Fractals, Vol. 9, No. 3 (2001) 251-262
(© World Scientific Publishing Company

L T e S T S N A e S e e e S T A N S R B S ST

GENERALIZATIONS OF
NEWTON’S METHOD

WILLIAM J. GILBERT
Pure Mathematics Department, University of Waterloo,
Waterloo, Ontario N2L 3G1, Canada

Received December 20, 2000; Accepted March 14, 2001

Abstract

We give a survey of the complex dynamics of various generalizations of Newton’s method for
finding a complex root of a polynomial of a single variable.

1. ITERATION METHODS

The best known iteration method for finding a real
or complex root of a function g(z) is Newton's
method. It consists of iterating the function

by starting with some initial approximation zp and
defining the (n+1) approximation by z,41 = N(zy).
If the function g(z) is a polynomial (or a rational
function), then the iteration function N will be a
rational map of the form

p(z)

q(2)

where p(z) and ¢(z) are polynomials with real or
complex coefficients.

N(z) =

251

There are various important factors involved in
choosing an iteration method to approximate the
roots of a function. These include:

e The Initial Value Problem. For what initial val-
ues will the method converge? Will it converge
to a root, and if so, which root?

o The Rate of Convergence. Will the convergence
be quadratic or better near a root?

e The Complezity of the Calculation. Do first or
higher derivatives have to be calculated?

We show how complex dynamics can shed light
on some of these problems when using a Newton-
type iteration for finding the real or complex roots
of a polynomial in a single variable. We can illus-
trate the basins of attraction of the roots and the
set of initial points for which the method will not
converge. We can also determine some information
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about the order of convergence at a given root; in
particular whether it is quadratic or not.

2. COMPLEX DYNAMICS OF
ITERATION METHODS

It is useful to think of the iteration function N as
being defined on the whole Riemann sphere, i.e. the
complex numbers with the point at infinity ad-
joined. The global study of Newton’s and other
such methods can now be analyzed using the the-
ory of the complex dynamics of rational maps on
the Riemann sphere, that was started by G. Julia
and P. Fatou in the 1920s.1-6
The orbit of a point zp is the set of iterates

{Z(), 21y 22y 2344 } = {Zo, N(ZQ), N(N(Zo)), . } .

The point z is a fized point of N if N(z) = z. For
the standard Newton’s method applied to a poly-
nomial g, each root of g will be a fixed point of IV,
and these will be the only finite fixed points. If ¢
is not of degree 1, then oo will also be a fixed point
of N.

The point z is a periodic point if NP(z) = z, for
some positive integer p. The least such integer p
is called the period and the orbit of z is then a p-
cycle. Note that a point of period 1 is a fixed point
and a point of period p is a fixed point of the com-
posite map NP. A point z is eventually periodic if
N¥(z) = N*¥*P(2) for positive integers k and p.

In Newton’s method, we would like our initial
point 2y to converge to a fixed point that is a root.
That certainly happens most of the time, but other
things can happen. The orbit of 2z could converge
to a p-cycle, or it could wander chaotically about
the Riemann sphere.

If z is a periodic point of period p, then the
derivative A = (N?)(z) is called the eigenvalue of
the periodic point 2. It follows from the chain rule
that A is the product of the derivatives of N at each
point on the orbit of 2. Hence A is an invariant of
the orbit. A periodic orbit is called

attracting if Al <1,
super-attracting if A =0,
repelling if [A] > 1, and
neutral if [Al = 1.

Using the Taylor’s series for N, it can be shown
that IV will be linearly convergent at an attract-
ing fixed point and at least quadratically conver-
gent at a super-attracting fixed point. Recall that

the sequence {z,} converges linearly to w if, for
sufficiently large n, |z,41 — w| < €|z, — w|, where
0 < ¢ < 1, and it converges quadratically if, for suf-
ficiently large n, |2p4+1 — w| < c|z, — w|?, for some
constant c.

If we are interested in the dynamics of NV on the
Riemann sphere, we can always conjugate N by an
invertible linear fractional (Mdbius) transformation
T, and the dynamics of the iterates of N will be the
same as the iterates of To N o T~1. On the Rie-
mann sphere, the point at infinity is like any other
point. In order to determine whether infinity is a
fixed point of N and to find its eigenvalue there,
we can conjugate N by the transformation z +— 1/z
that interchanges 0 and oo. Therefore the behav-
ior of N(z) at oo is the same as the behavior of
1/N(1/z) at 0.

The basin of attraction of a fixed point w of the
map NN is the set

{ .
of all points that map to w under the iterates of N.
This may have infinitely many components, and the
immediate basin of attraction is the connected com-
ponent containing the fixed point w.

