Ergonomic Design and Assessment of an Improved Handle for a Laparoscopic Dissector Based on 3D Anthropometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Handle Design
2.1.1. Apparatus
2.1.2. 3D Hand Anthropometric Data Collection
- Session 1. In order to create additional support for the thumb, two positions for the maximal hand movement with the OH, power grasp, and stretch were required to be held by the volunteers and were scanned. Since light cannot enter through the small gaps, comprehensive models of the thumb could not be captured by the optical scanner. Therefore, another posture maintaining the position of the thumb without the OH was also scanned. The two types of point cloud data scanned were aligned and processed to recover the shape and position of the thumb.
- Session 2. In order to avoid the collision between the thumb metacarpophalangeal articulation and the handle surface during operation, more space was needed around the purlicue. Clay modeling was used to create the physical interface between the handle and the purlicue. The molded clay around the blanks exposed was intended to create interaction surfaces of the prototype, and each volunteer created two clay sculptures with the grip posture in the power grasp and stretch positions. The clay sculptures were scanned to convert physical models to point cloud data, and the interfaces between the purlicue and the handle were obtained.
- Session 3. A new prototype based on the OH was designed to establish the position of the activation button for coagulation, which was manipulated by the index finger when the handle was power grasped. The prototype included a vernier caliper connected to the functional button, which was able to move with the position of the index finger. Each volunteer was required to hold the prototype and place the index finger in a comfortable position pressing the button. Two types of models were captured, the gripping posture with the prototype and the shape of the index finger without the prototype. The two scans were aligned and processed to recover the shape and position of the index finger. In addition, the reading of the vernier caliper indicated the distance the button needed to move, which was recorded to identify the appropriate position of the activation button.
2.2. Description of the Evaluated Tool Design
2.3. Volunteers Taking Part in the Assessment
2.4. Task Description
2.5. Objective Survey
2.6. Subjective Survey
2.7. Statistical Analysis
3. Results
3.1. Objective Survey
3.2. Subjective Survey
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berguer, R.; Forkey, D.; Smith, W. Ergonomic problems associated with laparoscopic surgery. Surg. Endosc. 1999, 13, 466–468. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.T.; Ho, H.S.; Smith, W.D.; Philipps, C.; Lewis, C.; De Vera, R.M.; Berguer, R. An ergonomic evaluation of surgeons’ axial skeletal and upper extremity movements during laparoscopic and open surgery. Am. J. Surg. 2001, 182, 720–724. [Google Scholar] [CrossRef]
- Uhrich, M.L.; Underwood, R.A.; Standeven, J.W.; Soper, N.J.; Engsberg, J.R. Assessment of fatigue, monitor placement, and surgical experience during simulated laparoscopic surgery. Surg. Endosc. 2002, 16, 635–639. [Google Scholar] [CrossRef] [PubMed]
