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Bilinear forms

(Definition 3.1 — Bilinear form w

A bilinear form on a real vector space V is a function f: V xV — R
which assigns a number to each pair of elements of V' in such a way
that f is linear in each variable.

@ A typical example of a bilinear form is the dot product on R™.
o We shall usually write (x,y) instead of f(x,y) for simplicity and we
shall also identify each 1 x 1 matrix with its unique entry.

/Theorem 3.2 — Bilinear forms on R" h

Every bilinear form on R™ has the form

<5'3 y = thy Zazﬂfzy]

for some n x n matrix A and we also have a;; = (e;, e;) for all 7, j.
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Matrix of a bilinear form

~

4 Definition 3.3 — Matrix of a bilinear form

Suppose that (,) is a bilinear form on V and let vy, v9,...,v, be a
basis of V. The matrix of the form with respect to this basis is the
matrix A whose entries are given by a;; = (v;,v;) for all 4, j.

%

/Theorem 3.4 — Change of basis )

Suppose that (,) is a bilinear form on R™ and let A be its matrix with
respect to the standard basis. Then the matrix of the form with respect
to some other basis v, vs, ..., v, is given by B'AB, where B is the
matrix whose columns are the vectors v, vs, ..., V,.

%

@ There is a similar result for linear transformations: if A is the matrix
with respect to the standard basis and v, vs, ..., v, is some other
basis, then the matrix with respect to the other basis is B~1AB.



Matrix of a bilinear form: Example

@ Let P> denote the space of real polynomials of degree at most 2.

Then P, is a vector space and its standard basis is 1, z, 2.

@ We can define a bilinear form on P» by setting

1
(f9) = [ I@gle)de  foral f.g€ P
0

@ By definition, the matrix of a form with respect to a given basis has

entries a;; = (v;,v;). In our case, v; = 2'~! for each i and so

i—1 -1 ! i+j—2 1
a;; = (x0T =/ T Ay = ——.
" < > 0 i+5—1

@ Thus, the matrix of the form with respect to the standard basis is

1 1/2 1/3
A= [1/2 1/3 1/4
1/3 1/4 1/5
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Positive definite forms

(" Definition 3.5 — Positive definite )

A bilinear form (,) on a real vector space V is positive definite, if
(v,v) >0 forall v #0.

A real n x n matrix A is positive definite, if ‘Az > 0 for all  # 0.

@ A bilinear form on V is positive definite if and only if the matrix of
the form with respect to some basis of V' is positive definite.
@ A positive definite form on R" is given by the dot product

n n
(z,y) = Zl‘iyi — (@) = Zl‘?
i=1 1=1
@ A positive definite form on P, is given by the formula

b b
(f. ) = / f@)g@)de —  (f.f) = / F(0)? de
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Positive definite forms: Examples

© Consider the bilinear form on R? which is defined by
(T, y) = 21y1 — 221Y2 — 22241 + HT2Y2.
To check if it is positive definite, we complete the square to get
(x,x) = 2% — dw129 + 5x3 = (21 — 239)? + 23

It now easily follows that the given form is positive definite.
@® Consider the bilinear form on R? which is defined by

(x,y) = 21y1 + 22192 + 2w2y1 + 322Y0.
Completing the square as before, one finds that
(x, ) = 2% + 4w129 + 303 = (21 + 239)? — 23

In particular, (x,x) is negative whenever x; = —2x5 and x3 # 0.
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Symmetric forms

(" Definition 3.6 — Symmetric )
A bilinear form () on a real vector space V is called symmetric, if
(v,w) = (w,v) forallv,weV.
A real square matrix A is called symmetric, if a;; = a;; for all ¢, 5. )

@ A bilinear form on V' is symmetric if and only if the matrix of the
form with respect to some basis of V' is symmetric.

@ A real square matrix A is symmetric if and only if A® = A.

(Definition 3.7 — Inner product w
LAn inner product on a real vector space V is a bilinear form which isJ

both positive definite and symmetric.
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Angles and length

@ Suppose that (,) is an inner product on a real vector space V.