The rational map N divides the Riemann sphere
into two invariant sets, the Julia set, Jy, and its
complement. The Julia set consists of points in
which the dynamics of the iterations of N is compli-
cated. Points in the complement of the Julia set will
normally converge to a fixed point (that could be
infinity), or to an attractive cycle. This complement
could also contain a Siegel disk or Hermann ring in
which the iterations are locally like an irrational ro-
tation of a disk or an annulus.® The following prop-
erties of the Julia set are proven in the theory of
the complex dynamics of a rational map.1:3-5

lm N™(z) = w}

1. Jp is the closure of the repelling periodic points.

2. Jy is non-empty.

3. Jy is completely invariant under N; i.e.
N(Jy) = Iy = N1(Jn).

4. Jy is the boundary of the basin of attraction of
each fixed point or attractive cycle.

5. If w € Jy, then the closure of {z|N"(z) = w
for some non-negative integer n}, the backward
iterates of w, is the whole of Jy.

Property 4 guarantees that, if there are more than
two roots, Jy will be a fractal set. Property 1 guar-
antees that the Julia set is an unstable set. Iterates



of points close to the Julia set will move away from
that set. Hence Newton’s method is very sensitive
to initial conditions when the initial point is near
the Julia set. Nearby points could converge to dif-
ferent roots or might not converge at all. Ideally,
if you start with a point actually on the Julia set,
Property 3 implies that the iterates will also be on
the Julia set. However in practice, because the Ju-
lia set is unstable, the iterates will most likely be
thrown off the set because of rounding errors.
Does Newton’s method converge to a root for
practically every initial point? Unfortunately, the
answer is no. The orbit could converge to an at-
tractive cycle, rather than to a root.” In some
of the generalizations of Newton’s method that
we shall consider, there may also be fixed points
of the method that are not roots of the polyno-
mial g; these are called eztraneous fized points and
they may be attracting or repelling. McMullen®
has shown that there is no single iterative ratio-
nal root-finding algorithm that will work for almost
all complex polynomials of degree larger than three.
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However, the roots of a polynomial of degree four
or five, but not higher, can be computed using a
tower of algorithms.®

The following theorem can be used to determine
all the attractive cycles of N. A critical point of N
is where the derivative vanishes; this is where N is
not locally one-to-one.

Theorem.! The immediate basin of an attractive
fized point or cycle of N contains the image of at
least one critical point of N.

If the maximal degree of the polynomials in the
numerator and denominator of a rational function is
d, then the function will have at most 2d — 2 critical
points and hence at most 2d — 2 attractive cycles.

3. NEWTON’S METHOD

The standard Newton’s Method is also called the
Newton-Raphson method. Any root of the poly-

2i

-2i

-2 -1

0

Fig. 1 The Julia set of Newton’s method applied to g(z) = (z — 1)(z +i)(z + 1 —3).
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Fig. 2 Basins of attraction of Newton’s method applied to g(z) = (z — 1)(z + @)(z + 1 —1).

-2 -1 0 1 2

Fig. 3 Newton’s method applied to g(z) = (z — 1)(z + 0.5 — 0.33i)(z + 0.5 + 0.331).
Note the black regions where the method fails.
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Fig. 4 A magnification of Fig. 3.

nomial ¢ is a fixed point of N. A simple root is
always super-attractive, and so Newton’s method
converges quadratically at such roots. At a multiple
root of order k, the eigenvalue is (k—1)/k < 1, and
so the method only converges linearly there. The
point at infinity is always a repelling fixed point
with eigenvalue d/(d —1) > 1, where d is the degree
of the polynomial g. Hence large values of z, will
tend to be pushed away from infinity.

We normally iterate Newton’s method until the
difference between successive approximations is
less than some fixed value. For example, the
black points in Fig. 1 are those initial values in
the complex plane for which successive iterates are
not within 0.0001 of each other after 13 itera-
tions of Newton’s method for the cubic polynomial
g(z) = 23 +1iz — 1 — 4. This is an approximation
to the Julia set of V. Figure 2 shows the basins
of attraction for the roots 1, —i and —1 + i. Each
white or colored region in Figs. 2-12 represents one
basin of attraction of a root of g, while any points,
whose iterates have not come sufficiently close to a
root after a certain number of iterations, are colored
black.

Figure 3 shows an example of Newton’s method
in which a whole neighborhood of initial points do
not converge to any root. The points in the black
regions converge to an attractive cycle of period 2
on the real axis. Hence Newton’s method will fail
for initial points in these black regions. A magnifi-
cation of one of these regions is shown in Fig. 4.

