. CuO in water nano-fluid: Influence of particle size and polydispersity on volumetric behaviour and viscosity. Fluid. Phase Equilibria 2011, 300, 188–196. [Google Scholar] [CrossRef]
- Sundar, L.S.; Hortiguela, M.J.; Singh, M.K.; Sousa, A.C.M. Thermal conductivity and viscosity of water based nanodiamond (ND) nanofluids: An experimental study. Int. Commun. Heat. Mass. Transf. 2016, 76, 245–255. [Google Scholar] [CrossRef]
- Fedele, L.; Colla, L.; Bobbo, S. Viscosity and thermal conductivity measurements of water-based nanofluids containing titanium oxide nanoparticles. Int. J. Refrig. 2012, 35, 1359–1366. [Google Scholar] [CrossRef]
- Wu, L.; Xia, Y.; Xiong, S.; Wu, H.; Chen, Z. Effect of ionic liquids modified nano-TiO2 as additive on tribological properties of silicone grease. Mater. Res. Express 2021, 8, 105011. [Google Scholar] [CrossRef]
- Tanrıseven, Z.; Gül, A.; Özayman, M. A simple route to suspend boric acid in non-polar media. SN Appl. Sci. 2020, 2, 1604. [Google Scholar] [CrossRef]
- Sigvant, M.; Pilthammar, J.; Hol, J.; Wiebenga, J.H.; Chezan, T.; Carleer, B.; van den Boogaard, T. Friction in sheet metal forming: Influence of surface roughness and strain rate on sheet metal forming simulation results. Procedia Manuf. 2019, 29, 512–519. [Google Scholar] [CrossRef]
- Vollertsen, F.; Hu, Z. Tribological size effects in sheet metal forming measured by a strip drawing test. CIRP Ann. 2006, 55, 291–294. [Google Scholar] [CrossRef]
- Dou, S.; Xia, J. Analysis of Sheet Metal Forming (Stamping Process): A Study of the Variable Friction Coefficient on 5052 Aluminum Alloy. Metals 2019, 9, 853. [Google Scholar] [CrossRef]
- Sanukrishna, S.S.; Vishnu, S.; Jose Prakash, M. Experimental investigation on thermal and rheological behaviour of PAG lubricant modified with SiO2 nanoparticles. J. Mol. Liq. 2018, 261, 411–422. [Google Scholar] [CrossRef]
- Liu, G.; Li, X.; Qin, B.; Xing, D.; Guo, Y.; Fan, R. Investigation of the mending effect and mechanism of copper nano-particles on a tribologically stressed surface. Tribol. Lett. 2004, 17, 961–966. [Google Scholar] [CrossRef]
- Chang, L.; Zhang, Z.; Breidt, C.; Friedrich, K. Tribological properties of epoxy nanocomposites: I. Enhancement of the wear resistance by nano-TiO2 particles. Wear 2005, 258, 141–148. [Google Scholar] [CrossRef]
- Xiaodong, Z.; Xun, F.; Huaqiang, S.; Zhengshui, H. Lubricating properties of Cyanex 302-modified MoS2 microspheres in base oil 500SN. Lubr. Sci. 2007, 19, 71–79. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Tsui, W.C.; Liu, T.C. Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear 2007, 262, 819–825. [Google Scholar] [CrossRef]
- Xie, H.; Jiang, B.; He, J.; Xia, X.; Pan, F. Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts. Tribol. Int. 2016, 93, 63–70. [Google Scholar] [CrossRef]
- Tan, C.J.; Aslian, A.; Abe, Y.; Mori, K. Improved seizure resistance of ultra-high-strength steel ironed cups with a lubricant containing SiO2 nanoparticles. Int. J. Adv. Manuf. Technol. 2016, 87, 1705–1711. [Google Scholar] [CrossRef]
- Sedlaček, M.; Podgornik, B.; Vižintin, J. Influence of surface preparation on roughness parameters, friction and wear. Wear 2009, 266, 482–487. [Google Scholar] [CrossRef]
