Liposomes for Tumor Targeted Therapy: A Review
Abstract
:1. Introduction
2. Composition and Classification of Liposomes
3. Liposomes Preparation
3.1. Traditional Preparation Methods
3.2. Microfluidic-Assisted Formation of Liposomes
3.2.1. Microfluidic Hydrodynamic Focusing (MHF)
3.2.2. Microfluidic Vertical Flow Focusing
3.2.3. Micromixer
4. Functionalized Liposomes
4.1. Long-Circulating Liposomes
4.2. Actively Targeted Liposomes
4.2.1. Surface Modification of Liposomes with Antibodies
4.2.2. Surface Modification of Liposomes with Folic Acid
4.2.3. Surface Modification of Liposomes with Transferrin (Tf)
4.2.4. Surface Modification of Liposomes with Peptides
4.2.5. Surface Modification of Liposomes with Aptamers
4.2.6. Targeting the TME
4.3. Stimuli-Responsive Liposomes
4.4. Cell Membrane-Coated Liposomes
4.4.1. RBC Membrane-Coated Liposomes
4.4.2. Leukocyte Membrane-Coated Liposomes
4.4.3. Platelet Membrane-Coated Liposomes
4.4.4. Cancer Cell Membrane-Coated Liposomes
4.4.5. Stem Cell Membrane-Coated Liposomes
4.4.6. Hybrid Cell Membrane-Coated Liposomes
5. Liposomes in Clinical Applications
5.1. Liposomes for Cancer Therapy
5.2. Liposomes for Vaccines
6. Challenges for Liposomes
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Niculescu, A.-G.; Grumezescu, A.M. Novel Tumor-Targeting Nanoparticles for Cancer Treatment—A Review. Int. J. Mol. Sci. 2022, 23, 5253. [Google Scholar] [CrossRef] [PubMed]
- Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of Univalent Ions across the Lamellae of Swollen Phospholipids. J. Mol. Biol. 1965, 13, 238–252. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, Preparation, and Applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabir, F.; Barani, M.; Rahdar, A.; Bilal, M.; Zafar, M.N.; Bungau, S.; Kyzas, G.Z. How to Face Skin Cancer with Nanomaterials: A Review. Biointerface Res. Appl. Chem. 2020, 11, 11931–11955. [Google Scholar] [CrossRef]
- Watson, D.S.; Endsley, A.N.; Huang, L. Design Considerations for Liposomal Vaccines: Influence of Formulation Parameters on Antibody and Cell-Mediated Immune Responses to Liposome Associated Antigens. Vaccine 2012, 30, 2256–2272. [Google Scholar] [CrossRef] [Green Version]
- dos Santos Rodrigues, B.; Banerjee, A.; Kanekiyo, T.; Singh, J. Functionalized Liposomal Nanoparticles for Efficient Gene Delivery System to Neuronal Cell Transfection. Int. J. Pharm. 2019, 566, 717–730. [Google Scholar] [CrossRef]
- Marqués-Gallego, P.; de Kroon, A.I.P.M. Ligation Strategies for Targeting Liposomal Nanocarriers. BioMed Res. Int. 2014, 2014, 129458. [Google Scholar] [CrossRef] [Green Version]
- Nsairat, H.; Khater, D.; Sayed, U.; Odeh, F.; Al Bawab, A.; Alshaer, W. Liposomes: Structure, Composition, Types, and Clinical Applications. Heliyon 2022, 8, e09394. [Google Scholar] [CrossRef]
- Perche, F.; Torchilin, V.P. Recent Trends in Multifunctional Liposomal Nanocarriers for Enhanced Tumor Targeting. J. Drug Deliv. 2013, 2013, 705265. [Google Scholar] [CrossRef]
- Immordino, M.L.; Dosio, F.; Cattel, L. Stealth Liposomes: Review of the Basic Science, Rationale, and Clinical Applications, Existing and Potential. Int. J. Nanomed. 2006, 1, 297–315. [Google Scholar]
- Wang, H.; Huang, Y. Combination Therapy Based on Nano Codelivery for Overcoming Cancer Drug Resistance. Med. Drug Discov. 2020, 6, 100024. [Google Scholar] [CrossRef]
- Lei, W.; Yang, C.; Wu, Y.; Ru, G.; He, X.; Tong, X.; Wang, S. Nanocarriers Surface Engineered with Cell Membranes for Cancer Targeted Chemotherapy. J. Nanobiotechnol. 2022, 20, 45. [Google Scholar] [CrossRef] [PubMed]
- Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics 2017, 9, 12. [Google Scholar] [CrossRef]
- Liu, P.; Chen, G.; Zhang, J. A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules 2022, 27, 1372. [Google Scholar] [CrossRef]
- Obaid, G.; Bano, S.; Thomsen, H.; Callaghan, S.; Shah, N.; Swain, J.W.R.; Jin, W.; Ding, X.; Cameron, C.G.; McFarland, S.A.; et al. Remediating Desmoplasia with EGFR-Targeted Photoactivable Multi-Inhibitor Liposomes Doubles Overall Survival in Pancreatic Cancer. Adv. Sci. 2022, 9, 2104594. [Google Scholar] [CrossRef]
- Zhao, Z.; Fang, L.; Xiao, P.; Sun, X.; Zhou, L.; Liu, X.; Wang, J.; Wang, G.; Cao, H.; Zhang, P.; et al. Walking Dead Tumor Cells for Targeted Drug Delivery Against Lung Metastasis of Triple-Negative Breast Cancer. Adv. Mater. 2022, 34, e2205462. Available online: https://onlinelibrary.wiley.com.zzulib.vpn358.com/doi/10.1002/adma.202205462 (accessed on 11 November 2022). [CrossRef]
- Nakhaei, P.; Margiana, R.; Bokov, D.O.; Abdelbasset, W.K.; Jadidi Kouhbanani, M.A.; Varma, R.S.; Marofi, F.; Jarahian, M.; Beheshtkhoo, N. Liposomes: Structure, Biomedical Applications, and Stability Parameters With Emphasis on Cholesterol. Front. Bioeng. Biotechnol. 2021, 9, 705886. [Google Scholar] [CrossRef]
- Liposomes|SpringerLink. Available online: https://link.springer.com/article/10.2165/00003495-199700544-00004 (accessed on 29 October 2022).