4. RELAXED NEWTON’S METHOD

Because Newton’s method is only linearly conver-
gent at multiple roots, various modifications have
been suggested for improving the convergence. If
we know that g has a multiple root of order exactly
m, we can apply Newton’s method to %/g(z) to
obtain
s 1
L C)

1 _1__1 ’ B ’
—9(2)»"g'(2)

Nn(2)=2z—

This is called the relazed Newton’s method or New-
ton’s method for a root of order m. This relaxed
Newton’s method will converge quadratically to a
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-2 -1 0 1 2

Fig. 5 The relaxed Newton’s method applied to g(z) = z(z — 1)(z + 1)* using 1500 iterations.

2i

-2i
-2 -1 0 1 2

Fig. 6 The relaxed Newton’s method applied to g(z) = 2(z — 1)(z + 1)? using only ten iterations.
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Fig. 7 The relaxed Newton’s method applied to g(z) = z(z — 1)(z + 1)* using 1250 iterations.

root of order exactly m. At a root of order k, Np,
has an eigenvalue of 1 — (m/k). If m > 2k, then
|1 — (m/k)| > 1 and the root will be repelling. If
m < 2k, then |1 — (m/k)| < 1 and the convergence
will only be linear. If m = 2k, then the root is
a neutral fixed point. The point at infinity is a re-
pelling fixed point with eigenvalue d/(d—m), where
d is the degree of the polynomial g.

For example, it can be shown that the dynamics
of the relaxed Newton’s method N;, applied to any
cubic with one double root, is conjugate to the dy-
namics of the quadratic p(z) = 22 — 3.1° The Julia
set of this quadratic is well known. The simple root
of such a cubic is a neutral fixed point for N3, and
points in its basin of attraction converge extremely
slowly to the root.

Figure 5 shows the relaxed Newton’s method N3
applied to the quartic g(z) = z(z — 1)(z + 1)%. The
double root at —1 is super-attractive, but both sim-
ple roots at 0 and 1 are neutral fixed points, and
it needed 1500 iterations for the colored points in
the figure to converge to within 0.01 of these roots.
If we only use ten iterations, as shown in Fig. 6,

then points in the mauve region do converge to the
double root, but very few points have come close
to the simple roots. After 1250 iterations, shown in
Fig. 7, the maroon basin of attraction of the simple
root 1 is clear, but the yellow basin of attraction of
the origin is not yet clearly defined. Therefore this
relaxed method should only be tried if you are cer-
tain that you know the order of the multiple root,
and you are in the basin of attraction.

The relaxed Newton’s method can also be ap-
plied for non-integral values of m; in particular, see
Refs. 11— 13 for results when 0 < m < 1.

5. NEWTON’S METHOD FOR A
MULTIPLE ROOT

If g(2) is a polynomial with simple or multiple roots,
then the rational function g(z)/g'(z) will have a
simple root for each root of g(z). Apply Newton’s
method to g(z)/¢'(2) to obtain

_ 9(2)d'(2)
g'(2)? —g(2)g"(2)

M(z)==2
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Fig. 8 Newton’s method for a multiple root applied to g(z) = z*(z* — 1).

This is called Newton’s method for a multiple root.
It is quadratically convergent at every root of g(2),
but it is more complicated to calculate because it
involves second derivatives.

The roots of g(z) are not the only fixed points
of M(z). The roots of ¢’(z), that are also not roots
of g(z), are extraneous fixed points for this method.
However if w is such an extraneous fixed point, then
g(w) =0, g(w) # 0 and M'(w) = 2. Therefore
these extraneous fixed points are always repelling.
This method M(z) is the only one that we consider
in which infinity is not a fixed point.

Figure 8 shows the method M applied to
g(2) = 2%(2® — 1) with one double root and three
simple roots.!4

6. COLLATZ METHOD

Collatz (Ref. 15, Sec. 17.5) shows that if we take the
average of the relaxed Newton’s method N,,, and
Newton’s method for a multiple root M, we obtain
an iteration procedure that is cubically convergent

at a root of order exactly m.

N (2) + M(2)
2

_ g(2)[(m +1)g'(2)* — mg(2)g" (2)]
2¢'(2)[g'(2)? — g(2)g"(2)]

If w is a root of g(z) of order k, then

_Np(2)+M'(z) _k-m
B 2 2%

Hence, if m > 3k, the root will be repelling, if
m < 3k but m # k, the convergence will be lin-
ear and, if m = 3k, the root is a neutral fixed point.
Any solutions to (m + 1)¢’(2)2 — mg(2)g"(z) = 0,
that are not roots of g(z), are extraneous roots for
this method. They should be checked to see if they
are attractive or not. The point at infinity is always
a repelling fixed point with eigenvalue 2d/(d — m),
where d is the degree of the polynomial g.

