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Duality Theory I:

Basic Theory

Notes from the Functional Analysis Course (Fall 07 - Spring 08)

This section contains an important conceptual discussion on duality, which in a special
case encodes the interplay between a locally convex space and its (topological) dual.

A. Dual Pairings

Convention. Throughout this note K will be one of the fields R or C, and all vector
spaces are over K.

Definitions. Suppose one has two vector spaces X and Y . A dual pairing of X with Y
is a bilinear1 map Φ : X × Y → K, which is non-degenerate, in the following sense:

• If x ∈ X is such that Φ(x, y) = 0, ∀ y ∈ Y , then x = 0.

• If y ∈ Y is such that Φ(x, y) = 0, ∀x ∈ X , then y = 0.

Equivalently, Φ can be represented by two2 linear injective maps

# : X 3 x 7−→ x# ∈ Y ′, (1)

# : Y 3 y 7−→ y# ∈ X ′, (2)

satisfying the equality
x#(y) = y#(x), ∀x ∈ X , y ∈ Y . (3)

The bilinear map Φ is simply given as Φ(x, y) = x#(y) = y#(x).

Example 1. Given an arbitrary vector space X , and a linear subspace F ⊂ X ′, which
separates the points of X (i.e. if x1 6= x2, there exists f ∈ F with f(x1) 6= f(x2)), then the
map Φ : X × F 3 (x, f) 7−→ f(x) ∈ K is a dual pairing.

Example 2. We can specialize the above example to the following situation. Assume
X is a locally convex topological vector space. In particular the topology T, which X is
equipped with, is Hausdorff, and the dual space X ∗ = (X ,T)∗ separates the points in X .
Then the map Φ : X × X ∗ 3 (x, φ) 7−→ φ(x) ∈ K is a dual pairing.

B. The Weak Dual Topologies

Definitions. Assume now a dual pairing is given, defined by the maps (1) and (2) satis-
fying (3). If we endow Y ′ with the weak* topology, we can apply the pull-back construction

1 This means that Φ is linear in each variable.
2 Although the notation is abusive, it is very convenient!
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(see LCVS II) using the map (1) to obtain a topology, denoted by w# on X . Specifically,
this is the weakest topology which makes the map # : X → (Y ′,w∗) continuous. Since the
weak* topology on Y ′ is Hausdorff locally convex, and the map # is linear and injective, the
topology w# on X is Hausdorff locally convex.

Similarly, one also constructs a Hausdorff locally convex topology w# on Y , as the weakest
topology that makes the map # : Y → (X ′,w∗) continuous.

The two topologies constructed above are called the weak topologies associated with the
dual pairing.

Remarks 1-2. Use the notations as above.

1. Convergence in (X ,w#) and in (Y ,w#) can be characterized as follows:

(i) xλ
w#

−−→ x (in X ), if and only if one of the following equivalent conditions holds:

x#
λ (y) → x#(y), ∀ y ∈ Y ,

y#(xλ) → y#(x), ∀ y ∈ Y .

(ii) yλ
w#

−−→ y (in X ), if and only if one of the following equivalent conditions holds:

y#
λ (x) → y#(x), ∀x ∈ X ,

x#(yλ) → x#(y), ∀x ∈ X .

2. In terms of seminorms:

(i) the topology w# on X is defined by the family PX
Y = {py}y∈Y , given by

py(x) = |y#(x)| = |x#(y)|, x ∈ X , y ∈ Y ;

(ii) the topology w# on Y is defined by the family PY
X = {px}x∈X , given by

px(y) = |x#(y)| = |y#(x)|, x ∈ X , y ∈ Y ;

Theorem 1. Use the notations above.

(i) For any x ∈ X , the linear functional x# : Y → K is continuous in the w# topology.

(i’) If we equip the space Y∗ = (Y ,w#)∗ with the weak* topology, the map

# : (X ,w#) 3 x 7−→ x# ∈ (Y∗,w∗) (4)

is a topological linear isomorphism.

(ii) For any y ∈ Y, the linear functional y# : X → K is continuous in the w# topology.

(ii’) If we equip the space X ∗ = (X ,w#)∗ with the weak* topology, the map

# : (Y ,w#) 3 y 7−→ y# ∈ (X ∗,w∗) (5)

is a topological linear isomorphism.
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Proof. By symmetry, it suffices to prove only (i) and (i’). Property (i) is quite trivial, by
Remark 1.

