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Testing the Theory of Descent

DAVID PENNY, MICHAEL D. HENDY, AND MICHAEL A. STEEL

If it could be demonstrated that any complex organ existed which could not
possibly have been formed by numerous, successive, slight modifications, my
theory would absolutely break down (Darwin, 1859: 189).

The comment of Popper (1976:168) that “Darwinism is not a testable
scientific theory, but a metaphysical research program—a possible frame-
work for testable scientific theories™ is sometimes used to question the
scientific status of evolutionary theory. The original comment was not in
any way “‘antievolution,” and indeed, Popper noted “‘the strange similarity
between my theory of the growth of knowledge and Darwinism™ (Popper. -
1976:169}. Later, Popper (1978, 1984) limited these criticisms, but this has
not always satisfied critics. One of our interests has been to determine,
without ambiguity, if evolutionary theory could meet Popper’s criteria for
the demarcation of science.

The introductory quote given above is one of many examples of how
Charles Darwin considered his theory of evolution to be falsifiable. Al-
though Drarwin is remembered today for the general aspects of theory of
evolution, in his day-to-day research, he made many predictions from his

. theory—then sought (or made observations) to test the predictions. Some

of the best known involve his experiments on plants, including work on
orchid flowers (both in structure and function), pin and thrum flowers of
primrose {and other dimorphic and trimorphic forms of flowers), and on
the power of movement of plants (Ghiselin, 1969; Allan, 1977; Penny,
1985). This last example of the power of movement in plants is particularly
interesting in that he had left a record of his reasoning. The first extract
is from his autobiography.

For in accordance with the principles of evolution, it was impossible to account
for climbing plants having been developed in so many widely different groups,
unless all kinds of plants possess some slight power of movement of an anal-
ogous kind.
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And again, the delightful comment in a notebook from 1839,
Is there any very sleepy mimosa, nearly allied to the Sensitive Plant?

(Details of sources are in Penny, 1985). The prediction that all plants should
have some *‘slight power of movement” led to two books on his research,
The Movements and Habits of Climbing Plants and The Power of Movement
in Plants. Many other examples of how Darwin used predictions to direct
research could be given, including features of human evolution.

It was not just a coincidence that Charles Darwin was looking for pre-
dictions from theories. During the early stages of the development of his
theory (after the voyage of the Beagle), Darwin read widely in many areas
of science. This was partly in order to understand what was required of a
good scientific theory. His reading included works on the philosophy of
science by Herschel, Whewell and Comte (Ruse, 1975; Schweber, 1977).
Each of these authors emphasized the importance of prediction in science
and, judging from letters to Charles Lyell (Schweber, 1977), Darwin was well
aware of the importance of a good scientific theory leading to predictions.

In this century, Karl Popper (1963, 1972) has developed this theme
further and emphasized the potential falsifiability of scientific theories. A
theory is more useful (and therefore better) if it prohibits (excludes) a
larger proportion of possible observations. The approach claims to be both
descriptive and prescriptive. It is descriptive in that it claims to describe
how the most effective scientists have worked, and it is prescriptive in that
it advocates how scientists should aim to work. Hypotheses (or conjectures)
are considered tools that are judged on their effectiveness in helping sci-
entists devise new and more powerful tests whether the tests be observa-
tional, experimental, or analytical. None of this denies that sociological
and cultural factors play a role in science—as long as such factors are
considered descriptive of scientific procedures and not prescriptive of how
scientists should select theories. During the past two decades there has
been a strong anti-intellectual movement suggesting that hypotheses are
largely determined by cultural factors, and consequently, to this extent are
arbitrary. Such a movement has failed to develop falsifiable predictions
and is not scientific by Popper’s criterion for the delimitation of science.

In this chapter we review our approach to the study of evolutionary
trees. This has been developed within a strong Popperian framework (Rid-
diford and Penny, 1984) of aiming to develop falsifiable hypotheses. After
discussing some of the general issues involved, we then discuss the question
of how good methods are for inferring trees, particularly from molecular data.

IS EVOLUTION A SCIENTIFIC THEORY?

Similar Trees From Different Sequences

The simple prediction from the “theory of descent” is that, because the
sequences share the same tree pattern of ancestry, the optimal trees from
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different sets of data should be similar. (From the proposed stochastic
nature of the mechanism of mutation and selection it would be surprising
if the trees were identical. Indeed, it would be more devastating to Dar-
winism if different sets of short sequences always gave identical trees).
Comparing results from different data sets had been used previously (e.g.,
Mickevich, 1978) and our interest was in getting quantitative results.

Our first major project was to compare trees derived for the same 11
mammalian taxa but from different sets of sequence data. We saw three
requirements for being able to test the prediction of similar trees from
different sequences. These were the ability to:

1. find the optimal tree(s) for 10 or more taxa;
2. find a tree comparison measure to compare trees objectively; and
3. derive the distribution of this tree comparison measure.

Finding the Optimal Tree

Sufficient taxa were required so that it would be most unlikely to get the
same tree by chance. Fortunately, sequence data for 11 taxa were available
for five proteins or peptides.

For 11 taxa there are 34,459,425 (17!!) binary trees. The number of trees
increases exponentially with the number of taxa; therefore. any method
which considers all trees cannot be efficient. It was shown quite early in
the project that searching trees for the optimal tree(s) is an example of a
set of problems known to be NP-complete (Graham and Foulds, 1982).
This result implies that it is most unlikely that an efficient method will ever
be found for a complete search on a large number of taxa. William Day
has extended this analysis to other related problems with trees (see Day
et al., 1986).