- Sahoo, S.K.; Labhasetwar, V. Nanotech Approaches to Drug Delivery and Imaging. Drug Discov. Today 2003, 8, 1112–1120. [Google Scholar] [CrossRef]
- Zhang, G.; Sun, J. Lipid in Chips: A Brief Review of Liposomes Formation by Microfluidics. Int. J. Nanomed. 2021, 16, 7391–7416. [Google Scholar] [CrossRef]
- Large, D.E.; Abdelmessih, R.G.; Fink, E.A.; Auguste, D.T. Liposome Composition in Drug Delivery Design, Synthesis, Characterization, and Clinical Application. Adv. Drug Deliv. Rev. 2021, 176, 113851. [Google Scholar] [CrossRef]
- Nomura, S.M.; Tsumoto, K.; Hamada, T.; Akiyoshi, K.; Nakatani, Y.; Yoshikawa, K. Gene Expression within Cell-Sized Lipid Vesicles. ChemBioChem 2003, 4, 1172–1175. [Google Scholar] [CrossRef] [PubMed]
- Otake, K.; Shimomura, T.; Goto, T.; Imura, T.; Furuya, T.; Yoda, S.; Takebayashi, Y.; Sakai, H.; Abe, M. Preparation of Liposomes Using an Improved Supercritical Reverse Phase Evaporation Method. Langmuir 2006, 22, 2543–2550. [Google Scholar] [CrossRef] [PubMed]
- Gouda, A.; Sakr, O.S.; Nasr, M.; Sammour, O. Ethanol Injection Technique for Liposomes Formulation: An Insight into Development, Influencing Factors, Challenges and Applications. J. Drug Deliv. Sci. Technol. 2021, 61, 102174. [Google Scholar] [CrossRef]
- Lapinski, M.M.; Castro-Forero, A.; Greiner, A.J.; Ofoli, R.Y.; Blanchard, G.J. Comparison of Liposomes Formed by Sonication and Extrusion: Rotational and Translational Diffusion of an Embedded Chromophore. Langmuir ACS J. Surf. Colloids 2007, 23, 11677–11683. [Google Scholar] [CrossRef] [PubMed]
- Barnadas-Rodríguez, R.; Sabés, M. Factors Involved in the Production of Liposomes with a High-Pressure Homogenizer. Int. J. Pharm. 2001, 213, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Pupo, E.; Padrón, A.; Santana, E.; Sotolongo, J.; Quintana, D.; Dueñas, S.; Duarte, C.; de la Rosa, M.C.; Hardy, E. Preparation of Plasmid DNA-Containing Liposomes Using a High-Pressure Homogenization–Extrusion Technique. J. Control. Release 2005, 104, 379–396. [Google Scholar] [CrossRef] [PubMed]
- Castile, J.D.; Taylor, K.M. Factors Affecting the Size Distribution of Liposomes Produced by Freeze-Thaw Extrusion. Int. J. Pharm. 1999, 188, 87–95. [Google Scholar] [CrossRef]
- Hood, R.R.; DeVoe, D.L. High-Throughput Continuous Flow Production of Nanoscale Liposomes by Microfluidic Vertical Flow Focusing. Small 2015, 11, 5790–5799. [Google Scholar] [CrossRef]
- Yu, B.; Lee, R.J.; Lee, L.J. Microfluidic Methods for Production of Liposomes. Methods Enzymol. 2009, 465, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Whitesides, G.M. The Origins and the Future of Microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Carugo, D.; Bottaro, E.; Owen, J.; Stride, E.; Nastruzzi, C. Liposome Production by Microfluidics: Potential and Limiting Factors. Sci. Rep. 2016, 6, 25876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahn, A.; Vreeland, W.N.; Gaitan, M.; Locascio, L.E. Controlled Vesicle Self-Assembly in Microfluidic Channels with Hydrodynamic Focusing. J. Am. Chem. Soc. 2004, 126, 2674–2675. [Google Scholar] [CrossRef] [PubMed]
- Jahn, A.; Vreeland, W.N.; DeVoe, D.L.; Locascio, L.E.; Gaitan, M. Microfluidic Directed Formation of Liposomes of Controlled Size. Langmuir 2007, 23, 6289–6293. [Google Scholar] [CrossRef]
- Maeki, M.; Kimura, N.; Sato, Y.; Harashima, H.; Tokeshi, M. Advances in Microfluidics for Lipid Nanoparticles and Extracellular Vesicles and Applications in Drug Delivery Systems. Adv. Drug Deliv. Rev. 2018, 128, 84–100. [Google Scholar] [CrossRef]
- Filipczak, N.; Pan, J.; Yalamarty, S.S.K.; Torchilin, V.P. Recent Advancements in Liposome Technology. Adv. Drug Deliv. Rev. 2020, 156, 4–22. [Google Scholar] [CrossRef]
- Hood, R.R.; DeVoe, D.L.; Atencia, J.; Vreeland, W.N.; Omiatek, D.M. A Facile Route to the Synthesis of Monodisperse Nanoscale Liposomes Using 3D Microfluidic Hydrodynamic Focusing in a Concentric Capillary Array. Lab. Chip 2014, 14, 2403–2409. [Google Scholar] [CrossRef]
- Koh, C.G.; Zhang, X.; Liu, S.; Golan, S.; Yu, B.; Yang, X.; Guan, J.; Jin, Y.; Talmon, Y.; Muthusamy, N.; et al. Delivery of Antisense Oligodeoxyribonucleotide Lipopolyplex Nanoparticles Assembled by Microfluidic Hydrodynamic Focusing. J. Control. Release Off. J. Control. Release Soc. 2010, 141, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Jahn, A.; Lucas, F.; Wepf, R.A.; Dittrich, P.S. Freezing Continuous-Flow Self-Assembly in a Microfluidic Device: Toward Imaging of Liposome Formation. Available online: https://pubs.acs.org/doi/abs/10.1021/la303675g (accessed on 8 November 2022).