To prove (ii) we first remark that (4) is injective, by definition.
Next we show that (4) is surjective. Suppose φ : Y → K is linear and w#-continuous,

and let us prove that there exists (a unique) x ∈ X , such that φ = x#. Using Remark 2, the
discussion from LCVS IV (Remark 3), there exist x1, . . . , xn ∈ X and t1, . . . , tn > 0, such
that

|φ(y)| ≤ t1|x#
1 (y)|+ · · ·+ tn|x#

n (y)|, ∀ y ∈ Y .

Using Exercise ?? from HB, (applied to the seminorms pj(y) = tj|x#
j (y)|, j = 1, . . . , n),

there exist linear functionals φ1, . . . , φn : Y → K, such that φ = φ1 + · · ·+ φn, and

|φj(y)| ≤ tj|x#
j (y)|, ∀ y ∈ Y , j = 1, . . . , n.

Fix for the moment j, and consider the linear functional ψj = tjx
#
j : Y → K. Since

|φj(y)| ≤ |ψj(y)|, ∀ y ∈ Y , we must have the inclusion Kerψj ⊂ Kerφj, so X/Kerφj is a
quotient of X/Kerψj. Since ψj is linear, we must have

1 ≥ dim(Kerψj) ≥ dim(Kerφj) ≥ 0,

so either

(i) dim(Kerψj) = dim(Kerφj)(≤ 1), in which case Kerφj = Kerψj, or

(i) 1 = dim(Kerψj) > dim(Kerφj) = 0, in which case Kerφj = X .

In either case we get φj = αjψj, for some αj ∈ K (in case (ii), αj = 0). So now we have

φj = αjtjx
#
j , j = 1, . . . , n, so

φ(y) = α1t1x
#
1 (y) + · · ·+ α1t1x

#
1 (y) = (α1t1x1 + · · ·+ αntnxn)#(y), ∀ y ∈ Y ,

i.e. φ = (α1t1x1 + · · ·+ αntnxn)#.
Having proven that (4) is a linear isomorphism, its continuity, as well as the continuity of

its inverse, are tautologic by Remark 1, since the condition x#
λ

w∗
−→ x# (in Y∗) is equivalent

to
x#

λ (y) → x#(y), ∀ y ∈ Y ,

which in turn is equivalent to xλ
w#

−−→ x (in X ).

We now re-visit the two examples from sub-section A.

Example 1. Given an arbitrary vector space X , and a linear subspace F ⊂ X ′, which
separates the points of X , then, as pointed out in sub-section A, we have is a dual pairing
between X and X . The weak topology w# on X is referred to as the weak F-topology, and
is denoted by wF . The other weak topology w# on F is simply the restriction of the weak*
topology (from X ′) to F .

Example 2. If (X ,T) is a locally convex topological vector space (thus T is Hausdorff),
then, as discussed in Example 2 from sub-section A, we have a dual pairing between X and
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X ∗. The topology w# on X is simply the weak topology wT, implemented by T, which was
introduced in LCVS IV. In particular (see LCVS IV), for every set S ⊂ X , one has the
equalities

convST
= convSwT

= convSw#

. (6)

As before, the other topology w# on X ∗ is simply the weak* topology. As a consequence of
Theorem 1, we also have a natural topological linear isomorphism

# : (X ,wT) 3 x 7−→ x# ∈ (X ∗,w∗)∗,

defined by x#(φ) = φ(x), ∀x ∈ X , φ ∈ X ∗.

Exercise 1*. Equip the direct sum X =
⊕

N K with the locally convex sum topology
T. Show that the weak topology wT is strictly weaker than T. Conclude that there does
not exist locally convex spaces Y , such that (X ,T) is topologically linearly isomorphic to
(Y∗,w∗).

Exercise 2. Let I be some non-empty set. Consider the spaces Xprod =
∏

I K and
Xsum =

⊕
I K.

(i) Prove that the map Φ : Xprod ×Xsum → K, defined by3

Φ(x, y) =
∑
i∈I

xiyi, ∀x = (xi)i∈I ∈ Xprod, y = (yi)i∈I ∈ Xsum,

establishes a dual pairing.

(ii) Prove that the topology w# on Xprod coincides with the product topology Tprod.

(iii) Prove that the topology w# on Xsum is strictly weaker than the locally convex sum
topology. Therefore we only have an algebraic linear isomorphism Xsum ' (Xprod,Tprod)

∗.