Finding optimal trees requires a program which is unbiased toward any
subclass of trees. For example, it could happen that a program tended to
group together adjacent taxa in the data matrix. An error of this nature
could lead to the trees from different sequences being more similar then
expected, not through common descent, but through program limitations.
A quite different problem is that an optimality criterion, for example par-
stmony, could tend to favor some trees by bringing together isolated taxa.
This will be discussed later.

In 1980, a search through all trees for 11 taxa was estimated to require
55 days with the computers we had available. The solution to this problem
was the development of a branch and bound algorithm (Hendy and Penny,
1982), which is now widely used. It reduced the computing time for these
data to just under five minutes, while still guaranteeing to have found all
optimal trees. This met our first objective of finding optimal trees for the
five sets of data.

Finding a Tree Comparison Measure

When the parismony branch and bound program was applied to each of
the five different proteins, the minimal trees were not identical, but did
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Figure 9-1 Application of symmetric tree metric. Two trees selected from the min-
imal trees from B-hemoglobin (top) and a-hemoglobin (bottom) sequences. On the
symmetric difference metric there are six differences. These are indicated by a small
cross on the three nonequivalent edges of each tree.

indeed look “similar” (Penny et al., 1982). The second objective was to
find a useful tree comparison metric that would allow an objective com-
parison of these trees. The symmetric difference metric had been developed
(Robinson and Foulds, 1981) from a parallel interest in trees and had an
efficient method for its calculation (Penny and Hendy, 1985b). A more
efficient method was developed by Day (1985).

The symmetric difference metric on two trees counts the number of edges
that occur in one, but not both, trees. Edges are equivalent if they partition
the taxa into the same two subsets (see Edge Bipartitions). This is repeated
for each edge of the tree in turn. Figure 9-1 shows two minimal trees from
different sequences which are distance six differences apart. The differences
between the two trees are indicated by a small cross on edges which have
no equivalent edge on the other tree.

Deriving the Distribution of the Tree Comparison Measure

At this point, it is unclear whether finding six differences is significant.
What is the probability that two randomly selected trees would have six
differences? In order to answer that question, the problem of deriving the
distribution of the tree comparison metric must be solved. The expected
distribution has been calculated for up to 16 taxa (Hendy et al., 1984) and
is shown graphically in Penny and Hendy (1986) and Hendy et al., (1988).
The distribution is highly asymmetric, which is useful for many biological
applications because it is particularly sensitive for closely-related trees. We
find the probability of randomly selecting trees on 11 taxa with six or fewer
differences (as in Fig. 9-1) is 4 x 105

Similar results were found from comparisons of minimal trees from other
sequences (Penny et al., 1982), where each pair of minimal trees from
different sets of sequences was more similar than expected by chance. Thus,
it is fair to claim that the original prediction that minimal-length trees from
different data sets would be similar, is supported. The method of analysis
allowed the possibility for the theory of descent to fail. We have more
confidence in the theory if it passes quantitative tests.

Our conclusion is that the theory of descent can meet the same quan-
titative standards as expected in other areas of science. There is no need
for “special pleading” that evolution is hard to quantify. The project led
to improved techniques in several areas for studying trees. The problem
of finding optimal trees was shown to be NP-complete (Graham and Foulds,
1982). Branch and bound methods were developed (Hendy and Penny,
1982) so that optimal trees could be found in reasonable time for up to at
least 16 taxa. A tree comparison metric (Robinson and Foulds, 1981) was
implemented by showing it could be calculated efficiently (Penny and Hendy,
1985b). The expected distribution of this metric was derived (Hendy et
al., 1984) so that quantitative tests can be made. The analysis of a complex
scientific problem in order to get falsifiable predictions can be a productive
approach to science.

Additional Predictions
Are Shorter Trees Better?

The parsimony criterion for an optimal tree assumes that shorter trees
(those requiring fewer changes) are better estimates of evolution than
loager trees. As a corollary of this we would expect that trees shorter for
one data set should also be shorter on other data sets. This is different
from the previous section which compared minimal trees from independent
data sets.

A test of this prediction is shown in Figure 9-2 where trees requiring 124
to 133 changes on the S-hemoglobin data were selected. The lengths of
these trees were then determined on the combined sequences from cyto-
chrome c, fibrinopeptides A and B, and a-hemoglobin.
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Figure 9-2 Lengths of trees with -hemoglobin and other sequences. The shortest
trees for B-hemoglobin sequences were selected. The lengths of these trees were
then recalculated on the combined sequences from cytochrome c, fibrinopeptides
A and B, and a-hemoglobin. On average, trees that require fewer mutations with
B-hemoglobin, require fewer mutations with the new sequences. The bars are twice
the standard error of the mean. (Adapted from Penny and Hendy, 1985a.)

The results in Figure 9-2 show that, on average, trees requiring fewer
mutations with 8-hemoglobin require fewer mutations with other sequence
data. The test was repeated for each of the other four sequences (Penny
and Hendy, 1985a), giving even better results. Evolution is a stochastic
process, and the shortest tree on an individual sequence cannot be guar-
anteed correct.

Sampling Error and Convergence

It is generally recognized that the sequences used in a particular study may
be too short to give an accurate prediction. If the only problem is that the
sequences are too short, then it is expected that the optimal tree should
become a better estimate as the sequences become longer. We cannot, of
course, measure this difference directly. However, what can be measured
is whether optimal trees from different data sets become more similar as
sequences become longer.