- Zhigaltsev, I.V.; Belliveau, N.; Hafez, I.; Leung, A.K.K.; Huft, J.; Hansen, C.; Cullis, P.R. Bottom-Up Design and Synthesis of Limit Size Lipid Nanoparticle Systems with Aqueous and Triglyceride Cores Using Millisecond Microfluidic Mixing. Langmuir 2012, 28, 3633–3640. [Google Scholar] [CrossRef]
- Stroock, A.D.; Dertinger, S.K.W.; Ajdari, A.; Mezic, I.; Stone, H.A.; Whitesides, G.M. Chaotic Mixer for Microchannels. (Reports). Science 2002, 295, 647. Available online: https://link.gale.com.zzulib.vpn358.com/apps/doc/A82749219/OVIC?u=cnzzu&sid=bookmark-OVIC&xid=f841719d (accessed on 10 January 2023). [CrossRef] [Green Version]
- Maeki, M.; Saito, T.; Sato, Y.; Yasui, T.; Kaji, N.; Ishida, A.; Tani, H.; Baba, Y.; Harashima, H.; Tokeshi, M. A Strategy for Synthesis of Lipid Nanoparticles Using Microfluidic Devices with a Mixer Structure. RSC Adv. 2015, 5, 46181–46185. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Wang, W.-T.; Liu, C.-C.; Fu, L.-M. Passive Mixers in Microfluidic Systems: A Review. Chem. Eng. J. 2016, 288, 146–160. [Google Scholar] [CrossRef]
- Park, J.; Choi, Y.; Chang, H.; Um, W.; Ryu, J.H.; Kwon, I.C. Alliance with EPR Effect: Combined Strategies to Improve the EPR Effect in the Tumor Microenvironment. Theranostics 2019, 9, 8073–8090. [Google Scholar] [CrossRef] [PubMed]
- Bernier-Latmani, J.; Petrova, T.V. Intestinal Lymphatic Vasculature: Structure, Mechanisms and Functions. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 510–526. [Google Scholar] [CrossRef] [PubMed]
- Gustafson, H.H.; Holt-Casper, D.; Grainger, D.W.; Ghandehari, H. Nanoparticle Uptake: The Phagocyte Problem. Nano Today 2015, 10, 487–510. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Ukidve, A.; Kim, J.; Mitragotri, S. Targeting Strategies for Tissue-Specific Drug Delivery. Cell 2020, 181, 151–167. [Google Scholar] [CrossRef]
- Harashima, H.; Sakata, K.; Funato, K.; Kiwada, H. Enhanced Hepatic Uptake of Liposomes through Complement Activation Depending on the Size of Liposomes. Pharm. Res. 1994, 11, 402–406. [Google Scholar] [CrossRef]
- Huckaby, J.T.; Lai, S.K. PEGylation for Enhancing Nanoparticle Diffusion in Mucus. Adv. Drug Deliv. Rev. 2018, 124, 125–139. [Google Scholar] [CrossRef]
- Wang, Y.-Y.; Lai, S.K.; Suk, J.S.; Pace, A.; Cone, R.; Hanes, J. Addressing the PEG Mucoadhesivity Paradox to Engineer Nanoparticles That “Slip” through the Human Mucus Barrier. Angew. Chem. Int. Ed. 2008, 47, 9726–9729. [Google Scholar] [CrossRef] [Green Version]
- Kaldybekov, D.B.; Tonglairoum, P.; Opanasopit, P.; Khutoryanskiy, V.V. Mucoadhesive Maleimide-Functionalised Liposomes for Drug Delivery to Urinary Bladder. Eur. J. Pharm. Sci. 2018, 111, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Tonglairoum, P.; Brannigan, R.P.; Opanasopit, P.; Khutoryanskiy, V.V. Maleimide-Bearing Nanogels as Novel Mucoadhesive Materials for Drug Delivery. J. Mater. Chem. B 2016, 4, 6581–6587. [Google Scholar] [CrossRef] [PubMed]
- Brannigan, R.P.; Khutoryanskiy, V.V. Progress and Current Trends in the Synthesis of Novel Polymers with Enhanced Mucoadhesive Properties. Macromol. Biosci. 2019, 19, 1900194. [Google Scholar] [CrossRef] [PubMed]
- Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-Responsive Nanocarriers for Drug Delivery. Nat. Mater. 2013, 12, 991–1003. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Webster, P.; Davis, M.E. PEGylation Significantly Affects Cellular Uptake and Intracellular Trafficking of Non-Viral Gene Delivery Particles. Eur. J. Cell Biol. 2004, 83, 97–111. [Google Scholar] [CrossRef] [PubMed]
- Oku, N.; Namba, Y. Glucuronate-Modified, Long-Circulating Liposomes for the Delivery of Anticancer Agents. Methods Enzymol. 2005, 391, 145–162. [Google Scholar] [CrossRef] [PubMed]
- Badran, M.M.; Alouny, N.N.; Aldosari, B.N.; Alhusaini, A.M.; Abou El Ela, A.E.S. Transdermal Glipizide Delivery System Based on Chitosan-Coated Deformable Liposomes: Development, Ex Vivo, and In Vivo Studies. Pharmaceutics 2022, 14, 826. [Google Scholar] [CrossRef]
- Chen, H.; Pan, H.; Li, P.; Wang, H.; Wang, X.; Pan, W.; Yuan, Y. The Potential Use of Novel Chitosan-Coated Deformable Liposomes in an Ocular Drug Delivery System. Colloids Surf. B Biointerfaces 2016, 143, 455–462. [Google Scholar] [CrossRef]
- Giulimondi, F.; Vulpis, E.; Digiacomo, L.; Giuli, M.V.; Mancusi, A.; Capriotti, A.L.; Laganà, A.; Cerrato, A.; Zenezini Chiozzi, R.; Nicoletti, C.; et al. Opsonin-Deficient Nucleoproteic Corona Endows UnPEGylated Liposomes with Stealth Properties In Vivo. ACS Nano 2022, 16, 2088–2100. [Google Scholar] [CrossRef]
- Alshaer, W.; Hillaireau, H.; Vergnaud, J.; Ismail, S.; Fattal, E. Functionalizing Liposomes with Anti-CD44 Aptamer for Selective Targeting of Cancer Cells. Bioconjug. Chem. 2015, 26, 1307–1313. [Google Scholar] [CrossRef]
- Khan, A.A.; Allemailem, K.S.; Almatroodi, S.A.; Almatroudi, A.; Rahmani, A.H. Recent Strategies towards the Surface Modification of Liposomes: An Innovative Approach for Different Clinical Applications. 3 Biotech 2020, 10, 163. [Google Scholar] [CrossRef]
- Tuscano, J.M.; Martin, S.M.; Ma, Y.; Zamboni, W.; O’Donnell, R.T. Efficacy, Biodistribution, and Pharmacokinetics of CD22-Targeted Pegylated Liposomal Doxorubicin in a B-Cell Non-Hodgkin’s Lymphoma Xenograft Mouse Model. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2010, 16, 2760–2768. [Google Scholar] [CrossRef]