- Raymond, T.M.; Dastur, J.K.; Khot, U.P.; Parker, M.C. Hospital stay and return to full activity following laparoscopic colorectal surgery. JSLS 2008, 12, 143. [Google Scholar] [PubMed]
- Sancibrian, R.; Gutierrez-Diez, M.C.; Torre-Ferrero, C.; Benito-Gonzalez, M.A.; Redondo-Figuero, C.; Manuel-Palazuelos, J.C. Design and evaluation of a new ergonomic handle for instruments in minimally invasive surgery. J. Surg. Res. 2014, 188, 88–99. [Google Scholar] [CrossRef]
- González, A.G.; Barrios-Muriel, J.; Romero-Sanchez, F.; Salgado, D.R.; Alonso, F.J. Ergonomic assessment of a new hand tool design for laparoscopic surgery based on surgeons’ muscular activity. Appl. Ergon. 2020, 88, 103161. [Google Scholar] [CrossRef]
- Sancibrian, R.; Redondo-Figuero, C.; Gutierrez-Diez, M.C.; Sarabia, E.G.; Benito-Gonzalez, M.A.; Manuel-Palazuelos, J.C. An Ergonomic Handle Design for Instruments in Laparoscopic Surgery. Int. J. Biol. Biomed. Eng. 2016, 10, 242–247. [Google Scholar]
- Sreekanth, M.P.; Ranganathan, R.; Pugalendhi, A. Individual customization strategy accomplished by developing prototype of a laparoscopic forceps handle using additive manufacturing. Rapid Prototyp. J. 2020, 26, 689–697. [Google Scholar] [CrossRef]
- Li, Z.; Wang, G.; Tan, J.; Sun, X.; Lin, H.; Zhu, S. Building a framework for ergonomic research on laparoscopic instrument handles. Int. J. Surg. 2016, 30, 74–82. [Google Scholar] [CrossRef]
- Kano, N.; Yamakawa, T.; Kasugai, H. Laparoscopic surgeon’s thumb. Arch. Surg. 1993, 128, 1172. [Google Scholar] [CrossRef]
- Horgan, L.; O’riordan, D.; Doctor, N. Neuropraxia following laparoscopic procedures: An occupational injury. Minim. Invasive Ther. Allied Technol. 1997, 6, 33–35. [Google Scholar] [CrossRef]
- Berguer, R.; Rab, G.T.; Abu-Ghaida, H.; Alarcon, A.; Chung, J. A comparison of surgeons’ posture during laparoscopic and open surgical procedures. Surg. Endosc. 1997, 11, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Berguer, R.; Chen, J.; Smith, W.D. A comparison of the physical effort required for laparoscopic and open surgical techniques. Arch. Surg. 2003, 138, 967–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, M.E.; Ramirez, P.T.; Munsell, M.F.; Greer, M.; Burke, W.M.; Naumann, W.T.; Frumovitz, M. Physician pain and discomfort during minimally invasive gynecologic cancer surgery. Gynecol. Oncol. 2014, 134, 243–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalager, T.; Søgaard, K.; Bech, K.T.; Mogensen, O.; Jensen, P.T. Musculoskeletal pain among surgeons performing minimally invasive surgery: A systematic review. Surg. Endosc. 2017, 31, 516–526. [Google Scholar] [CrossRef] [PubMed]
- Veelen, M.A.; Meijer, D.W.; Goossens, R.H.; Snijders, C.J.; Jakimowicz, J.J. Improved usability of a new handle design for laparoscopic dissection forceps. Surg. Endosc. 2002, 16, 201–207. [Google Scholar] [CrossRef]
- Van Veelen, M.; Meijer, D. Ergonomics and design of laparoscopic instruments: Results of a survey among laparoscopic surgeons. J. Laparoendosc. Adv. Surg. Tech. A 1999, 9, 481–489. [Google Scholar] [CrossRef]
- Berguer, R.; Gerber, S.; Kilpatrick, G.; Remler, M.; Beckley, D. A comparison of forearm and thumb muscle electromyographic responses to the use of laparoscopic instruments with either a finger grasp or a palm grasp. Ergonomics 1999, 42, 1634–1645. [Google Scholar] [CrossRef]