Perhaps the best method for selecting subsets of data is by the random
resampling of columns. This can be done by either bootstrapping or jack-
knifing. In bootstrapping (Felsenstein, 1985; Penny and Hendy, 1985a),
subsets of columns from the data matrix are randomly selected with re-
placement. These subsets can have the same number of columns as the
original data. A column may be omitted from a particular subset, or se-

TESTING THE THEORY OF DESCENT 161

lected more than once. With jackknifing (Penny and Hendy, 1985a, 1986),
the subsets are randomly selected without replacement. Consequently, the
subsets must be shorter than the original sequence. Jackknifing methods
can also be divided into those where subsets may overlap and those with
disjoint subsets (where no column occurs in both subsets). In this latter
group, which we call hobbits or halflings, each subset contains no more
than half the columns.

Trees can be formed from these subsets by standard methods and the
results analyzed using a tree comparison metric. There have been two ways
of comparing results. Felsenstein (1985) determined the internal edges that
occur in at least 95% of the trees. Penny and Hendy (1985a, 1986) studied
the rate of convergence as longer sequences (subsets) were used.

With either form of jackknifing we have measured the average distance
between optimal trees (using the symmetric difference tree comparison
metric) from each subset of columns. What we would expect is that trees
from different subsets would become more similar as the subsets contained
more columns. This indeed is the case as is shown in Figure 9-3. Instead
of showing the value from the symmetric difference metric directly, we
have converted it, using the calculated distribution of the metric (Hendy
et al., 1984, 1988), to the equivalent number of trees. These results show
that even the five sequences for each mammal is insufficient to allow
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Figure 9-3 Convergence with larger subsets of columns. Minimal length trees were
found for jackknife samples from the combined sequences for six proteins. The
samples contained 12.5%, 25%, 50% or 92% of the columns in the data matrix.
The symmetric difference metric was used to find the average distance between
optimal trees from each group of subsets. Optimal trees became more similar as the
samples became longer. The results allow four different methods to be compared
(see Penny and Hendy, 1986 for an explanation of the symbols and further dis-
cussion). (Adapted from Penny and Hendy, 1986.)
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convergence to a single tree. In the cases we have studied (Penny and
Hendy, 1985a, 1986), the trees, as expected, become more similar as the
subsets become larger. This is independent evidence for evolutionary in-
formation in the sequences.

These resampling approaches allow tentative answers to several inter-
esting questions. Is it likely that a different optimal tree will be found if
more information is gathered for each taxon? If so, which trees? How large
a subset of trees is necessary to be confident of including the correct tree?
Do some methods for inferring trees converge faster than others as longer
sequences are used?

Is bootstrapping better than jackknifing with larger-and-larger samples?
The answer may depend on the application. In a taxonomic study, an author
may not wish to propose a new taxonomic category unless confident that
future work will support it. This is using stability of a single edge of the
tree as a criterion. In such a case, bootstrapping may be the preferred test
since it does not accept an edge if there is reasonable doubt. If, however,
the intent is to find the best estimate of the phylogeny (the tree which
gives the best prediction as more data become available), then convergence
may be suitable. Under these circumstances the aim may be to find how
large a subset of trees is required to be confident that the subset includes
the correct tree. It must be noted that although the test allows a decision
as to whether convergence has occurred, it is still possible for methods to
converge to an incorrect tree. This is discussed later (see Hadamard Trans-
formations).

Testing Other Models

From a Popperian viewpoint, an important feature of the scientific ap-
proach is that scientists should be able to give rational explanations of why
they use a particular theory. There is an asymmetry here in that it is not
claimed that arriving at the original theory was necessarily rational—the
creative process is much more complex than that. The aim is for decisions
between competing ideas to be rational, and that we should be able to give
conditions under which we would reject a currently favored hypothesis.

In the first section we discussed testing the prediction that trees from
different sequences led to similar trees. Could we test nonevolutionary
models? One well-known astronomer, Sir Fred Hoyle, had ideas of the
earth being bombarded with influenza viruses from passing comets (Hoyle,
1984). We called this the unhealthy falling object (UFO) model. From the
UFO theory it is not expected that viral sequences would arrive in a par-
ticular order consistent with an evolutionary tree. The details of the theories
examined are described in Henderson et al. (1989).

One step of the ahalysis required the comparison of how well a column
of data fitted a binary tree, compared to the null model of the star (or big
bang) tree (Fig. 9-4). On this null method we could imagine a single ances-
tor from which all existing species had been independently derived. That
is, no pair of species is more closely related than any other pair. Even with
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(A) (8) y

Figure 9-4 (A) The star (or big bang) tree which is a common null hypothesis
(Thompson, 1975). (B) is used to illustrate that even if sequences were generated
by a star tree process, it is still possible to fit the data with fewer changes to a binary
tree.

data generated independently from a common origin (the star tree model)
it would still fit more closely to a binary tree. For example, Figure 9-4 has
a 3,5 character [three of one color (code or character state), five of the
second] and this would require at least three changes on a star tree (Fig.
9-4A). But even if the star tree was correct, many binary trees could be
drawn that required only one change on the binary tree. The number can
be calculated from Figure 9-4B by forming a tree with eight taxa from the
two subtrees with a new edge. It thus became important to know the
expected number of changes required to fit a column of data to a random
binary tree. If a binary tree model is a good representation of the data,
then the number of changes required to best fit the data to a tree should
be significantly less than the number required for data generated from the
star tree model.