- Tai, W.; Mahato, R.; Cheng, K. The Role of HER2 in Cancer Therapy and Targeted Drug Delivery. J. Control. Release Off. J. Control. Release Soc. 2010, 146, 264–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, T.; Choi, M.-K.; Cui, F.-D.; Lee, S.-J.; Chung, S.-J.; Shim, C.-K.; Kim, D.-D. Antitumor Effect of Paclitaxel-Loaded PEGylated Immunoliposomes against Human Breast Cancer Cells. Pharm. Res. 2007, 24, 2402–2411. [Google Scholar] [CrossRef] [PubMed]
- Laginha, K.M.; Moase, E.H.; Yu, N.; Huang, A.; Allen, T.M. Bioavailability and Therapeutic Efficacy of HER2 ScFv-Targeted Liposomal Doxorubicin in a Murine Model of HER2-Overexpressing Breast Cancer. J. Drug Target. 2008, 16, 605–610. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, V.; Xu, X.; Kelly, D.; Snook, A.; Waldman, S.A.; Mason, R.W.; Jia, X.; Rajasekaran, A.K. CD19-Targeted Nanodelivery of Doxorubicin Enhances Thera peutic Efficacy in B-Cell Acute Lymphoblastic Leukemia. Mol. Pharm. 2015, 12, 2101–2111. [Google Scholar] [CrossRef] [Green Version]
- O’Shannessy, D.J.; Somers, E.B.; Wang, L.; Wang, H.; Hsu, R. Expression of Folate Receptors Alpha and Beta in Normal and Cancerous Gynecologic Tissues: Correlation of Expression of the Beta Isoform with Macrophage Markers. J. Ovarian Res. 2015, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Low, P.S. Folate-Mediated Delivery of Macromolecular Anticancer Therapeutic Agents. Adv. Drug Deliv. Rev. 2002, 54, 675–693. [Google Scholar] [CrossRef]
- Ledermann, J.A.; Canevari, S.; Thigpen, T. Targeting the Folate Receptor: Diagnostic and Therapeutic Approaches to Personalize Cancer Treatments. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2015, 26, 2034–2043. [Google Scholar] [CrossRef]
- Hilgenbrink, A.R.; Low, P.S. Folate Receptor-Mediated Drug Targeting: From Therapeutics to Diagnostics. J. Pharm. Sci. 2005, 94, 2135–2146. [Google Scholar] [CrossRef]
- Wu, J.; Liu, Q.; Lee, R.J. A Folate Receptor-Targeted Liposomal Formulation for Paclitaxel. Int. J. Pharm. 2006, 316, 148–153. [Google Scholar] [CrossRef]
- Riviere, K.; Huang, Z.; Jerger, K.; Macaraeg, N.; Szoka, F.C. Antitumor Effect of Folate-Targeted Liposomal Doxorubicin in KB Tumor-Bearing Mice after Intravenous Administration. J. Drug Target. 2011, 19, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ding, L.; Xu, Y.; Wang, Y.; Ping, Q. Targeted Delivery of Doxorubicin Using Stealth Liposomes Modified with Transferrin. Int. J. Pharm. 2009, 373, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Iinuma, H.; Maruyama, K.; Okinaga, K.; Sasaki, K.; Sekine, T.; Ishida, O.; Ogiwara, N.; Johkura, K.; Yonemura, Y. Intracellular Targeting Therapy of Cisplatin-Encapsulated Transferrin-Polyethylene Glycol Liposome on Peritoneal Dissemination of Gastric Cancer. Int. J. Cancer 2002, 99, 130–137. [Google Scholar] [CrossRef]
- Ishida, O.; Maruyama, K.; Tanahashi, H.; Iwatsuru, M.; Sasaki, K.; Eriguchi, M.; Yanagie, H. Liposomes Bearing Polyethyleneglycol-Coupled Transferrin with Intracellular Targeting Property to the Solid Tumors in Vivo. Pharm. Res. 2001, 18, 1042–1048. [Google Scholar] [CrossRef]
- Dharap, S.S.; Qiu, B.; Williams, G.C.; Sinko, P.; Stein, S.; Minko, T. Molecular Targeting of Drug Delivery Systems to Ovarian Cancer by BH3 and LHRH Peptides. J. Control. Release Off. J. Control. Release Soc. 2003, 91, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Dharap, S.S.; Wang, Y.; Chandna, P.; Khandare, J.J.; Qiu, B.; Gunaseelan, S.; Sinko, P.J.; Stein, S.; Farmanfarmaian, A.; Minko, T. Tumor-Specific Targeting of an Anticancer Drug Delivery System by LHRH Peptide. Proc. Natl. Acad. Sci. USA 2005, 102, 12962–12967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saad, M.; Garbuzenko, O.B.; Ber, E.; Chandna, P.; Khandare, J.J.; Pozharov, V.P.; Minko, T. Receptor Targeted Polymers, Dendrimers, Liposomes: Which Nanocarrier Is the Most Efficient for Tumor-Specific Treatment and Imaging? J. Control. Release Off. J. Control. Release Soc. 2008, 130, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Ramsey, J.D.; Flynn, N.H. Cell-Penetrating Peptides Transport Therapeutics into Cells. Pharmacol. Ther. 2015, 154, 78–86. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Zhang, Y.; Wang, Z.; Zhang, Y.; Zou, J.; Qiu, L. Aptamer-Based Cancer Cell Analysis and Treatment. ChemistryOpen 2022, 11, e202200141. [Google Scholar] [CrossRef]
- Shangguan, D.; Li, Y.; Tang, Z.; Cao, Z.C.; Chen, H.W.; Mallikaratchy, P.; Sefah, K.; Yang, C.J.; Tan, W. Aptamers Evolved from Live Cells as Effective Molecular Probes for Cancer Study. Proc. Natl. Acad. Sci. USA 2006, 103, 11838–11843. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.-J.; Dou, X.-Q.; Wang, F.; Zhang, J.; Wang, X.-L.; Xu, G.-L.; Xiang, S.-S.; Gao, X.; Fu, J.; Song, H.-F. IL-4Rα Aptamer-Liposome-CpG Oligodeoxynucleotides Suppress Tumour Growth by Targeting the Tumour Microenvironment. J. Drug Target. 2017, 25, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Katanasaka, Y.; Ida, T.; Asai, T.; Maeda, N.; Oku, N. Effective Delivery of an Angiogenesis Inhibitor by Neovessel-Targeted Liposomes. Int. J. Pharm. 2008, 360, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.I.; Lee, S.; Lee, J.T.; Sung, B.J.; Yoon, J.-Y.; Kim, J.-K.; Chung, J.; Lim, S.-J. Preparation and in Vitro Evaluation of Anti-VCAM-1-Fab’-Conjugated Liposomes for the Targeted Delivery of the Poorly Water-Soluble Drug Celecoxib. J. Microencapsul. 2011, 28, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Hatakeyama, H.; Akita, H.; Ishida, E.; Hashimoto, K.; Kobayashi, H.; Aoki, T.; Yasuda, J.; Obata, K.; Kikuchi, H.; Ishida, T.; et al. Tumor Targeting of Doxorubicin by Anti-MT1-MMP Antibody-Modified PEG Liposomes. Int. J. Pharm. 2007, 342, 194–200. [Google Scholar] [CrossRef]