@ Then one may define the length of a vector v € V' by setting
lv]| = v {v,v)

and the angle 6 between two vectors v, w € V by setting

@ These formulas are known to hold for the inner product on R™.

( Theorem 3.8 — Cauchy-Schwarz inequality

When V is a real vector space with an inner product, one has

| (v,w) | < |]v|| - ||w]| forallv,weV.
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Orthogonal vectors

/Definition 3.9 — Orthogonal and orthonormal

\

-

Suppose () is a symmetric bilinear form on a real vector space V.. Two
vectors u, v are called orthogonal, if (u,v) = 0. A basis vy, ve,...,v,
of V' is called orthogonal, if (v;,v;) = 0 whenever i # j and it is called
orthonormal, if it is orthogonal with (v;,v;) =1 for all 7. )

/

Theorem 3.10 — Linear combinations R

Let v1,v9,...,v, be an orthogonal basis of an inner product space V.
Then every vector v € V' can be expressed as a linear combination

(v,v;)

for all 1.
<'Ui,'qu>

n
v = E cv;, where ¢; =
i=1

If the basis is actually orthonormal, then ¢; = (v, v;) for all i. )




Gram-Schmidt procedure

@ Suppose that v1,vs,...,v, is a basis of an inner product space V.
Then we can find an orthogonal basis w1, wo, ..., w, as follows.
@ Define the first vector by w; = vy and the second vector by

(v2,wn)
wy = vy — ———
(w1, w1)

Then wy, ws are orthogonal and have the same span as v1, va.
@ Proceeding by induction, suppose w1, ws, ..., wy are orthogonal and

have the same span as vy, vs,...,v;. Once we then define

k
Wiy = Vgp1 — Z (Ok41, Wi) w;
i— <w’ia wl> v

we end up with vectors wy, wa, ..., wg+1 which are orthogonal and
have the same span as the original vectors vy, vs, ..., Vks1.

@ Using the formula from the last step repeatedly, one may thus obtain
an orthogonal basis wy, ws, ..., w, for the vector space V.
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Gram-Schmidt procedure: Example

@ We find an orthogonal basis of R3, starting with the basis

1 1 1
v = 0 s Vo = 1 5 V3 = 2
1 1 3
@ We define the first vector by w; = vy and the second vector by
(09, wr) 1 1 0
'LUQZ'UQ—L'LU]_: 1{—=10] = |1
(w1, w1) 1 1l (o
@ Then wy, wy are orthogonal and we may define the third vector by
_ (v3,w1) (v3, w2)
W3 =v3— W — W
(w1, w) (wa, wa)
1 1 0 -1
4 2
= 2| — 3 o — 1 11=1( 0
3 1 0 1
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Bilinear forms over a complex vector space

@ Bilinear forms are defined on a complex vector space in the same way
that they are defined on a real vector space. However, one needs to
conjugate one of the variables to ensure positivity of the dot product.

@ The complex transpose of a matrix is denoted by A* = At and it is

also known as the adjoint of A. One has x*x > 0 for all x € C".

Bilinear forms on R"

Bilinear forms on C"

Linear in the first variable
(u+v,w) = (u,w) + (v, w)
(A, v) = A (u,v)
Linear in the second variable
(x,y) = x' Ay for some A
Symmetric, if A' = A

Symmetric, if a;; = aj;

Conjugate linear in the first variable
(u+v,w) = (u,w) + (v, w)
(Au,v) = X\ (u,v)

Linear in the second variable
(x,y) = x* Ay for some A
Hermitian, if A*= A

Hermitian, if G5 = Gj;
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Real symmetric matrices

/Theorem 3.11 - Inner product and matrices

~

Letting (x,y) = x*y be the standard inner product on C", one has

(Az,y) = (z,A"y) and (z,Ay) = (A"z,y)

the standard inner product on R, in which case A* reduces to A?’.

for any n x n complex matrix A. In fact, these formulas also hold for

/Theorem 3.13 — Eigenvectors of a real symmetric matrix

. J
/Theorem 3.12 — Eigenvalues of a real symmetric matrix )
\The eigenvalues of a real symmetric matrix are all real. )

~

eigenvalues are necessarily orthogonal to one another.