For 2-state colors (codes or character states) with frequencies a and b,
on a single column of n taxa (n = a + b), we found f,(a,b) binary trees
whose minimal coloring required m changes (Carter et al., 1990).

fla,b) = (m—1)!(2n—3m)(2n—5)""N(a,m)N(b,m)/(2n—2m-1)1! (1)

where, a is the number of pendant vertices with the first color (y in Fig.
9-4),
b is the number of pendant vertices with the second color (x in Fig.
9-4),
a=b,a+ b = n, the number of taxa,
m (=1) is the minimal number of changes on the tree,
!l is the double factorial [(2n—5)!! = 1 x 3 x 5... xX(2n-5);
01 =—1!1 = 1], and
N(n,m) = 2n-m—-1DY(n—m){(m-1)12"-m if n = m, and
0 if n < m.
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apply to single columns of data, although they give good approximations
when the data set is large (Steel et al., 1991). We refer to this as the single
column distribution.

An alternative approach has been developed by Steel et al. (1991), which
takes into account the lack of independence between columns. This eval-
uates the probabilities for each topology separately. A weighted average
is made using the number of trees that can be derived from each topology.
The formula for the number of trees from a topology is,

nl/2+6” 3)

(Hendy et al., 1984),

where x is the number of twofold centers of symmetry in the topology and
y (=1) is the number of threefold centers of symmetry (which occurs only
with n = 3,6,9, . . .). Figure 9-6 gives the six topologies for n = 9 taxa,
identifies the centers of twofold and threefold symmetry, and applies the
above formula to each topology. As a check, it is shown that the total
number of trees over the six topologies sums to (2n-5)!! or 135,135. This
“weighted average” approach is more difficult to calculate as it requires a
separate calculation for each topology, but the results can be combined
for many columns of data. It was the method referred to earlier (Henderson
et al., 1989), and used for testing nonevolutionary models.

Results of both approaches for up to eight taxa are given in Table 9-1.
Weighted average values for n = 9 are given in Henderson et al. (1989).
Archie (1989) has recently used simulation to estimate these values.

These methods that calculate the probabilities of finding columns of given
lengths on the tree allow some models of evolution that do not assume an
evolutionary tree to be tested. In the influenza virus case referred to above,
several nonevolutionary models could be eliminated. In the present con-
text, the important point is that a tree is a falsifiable model.

One additional point needs to be considered when calculating the ex-
pected number of changes on a tree. Formula (3) assumes that all trees
have the same chance of occurring, the “all trees equiprobable” model.
(In this context, trees are binary unrooted trees with end-points labeled.)
An alternative “Markov model” assumes the trees are derived from a
process that includes random speciation and extinction (Simberloff, 1987).
Under these circumstances, it is not valid to use formula (3). This second
model has been used in biogeographic studies where there are a small
number of areas being analyzed. However, the assumptions of the Markov
model are not met in many (most?) phylogenetic studies where only a smail
proportion of possible taxa are used. The subset of taxa in such studies
are not chosen at random.

In the set of 11 mammals referred to earlier, the taxa used were not
randomly selected from all mammalian species. For example, there is only
one rodent and no bat sequences. In a random sample of mammalian
species, most would be drawn from these two orders. Rather, the taxa
have been “selected” to cover a wider range of taxa and so the assumptions
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Figure 9-6 Application of the formula for counting trees from topologies. The six
unrooted topologies for n = 9 taxa are given. The x centers of twofold symmetry
are marked with a small arrow, and the one center of threefold symmetry (y = 1)
is marked by a large arrow. The numbers of phylogenetic trees that can be derived
from each topology (n!/2*6%) are shown, together with the observation that these
sum to the expected number of trees, (2n — 5)!L.

of the Markov model are not met. Under these conditions the neutral “all
trees equiprobable” assumption is more appropriate.

As an additional precaution, it should be noted that the probabilities
found for the symmetric difference metric vary with the topology. The
published values (Hendy et al., 1984, 1988) are a weighted average over
all topologies. This is the reason the distribution was initially calculated
only for up to 16 taxa where there are about 500 topologies, although more
recently some properties have been determined for larger numbers of taxa
(Steel, 1988). It is not valid to find one tree and then use the distribution
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to estimate the probability that a second tree has x differences. The dis-
tribution refers to a pair of trees, selected at random.

VALIDITY OF METHODS FOR INFERRING TREES

Hadamard Transformations

One major conclusion from Popper’s approach to science is that more
progress is made by trying to find the limits of a hypothesis or conjecture,
rather than ‘“‘testing” the hypothesis in areas where it is expected to apply.
In the present context, the hypothesis or conjecture is that a particular
tree-building method is expected, given sufficient data, to reconstruct the
correct tree. In retrospect, the previous sections are examples of the lim-
itations of making and testing simple predictions. In each case we would
have been very surprised if, for example, the trees had not become more
similar as longer sequences were used. In our own defense we would say
that it is useful to be able to estimate the number of trees that should still
be considered possible. Nevertheless, a far more powerful test would have
been to try to find conditions under which a method of tree reconstruction
would fail.