- Zangabad, P.S.; Mirkiani, S.; Shahsavari, S.; Masoudi, B.; Masroor, M.; Hamed, H.; Jafari, Z.; Taghipour, Y.D.; Hashemi, H.; Karimi, M.; et al. Stimulus-Responsive Liposomes as Smart Nanoplatforms for Drug Delivery Applications. Nanotechnol. Rev. 2018, 7, 95–122. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Thompson, D.H. Stimuli-Responsive Liposomes for Drug Delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017, 9, e1450. [Google Scholar] [CrossRef]
- Kong, L.; Zhang, S.; Chu, J.; Liu, X.; Zhang, L.; He, S.; Yang, S.; Ju, R.; Li, X. Tumor Microenvironmental Responsive Liposomes Simultaneously Encapsulating Biological and Chemotherapeutic Drugs for Enhancing Antitumor Efficacy of NSCLC. Int. J. Nanomedicine 2020, 15, 6451–6468. [Google Scholar] [CrossRef]
- Yuba, E.; Tajima, N.; Yoshizaki, Y.; Harada, A.; Hayashi, H.; Kono, K. Dextran Derivative-Based PH-Sensitive Liposomes for Cancer Immunotherapy. Biomaterials 2014, 35, 3091–3101. [Google Scholar] [CrossRef] [Green Version]
- Lou, J.; Best, M.D. Reactive Oxygen Species-Responsive Liposomes via Boronate-Caged Phosphatidylethanolamine. Bioconjug. Chem. 2020, 31, 2220–2230. [Google Scholar] [CrossRef]
- Ta, T.; Porter, T.M. Thermosensitive Liposomes for Localized Delivery and Triggered Release of Chemotherapy. J. Control. Release Off. J. Control. Release Soc. 2013, 169, 112–125. [Google Scholar] [CrossRef] [Green Version]
- Yavlovich, A.; Smith, B.; Gupta, K.; Blumenthal, R.; Puri, A. Light-Sensitive Lipid-Based Nanoparticles for Drug Delivery: Design Principles and Future Considerations for Biological Applications. Mol. Membr. Biol. 2010, 27, 364–381. [Google Scholar] [CrossRef] [PubMed]
- Sirsi, S.R.; Borden, M.A. State-of-the-Art Materials for Ultrasound-Triggered Drug Delivery. Adv. Drug Deliv. Rev. 2014, 72, 3–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pourhassan, H.; Clergeaud, G.; Hansen, A.E.; Østrem, R.G.; Fliedner, F.P.; Melander, F.; Nielsen, O.L.; O’Sullivan, C.K.; Kjær, A.; Andresen, T.L. Revisiting the Use of SPLA2-Sensitive Liposomes in Cancer Therapy. J. Control. Release Off. J. Control. Release Soc. 2017, 261, 163–173. [Google Scholar] [CrossRef]
- Li, M.; Zhao, G.; Su, W.-K.; Shuai, Q. Enzyme-Responsive Nanoparticles for Anti-Tumor Drug Delivery. Front. Chem. 2020, 8, 647. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, D.D.S.; Lopes, S.C.d.A.; Franco, M.S.; Oliveira, M.C. PH-Sensitive Liposomes for Drug Delivery in Cancer Treatment. Ther. Deliv. 2013, 4, 1099–1123. [Google Scholar] [CrossRef]
- Moku, G.; Gulla, S.K.; Nimmu, N.V.; Khalid, S.; Chaudhuri, A. Delivering Anti-Cancer Drugs with Endosomal PH-Sensitive Anti-Cancer Liposomes. Biomater. Sci. 2016, 4, 627–638. [Google Scholar] [CrossRef]
- Ong, W.; Yang, Y.; Cruciano, A.C.; McCarley, R.L. Redox-Triggered Contents Release from Liposomes. J. Am. Chem. Soc. 2008, 130, 14739–14744. [Google Scholar] [CrossRef] [Green Version]
- de Smet, M.; Langereis, S.; van den Bosch, S.; Grüll, H. Temperature-Sensitive Liposomes for Doxorubicin Delivery under MRI Guidance. J. Control. Release Off. J. Control. Release Soc. 2010, 143, 120–127. [Google Scholar] [CrossRef]
- Nardecchia, S.; Sánchez-Moreno, P.; de Vicente, J.; Marchal, J.A.; Boulaiz, H. Clinical Trials of Thermosensitive Nanomaterials: An Overview. Nanomaterials 2019, 9, 191. [Google Scholar] [CrossRef] [Green Version]
- You, J.; Zhang, P.; Hu, F.; Du, Y.; Yuan, H.; Zhu, J.; Wang, Z.; Zhou, J.; Li, C. Near-Infrared Light Sensitive Liposomes for the Enhanced Photothermal Tumor Treatment by the Combination with Chemotherapy. Pharm. Res. 2014, 31, 554–565. [Google Scholar] [CrossRef]
- Li, Q.; Tang, Q.; Zhang, P.; Wang, Z.; Zhao, T.; Zhou, J.; Li, H.; Ding, Q.; Li, W.; Hu, F.; et al. Human Epidermal Growth Factor Receptor-2 Antibodies Enhance the Specificity and Anticancer Activity of Light-Sensitive Doxorubicin-Labeled Liposomes. Biomaterials 2015, 57, 1–11. [Google Scholar] [CrossRef] [PubMed]
- de Matos, M.B.C.; Deckers, R.; van Elburg, B.; Lajoinie, G.; de Miranda, B.S.; Versluis, M.; Schiffelers, R.; Kok, R.J. Ultrasound-Sensitive Liposomes for Triggered Macromolecular Drug Delivery: Formulation and In Vitro Characterization. Front. Pharmacol. 2019, 10, 1463. [Google Scholar] [CrossRef]
- Lin, W.; Ma, X.; Zhou, C.; Yang, H.; Yang, Y.; Xie, X.; Yang, C.; Han, C. Development and Characteristics of Novel Sonosensitive Liposomes for Vincristine Bitartrate. Drug Deliv. 2019, 26, 724–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, M.; Watanabe, Y.; Sato, M.; Maehara, T.; Aono, H.; Naohara, T.; Hirazawa, H.; Horiuchi, A.; Yukumi, S.; Sato, K. Feasibility of Chemohyperthermia with Docetaxel-embedded Magnetoliposomes as Minimally Invasive Local Treatment for Cancer. Int. J. Cancer 2010, 126, 1955–1965. Available online: https://onlinelibrary.wiley.com/doi/10.1002/ijc.24864 (accessed on 1 November 2022). [CrossRef] [PubMed]
- Zeng, Z.; Wang, X.; Zhang, Y.; Liu, X.; Zhou, W.; Li, N. Preparation and Characterization of Tegafur Magnetic Thermosensitive Liposomes. Pharm. Dev. Technol. 2009, 14, 350–357. [Google Scholar] [CrossRef]
- Zhai, Y.; Su, J.; Ran, W.; Zhang, P.; Yin, Q.; Zhang, Z.; Yu, H.; Li, Y. Preparation and Application of Cell Membrane-Camouflaged Nanoparticles for Cancer Therapy. Theranostics 2017, 7, 2575–2592. [Google Scholar] [CrossRef] [PubMed]
