SGLT2 Inhibitors: The Next Blockbuster Multifaceted Drug?
Abstract
:1. Introduction
2. Sodium Glucose Cotransporter 2 Inhibitor Trials in Type 2 Diabetes
3. Sodium Glucose Cotransporter 2 Inhibitor Trials in Cardiovascular Disease
4. Sodium Glucose Cotransporter 2 Inhibitor Trials in Renal Disease
5. Comparing SGLT2 Inhibitors and GLP-1 Receptor Agonists
5.1. SGLT2 Inhibitor Mechanism of Action
5.2. GLP-1 Receptor Agonist Mechanism of Action
5.3. Bodyweight and HbA1c Reductions
5.4. Major Adverse Cardiovascular Events
5.5. Heart Failure
5.6. Renal Benefits
5.7. Combination Therapy of SGLT2 Inhibitors and GLP-1 Receptor Agonists
- SGLT2i reduce hospitalization for heart failure;
- GLP-1 receptor agonists reduce stroke;
- GLP-1 receptor agonists are indicated in bodyweight loss;
- SGLT2i are oral medications, while semaglutide is the only GLP-1 receptor agonist available in oral formulation.
6. Adverse Effects of SGLT2 Inhibitors
6.1. Urinary Tract Infections
6.2. Genital Mycotic Infection
6.3. Volume Depletion
6.4. Diabetic Ketoacidosis
6.5. Hypoglycemia
6.6. Reduction in Estimated Glomerular Filtration Rate
6.7. When to Hold SGLT2 Inhibitor
7. Initiating SGLT2 Inhibitors for Diabetes, Cardiovascular Disease, and Renal Disease
7.1. SGLT2i for Type 2 Diabetes
7.2. SGLT2i for Cardiovascular Disease
7.3. SGLT2i for Renal Disease
8. Current Barriers to SGLT2 Inhibitor Initiation
9. Discussion
10. Conclusions
- Patients with type 2 diabetes;
- Heart failure patients with any ejection fraction;
- Patients with chronic kidney disease.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Di Angelantonio, E.; Kaptoge, S.; Wormser, D.; Willeit, P.; Butterworth, A.S.; Bansal, N.; O’Keeffe, L.M.; Gao, P.; Wood, A.M.; Burgess, S.; et al. Association of Cardiometabolic Multimorbidity With Mortality. JAMA 2015, 314, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoodi, B.K.; Matsushita, K.; Woodward, M.; Blankestijn, P.J.; Cirillo, M.; Ohkubo, T.; Rossing, P.; Sarnak, M.J.; Stengel, B.; Yamagishi, K.; et al. Associations of Kidney Disease Measures with Mortality and End-Stage Renal Disease in Individuals with and without Hypertension: A Meta-Analysis. Lancet 2012, 380, 1649–1661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehrenkranz, J.R.L.; Lewis, N.G.; Kahn, C.R.; Roth, J. Phlorizin: A Review. Diabetes Metab. Res. Rev. 2005, 21, 31–38. [Google Scholar] [CrossRef] [PubMed]
- McDonald, M.; Virani, S.; Chan, M.; Ducharme, A.; Ezekowitz, J.A.; Giannetti, N.; Heckman, G.A.; Howlett, J.G.; Koshman, S.L.; Lepage, S.; et al. CCS/CHFS Heart Failure Guidelines Update: Defining a New Pharmacologic Standard of Care for Heart Failure with Reduced Ejection Fraction. Can. J. Cardiol. 2021, 37, 531–546. [Google Scholar] [CrossRef]
- Zinman, B.; Wanner, C.; Lachin, J.M.; Fitchett, D.; Bluhmki, E.; Hantel, S.; Mattheus, M.; Devins, T.; Johansen, O.E.; Woerle, H.J.; et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N. Engl. J. Med. 2015, 373, 2117–2128. [Google Scholar] [CrossRef] [Green Version]
- Rådholm, K.; Figtree, G.; Perkovic, V.; Solomon, S.D.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Barrett, T.D.; Shaw, W.; Desai, M.; et al. Canagliflozin and Heart Failure in Type 2 Diabetes Mellitus: Results from the CANVAS Program. Circulation 2018, 138, 458–468. [Google Scholar] [CrossRef] [Green Version]