The eigenvectors of a real symmetric matrix corresponding to distinct

v
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Orthogonal matrices

(" Definition 3.14 — Orthogonal matrix )

\A real n x m matrix A is called orthogonal, if A'A = I,,. )

/

4 Theorem 3.15 — Properties of orthogonal matrices

@ To say that an n x n matrix A is orthogonal is to say that the
columns of A form an orthonormal basis of R™.

® The product of two n x n orthogonal matrices is orthogonal.

© Left multiplication by an orthogonal matrix preserves both angles
and length. When A is an orthogonal matrix, that is, one has

9 (Az, Ay) = (x,y) and |[|Ax|| = =[] )

@ An example of a 2 x 2 orthogonal matrix is A = [Cose o 9].

sin @ cosf
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Spectral theorem

(Theorem 3.16 — Spectral theorem w
LEvery real symmetric matrix A is diagonalisable. In fact, there existsJ

an orthogonal matrix B such that B~'AB = B'AB is diagonal.

@ When the eigenvalues of A are distinct, the eigenvectors of A are
orthogonal and we may simply divide each of them by its length to
obtain an orthonormal basis of R™. Such a basis can be merged to
form an orthogonal matrix B such that B~'AB is diagonal.

@ When the eigenvalues of A are not distinct, the eigenvectors of A
may not be orthogonal. In that case, one may use the Gram-Schmidt
procedure to replace eigenvectors that have the same eigenvalue with
orthogonal eigenvectors that have the same eigenvalue.

@ The converse of the spectral theorem is also true. That is, if B is an
orthogonal matrix and B'AB is diagonal, then A is symmetric.
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Orthogonal diagonalisation: Example 1

@ Consider the real symmetric matrix

1 21
A=12 0 2
1 21
@ lts eigenvalues A = 0,4, —2 are distinct and its eigenvectors are
-1 1 1
v = 0 s Vg = 1 s V3 = —2
1 1 1

@ Since vy, v9, v3 are orthogonal, dividing each of them by its length
gives an orthonormal basis of R? consisting of eigenvectors. Then

~1/v2 1/V3  1/VE
B= 0 1/vV3 —2/V6
1/vV2 13  1/V6

is an orthogonal matrix such that B~'AB = B'AB is diagonal.
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Orthogonal diagonalisation: Example 2

@ Consider the real symmetric matrix

2 11
A=1(1 2 1
11 2
@ Its eigenvalues are A = 1,1,4 and its eigenvectors are
-1 -1 1
v = 0 ; Vo = 1 y V3 = 1
1 0 1

@ In this case, we use the Gram-Schmidt procedure to replace v1, vy by
two orthogonal eigenvectors w1, ws. Dividing each of w1, ws, v3 by
its length, we then obtain the columns of the orthogonal matrix

-1/vV/2 —1/V6 1/V3
B= 0 2/V6 1/V3
1/vV2 —1/V6 1/V3
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Quadratic forms

~

4 Definition 3.17 — Quadratic form

A quadratic form in n variables is a function that has the form

Q(xl,xg, Ce ,.%‘n) = Zaijxixj.

i<j

This can be written as Q(x) = x!Ax for some symmetric matrix A.

@ Here, one needs to be careful with the off-diagonal entries a;;, as the
coefficient of x;z; needs to be halved whenever i # j. For instance,

Qz) = Z% 4+ 4x120 + 3&7% = :L’tAa:, A= B g] )
@ The most general quadratic function in n variables has the form
Q(x) = ajzw;+ Y bpzg+c=a'Az+ bz +c.
i<j k
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Diagonalisation of quadratic forms

~

(" Theorem 3.18 — Diagonalisation of quadratic forms

Let Q(x) = x'Ax for some symmetric n x n matrix A. Then there
exists an orthogonal change of variables = By such that

n
Qx) =) ayzix; =Y Niyi,
i<j i=1

\Where A1, A2, ..., Ay are the eigenvalues of the matrix A. )

\

/Definition 3.19 — Signature of a quadratic form

The signature of a quadratic form Q(x) = ' Az is defined as the pair
of integers (ny,n_), where ny is the number of positive eigenvalues
of A and n_ is the number of negative eigenvalues of A.