C. Polars and the Bipolar Theorem

As we have already seen in Example 2, the closure of convex hulls depends only on the
interaction between the ambient space and its (topological) dual. Therefore, it is expected
that the operation of taking closed convex hulls to admit an “abstract” characterization,
within the framework of dual pairs.

Definitions. Suppose a dual pairing between two vector spaces X and Y is given, defined
by the maps (1) and (2) satisfying (3). For a non-empty set A ⊂ X , we define its polar (in
Y) to be the set:

A◦ = {y ∈ Y : Re y#(a) ≤ 1, ∀ a ∈ A}.
Similarly, for a non-empty set B ⊂ Y , we define its polar (in X ) to be the set:

B◦ = {x ∈ X : Re x#(b) ≤ 1, ∀ b ∈ B}.

Exercise 3. Prove that, using the notations as above, for two non-empty sets A ⊂ B ⊂
X , one has the reverse inclusion A◦ ⊃ B◦.

3 The sum is clearly finite, since yi 6= 0 only for finitely many i ∈ I.
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Proposition 2. With the notations as above, if A ⊂ X is non-empty, then A◦ is convex,
w#-closed in Y, and contains 0. Likewise, if B ⊂ Y is non-empty, then B◦ is convex,
w#-closed in X , and contains 0.

Proof. By symmetry, we only need to prove the first statement. The fact that A◦ contains 0
is trivial. To prove convexity, start with y, z ∈ A◦ and some t ∈ [0, 1], and let us show that
ty + (1− t)z ∈ A◦. This is, however, trivial, since by the linearity of the map (5) we have

Re[(ty + (1− t)z)#(a)] = Re[ty#(a) + (1− t)z#(a)] =

= t[Re y#(a)] + (1− t)[Re z#(a)] ≤ 1, ∀ a ∈ A.

Finally, to prove that A◦ is w#-closed, we start with some net (yλ) in A◦, which is w#-
convergent to some y ∈ Y , and we show that y ∈ A◦. This is again trivial, since the

condition yλ
w#

−−→ y implies y#
λ (a) → y#(a), ∀ a ∈ A, so the inequalities Re y#

λ (a) ≤ 1, ∀λ,
will force Re y#(a) ≤ 1.

Theorem 2 (Bipolar Theorem). Use the notations and hypotheses from the above defi-
nition. Let w# be the weak topology on X associated with the dual pairing. For any subset
A ⊂ X , the w#-closure of the convex hull of A ∪ {0} is given by the equality

conv(A ∪ {0})
w#

= (A◦)◦. (7)

Proof. Using Proposition 2, we already know that the bi-polar (A◦)◦ is w#-closed (in X ),
convex, and contains 0. Note also that (A◦)◦ contains A. Indeed, if a ∈ A, then for every
y ∈ A◦ one has a#(y) = y#(a), so we now have

Re a#(y) = Re y#(a) ≤ 1, ∀ y ∈ A◦.

(The second inequality comes from the very definition of A◦.)
Since (A◦)◦ is w#-closed, convex, and it contains A ∪ {0}, we have the inclusion

conv(A ∪ {0})
w#

⊂ (A◦)◦.

To prove the other inclusion, we start with some element x ∈ X that does not belong to

conv(A ∪ {0})
w#

, and we show that x 6∈ (A◦)◦. First of all, by Theorem 1 from LCVS IV,
we know there exist φ ∈ (X ,w#)∗ and s ∈ R, such that

Reφ(a) ≤ s < Reφ(x), ∀ a ∈ A ∪ {0}.

In particular (using a = 0), it follows that Reφ(x) > s ≥ 0, so if we take t = (Reφ(x)+s)/2,
and we define ψ = t−1φ, then ψ : X → K is still linear and w#-continuous, but now satisfies

Reψ(a) < 1 < Reψ(x), ∀ a ∈ A ∪ {0}.

By Theorem 1, we know that there exists (a unique) y ∈ Y , such that ψ = y#, so the above
inequalities now read:

Re y#(a) < 1 < Re y#(x), ∀ a ∈ A ∪ {0}.

In particular, from the first inequality we can conclude that y ∈ A◦, and then the second
inequality shows that x 6∈ (A◦)◦.
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Comment. Many textbooks use a notion that is slightly different from ours, by defining
(use the notations as above), for non-empty A ⊂ X and B ⊂ Y , the sets

A� = {y ∈ Y : |y#(a)| ≤ 1, ∀ a ∈ A},
B� = {x ∈ X : |x#(b)| ≤ 1, ∀ b ∈ B}.