- Neal, B.; Perkovic, V.; Matthews, D.R.; Mahaffey, K.W.; Fulcher, G.; Meininger, G.; Erondu, N.; Desai, M.; Shaw, W.; Vercruysse, F.; et al. Rationale, Design and Baseline Characteristics of the CANagliflozin CardioVascular Assessment Study–Renal (CANVAS-R): A Randomized, Placebo-controlled Trial. Diabetes Obes. Metab. 2017, 19, 387–393. [Google Scholar] [CrossRef] [Green Version]
- Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Bansilal, S.; Bhatt, D.L.; Leiter, L.A.; et al. The Design and Rationale for the Dapagliflozin Effect on Cardiovascular Events (DECLARE)–TIMI 58 Trial. Am. Heart J. 2018, 200, 83–89. [Google Scholar] [CrossRef]
- Wiviott, S.D.; Raz, I.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Silverman, M.G.; Zelniker, T.A.; Kuder, J.F.; Murphy, S.A.; et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2019, 380, 347–357. [Google Scholar] [CrossRef]
- Zelniker, T.A.; Wiviott, S.D.; Raz, I.; Im, K.; Goodrich, E.L.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; Furtado, R.H.M.; et al. SGLT2 Inhibitors for Primary and Secondary Prevention of Cardiovascular and Renal Outcomes in Type 2 Diabetes: A Systematic Review and Meta-Analysis of Cardiovascular Outcome Trials. Lancet 2019, 393, 31–39. [Google Scholar] [CrossRef]
- Neal, B.; Perkovic, V.; Mahaffey, K.W.; de Zeeuw, D.; Fulcher, G.; Erondu, N.; Shaw, W.; Law, G.; Desai, M.; Matthews, D.R. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N. Engl. J. Med. 2017, 377, 644–657. [Google Scholar] [CrossRef]
- Cannon, C.P.; Pratley, R.; Dagogo-Jack, S.; Mancuso, J.; Huyck, S.; Masiukiewicz, U.; Charbonnel, B.; Frederich, R.; Gallo, S.; Cosentino, F.; et al. Cardiovascular Outcomes with Ertugliflozin in Type 2 Diabetes. N. Engl. J. Med. 2020, 383, 1425–1435. [Google Scholar] [CrossRef]
- McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand, I.S.; Bělohlávek, J.; et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2019, 381, 1995–2008. [Google Scholar] [CrossRef] [Green Version]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M.; et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N. Engl. J. Med. 2020, 383, 1413–1424. [Google Scholar] [CrossRef]
- Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Böhm, M.; Brunner–La Rocca, H.-P.; Choi, D.-J.; Chopra, V.; Chuquiure-Valenzuela, E.; et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N. Engl. J. Med. 2021, 385, 1451–1461. [Google Scholar] [CrossRef]
- Bhatt, D.L.; Szarek, M.; Steg, P.G.; Cannon, C.P.; Leiter, L.A.; McGuire, D.K.; Lewis, J.B.; Riddle, M.C.; Voors, A.A.; Metra, M.; et al. Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure. N. Engl. J. Med. 2020, 384, 117–128. [Google Scholar] [CrossRef]
- Docherty, K.F.; McMurray, J.J.V. SOLOIST-WHF and Updated Meta-analysis: Sodium–Glucose Co-transporter 2 Inhibitors Should Be Initiated in Patients Hospitalized with Worsening Heart Failure. Eur. J. Heart Fail. 2021, 23, 27–30. [Google Scholar] [CrossRef]
- Voors, A.A.; Angermann, C.E.; Teerlink, J.R.; Collins, S.P.; Kosiborod, M.; Biegus, J.; Ferreira, J.P.; Nassif, M.E.; Psotka, M.A.; Tromp, J.; et al. The SGLT2 Inhibitor Empagliflozin in Patients Hospitalized for Acute Heart Failure: A Multinational Randomized Trial. Nat. Med. 2022, 28, 568–574. [Google Scholar] [CrossRef]
- Solomon, S.D.; McMurray, J.J.V.; Claggett, B.; de Boer, R.A.; DeMets, D.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.; et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N. Engl. J. Med. 2022, 387, 1089–1098. [Google Scholar] [CrossRef]