- Luk, B.T.; Zhang, L. Cell Membrane-Camouflaged Nanoparticles for Drug Delivery. J. Control. Release Off. J. Control. Release Soc. 2015, 220, 600–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, C.-M.J.; Zhang, L.; Aryal, S.; Cheung, C.; Fang, R.H.; Zhang, L. Erythrocyte Membrane-Camouflaged Polymeric Nanoparticles as a Biomimetic Delivery Platform. Proc. Natl. Acad. Sci. USA 2011, 108, 10980–10985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, J.; Shen, Q.; Huang, K.; Zheng, T.; Cheng, L.; Zhang, Z.; Yu, Y.; Liao, G.; Wang, X.; Li, C. Oriented Assembly of Cell-Mimicking Nanoparticles via a Molecular Affinity Strategy for Targeted Drug Delivery. ACS Nano 2019, 13, 5268–5277. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Dan, Z.; He, X.; Zhang, Z.; Yu, H.; Yin, Q.; Li, Y. Liposomes Coated with Isolated Macrophage Membrane Can Target Lung Metastasis of Breast Cancer. ACS Nano 2016, 10, 7738–7748. [Google Scholar] [CrossRef]
- Pitchaimani, A.; Nguyen, T.D.T.; Aryal, S. Natural Killer Cell Membrane Infused Biomimetic Liposomes for Targeted Tumor Therapy. Biomaterials 2018, 160, 124–137. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wu, S. Research Update on Cell Membrane Camouflaged Nanoparticles for Cancer Therapy. Front. Bioeng. Biotechnol. 2022, 10, 944518. [Google Scholar] [CrossRef]
- Fang, R.H.; Kroll, A.V.; Gao, W.; Zhang, L. Cell Membrane Coating Nanotechnology. Adv. Mater. 2018, 30, e1706759. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Wang, T.; Huang, C.; Ning, S.; Guo, Q.; Zhang, W.; Yang, H.; Zhu, D.; Huang, Q.; Qian, H.; et al. Platelet Membrane-Coated C-TiO2 Hollow Nanospheres for Combined Sonodynamic and Alkyl-Radical Cancer Therapy. Nano Res. 2022, 1–10. [Google Scholar] [CrossRef]
- Yang, J.; Miao, X.; Guan, Y.; Chen, C.; Chen, S.; Zhang, X.; Xiao, X.; Zhang, Z.; Xia, Z.; Yin, T.; et al. Microbubble Functionalization with Platelet Membrane Enables Targeting and Early Detection of Sepsis-Induced Acute Kidney Injury. Adv. Healthc. Mater. 2021, 10, e2101628. [Google Scholar] [CrossRef]
- Tang, W.; Li, X.; Lyu, M.; Huang, Q. Cancer Cell Membrane Biomimetic Mesoporous Nanozyme System with Efficient ROS Generation for Antitumor Chemoresistance. Oxid. Med. Cell. Longev. 2022, 2022, 5089857. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, F.; Liu, X.; Sang, Y.; Zhang, L.; Ren, J.; Qu, X. Cell Membrane–Camouflaged Liposomes for Tumor Cell–Selective Glycans Engineering and Imaging in Vivo. Proc. Natl. Acad. Sci. USA 2021, 118, e2022769118. [Google Scholar] [CrossRef]
- Zhang, W.; Gong, C.; Chen, Z.; Li, M.; Li, Y.; Gao, J. Tumor Microenvironment-Activated Cancer Cell Membrane-Liposome Hybrid Nanoparticle-Mediated Synergistic Metabolic Therapy and Chemotherapy for Non-Small Cell Lung Cancer. J. Nanobiotechnol. 2021, 19, 339. [Google Scholar] [CrossRef]
- Wu, H.; Jiang, X.; Li, Y.; Zhou, Y.; Zhang, T.; Zhi, P.; Gao, J. Engineering Stem Cell Derived Biomimetic Vesicles for Versatility and Effective Targeted Delivery. Adv. Funct. Mater. 2020, 30, 2006169. [Google Scholar] [CrossRef]
- Liu, R.; Xie, Y.; Xu, J.-R.; Luo, Q.; Ren, Y.-X.; Chen, M.; Duan, J.-L.; Bao, C.-J.; Liu, Y.-X.; Li, P.-S.; et al. Engineered Stem Cell Biomimetic Liposomes Carrying Levamisole for Macrophage Immunity Reconstruction in Leukemia Therapy. Chem. Eng. J. 2022, 447, 137582. [Google Scholar] [CrossRef]
- Sato, Y.T.; Umezaki, K.; Sawada, S.; Mukai, S.; Sasaki, Y.; Harada, N.; Shiku, H.; Akiyoshi, K. Engineering Hybrid Exosomes by Membrane Fusion with Liposomes. Sci. Rep. 2016, 6, 21933. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.J.; Park, J.Y.; Lee, D.H.; Khang, D. Stem Cell Mimicking Nanoencapsulation for Targeting Arthritis. Int. J. Nanomed. 2021, 16, 8485–8507. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Liu, Y.; Long, Y.; Wang, Z.; Jiang, S.; Ahmed, R.; Daniyal, M.; Li, B.; Liu, B.; Wang, W. Hybrid-Cell Membrane-Coated Nanocomplex-Loaded Chikusetsusaponin IVa Methyl Ester for a Combinational Therapy against Breast Cancer Assisted by Ce6. Biomater. Sci. 2021, 9, 2991–3004. [Google Scholar] [CrossRef]
- He, H.; Guo, C.; Wang, J.; Korzun, W.J.; Wang, X.-Y.; Ghosh, S.; Yang, H. Leutusome: A Biomimetic Nanoplatform Integrating Plasma Membrane Components of Leukocytes and Tumor Cells for Remarkably Enhanced Solid Tumor Homing. Nano Lett. 2018, 18, 6164–6174. [Google Scholar] [CrossRef]
- Borys, N.; Dewhirst, M.W. Drug Development of Lyso-Thermosensitive Liposomal Doxorubicin: Combining Hyperthermia and Thermosensitive Drug Delivery. Adv. Drug Deliv. Rev. 2021, 178, 113985. [Google Scholar] [CrossRef] [PubMed]
- Abuwatfa, W.H.; Awad, N.S.; Pitt, W.G.; Husseini, G.A. Thermosensitive Polymers and Thermo-Responsive Liposomal Drug Delivery Systems. Polymers 2022, 14, 925. [Google Scholar] [CrossRef] [PubMed]
- University of Oxford. PanDox: Feasibility of Enhanced Chemotherapy Delivery to Non-Resectable Primary Pancreatic Tumours Using Thermosensitive Liposomal Doxorubicin (ThermoDox®) and Focused Ultrasound; 2022. Available online: clinicaltrials.gov (accessed on 18 November 2022).
- de Maar, J.S.; Suelmann, B.B.M.; Braat, M.N.G.J.A.; van Diest, P.J.; Vaessen, H.H.B.; Witkamp, A.J.; Linn, S.C.; Moonen, C.T.W.; van der Wall, E.; Deckers, R. Phase I Feasibility Study of Magnetic Resonance Guided High Intensity Focused Ultrasound-Induced Hyperthermia, Lyso-Thermosensitive Liposomal Doxorubicin and Cyclophosphamide in de Novo Stage IV Breast Cancer Patients: Study Protocol of the i-GO Study. BMJ Open 2020, 10, e040162. [Google Scholar] [CrossRef] [PubMed]
- EMA. Myocet Liposomal (Previously Myocet). Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/myocet-liposomal-previously-myocet (accessed on 18 November 2022).