Definition. With the above notations, the set A� is called the absolute polar of A (in
Y), and the set B� is called the absolute polar of B (in X ).

The result below deal with the “absolute” version of Proposition 2 and the relationship
between the absolute and the “honest” polars.

Proposition 3 Use the notations as above. If A ⊂ X is a non-empty subset, then:

(i) The absolute polar A� is w#-closed, convex, and balanced (hence A� 3 0);

(ii) A� = [balA]◦.

(Recall that balA denotes the balanced hull of A, defined as
⋃

α∈K
|α|≤1

αA.)

Proof. (ii). Suppose first y ∈ A�, and let us prove that y ∈ [balA]◦, i.e. Re y#(αa), for all
a ∈ A, and every α ∈ K with |α| ≤ 1. This is, however, obvious, since

Re y#(αa) ≤ |y#(αa)| = |α| · |y#(a)| ≤ |α| ≤ 1.

Conversely, if y ∈ [balA]◦, then we can choose, for every a ∈ A, a scalar αa ∈ K such that
|αa| = 1 and αay

#(a) = |y#(a)|(∈ R). In particular, for every a ∈ A, we have

|y#(a)| = αay
#(a) = Re[αay

#(a)] = Re y#(αaa) ≤ 1

(the last inequality follows from the assumption that y is in [balA]◦), so y indeed belongs
to A�.

(i). By part (ii) and Proposition 2, the absolute polar A� is w#-closed, convex (and
contains 0). If α ∈ K is such that |α| ≤ 1, then for every y ∈ A� we have:

|(αy)#(a)| = |α| · |y#(a)| ≤ |α| ≤ 1,

which means that αy is also in A�.

The “absolute” version of Theorem 2 is the following.

Theorem 3 (Absolute Bipolar Theorem) Use the notations and hypotheses from the
preceding definition. Let w# be the weak topology on X associated with the dual pairing. For
any non-empty subset A ⊂ X , one has the equality

conv(balA)
w#

= (A�)�. (8)
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Proof. By Proposition 3, we know that

A� = [balA]◦. (9)

Since A� is already balanced, again by Proposition 3, we get the equality (A�)� = (A�)◦, so
going back to (9) we now have

(A�)� = ([balA]◦)◦.

The desired equality (8) now follows from the one above, and Theorem 2 (applied to balA).

Exercise 4. Use the notations as above. Prove that, for a non-empty set A ⊂ X , one
has:

(i) (tA)◦ = t−1(A◦), ∀ t > 0;

(ii) (αA)� = |α|−1(A�, ∀α ∈ K, α 6= 0.

Besides (absolute) polars, there is a third construction associated with dual pairs, de-
scribed in the following group of Exercises.

Exercises 5-7. Use notations as above. For non-empty A ⊂ X and B ⊂ Y , let:

Aann = {y ∈ Y : y#(a) = 0, ∀ a ∈ A},
Bann = {x ∈ X : x#(b)y#(a) = 0, ∀ b ∈ B}.

5. Prove the equalities4

Aann = (spanA)◦ = (spanA)ann = (spanA)�.

6. Prove that Aann is a w#-closed linear subspace in Y .

7. Prove that (Aann)ann = spanAw#

.

Definition. The set Aann is called5 the annihilator of A (in Y), and the set Bann is called
the annihilator of B (in X ).

Comment. The (Absolute) Bipolar Theorem has numerous application in Functional
Analysis, especially in the setting from Example 2. Specifically, if (X ,T) is a locally convex
topological vector space, we can from a dual pairing with its topological dual X ∗ = (X ,T)∗,
and then by Theorems 3 and 4, it follows that, for every A ⊂ X , one has the equalities

conv(A ∪ {0})
T

= (A◦)◦; (10)

conv(balA)
T

= (A�)�. (11)

Some subtle applications are illustrated in DT II.

Exercise 8. Let op be any one of the three operations: “◦” (polar), “�” (absolute polar),
or “ann” (annihilator). Prove that, given a dual pairing between X and Y , for a non-empty
set A ⊂ X one has the equality [(Aop)op]op = Aop.

4 Here spanA denotes the linear span of A.
5 Some texts refer to this as the orthogonal of A in Y, and denote it by A⊥.
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