- Jhund, P.S.; Kondo, T.; Butt, J.H.; Docherty, K.F.; Claggett, B.L.; Desai, A.S.; Vaduganathan, M.; Gasparyan, S.B.; Bengtsson, O.; Lindholm, D.; et al. Dapagliflozin across the Range of Ejection Fraction in Patients with Heart Failure: A Patient-Level, Pooled Meta-Analysis of DAPA-HF and DELIVER. Nat. Med. 2022, 28, 1956–1964. [Google Scholar] [CrossRef]
- Perkovic, V.; Jardine, M.J.; Neal, B.; Bompoint, S.; Heerspink, H.J.L.; Charytan, D.M.; Edwards, R.; Agarwal, R.; Bakris, G.; Bull, S.; et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N. Engl. J. Med. 2019, 380, 2295–2306. [Google Scholar] [CrossRef] [Green Version]
- Heerspink, H.J.L.; Stefánsson, B.V.; Correa-Rotter, R.; Chertow, G.M.; Greene, T.; Hou, F.-F.; Mann, J.F.E.; McMurray, J.J.V.; Lindberg, M.; Rossing, P.; et al. Dapagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2020, 383, 1436–1446. [Google Scholar] [CrossRef]
- Brenner, B.M.; Mitch, W.E.; Zhang, Z. Effects of Losartan on Renal and Cardiovascular Outcomes in Patients with Type 2 Diabetes and Nephropathy. N. Engl. J. Med. 2001, 345, 861–869. [Google Scholar] [CrossRef] [Green Version]
- The EMPA-KIDNEY Collaborative Group. Empagliflozin in Patients with Chronic Kidney Disease. N. Engl. J. Med. 2022, 388, 117–127. [Google Scholar] [CrossRef]
- Gallo, L.A.; Wright, E.M.; Vallon, V. Probing SGLT2 as a Therapeutic Target for Diabetes: Basic Physiology and Consequences. Diabetes Vasc. Dis. Res. 2015, 12, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Lopaschuk, G.D.; Verma, S. Mechanisms of Cardiovascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors. JACC Basic Transl. Sci. 2020, 5, 632–644. [Google Scholar] [CrossRef]
- Bailey, C.J.; Day, C.; Bellary, S. Renal Protection with SGLT2 Inhibitors: Effects in Acute and Chronic Kidney Disease. Curr. Diabetes Rep. 2022, 22, 39–52. [Google Scholar] [CrossRef]
- Fonseca-Correa, J.I.; Correa-Rotter, R. Sodium-Glucose Cotransporter 2 Inhibitors Mechanisms of Action: A Review. Front. Med. 2021, 8, 777861. [Google Scholar] [CrossRef]
- Drucker, D.J. Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1. Cell Metab. 2018, 27, 740–756. [Google Scholar] [CrossRef] [Green Version]
- Drucker, D.J. The Cardiovascular Biology of Glucagon-like Peptide-1. Cell Metab. 2016, 24, 15–30. [Google Scholar] [CrossRef]
- Cameron-Vendrig, A.; Reheman, A.; Siraj, M.A.; Xu, X.R.; Wang, Y.; Lei, X.; Afroze, T.; Shikatani, E.; El-Mounayri, O.; Noyan, H.; et al. Glucagon-Like Peptide 1 Receptor Activation Attenuates Platelet Aggregation and Thrombosis. Diabetes 2016, 65, 1714–1723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherney, D.Z.I.; Udell, J.A.; Drucker, D.J. Cardiorenal Mechanisms of Action of Glucagon-like-Peptide-1 Receptor Agonists and Sodium-Glucose Cotransporter 2 Inhibitors. Med 2021, 2, 1203–1230. [Google Scholar] [CrossRef]
- Frías, J.P.; Guja, C.; Hardy, E.; Ahmed, A.; Dong, F.; Öhman, P.; Jabbour, S.A. Exenatide Once Weekly plus Dapagliflozin Once Daily versus Exenatide or Dapagliflozin Alone in Patients with Type 2 Diabetes Inadequately Controlled with Metformin Monotherapy (DURATION-8): A 28 Week, Multicentre, Double-Blind, Phase 3, Randomised Controlled Trial. Lancet Diabetes Endocrinol. 2016, 4, 1004–1016. [Google Scholar] [CrossRef] [PubMed]