- Harris, L.; Batist, G.; Belt, R.; Rovira, D.; Navari, R.; Azarnia, N.; Welles, L.; Winer, E.; TLC D-99 Study Group. Liposome-Encapsulated Doxorubicin Compared with Conventional Doxorubicin in a Randomized Multicenter Trial as First-Line Therapy of Metastatic Breast Carcinoma. Cancer 2002, 94, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Batist, G.; Ramakrishnan, G.; Rao, C.S.; Chandrasekharan, A.; Gutheil, J.; Guthrie, T.; Shah, P.; Khojasteh, A.; Nair, M.K.; Hoelzer, K.; et al. Reduced Cardiotoxicity and Preserved Antitumor Efficacy of Liposome-Encapsulated Doxorubicin and Cyclophosphamide Compared with Conventional Doxorubicin and Cyclophosphamide in a Randomized, Multicenter Trial of Metastatic Breast Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2001, 19, 1444–1454. [Google Scholar] [CrossRef]
- Strieth, S.; Dunau, C.; Michaelis, U.; Jäger, L.; Gellrich, D.; Wollenberg, B.; Dellian, M. Phase I/II Clinical Study on Safety and Antivascular Effects of Paclitaxel Encapsulated in Cationic Liposomes for Targeted Therapy in Advanced Head and Neck Cancer. Head Neck 2014, 36, 976–984. [Google Scholar] [CrossRef]
- Lamichhane, N.; Udayakumar, T.S.; D’Souza, W.D.; Simone, C.B.; Raghavan, S.R.; Polf, J.; Mahmood, J. Liposomes: Clinical Applications and Potential for Image-Guided Drug Delivery. Mol. J. Synth. Chem. Nat. Prod. Chem. 2018, 23, 288. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-T.; Shi, Y.; Jay, M.; Di Pasqua, A.J. Enhanced Toxicity of Cisplatin with Chemosensitizer Phenethyl Isothiocyanate toward Non-Small Cell Lung Cancer Cells When Delivered in Liposomal Nanoparticles. Chem. Res. Toxicol. 2014, 27, 946–948. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Li, F.; Hu, X.; Park, W.; Wang, S.; Jang, Y.; Du, Y.; Baik, S.; Cho, S.; Kang, T.; et al. PH-Sensitive Pt Nanocluster Assembly Overcomes Cisplatin Resistance and Heterogeneous Stemness of Hepatocellular Carcinoma. ACS Cent. Sci. 2016, 2, 802–811. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Dong, X.; Yang, S.; Lai, X.; Liu, H.; Gao, Y.; Feng, H.; Zhu, M.; Yuan, Y.; Lu, Q.; et al. Biomimetic Liposomal Nanoplatinum for Targeted Cancer Chemophototherapy. Adv. Sci. 2021, 8, 2003679. [Google Scholar] [CrossRef]
- Wei, Y.; Song, S.; Duan, N.; Wang, F.; Wang, Y.; Yang, Y.; Peng, C.; Li, J.; Nie, D.; Zhang, X.; et al. MT1-MMP-Activated Liposomes to Improve Tumor Blood Perfusion and Drug Delivery for Enhanced Pancreatic Cancer Therapy. Adv. Sci. 2020, 7, 1902746. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Liu, T.; Pei, P.; Li, J.; Yang, S.; Zhang, Y.; Zhou, H.; Hu, L.; Yang, K. Metabolic Homeostasis-Regulated Nanoparticles for Antibody-Independent Cancer Radio-Immunotherapy. Adv. Mater. 2022, 34, e2207343. Available online: https://onlinelibrary.wiley.com.zzulib.vpn358.com/doi/10.1002/adma.202207343 (accessed on 17 November 2022). [CrossRef]
- Lai, X.; Liu, X.L.; Pan, H.; Zhu, M.H.; Long, M.; Yuan, Y.; Zhang, Z.; Dong, X.; Lu, Q.; Sun, P.; et al. Light-Triggered Efficient Sequential Drug Delivery of Biomimetic Nanosystem for Multimodal Chemo-, Antiangiogenic, and Anti-MDSC Therapy in Melanoma. Adv. Mater. 2022, 34, e2106682. Available online: https://onlinelibrary.wiley.com.zzulib.vpn358.com/doi/10.1002/adma.202106682 (accessed on 11 November 2022). [CrossRef]
- Ahmed, K.S.; Hussein, S.A.; Ali, A.H.; Korma, S.A.; Lipeng, Q.; Jinghua, C. Liposome: Composition, Characterisation, Preparation, and Recent Innovation in Clinical Applications. J. Drug Target. 2019, 27, 742–761. [Google Scholar] [CrossRef]
- Allison, A.C.; Gregoriadis, G. Liposomes as Immunological Adjuvants. Nature 1974, 252, 252. [Google Scholar] [CrossRef]
- Tretiakova, D.S.; Vodovozova, E.L. Liposomes as Adjuvants and Vaccine Delivery Systems. Biochem. Mosc. Suppl. Ser. Membr. Cell Biol. 2022, 16, 1–20. [Google Scholar] [CrossRef]
- Grit, M.; Crommelin, D.J. Chemical Stability of Liposomes: Implications for Their Physical Stability. Chem. Phys. Lipids 1993, 64, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Pietzyk, B.; Henschke, K. Degradation of Phosphatidylcholine in Liposomes Containing Carboplatin in Dependence on Composition and Storage Conditions. Int. J. Pharm. 2000, 196, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, M.; Tsutsumi, K.; Abe, M.; Uosaki, Y.; Nakakura, M.; Aoki, N. Release of Drugs from Liposomes Varies with Particle Size. Biol. Pharm. Bull. 2007, 30, 963–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- du Plessis, J.; Ramachandran, C.; Weiner, N.; Müller, D.G. The Influence of Lipid Composition and Lamellarity of Liposomes on the Physical Stability of Liposomes upon Storage. Int. J. Pharm. 1996, 127, 273–278. [Google Scholar] [CrossRef]
- Anderson, M.; Omri, A. The Effect of Different Lipid Components on the in Vitro Stability and Release Kinetics of Liposome Formulations. Drug Deliv. 2004, 11, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Ghanbarzadeh, S.; Valizadeh, H.; Zakeri-Milani, P. The Effects of Lyophilization on the Physico-Chemical Stability of Sirolimus Liposomes. Adv. Pharm. Bull. 2013, 3, 25–29. [Google Scholar] [CrossRef]
Methods | Preparation Steps | Characteristics of Liposomes | Advantages | Disadvantages | References |
---|---|---|---|---|---|
Thin-film hydration | Lipids and fat-soluble drugs are dissolved in suitable organic solvents. The solution is evaporated until the film layer is formed on the wall of the bottle, a solution with or without water-soluble drugs is added and stirred until a uniform liposome solution is formed, and the prepared liposomes can be reduced by subsequent treatment such as ultrasound and extrusion. | Preparation of MLV or LUV After sonication, unilamellar vesicles are the mainstay | Widely used and easy to operate | 1. Most water-soluble compounds are washed off during swelling 2. Repeatability is not very good and not suitable for mass production 3. Low encapsulation efficiency | [4,22,23] |
Reverse-phase evaporation | First, the lipids are dissolved in an organic solvent and then mixed directly with an aqueous buffer containing hydrophilic drugs. The organic solvent is evaporated under a reduced-pressure rotary evaporator and depleted to form liposomes. | LUV Reduction of size and dispersion of liposomes by extrusion | Organic solvent not easy to remove | [24] | |
Ethanol injection | The drug and lipid material are dissolved in ethanol, and then the lipid organic solution is injected into the high-speed stirring water phase, and the ethanol is evaporated to obtain liposomes | Preparation of unilamellar vesicles, few MLV | 1. Sustained high temperatures and organic solvents may reduce the stability of drugs and lipids 2. Low encapsulation efficiency | [25] | |
Sonication | Treatment of prepared liposomes by water bath sonication or probe sonication | Probe sonication to prepare SUV | 1. Low internal volume/encapsulation efficiency 2. High temperature easily degrades liposomes or drugs 3. Low ability to remove large molecules and metal pollution from the probe tip | [26] | |