Figure 9 shows the basins of attraction for the
Collatz method, C,, applied to the polynomial
g(z) = (2z + 1)%(1623 + 2422 + 3). The conver-
gence is cubic at the double root —0.5, and linear

Cnm(z) =

Crn(w)
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0 1 2

The Collatz method applied to g(z) = (2z 4 1)2(162° 4 2422 4 3).

Note the small black regions where the method fails.

at the other three roots. However, this example has
a super-attractive extraneous fixed point at 0, and
all points in the black regions converge to 0 rather
than to any root.

7. SCHRODER METHOD

Schroder and Konig both produced modifications
of Newton’s method that will converge to any given
order at a simple root. Let z, be an approxima-
tion to a simple root of g(z) in a neighborhood
where the derivative ¢’(z) is nonzero. We can ap-
proximate y = g(z) by the polynomial z = h(y) =
ao + a1y + agy® + - + a,_1y" !, so that the two
curves agree at z, up to their (r — 1) derivatives.
The curve z = h(y) meets the z-axis at ap, and
we take this point to be the next approximation,
Znt1, to the root. This defines the Schréder it-
eration method of the rth order, S;(z) (Ref. 16,
Sec. 3.34).17 The Schréder method, Sy, converges
to a simple root with order r. When r = 2, we
are approximating the curve by the tangent at z,,

and so S is just the standard Newton’s method N.
When r = 3, the method is defined by

,_9(2) _g"(2)g(2)"
g(z)  2¢'(2)}

_,_ 9()[(29'(2)* + 9(2)g"(2)]
29'(2)° '

Sg(z) =

The Julia sets associated with the Schréder method
have been studied in Ref. 17.

At a root of order k, the eigenvalue for S3 is
(k —1)(2k + 1)/(2k?) and so S3 converges linearly
at a multiple root. Extraneous fixed points of this
method are solutions to 2g'(2)? + g(2)¢"(z) = 0,
that are not roots of g(z). The point at infinity is
always a repelling fixed point for S5 with eigenvalue
2d%/(2d® — 3d? + d) > 1, where d is the degree of
the polynomial g.

Figure 10 illustrates the Schréder method, S3,
when it is applied to the same cubic polynomial
g(z) = (z = 1)(z +1)(z + 1 — ¢) that was used in
Figs. 1 and 2.
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Fig. 10 Schréder’s method applied to g(z) = (z — 1)(z +3)(z + 1 — ).

8. KONIG METHOD

If we apply Newton’s method to g(z)h(z), where
h(z) is finite and nonzero at a simple root of g(z),
then the resulting iteration will always be at least
of second order at that simple root. In the Kdnig
iteration method of the rth order, K,(z) (Ref. 16,
Sec. 3.32), the function h is chosen so the iteration
converges with order r at a simple root of g. K3 is
just the standard Newton’s method. K3 must sat-
isfy K4(w) = 0 at a simple root w of g(z), and we
can take h(z) = 1/1/¢'(z). K3 is defined by

_ 29(2)d'(2)
29'(2)% — g(2)g"(2)

This method, K3, is also called the Halley method.!®

At a root of order k, the eigenvalue for K3 is
(k —1)/(k + 1), and so K3 converges linearly at a
multiple root. The only extraneous fixed points of
K3 are roots of g’(z) that are not roots of g(z).
These extraneous fixed points are all repelling.!®
The point at infinity is always a repelling fixed point
for K, with eigenvalue (d +r —2)/(d — 1), where d
is the degree of the polynomial g.

K3(2) =

Figure 11 shows the Kénig method, K3, when
applied to the same cubic polynomial g(z) = (z —
1)(z + i)(z + 1 — i) that was used in Figs. 1, 2
and 10.

9. STEFFENSEN’S METHOD

The Steffensen method does not require the cal-
culation of derivatives and only uses one initial
value. The method may be derived from Aiken’s
process that is used to speed up the convergence of
a sequence.?? To find the roots of the function g(z)
we iterate

9(2)*
(9(2) +2) —g(2)

St(z) =z — )

If the denominator g(g(z)+ z) — g(z) is zero, we set
St(z) = z and halt the iteration. The method con-
verges quadratically at a simple root and linearly at
multiple roots.

However, Fig. 12 shows that many initial points
do not converge to any root. For any polynomial,
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(3]

-2 -1 0 1

Fig. 11 Konig’s method applied to g(z) = (z = 1)(z +i)(z + 1 — 7).

") -1 0 1 2

Fig. 12 Steffensen’s method applied to g(z) = z* — z.
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infinity is a neutral fixed point of St(z), while in
most of our previous examples, infinity was a re-
pelling fixed point. For initial starting values in
the black regions, the iteration diverges. For exam-
ple, if the initial value in Fig. 12 is a large positive
real number in the yellow region, then the iterates
will converge to 1. However, if the initial value is
a large and negative real number, the iterates will
slowly diverge.
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