- Lingvay, I.; Catarig, A.-M.; Frias, J.P.; Kumar, H.; Lausvig, N.L.; le Roux, C.W.; Thielke, D.; Viljoen, A.; McCrimmon, R.J. Efficacy and Safety of Once-Weekly Semaglutide versus Daily Canagliflozin as Add-on to Metformin in Patients with Type 2 Diabetes (SUSTAIN 8): A Double-Blind, Phase 3b, Randomised Controlled Trial. Lancet Diabetes Endocrinol. 2019, 7, 834–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodbard, H.W.; Rosenstock, J.; Canani, L.H.; Deerochanawong, C.; Gumprecht, J.; Lindberg, S.Ø.; Lingvay, I.; Søndergaard, A.L.; Treppendahl, M.B.; Montanya, E. Oral Semaglutide Versus Empagliflozin in Patients with Type 2 Diabetes Uncontrolled on Metformin: The PIONEER 2 Trial. Diabetes Care 2019, 42, 2272–2281. [Google Scholar] [CrossRef] [Green Version]
- Zelniker, T.A.; Wiviott, S.D.; Raz, I.; Im, K.; Goodrich, E.L.; Furtado, R.H.M.; Bonaca, M.P.; Mosenzon, O.; Kato, E.T.; Cahn, A.; et al. Comparison of the Effects of Glucagon-Like Peptide Receptor Agonists and Sodium-Glucose Cotransporter 2 Inhibitors for Prevention of Major Adverse Cardiovascular and Renal Outcomes in Type 2 Diabetes Mellitus. Circulation 2019, 139, 2022–2031. [Google Scholar] [CrossRef]
- Li, C.; Luo, J.; Jiang, M.; Wang, K. The Efficacy and Safety of the Combination Therapy With GLP-1 Receptor Agonists and SGLT-2 Inhibitors in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2022, 13, 838277. [Google Scholar] [CrossRef]
- Puckrin, R.; Saltiel, M.-P.; Reynier, P.; Azoulay, L.; Yu, O.H.Y.; Filion, K.B. SGLT-2 Inhibitors and the Risk of Infections: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Acta Diabetol. 2018, 55, 503–514. [Google Scholar] [CrossRef]
- Hirji, I.; Guo, Z.; Andersson, S.W.; Hammar, N.; Gomez-Caminero, A. Incidence of Urinary Tract Infection among Patients with Type 2 Diabetes in the UK General Practice Research Database (GPRD). J. Diabetes Complicat. 2012, 26, 513–516. [Google Scholar] [CrossRef] [PubMed]
- McGill, J.B.; Subramanian, S. Safety of Sodium-Glucose Co-Transporter 2 Inhibitors. Am. J. Med. 2019, 132, S49–S57.e5. [Google Scholar] [CrossRef] [Green Version]
- O’Meara, E.; McDonald, M.; Chan, M.; Ducharme, A.; Ezekowitz, J.A.; Giannetti, N.; Grzeslo, A.; Heckman, G.A.; Howlett, J.G.; Koshman, S.L.; et al. CCS/CHFS Heart Failure Guidelines: Clinical Trial Update on Functional Mitral Regurgitation, SGLT2 Inhibitors, ARNI in HFpEF, and Tafamidis in Amyloidosis. Can. J. Cardiol. 2020, 36, 159–169. [Google Scholar] [CrossRef] [Green Version]
- Fitchett, D. A Safety Update on Sodium Glucose Co-Transporter 2 Inhibitors. Diabetes Obes. Metab. 2019, 21 (Suppl. S2), 34–42. [Google Scholar] [CrossRef] [Green Version]
- Wanner, C.; Inzucchi, S.E.; Lachin, J.M.; Fitchett, D.; von Eynatten, M.; Mattheus, M.; Johansen, O.E.; Woerle, H.J.; Broedl, U.C.; Zinman, B. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N. Engl. J. Med. 2016, 375, 323–334. [Google Scholar] [CrossRef]
- Vardeny, O.; Vaduganathan, M. Practical Guide to Prescribing Sodium-Glucose Cotransporter 2 Inhibitors for Cardiologists. JACC Heart Fail. 2019, 7, 169–172. [Google Scholar] [CrossRef]
- Petrie, M.C.; Verma, S.; Docherty, K.F.; Inzucchi, S.E.; Anand, I.; Belohlávek, J.; Böhm, M.; Chiang, C.-E.; Chopra, V.K.; de Boer, R.A.; et al. Effect of Dapagliflozin on Worsening Heart Failure and Cardiovascular Death in Patients with Heart Failure with and Without Diabetes. JAMA 2020, 323, 1353–1368. [Google Scholar] [CrossRef] [PubMed]