- /
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Diagonalisation of quadratic forms: Example

o We diagonalise the quadratic form

Q(x) = 527 + dwywg + 225 = 2’ Ax, A= B g] .

@ The eigenvalues A = 1,6 are distinct and one can easily check that

(Y% = wae] ]

As usual, the columns of B were obtained by finding the eigenvectors
of A and by dividing each eigenvector by its length.

o Changing variables by £ = By, we now get y = B'x and also
2 2
+6y3=(—F7—) +6(—=—) =Q(=).

This is the change of variables which is asserted by Theorem 3.18.
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Tests for positive definiteness

/Theorem 3.20 — Tests for positive definiteness h
The following conditions are equivalent for a symmetric matrix A.
® One has =t Ax > 0 for all  # 0.
® The eigenvalues of A are all positive.
9 ® One has det A, > 0 for all £ x k upper left submatrices Ay. )

@ The last condition is known as Sylvester's criterion. When it comes to
a 3 x 3 matrix, for instance, it refers to the three submatrices

214
A=|1 3|1
1 2 3
o We say that A is negative definite, if z'!Ax < 0 for all  # 0. Thus, a
negative definite symmetric matrix A has negative eigenvalues and its
upper left submatrices Ay, are such that (—1)* det Aj > 0 for all k.
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Sylvester’s criterion: Example

@ Let a be a real parameter and consider the matrix

A=

— = Q

11
1 a
a 5
@ By Sylvester’s criterion, A is positive definite if and only if

a 1

a >0, det [1 1

] >0, det A > 0.
@ The first two conditions give a > 0 and a > 1, while
det A= —a*+7a—6=—(a—1)(a—2)(a+3).
@ It easily follows that A is positive definite if and only if 1 < a < 2.
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Application 1: Second derivative test

@ Given a function f(z,y) of two variables, its directional derivative in
the direction of a unit vector u is given by D, f = w1 fu + uafy.
@ In particular, the second derivative of f in the direction of u is

l)uljuf?::ul(ulf;‘+’U2fb)z'+’u2(ulf§‘+‘U2jb)y

= u%f:c:c + U1U2fya: + U2U1f:cy + U%fyy =u'Au.

@ This computation allows us to classify the critical points of f. If the
second derivative is positive for all w # 0, then the function is convex
in all directions and we get a local minimum. If the second derivative
is negative for all u # 0, then we get a local maximum.

@ To classify the critical points, one looks at the Hessian matrix

_ fzx fyx]
A= .
|:facy fyy

This is symmetric, so it is diagonalisable with real eigenvalues. Once
we now consider three cases, we obtain the second derivative test.
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Application 2: Min/Max value on the unit sphere

@ Let A be a symmetric n X n matrix and consider the quadratic form
Qx) = Zaijxixj =z'Ax.
1<j
@ To find the minimum value of Q(x) on the unit sphere ||x|| = 1, we

let B be an orthogonal matrix such that B'AB is diagonal and then
use the orthogonal change of variables & = By to write

n
Qx) =Y N}
i=1
@ Since ||y|| = ||Byl|| = ||=|| = 1 by orthogonality, we find that
n n
Q(ZL‘) = Z)\’L yf > ZAmin y? = >\min-
i=1 i=1
In particular, min Q(x) is the smallest eigenvalue of A, while a similar

argument shows that max Q(x) is the largest eigenvalue of A.
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Application 3: Min/Max value of quadratics

@ Every quadratic function of n variables can be expressed in the form

Qx) => ajmw;j+ Y bpzp+c=a'Az+a'b+c.
i<y k

@ Suppose A is positive definite symmetric and let ¢y = —%A‘lb. Then
Q(xg) = ThAzxy + xhb + ¢ = —xh Axo + ¢
is the minimum value that is attained by the quadratic because

0 < (x—x0)'Alx — x0) = ' Az — 22" Az + xh Az
=x'Az + x'b + ¢ — Q(x0)
= Q(x) — Q(wo).
@ When A is negative definite symmetric, the inequality is reversed and
thus Q(xp) is the maximum value that is attained by the quadratic.
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