- Seagull, F.J. Disparities between industrial and surgical ergonomics. Work 2012, 41 (Suppl. S1), 4669–4672. [Google Scholar] [CrossRef] [Green Version]
- Park, A.; Lee, G.; Seagull, F.J.; Meenaghan, N.; Dexter, D. Patients benefit while surgeons suffer: An impending epidemic. J. Am. Coll. Surg. 2010, 210, 306–313. [Google Scholar] [CrossRef]
- Bisht, D.S.; Khan, M.R. A novel anatomical woodworking chisel handle. Appl. Ergon. 2019, 76, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Shimomura, Y.; Minowa, K.; Kawahira, H.; Katsuura, T. Ergonomic design and evaluation of the handle for an endoscopic dissector. Ergonomics 2016, 59, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Sancibrian, R.; Redondo-Figuero, C.; Gutierrez-Diez, M.C.; Gonzalez-Sarabia, E.; Manuel-Palazuelos, J.C. Ergonomic evaluation and performance of a new handle for laparoscopic tools in surgery. Appl. Ergon. 2020, 89, 103210. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.G.l.; Salgado, D.R.G.; Moruno, L.G.A. Optimisation of a laparoscopic tool handle dimension based on ergonomic analysis. Int. J. Ind. Ergon. 2015, 48, 16–24. [Google Scholar] [CrossRef]
- González, A.G.l.; Salgado, D.R.g.; Moruno, L.G.a.; Ríos, A.S.n. An Ergonomic Customized-Tool Handle Design for Precision Tools using Additive Manufacturing: A Case Study. Appl. Sci. 2018, 8, 1200. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Margallo, J.A.; González, A.G.L.; Moruno, L.G.A.; Gómez-Blanco, J.C.; Pagador, J.B.; Sánchez-Margallo, F.M. Comparative Study of the Use of Different Sizes of an Ergonomic Instrument Handle for Laparoscopic Surgery. Appl. Sci. 2020, 10, 1526. [Google Scholar] [CrossRef] [Green Version]
- Griffin, L.; Kim, N.; Carufel, R.; Sokolowski, S.; Lee, H.; Seifert, E. Dimensions of the Dynamic Hand: Implications for Glove Design, Fit, and Sizing. In International Conference on Applied Human Factors and Ergonomics; Springer: Cham, Switzerland, 2018; pp. 38–48. [Google Scholar]
- Jones, H.; Roudaut, A.; Chatzimichali, A.; Potter, K.; Ward, C. The Dibber: Designing a standardised handheld tool for lay-up tasks. Appl. Ergon. 2017, 65, 240–254. [Google Scholar] [CrossRef] [Green Version]
- Sanders, M.S.; McCormick, E.J. Human factors in engineering and design. Ind. Robot 1998, 25, 153. [Google Scholar] [CrossRef]
- Van der Zee, D.; Bax, N. Digital nerve compression due to laparoscopic surgery. Surg. Endosc. 1995, 9, 740. [Google Scholar] [CrossRef]
- Horeman, T.; Kment, C.; Kerkhoffs, G.M.M.J.; Tuijthof, G.J.M. Design and stepwise user evaluation of an ergonomic 2 DOF arthroscopic cutter. Cogent Eng. 2017, 4, 1410996. [Google Scholar] [CrossRef]
- Pokorny, C.; Juhnke, B.; Griffin, L. A Visible Functional Grasp to Measure the Complete Hand. In AHFE; Springer: Cham, Switzerland, 2020; pp. 589–596. [Google Scholar]
- Griffin, L.; Sokolowski, S.L.; Seifert, E. Process Considerations in 3D Hand Anthropometric Data Collection. In Proceedings of the 9th International Conference and Exhibition on 3D Body Scanning and Processing Technologies, Lugano, Switzerland, 6–17 October 2018; pp. 121–130. [Google Scholar]