- Marx, N.; Grant, P.J.; Cosentino, F. Compelling Evidence for SGLT2 Inhibitors and GLP-1 Receptor Agonists as First-Line Therapy in Patients with Diabetes at Very High/High Cardiovascular Risk. Eur. Heart J. 2020, 41, 329–330. [Google Scholar] [CrossRef] [PubMed]
- Woo, V.C.; Berard, L.D.; Bajaj, H.S.; Ekoé, J.-M.; Senior, P.A. Considerations for Initiating a Sodium-Glucose Co-Transporter 2 Inhibitor in Adults with Type 2 Diabetes Using Insulin. Can. J. Diabetes 2018, 42, 88–93. [Google Scholar] [CrossRef] [Green Version]
- de Boer, I.H.; Caramori, M.L.; Chan, J.C.N.; Heerspink, H.J.L.; Hurst, C.; Khunti, K.; Liew, A.; Michos, E.D.; Navaneethan, S.D.; Olowu, W.A.; et al. KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2020, 98, S1–S115. [Google Scholar] [CrossRef] [PubMed]
- Hao, R.; Myroniuk, T.; McGuckin, T.; Manca, D.; Campbell-Scherer, D.; Lau, D.; Yeung, R.O. Underuse of Cardiorenal Protective Agents in High-Risk Diabetes Patients in Primary Care: A Cross-Sectional Study. BMC Prim. Care 2022, 23, 124. [Google Scholar] [CrossRef] [PubMed]
- McCoy, R.G.; Dykhoff, H.J.; Sangaralingham, L.; Ross, J.S.; Karaca-Mandic, P.; Montori, V.M.; Shah, N.D. Adoption of New Glucose-Lowering Medications in the U.S.—The Case of SGLT2 Inhibitors: Nationwide Cohort Study. Diabetes Technol. Ther. 2019, 21, 702–712. [Google Scholar] [CrossRef]
- Campbell, D.B.; Campbell, D.J.T.; Au, F.; Beall, R.F.; Ronksley, P.E.; Chew, D.S.; Ogundeji, Y.; Manns, B.J.; Hemmelgarn, B.R.; Tonelli, M.; et al. Patterns and Patients’ Characteristics Associated with Use of Sodium/Glucose Cotransporter 2 Inhibitors Among Adults with Type 2 Diabetes: A Population-Based Cohort Study. Can. J. Diabetes 2022, 47, 58–65.e2. [Google Scholar] [CrossRef] [PubMed]
- Korayem, G.B.; Alshaya, O.A.; Alghamdi, A.A.; Alanazi, S.S.; Almutib, R.T.; Alsaileek, M.; Alrashidi, A.; Aldosari, N.; Bin Sheraim, N.; Al Yami, M.S.; et al. The Prescribing Pattern of Sodium-Glucose Cotransporter-2 Inhibitors and Glucagon-like Peptide-1 Receptor Agonists in Patient with Type Two Diabetes Mellitus: A Two-Center Retrospective Cross-Sectional Study. Front. Public Health 2022, 10, 4092. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, R.; Jha, K.; Dardari, Z.; Heyward, J.; Blumenthal, R.S.; Eckel, R.H.; Alexander, G.C.; Blaha, M.J. National Trends in Use of Sodium-Glucose Cotransporter-2 Inhibitors and Glucagon-like Peptide-1 Receptor Agonists by Cardiologists and Other Specialties, 2015 to 2020. J. Am. Heart Assoc. 2022, 11, e023811. [Google Scholar] [CrossRef]
- Choi, J.G.; Winn, A.N.; Skandari, M.R.; Franco, M.I.; Staab, E.M.; Alexander, J.; Wan, W.; Zhu, M.; Huang, E.S.; Philipson, L.; et al. First-Line Therapy for Type 2 Diabetes with Sodium–Glucose Cotransporter-2 Inhibitors and Glucagon-Like Peptide-1 Receptor Agonists. Ann. Intern. Med. 2022, 175, 1392–1400. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.C.H.; Chan, M.C.Y. Novel Drugs for Diabetes Also Have Dramatic Benefits on Hard Outcomes of Heart and Kidney Disease. Curr. Cardiol. Rev. 2022, 18, e110522204572. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e895–e1032. [Google Scholar] [CrossRef]
- KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2022, 102, S1–S127. [CrossRef]
- Type 2 Diabetes in Adults: Management; NCIE: London, UK, 2022; ISBN 978-1-4731-1477-7.