The work of Felsenstein (1978) and Cavender (1978) has introduced an
improved approach which does this. It allows a search for models of ev-
olution where tree building methods would not be expected to find the
correct tree. That is, it allows a search for conditions where a tree recon-
struction method will fail. A method is said to be inconsistent if, under
some conditions of the model, it can converge to an incorrect solution as
longer sequences are taken. The paradox is that a method may by chance
find the correct tree with short sequences, but as longer sequences are
used, the probability that the method finds the correct tree goes to 0.

A model of evolution has three parts,

1. a tree (or more generally a graph),
2. an assumed “mechanism” of change to the sequences, and
3. “edge lengths” (probabilities of change along the edges of the tree).

A frequently assumed mechanism (Farris, 1973; Cavender, 1978) is that
changes occurring in the sequence are “independent and identically dis-
tributed” (i.i.d.). Changes at any position along the sequence, and any-
where on the tree, are independent. All positions (nucleotide or amino
acid) have the same chance of changing state (identically distributed). In
addition, some mechanisms assume the same rate of change along each
edge of the tree—the molecular clock. We will use the term ‘“‘standard
model” for a mechanism of independent and identically distributed changes
on a tree but which does not assume the molecular clock. Felsenstein (1978)
showed that under some conditions, a model with four taxa and uneven
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rates of evolution could give data for which parsimony would be expected
to reconstruct the wrong tree. Thus, parsimony is, in general, an incon-
sistent method even though there are many specific models where it will
work correctly. An important question is whether the conditions that lead
to inconsistent performance are common (and therefore, parsimony should
seldom be used) or unusual (in which case the inconsistency may not be
a problem in practice).

To extend Felsenstein’s analysis to n > 4 taxa we developed the Had-
amard transformation (Hendy and Penny, 1989; Hendy, 1991) for 2-state
characters, a and b (Table 9-2). We will describe this in three parts, each
of which is now straightforward (this was probably not true of the original

Table 9-2 Bipartitions and Vectors for the Hadamard Transformations, Hlustrated
for the Five Taxa in the Model in Figure 9-8B*

Probabilities
Index Subsets p q 5 r s
1 {1} 0.100 0.1116 0.1116 0.0000* 0.0583*
2 {1,2} 0.005 0.0050 0.0050 0.2232 0.0113
3 {1,3} 0.0000 0.2332 0.0081
4 {1,2,3} 0.0000 0.2332 0.0155
5 {1,4} 0.0000 0.2332 0.0081
6 {1,2,4} 0.0000 0.2332 0.0155
7 {1,3,4} 0.0000 0.2332 0.0155
8 {1,2,3,4} 0.200 0.2554 0.2554 0.4463* 0.1301*
9 {1,5} 0.0000 0.3720 0.0155
10 {1,2,5} 0.005 0.0050 0.0050 0.3720 0.0113
11 {1,3,5} 0.0000 0.3720 0.0081
12 {1,2,3,5} 0.100 0.1116 0.1116 0.5952* 0.0583*
13 {1,4,5} 0.0000 0.3720 0.0081
14 {1,2,4,5} 0.100 0.1116 0.1116 0.5952* 0.0583
15 {1,3,4,5} 0.100 0.1116 0.1116 0.5952* 0.0583*
16 {1,2,3,4,5} -0.7118 0.5952* 0.5197+
0.0000 1.0000

*The 16 (2"~") subsets containing 1, of {1,2,3,4,5} for n=5 taxa. In each case the subset with its complement
(the remaining taxa) forms a bipartition. Each edge of a tree splits the set of taxa into complementary
subsets. Similarly, any 2-state character also splits the set of taxa. We refer to these as *‘edge bipartitions™
and *‘character bipartitions.” The edge bipartitions of the tree of Figure 9-8B have indices 1, 2. 8, 10, 12,
14, and 15. For each edge ¢; we list the probability p; that a character will have different states at its
endpoints. The g; value is the number of changes expected under a Poisson model on that edge. 5 is
obtained from q by inserting 0 where there is no corresponding g; value and one negative value for
O3s-1 50 that £§; = 0. r is an intermediate vector which contains the actual distance, per nucleotide, of
the minimal path between even-sized subsets of taxa. The Hadamard transformation (Hendy and Penny,
1989) atlows us to compute s from 8§ where s; is the probability of obtaining the character bipartition with
index j. Thus, for ¢ characters, cs; will be the expected frequency of this character bipartition. Note in
this case 54 = 0.5197, so we would expect approximately 52% of characters to be constant, while bipartition
3 should occur for less than 1% (0.81%) of characters. The inverse Hadamard transformation produces
.a vector 8, with g; = 8; > 0 identifying the edges ¢, of the tree,

Parsimony uses only “informative’ characters, those which group taxa together (that is, ignoring sin-
gleton and constant characters). Their corresponding s; values are marked * +." In choosing the parsimony
tree(s) for these data we find four minimal length trees (expected length 0.0902c), none of which is the
tree used to generate the data. The expected length of the correct tree is 0.0934c, the third longest of the
15 possible binary trees. This is an example of inconsistency in parsimony, even with equal rates of
evolution.
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description). The three parts are the model, the expected form of the data,
and a method for interconverting between these two (that is, calculating
the data from parameters of the model, and vice versa.

We note that each edge e; of a tree partitions the taxa into two subsets,
the set of taxa to the left of the edge and the set of taxa to the right. This
pair of sets is called an edge bipartition (split). There are 2"~! possible
bipartitions. Also, each column of the sequences induces a bipartition of
the taxa, the two subsets being those taxa with state a and those with b.
These we call sequence bipartitions.