- Yu, A.; Yick, K.L.; Ng, S.P.; Yip, J. 2D and 3D anatomical analyses of hand dimensions for custom-made gloves. Appl. Ergon. 2013, 44, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.H.; Wang, I.J.; Sun, J.R.; Liu, C.H. Customized designs of short thumb orthoses using 3D hand parametric models. Assist. Technol. 2022, 34, 104–111. [Google Scholar] [CrossRef] [PubMed]
- González, A.G.; Sanz-Calcedo, J.G.a.; López, O.; Salgado, D.R.; Cambero, I.; Herrera, J.M. Guide design of precision tool handle based on ergonomics criteria using parametric CAD software. Procedia Eng. 2015, 132, 1014–1020. [Google Scholar] [CrossRef] [Green Version]
- Matern, U.; Waller, P. Instruments for minimally invasive surgery. Surg. Endosc. 1999, 13, 174–182. [Google Scholar] [CrossRef]
- Steinhilber, B.; Seibt, R.; Reiff, F.; Rieger, M.A.; Kraemer, B.; Rothmund, R. Effect of a laparoscopic instrument with rotatable handle piece on biomechanical stress during laparoscopic procedures. Surg. Endosc. 2016, 30, 78–88. [Google Scholar] [CrossRef]
- Gilbert, C.R.; Thiboutot, J.; Mallow, C.; Chen, A.; Pastis, N.J.; Argento, A.C.; Millar, J.; Lavin, R.A.; Lerner, A.D.; Yu, D.H.; et al. Assessment of Ergonomic Strain and Positioning during Bronchoscopic Procedures: A Feasibility Study. J. Bronchol. Interv. Pulmonol. 2020, 27, 58–67. [Google Scholar] [CrossRef]
- Buchel, D.; Marvik, R.; Hallabrin, B.; Matern, U. Ergonomics of disposable handles for minimally invasive surgery. Surg. Endosc. 2010, 24, 992–1004. [Google Scholar] [CrossRef]
- Tung, K.D.; Shorti, R.M.; Downey, E.C.; Bloswick, D.S.; Merryweather, A.S. The effect of ergonomic laparoscopic tool handle design on performance and efficiency. Surg. Endosc. 2015, 29, 2500–2505. [Google Scholar] [CrossRef]
- Van Veelen, M.; Meijer, D.; Goossens, R.; Snijders, C. New ergonomic design criteria for handles of laparoscopic dissection forceps. J. Laparoendosc. Adv. Surg. Tech. A 2001, 11, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Matern, U.; Eichenlaub, M.; Waller, P.; Rückauer, K.-D. MIS instruments. Surg. Endosc. 1999, 13, 756–762. [Google Scholar] [CrossRef]
- Fransson-Hall, C.; Kilbom, Å. Sensitivity of the hand to surface pressure. Appl. Ergon. 1993, 24, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Delleman, N.; Boocock, M.; Kapitaniak, B.; Schaefer, P.; Schaub, K. ISO/FDIS 11226: Evaluation of static working postures. In Human Factors and Ergonomics Society Annual Meeting; SAGE Publications SAGE CA: Los Angeles, CA, USA, 2020. [Google Scholar]
- Matern, U. Principles of ergonomic instrument handles. Minim. Invasive Ther. Allied Technol. 2001, 10, 169–173. [Google Scholar] [CrossRef] [PubMed]
- ISO 11193-1; Single-Use Medical Examination Gloves—Part 1: Specification for Gloves Made from Rubber Latex or Rubber Solution. ISO: Geneva, Switzerland, 2008.
- Kim, E.; Aqlan, F.; Freivalds, A. Development of an ergonomic four-finger-push manual pipette design. Appl. Ergon. 2020, 85, 103045. [Google Scholar] [CrossRef] [PubMed]
- SueHignett; McAtamney, L. Rapid Entire Body Assessment (REBA). Appl. Ergon. 2000, 31, 201–205. [Google Scholar] [CrossRef] [PubMed]
- ISO 11228-3; Ergonomics-Manual Handling-Part 3: Handling of Low Loads at High Frequency. International Organization for Standardization: Geneva, Switzerland, 2009.