Trial (Medication) | Main Outcome HR (95% CI) (p-Value) | Key Summary |
---|---|---|
EMPA-REG OUTCOME [5] (empagliflozin 10 or 25 mg) | ↓ MACE, 0.86 (0.74–0.99) (p = 0.04) ↓ HHF ↓ All cause death | This was the first SGLT2i trial showing reduction of CV events. |
CANVAS Program [6,11] (canagliflozin 100 or 300 mg) | ↓ MACE 0.86 (0.75–0.97) (p = 0.02) | Canagliflozin reduced CV events and HHF. |
DECLARE-TIMI 58 [8] (dapagliflozin 10 mg) | ↓ CV death or HHF 0.83 (0.73–0.95) (p = 0.005) | Dapagliflozin reduced CV death and HHF. MACE was not reduced. |
VERTIS CV [12] (ertugliflozin 5 or 15 mg) | MACE 0.97 (0.75–1.03) (p < 0.001 for noninferiority) | Ertugliflozin is non-inferior to placebo in reducing MACE. |
Trial (Medication) | Main Outcome HR (95% CI) (p-Value) | Key Summary |
---|---|---|
DAPA-HF [13] (dapagliflozin 10 mg) | ↓ composite of CV death and HHF 0.74 (0.65–0.85) (p < 0.001) | Dapagliflozin reduced the risk of worsening HF or CV death in HFrEF patients, regardless of diabetic status. |
EMPEROR-Reduced [14] (empagliflozin 10 mg) | ↓ composite of CV death and HHF 0.75 (0.65–0.86) (p < 0.001) | Empagliflozin shown to reduce HHF and CV death in HFrEF, regardless of diabetic status. |
EMPEROR-Preserved [15] (empagliflozin 10 mg) | ↓ CV death or HHF 0.79 (0.69–0.90) (p < 0.001) | Empagliflozin reduced CV death or HHF in HFpEF patients. |
SOLOIST-WHF [16] (sotagliflozin 200 or 400 mg) | ↓ CV death and HHF 0.67 (0.52–0.85) (p < 0.001) | This was the first major trial of SGLT1/SGLT2 inhibitor in hospitalized patients. |
EMPULSE [18] (empagliflozin 10 mg) | ↓Death, HF events, time to first HF event, ≥5 change in KCCQ score stratified win ratio, 1.36 (1.09–1.68) (p = 0.0054) | Empagliflozin is effective and can be safely initiated in hospitalized patients. |
DELIVER [19]/Meta-analysis of DELIVER and DAPA-HF [20] (dapagliflozin 10 mg) | ↓ CV death or worsening HF 0.82 (0.73–0.92) (p < 0.001) | Patients with HF with mildly reduced or preserved ejection fraction. Dapagliflozin benefits extend to all HF patients across a whole spectrum of EF. |
Trial (Medication) | Main Outcome HR (95% CI) (p-Value) | Key Summary |
---|---|---|
CREDENCE [21] (canagliflozin 100 mg) | ↓ ESRD, doubling of sCr, renal death, or CV death 0.70 (0.59–0.82) (p = 0.00001) | CREDENCE was the first trial in more than two decades in improving kidney endpoints. |
DAPA-CKD [22] (dapagliflozin 10 mg) | ↓ Decline in eGFR, new ESRD, renal death, or CV death 0.61 (0.51–0.72) (p < 0.001) | Dapagliflozin reduced the risk of eGFR decline, ESRD, and renal or CV death in CKD patients, regardless of diabetic status. |
EMPA-KIDNEY [24] (empagliflozin 10 mg) | ↓ ESRD, decrease in eGFR, renal death or CV death 0.72 (0.64–0.82) (p < 0.001) ↓ Hospitalization 0.86 (0.78–0.95) (p = 0.003) | Empagliflozin reduced ESRD, eGFR decline, and renal or CV death in CKD patients, regardless of diabetic status. |
Medication Parameters | SGLT2i | GLP-1 RA |
---|---|---|
Benefits |
|
|
Routes of Administration |
|
|
Contraindications |
|
|
Adverse Effects |
|
|
Rare Adverse Effects |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chan, J.C.H.; Chan, M.C.Y. SGLT2 Inhibitors: The Next Blockbuster Multifaceted Drug? Medicina 2023, 59, 388. https://doi.org/10.3390/medicina59020388
Chan JCH, Chan MCY. SGLT2 Inhibitors: The Next Blockbuster Multifaceted Drug? Medicina. 2023; 59(2):388. https://doi.org/10.3390/medicina59020388
Chicago/Turabian StyleChan, Jonathan C. H., and Michael C. Y. Chan. 2023. "SGLT2 Inhibitors: The Next Blockbuster Multifaceted Drug?" Medicina 59, no. 2: 388. https://doi.org/10.3390/medicina59020388
APA StyleChan, J. C. H., & Chan, M. C. Y. (2023). SGLT2 Inhibitors: The Next Blockbuster Multifaceted Drug? Medicina, 59(2), 388. https://doi.org/10.3390/medicina59020388