Extrusion | Extrusion of prepared liposomes by liposome extruder | Preparation of unilamellar vesicles or MLV with uniform particle size by selecting polycarbonate membranes with different pore sizes | Simple process and good reproducibility | 1. Laborious and time-consuming 2. Extrusion has a certain effect on the structure of liposomes | [26] |
High-pressure homogenization | Homogenization of prepared liposomes by high pressure homogenizer | Mainly unilamellar vesicles | 1. Good repeatability, large-scale production 2. High encapsulation efficiency and stability 3. Uniform particles | [27,28] | |
Freeze-thaw | Repeated freeze-thaw treatment of the prepared liposomes | Unilamellar vesicles or MLV Increasing encapsulation efficiency by repeated freezing and thawing | 1. High encapsulation efficiency 2. Uniform particles | Long preparation time | [29] |
Ligand | Targets/Applications | Reference |
---|---|---|
IL-4Rα | Suppression of tumor growth by targeting TME | [83] |
Ala-Pro-Arg-Pro-Gly (APRPG) | APRPG-PEG-modified liposomes efficiently deliver SU1498 to angiogenic endothelial cells in tumors, thereby inhibiting tumor-induced angiogenesis | [84] |
Anti vascular cell adhesion molecule (VCAM)-1-Fab’ | VCAM-1 overexpressed in tumor vascular endothelial cells | [85] |
Anti membrane type-1 ma-trix metalloproteinase (MT1-MMP) antibody | Inhibition of angiogenesis in tumor-bearing mice by targeting vascular endothelial cells and overexpressed MT1-MMP on tumor cells | [86] |
Stimuli Liposomes | Stimuli | Principle | Drug | References |
---|---|---|---|---|
Enzyme-responsive liposomes | Protease, amidase, and esterase enzymes | Based on amides or esters hydrolysis by protease or esterase enzymes release loaded drugs | Oxaliplatin Vinorebine Dioscorea | [89,95,96] |
pH-sensitive liposomes | pH change | pH-sensitive liposomes are typically composed of neutral lipids (usually phosphatidyl derivatives such as dioleoyl phosphatidyl ethanolamine (DOPE), dioleoyl phosphatidylcholine or N-succinyl-DOPE) and weakly acidic amphiphilic compounds such as cholesterol hemisuccinate | Curcumin Paclitaxel DNA plasmid | [87,90,97,98] |
Redox-sensitive liposomes | Reactive oxygen species (ROS) peroxides, hydroxyl radicals, singlet oxygen | Depends on the redox potential difference between the intracellular reducing space and oxidizing extracellular space that occur during biological activities | Doxorubicin | [91,99] |
Thermosensitive liposomes | Radiofrequency, microwave or focused ultrasound ablation therapy | Preparation of thermosensitive liposomes from phospholipids with a transition temperature of 40–45 °C, such as dipalmitoyl phosphotidyl choline, as a primary lipid with a transition temperature of 41 °C, has been employed to make these liposomes. Grafting of certain polymers may also render liposomes thermosensitive, such as poly (N-isopropyl acrylamide) | Doxorubicin Camptothecin | [92,100,101] |
Light-sensitive liposomes | Ultraviolet or visible light, near-infrared | Modification of fatty acyl chains of the phospholipids with light-sensitive functional groups and the resulting phospholipids have yielded photoactivable liposomes | Doxorubicin | [55,93,102,103] |
Ultrasound-sensitive liposomes | Ultrasound/high-intensity focused ultrasound | Ultrasound-responsive liposomes were fabricated by mixing nanodroplets of perfluorocarbon with PEGylated liposomes. As the pulses of US waves propagate through tissue some physical phenomena take place: cavitation, hyperthermia and acoustic streaming. | Vincristine Doxorubicin | [94,104,105] |
Magnetic liposomes | Magnetic field | Metal ions and magnetic NPs (MNPs) can be combined with liposomes during synthesis or encapsulated into liposomes to prepare magnetic liposomes | Docetaxel Tegafur Doxorubicin | [106,107] |
Clinical Products | Active Agent | Indication |
---|---|---|
Doxil® | Doxorubicin | Ovarian, breast cancer, Kaposi’s sarcoma |
DaunoXome® | Daunorubicin | AIDS-related Kaposi’s sarcoma |
Mepact® | Mifamurtide | High-grade, resectable, non-metastatic osteosarcoma |
Marqibo® | Vincristine | Acute lymphoblastic leukaemia |
Vyxeos® | Daunorubicin and Cytarabine | Adults with high-risk acute myeloid leukemia |
Depocyt® | Cytarabine/Ara-C | Neoplastic meningitis |
Lipusu® | Paclitaxel | Gastric carcinoma |
Type | Influencing Factors | Principle | Improvement Methods | References |
---|---|---|---|---|
Physical stability | Composition | Liposome properties are highly dependent on lipid composition. Liposomes with high stability can be formed by phospholipids that are not readily oxidized and hydrolyzed (e.g., hydrogenated phospholipids) | Replace unsaturated phospholipids with saturated phospholipids. The synthetic saturated lipids dimyristoyl phosphotidyl choline, dipalmitoyl phosphotidyl choline, and distearoyl phosphotidyl choline can be used to prepare liposomes that are not easily oxidized | [146] |
Particle size and distribution | Particle size and distribution uniformity of liposomes affect their stability directly | The particle size of liposomes is usually controlled in the range of 80~200 nm, and 100 nm is optimal | [147] | |
Zeta potential | Appropriate zeta potential reduces aggregation and fusion of liposomes | [18] | ||
Phase transition temperature | When the temperature reaches the phase transition temperature, the liposome bimolecular membrane begins to be disordered from the original tight arrangement. In this case, the rigidity and film thickness of the membrane decrease, its permeability increases, and the leakage of the encapsulated contents intensifies | [148] | ||
Chemical stability | Oxidation | Some oxidizing substances such as oxygen, and the oxidation of free radicals, easily form unsaturated fatty acid bonds in phospholipid molecules oxidative cleavage | Add antioxidants (such as vitamin E, vitamin C, flavonoids, etc.), metal chelating agents | [149] |
Hydrolysis | The phospholipid hydrolysis of liposomes is a spontaneous process, and the increase of free fatty acids in the hydrolysate reduces the pH, further promoting the hydrolysis of phosphoric acid to produce harmful substances to the human body | Preparation and preservation by freeze-drying method. Add cholesterol to slow down hydrolysis | [149,150] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Chen, Y.; Guo, J.; Huang, Q. Liposomes for Tumor Targeted Therapy: A Review. Int. J. Mol. Sci. 2023, 24, 2643. https://doi.org/10.3390/ijms24032643
Wang S, Chen Y, Guo J, Huang Q. Liposomes for Tumor Targeted Therapy: A Review. International Journal of Molecular Sciences. 2023; 24(3):2643. https://doi.org/10.3390/ijms24032643
Chicago/Turabian StyleWang, Shile, Yanyu Chen, Jiancheng Guo, and Qinqin Huang. 2023. "Liposomes for Tumor Targeted Therapy: A Review" International Journal of Molecular Sciences 24, no. 3: 2643. https://doi.org/10.3390/ijms24032643
APA StyleWang, S., Chen, Y., Guo, J., & Huang, Q. (2023). Liposomes for Tumor Targeted Therapy: A Review. International Journal of Molecular Sciences, 24(3), 2643. https://doi.org/10.3390/ijms24032643