- Berguer, R. Surgical technology and the ergonomics of laparoscopic instruments. Surg. Endosc. 1998, 12, 458–462. [Google Scholar] [CrossRef]
- Perez-Duarte, F.J.; Lucas-Hernandez, M.; Matos-Azevedo, A.; Sanchez-Margallo, J.A.; Diaz-Guemes, I.; Sanchez-Margallo, F.M. Objective analysis of surgeons’ ergonomy during laparoendoscopic single-site surgery through the use of surface electromyography and a motion capture data glove. Surg. Endosc. 2014, 28, 1314–1320. [Google Scholar] [CrossRef]
Variable (n = 21) | Mean | SD | Minimum | Maximum |
---|---|---|---|---|
Age (years) | 23.0 | 1.9 | 19.0 | 27.0 |
Height (cm) | 173.9 | 5.7 | 167.0 | 185.0 |
Weight (kg) | 67.9 | 10.3 | 55.0 | 87.0 |
Hand length (mm) | 190.7 | 7.2 | 180.6 | 204.6 |
Hand circumference (mm) | 194.1 | 0.9 | 186.5 | 206.0 |
Glove size | 7.4 | 0.2 | 7.0 | 7.5 |
Variables | Surgeons | Novices | ||
---|---|---|---|---|
Mean | SD | Mean | SD | |
Age (years) | 28.142 | 3.900 | 25.000 | 3.864 |
Height (cm) | 169.429 | 8.355 | 169.434 | 8.594 |
Weight (kg) | 64.750 | 11.869 | 62.563 | 13.256 |
Hand length (mm) | 186.817 | 11.514 | 186.358 | 11.015 |
Hand breadth (mm) | 79.323 | 5.075 | 79.651 | 6.735 |
Palm length (mm) | 109.3281 | 7.774 | 106.271 | 7.814 |
Hand thickness (mm) | 27.621 | 3.115 | 27.429 | 2.499 |
Hand circumference (mm) | 188.214 | 12.330 | 175.806 | 43.035 |
Wrist circumference (mm) | 155.643 | 11.230 | 135.173 | 48.735 |
Medical examination glove size | 7.180 | 0.460 | 7.250 | 0.500 |
Variables | OH | IH | CH | F | p | Limit | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | REBA | ISO 11226 | ISO 11228 | |||
G1 | 12.134 | 8.125 | 12.823 | 8.523 | 12.874 | 8.138 | 75.988 | 0.000 ** | 15 | 90 | 40 |
G2 | 11.703 | 8.454 | 11.799 | 8.189 | 12.596 | 8.359 | 89.004 | 0.000 ** | 15 | 90 | 45 |
G3 | 9.397 | 6.206 | 9.033 | 5.939 | 9.380 | 5.898 | 40.831 | 0.000 ** | n/a | 30 | n/a |
G4 | 8.832 | 5.915 | 8.689 | 5.808 | 9.204 | 6.157 | 33.444 | 0.000 ** | n/a | 20 | n/a |
G5 | 9.511 | 6.712 | 9.529 | 6.663 | 10.036 | 6.913 | 79.050 | 0.000 ** | n/a | 90 | n/a |
G6 | 4.180 | 3.234 | 4.087 | 3.443 | 4.543 | 3.534 | 58.582 | 0.000 ** | n/a | 60 | n/a |
G7 | 6.236 | 4.879 | 6.351 | 4.758 | 6.407 | 4.944 | 8.005 | 0.000 ** | n/a | 60 | n/a |
G8 | 7.095 | 5.578 | 6.479 | 5.539 | 8.026 | 5.736 | 555.962 | 0.000 ** | n/a | 0 | n/a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Jiang, R.; Wang, H. Ergonomic Design and Assessment of an Improved Handle for a Laparoscopic Dissector Based on 3D Anthropometry. Int. J. Environ. Res. Public Health 2023, 20, 2361. https://doi.org/10.3390/ijerph20032361
Du Y, Jiang R, Wang H. Ergonomic Design and Assessment of an Improved Handle for a Laparoscopic Dissector Based on 3D Anthropometry. International Journal of Environmental Research and Public Health. 2023; 20(3):2361. https://doi.org/10.3390/ijerph20032361
Chicago/Turabian StyleDu, Yujia, Rui Jiang, and Haining Wang. 2023. "Ergonomic Design and Assessment of an Improved Handle for a Laparoscopic Dissector Based on 3D Anthropometry" International Journal of Environmental Research and Public Health 20, no. 3: 2361. https://doi.org/10.3390/ijerph20032361
APA StyleDu, Y., Jiang, R., & Wang, H. (2023). Ergonomic Design and Assessment of an Improved Handle for a Laparoscopic Dissector Based on 3D Anthropometry. International Journal of Environmental Research and Public Health, 20(3), 2361. https://doi.org/10.3390/ijerph20032361