We express the bipartitions by the taxa (represented by numbers) they
contain. For example, if the character-states for four taxa are a, b, b and
b (summarized as abbb), this is the bipartition {1} and {2, 3, 4}. (The
character-states baaa also give this bipartition.) There is no need to list
both subsets of the bipartition. We normally list only the subset containing
taxon 1.

There are four (27~2) ways in which the sequence bipartition {1} {2, 3,
4} can be generated on a tree and these are shown in Figure 9-7. They
correspond to the four ways of labeling two (n —2) internal points with the
two codes. The probabilities for each of the eight (27~!) bipartitions can
be calculated in this way. In all there are 22*~3 sets of calculations (2"~2
ways for 27! partitions). However, the whole procedure can be carried
out using Hadamard transformations. Assume a tree T where for each edge
e; there is a probability p; that the character-states at each end of the edge
are different. With these values given we use the Hadamard transformation
to calculate the probability of obtaining any particular sequence bipartition.

NSNS
SN SN\
a\a—a/b a\b—z—a/b
AN N\

Figure 9-7 Ways of forming a single bipartition for four taxa. The figure shows four
combinations of changes along edges of a tree that all lead to the bipartition {1}
{2,3,4}.
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The transformation is
s = (Hln(H §))/2"~! 4)

where H is a Hadamard matrix of 2"~ ! rows and columns, and s and 8 are
defined in Table 9-2. Equation (4) is easily inverted as H-! = H/2""!
giving

3 = H exp((H' s)/2"~1). 5

The calculations are illustrated for a case with n = 5 in Table 9-2 with
an example derived from Figure 9-8B. In practice it is not necessary to
construct the Hadamard matrix, as there is now a simple algorithm to carry
it out. From equation (4) we can find values of edge lengths on a tree
where parsimony will be inconsistent; that is, it will be guaranteed to select
the wrong tree as sequences become longer.

8 and s are equivalent for a specified mechanism of change in that each
can be obtained from the other, and are not dependent on a particular
tree. Calculating the expected data in this way quickly allows the tree to
be identified to which a tree-building method will converge. Then the rate

tl t3 Figure 9-8 Trees used in calculations. (A)
A tree of four taxa (t, _,) with p; being the
1 probability, for any column, of observing
0.1 a change along an edge. p; can take val-
ues between 0 (no change) and 0.5 (com-
plete randomization). w; = {1 — 2p).
Conditions under which several tree-
building methods will converge to the
t2 t4 correct tree are given in the text. (B) The
0.2 unrooted tree used to illustrate the Hada-
mard transformations (see Table 9-2). The
edge length of the central edges are 0.01.
The tree is consistent with the molecular
t clock if rooted on the central pendant
B 5 edge.
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of convergence to this tree can be studied separately by randomly selecting
larger data sets from s.

The computational advantage of the Hadamard transformations over
existing maximum likelihood methods is that they allow the data (sequences
or bipartitions) to be used directly for estimation of parameters of the
model. This is indicated in Figure 9-9a to show that it is possible to go
from the model to give predicted sequence bipartitions, or from sequence
bipartitions to estimate lengths of edges on trees.

By contrast, existing maximum likelihood methods start with a single
tree and some initial guesses for edge lengths. It then repeatedly (maybe
thousands of times) makes slight adjustments to edge lengths and repeats
the calculation to see if the observed data are now more likely. The process
is indicated in a general way in Figure 9-9b to indicate the repeated cal-
culations. Figure 9-9b has been modified from the usual calculation for
maximum likelihood to allow an easier comparison to the Hadamard trans-
formations. One interesting development would be to combine the Had-
amard transformations with maximum likelihood as the optimality crite-
rion. Such a process would set a good estimate of the optimal branch lengths
with a single computation.

The optimality criterion we have favored is finding the closest tree (Hendy,
1991). Its advantages come from its being characterized mathematically.

data

A

B maximum likelihood

Figure 9-9 The advantage in being able to invert the calculation. With the Had-
amard transformations each calculation need only be calculated once, not repeatedly
as for maximum likelihood.
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This allows the global optimal tree to be found exactly (by branch and
bound methods). Thus far, the closest tree method is the only one based
on the idea of general invariants for n > 4. We have used the closest tree
criterion to find the optimal tree for 20 taxa (Penny et al., 1990). For 20
taxa there are > 102 trees! By contrast, current maximum likelihood
methods would not search more than 100 (10?) trees—an advantage of
108 times for methods based on the Hadamard transformations.

Conditions for Consistency— Four Taxa

Some progress has been made with four-taxa, 2-state codes (colors) on the
general conditions under which a method will, or will not, converge to an
incorrect tree on the standard model. Using the terminology of Figure 9-
8A and defining w; = (1 — 2p;) we find some common tree-building
methods will converge to the correct tree (be consistent) if and only if, the
following conditions are met (Steel, 1989).

Cluster Analysis. For a simple clustering procedure which joins the pair
of taxa having the smallest observed distance, the condition for consistency
is:

max {,w,, wywy}

ws .
max {w,0;, W, Vw3, Ww,}

It can be shown that this is a special case of the next condition shown
below. Thus, for example, if parsimony fails to converge to the correct
tree with four taxa, so too will a simple clustering procedure. The converse
does not hold. The special case, with p; = p;and p, = p, = ps was derived
by Felsenstein (1978).