- Sedlaček, M.; Gregorčič, P.; Podgornik, B. Use of the roughness parameters Ssk and Sku to control friction—A method for designing surface texturing. Tribol. Trans. 2017, 60, 260–266. [Google Scholar] [CrossRef]
- Tayebi, N.; Polycarpou, A.A. Modeling the effect of skewness and kurtosis on the static friction coefficient of rough surfaces. Tribol. Int. 2024, 37, 491–505. [Google Scholar] [CrossRef]
- Liu, S.; Lv, J.; Liu, C. The Effect of Lubricant’s Viscosity on Reducing the Frictional-Induced Fluctuation on the Onset of Friction. Lubricants 2024, 12, 136. [Google Scholar] [CrossRef]
- Wu, J.; Sørby, K. Effect of Lubricant Viscosity on the Friction Behavior of the mm-scale Specimen. In Advanced Manufacturing and Automation X. IWAMA 2020. Lecture Notes in Electrical Engineering; Wang, Y., Martinsen, K., Yu, T., Wang, K., Eds.; Springer: Singapore, 2021; Volume 737. [Google Scholar]
- Gadelmawla, E.S.; Koura, M.M.; Maksoud, T.M.A.; Elewa, I.M.; Soliman, H.H. Roughness parameters. J. Mater. Process. Technol. 2022, 123, 133–145. [Google Scholar] [CrossRef]
- Tiwari, P.R.; Rathore, A.; Bodkhe, M.G. Factors affecting the deep drawing process—A review. Mater. Today Proc. 2022, 56, 2902–2908. [Google Scholar] [CrossRef]
- Bouchaâla, L.; Ghanameh, M.F.; Faqir, M.; Mada, M.; Essadiqi, E. Evaluation of the Effect of Contact and Friction on Deep Drawing Formability Analysis for Lightweight Aluminum Lithium Alloy Using Cylindrical Cup. Procedia Manuf. 2020, 46, 623–629. [Google Scholar] [CrossRef]
- Trzepieciński, T.; Luiz, V.D.; Szwajka, K.; Szewczyk, M.; Szpunar, M. Analysis of the lubrication performance of low-carbon steel sheets in the presence of pressurised lubricant. Adv. Mater. Sci. 2023, 23, 64–76. [Google Scholar] [CrossRef]
- Evin, E.; Tomáš, M.; Kmec, J. Optimization of electro-discharge texturing parameters for steel sheets’ finishing rollers. Materials 2020, 13, 1223. [Google Scholar] [CrossRef]
- Piri, H.; Renzi, M.; Bietresato, M. Enhancing Performance and Sustainability of Engine Lubricants and Biolubricants by Dispersing SiO2 Nanoparticles Coated with KH570-Silane Coupling Agent. Appl. Sci. 2024, 14, 7943. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, H.N.; Li, C.; Huang, C.; Ali, H.M.; Xu, X.; Mao, C.; Ding, W.; Cui, X.; Yang, M.; et al. Nano-enhanced biolubricant in sustainable manufacturing: From processability to mechanisms. Friction 2022, 10, 803–841. [Google Scholar] [CrossRef]
- Bao, Y.Y.; Sun, J.L.; Kong, L.H. Tribological properties and lubricating mechanism of SiO2 nanoparticles in water-based fluid. IOP Conf. Ser. Mater. Sci. Eng. 2017, 182, 012025. [Google Scholar] [CrossRef]
- Tao, X.; Jiazheng, Z.; Kang, X. The ball-bearing effect of diamond nanoparticles as an oil additive. Appl. Phys. 1996, 29, 2925–2932. [Google Scholar] [CrossRef]
- Garcia Tobar, M.; Contreras Urgiles, R.W.; Jimenez Cordero, B.; Guillen Matute, J. Nanotechnology in Lubricants: A Systematic Review of the Use of Nanoparticles to Reduce the Friction Coefficient. Lubricants 2024, 12, 166. [Google Scholar] [CrossRef]