Parsimony or Compatibility Methods and Methods Using the Four-Point
Distance Criterion. This last method selects min {d,, + d54, d,; +
d, 4, dy4 + d,s}. These are consistent, if and only if,

(0,0, + w30,) (0w, + “’3‘”4)}

ws < min ,
’ {(wn“’a + wwy) (W + wyws)

With equal rates of evolution (the molecular clock) this condition is always
met and parsimony will be consistent with four taxa.

Maximum Likelihood, Closest Tree (from Hadamard Transformations),
and the Corrected Four-Point Distances Metric. These methods will always
be consistent with four taxa on the standard model. The corrected four-
point condition is to select,

min (d; + dy — 2d; dy/c) i, ], k, I} = {1,2,3, 4}

where ¢ is the number of columns.
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It should be noted that, at least with parsimony, the conditions for
consistency are more restrictive as the number of taxa increases. Parsimony
with:

four taxa, can only be inconsistent with unequal rates of evolution;

five taxa, with equal rates of evolution (the molecular clock) can be
inconsistent if the root is on the central pendant edge which is adjacent
to a short and long edges;

six taxa, with arbitrarily low rates of change can be inconsistent;

n large, with all branch lengths (internal and pendant) are both smalil
and equal can be inconsistent.

The first three cases (four to six taxa) are from Hendy and Penny (1989)
and the last is from Steel (1989). The conclusion is that the range of cases
where parismony is inconsistent increases as more taxa are added.

It is desirable that this type of study be extended to other optimality
criteria. With four taxa, methods using the four-point distance criterion
have identical performance (with respect to consistency) as parismony (see
above). Again with four taxa, simple clustering methods are worse than
parsimony in that they will fail under a wider range of conditions. We
know less about the performance of cluster analysis with additional taxa
except that it is not identical to parsimony. With five or more taxa we can
find examples where parsimony fails and simple clustering is consistent,
and vice versa.

Loss of Information

We have commented elsewhere (Penny et al., 1990) that all methods ignore
some of the information in sequences. With four taxa, distances use nearly
all the information, but the proportion of information in distances declines
very rapidly (Steel et al., 1988) as the number of taxa increases.

Table 9-2 also indicates information that is omitted by parsimony and
standard distance methods. Singletons and constant partitions (marked
“+” in Table 9-2) are omitted by parsimony methods. Entries in r which
do not correspond to a path between a pair of taxa (marked ““*”) are
omitted by distance methods. There is no general correspondence between
these omissions in r and s. The losses of information in parsimony and
distances are not equivalent. Parsimony methods ignore any singletons and
constant columns, corresponding to n + 1 elements in s. Distance methods
use all the s values to construct a distance matrix which corresponds to
only n(n — 1)/2 of the r values. The Hadamard transformations use all of
these 2"~ values. Table 9-3 contrasts the increase in the numbers of bi-
partitions used by the Hadamard transformation with those used by par-
simony and distance methods for small values of n. The example in Table
9-2 and Figure 9-8B is a case where the loss of information is sufficient for
parsimony to converge to the incorrect tree (Hendy and Penny, 1989). The
correct tree found by selecting partitions {1, 2} and {1, 2, 5} is not the
shortest, but the third longest tree (out of 15).
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Table 9-3 Comparative Use of Information by Parsimony and
Distance Methods*

Bipartitions

Used in Entries in
Taxa Total Parsimony Distance Matrix
4 8 3 6
S 16 10 10
6 32 25 15
7 64 56 21
8 128 119 28
9 256 246 36
10 512 501 45
11 1024 1012 55
12 2048 2035 66
13 4096 4082 78
14 8192 8177 91
15 16384 16368 105
16 32768 32751 120

*For n = 4-16 we list the number of bipartitions, together with the numbers
considered by parsimony and distance matrix methods. Parsimony methods omit
n + 1 bipartitions from s which rapidly become a minute proportion of the total.
The omitted bipartitions include the n singletons and the number of constant
columns. These omitted bipartitions are important under any model that includes
estimates of rates of change. Because they occur so often, the bipartitions omitted
by parsimony are those with the most accurate estimates of their frequency. Dis-
tance methods include some information from all bipartitions. but the proportion
of entries of r that are used, rapidly becomes very small (Steel et al., 1988).

Twelve Mammals, Seven Sequences

In earlier papers, we used a data set from 11 mammals and five (later
extended to six) sequences. The data are amino acid sequences converted
to “‘best-guess” nucleotide sequences. These data have been particularly
useful for developing and testing new methods of analysis. However, even
six sets of sequences were insufficient for the optimal tree to be stable (that
it would not change as longer sequences became available). When the
minimal and near-minimal trees were analyzed (Penny and Hendy, 1985b)
it was found that the position of the carnivore (dog) was the least stable.
The carnivore was attached by a long “‘unbranched edge” which can be
(Hendy and Penny, 1989) comparatively unstable on the tree. Wouid add-
ing a second carnivore improve the stability? Would we then get a tree
that would be expected to remain constant as longer sequences became
available? In other words, would we have convergence to a single tree?
We have now added a second carnivore to the tree and an additional
sequence, a-crystallin, for all 12 taxa. Thus the data set now has seven
sets of sequences from 12 mammals (Table 9-4). The sequences from the
earlier studies were a- and B-hemoglobins, fibrinopeptides A and B, cy-
tochrome ¢, and myoglobin. In some cases a “taxon” was made up of
sequences from two species. One example is using either mouse or rat to
represent the rodent taxon. The additional carnivore taxon is made up

T
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.C..C..
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..A.GC..