- Singh, J.P.; Singh, S.; Nandi, T.; Ghosh, S.K. Development of graphitic lubricant nanoparticles based nanolubricant for automotive applications: Thermophysical and tribological properties followed by IC engine performance. Powder Technol. 2021, 387, 31–47. [Google Scholar] [CrossRef]
Young’s Modulus, GPa | Yield Stress, MPa | Ultimate Tensile Strength, MPa | Elongation A80, % | Strain Hardening Exponent |
---|---|---|---|---|
199 | 420 | 662 | 23.62 | 0.188 |
Experiment Number | Contact Pressure, MPa | Friction Conditions |
---|---|---|
1 | 2 | Dry friction |
2 | 2 | Sunflower oil |
3 | 2 | Sunflower oil + SiO2 (1 wt.%) |
4 | 2 | Sunflower oil + SiO2 (5 wt.%) |
5 | 2 | Sunflower oil + SiO2 (10 wt.%) |
6 | 2 | Rapeseed oil |
7 | 2 | Rapeseed oil + SiO2 (1 wt.%) |
8 | 2 | Rapeseed oil + SiO2 (5 wt.%) |
9 | 2 | Rapeseed oil + SiO2 (10 wt.%) |
10 | 4 | Dry friction |
11 | 4 | Sunflower oil |
12 | 4 | Sunflower oil + SiO2 (1 wt.%) |
13 | 4 | Sunflower oil + SiO2 (5 wt.%) |
14 | 4 | Sunflower oil + SiO2 (10 wt.%) |
15 | 4 | Rapeseed oil |
16 | 4 | Rapeseed oil + SiO2 (1 wt.%) |
17 | 4 | Rapeseed oil + SiO2 (5 wt.%) |
18 | 4 | Rapeseed oil + SiO2 (10 wt.%) |
19 | 6 | Dry friction |
20 | 6 | Sunflower oil |
21 | 6 | Sunflower oil + SiO2 (1 wt.%) |
22 | 6 | Sunflower oil + SiO2 (5 wt.%) |
23 | 6 | Sunflower oil + SiO2 (10 wt.%) |
24 | 6 | Rapeseed oil |
25 | 6 | Rapeseed oil + SiO2 (1 wt.%) |
26 | 6 | Rapeseed oil + SiO2 (5 wt.%) |
27 | 6 | Rapeseed oil + SiO2 (10 wt.%) |
28 | 8 | Dry friction |
29 | 8 | Sunflower oil |
30 | 8 | Sunflower oil + SiO2 (1 wt.%) |
31 | 8 | Sunflower oil + SiO2 (5 wt.%) |
32 | 8 | Sunflower oil + SiO2 (10 wt.%) |
33 | 8 | Rapeseed oil |
34 | 8 | Rapeseed oil + SiO2 (1 wt.%) |
35 | 8 | Rapeseed oil + SiO2 (5 wt.%) |
36 | 8 | Rapeseed oil + SiO2 (10 wt.%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trzepieciński, T.; Szwajka, K.; Szewczyk, M.; Zielińska-Szwajka, J.; Slota, J.; Kaščák, Ľ. The Effect of the Addition of Silicon Dioxide Particles on the Tribological Performance of Vegetable Oils in HCT600X+Z/145Cr46 Steel Contacts in the Deep-Drawing Process. Materials 2025, 18, 73. https://doi.org/10.3390/ma18010073
Trzepieciński T, Szwajka K, Szewczyk M, Zielińska-Szwajka J, Slota J, Kaščák Ľ. The Effect of the Addition of Silicon Dioxide Particles on the Tribological Performance of Vegetable Oils in HCT600X+Z/145Cr46 Steel Contacts in the Deep-Drawing Process. Materials. 2025; 18(1):73. https://doi.org/10.3390/ma18010073
Chicago/Turabian StyleTrzepieciński, Tomasz, Krzysztof Szwajka, Marek Szewczyk, Joanna Zielińska-Szwajka, Ján Slota, and Ľuboš Kaščák. 2025. "The Effect of the Addition of Silicon Dioxide Particles on the Tribological Performance of Vegetable Oils in HCT600X+Z/145Cr46 Steel Contacts in the Deep-Drawing Process" Materials 18, no. 1: 73. https://doi.org/10.3390/ma18010073
APA StyleTrzepieciński, T., Szwajka, K., Szewczyk, M., Zielińska-Szwajka, J., Slota, J., & Kaščák, Ľ. (2025). The Effect of the Addition of Silicon Dioxide Particles on the Tribological Performance of Vegetable Oils in HCT600X+Z/145Cr46 Steel Contacts in the Deep-Drawing Process. Materials, 18(1), 73. https://doi.org/10.3390/ma18010073