.UCAU.C.

190
.A.UA.
.G

.C.U.555555555555
.A.UAA

.C.G...

..AA.A
.G..U.G......
..A.U.C..666666666666

.G.G..C..
.G.A..G..

.AARA,
.GC.G...

..C.A.
.A.G.U.GC.G..

.gc.
.G.U.GC.G...

.UC.AMA..C.C..C.

.U..A.AA..C..A..GC...
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.G.A.C.

..G..
.G..

..G.G.A..G.G.C..
AL,

.C..
..UA.GA..

[ ¢ AN
AL
.A.C..

U..A..
..A.U.C..G.A.C.

.C.UGAGC.C..

.C..A...

LCALLL e

170
..CC..CG.
..CCG.C.A.A...

..C.A.A.....
3 128-142 from cytochrome ¢; 143-179 from myoglobins;

colun}qs 143-179 from Penny and Hendy (1986), and columns 180-191
o additional singleton character-states (‘5 and 6') were assigned to these

.A..GAC.

.C..A.GA.U......

.U.C......
.AA. .AG.AAACCA.A.A..C..U.G.A..
..

160
.GAGA.C..CCGA.G...

.C..
.A.C..
AL,
.CC..
.uc....
no acid sequence for lion cytochrome ¢ was supplied by Professor R.P.

1£34307/89V123556789012Z34567890123456789012345678901234567890123456789012345 678901234567890123’4567?90‘

GACGGGGGGAUUACGCAAAARACCCGGGGCCUCUGCAGAGCGGCCAGGCACGCCCCGAUCACGCGGGCGAGACCAARCARAAGGCUUADAACGAGCAGAC

UL.G.... ..
.G..
150
Lo
.A.C.G..C..AC...
.C..AC..

.CAA..A...

..AU. .
.G.AU......
...0.o.

.A..C
140
ALLL.ClALLLL

..U.GAA. . .GCU.

LG.A..... ..

.A.GU.AAC...

130

.ARA.G..

..A.A..G.AACAGA..AA........

AA..

G..
G

.A.CC.AGAAUU.A.C.CUA....
.UGG.

C...A.

.GC..
.G..G

WAARA..CCA........

.G..
..G......CU
120
..ACA..U.C...
.CCA.

.CA.

AL
.CUALAA. ...
..UA.AA.....

.CG....C
[o}
Lo,
[}

.C..
..GA. .

C..A.AA.....

C.

110

1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901

GGGAGGAACCGAGCCGGAGAGGAUUGAGCAGCUUACACGAGCGUGAGCAGGUACCAAACCCGAGCAAUGGACCGGAAACARGARAADICGCC

..U.A..

-crystallin, Columns 1-142 are (with the addition of cat) from Penny et al. (1982),

Jong et al. (1977). a-crystallin sequences were not available for sheep or apes and s

.WU.AL A, ..
CAG .

SN = TR
.GG.A....

C

-42 and 43-97 are derived from a- and S-hemoglobins; 98-110 and 111-127 from fibrinopeptides A and B

1. Monkey
2. Sheep
3. Horse
4. Kangaroo
5. Rodent
6. Rabbit
7. Dog

8. Pig

9. Cat

10. Human
11. Cow
12. Ape

1. Monkey
2. Sheep
3. Horse
4. Kangaroo
5. Rodent
6. Rabbit’
7. Dog

8. Pig

9. Cat

10. Human
11. Cow
12. Ape

Ambler, Edinburgh. The data, with some additional information, are available by e-mail from D.Penny @ massey.ac.nz.

taxa. This does not distinguish between any tree, and so does not affect the results obtained. The ami

and 180-191 from a
are derived from de

*Columns 1
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human ape} rabbit 4 horse pig cow sheep dog cat kangaroo
monkey rodent

human ape} rabbit 4 dog cat horse pig cow sheep kangaroo
monkey rodent

Figure 9-10 Trees for 12 mammais, based on seven sequences. (a) is the minimum
length tree (472 mutations) based on the 191 columns in Table 9-4. It is also the
consensus or median tree (Penny et al., 1982). (b) is three changes longer (475
mutations) but may be correct if the ““long edges attract’” problem of parsimony is
leading to incorrect convergence. One additional change results from transferring
carnivores and two changes from separating the rabbit-rodent neighboring pair.

from six feline sequences (five from cat and lion cytochrome c) plus one
from a seal. The procedure of using composite taxa is legitimate in this
study as it cannot result in trees from different sequences being more similar
than expected. It can only introduce more dissimilarity between trees if
the composite taxon was phylogenetically incorrect. For the reasons dis-
cussed below we suggest the best tree is that shown in Figure 9-10b.

Another approach is possible by analyzing the frequency-of the edges
in minimal trees from bootstrap samples. This is illustrated in Figure 9-11
with results from 132 minimal trees (in this case using parsimony) from
bootstrap samples. Only the relationships between three groups; primates,
lagomorphs (rabbit), and rodents are shown. The most common subtree
is (rabbit, rodent), primate (Fig. 9-11b) which occurs 74 times. The next
most frequent is (primate, rabbit), rodent (Fig. 9-11a), 44 times; and (pri-
mate, rodent), rabbit subtree (Fig. 9-11c), which occurs seven times. Figure
9-11b conforms to the Glires model (Novacek, 1985) which links rodents
and lagomorphs (rabbits).
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a b
primates rab rat primates rab rat
44 times 74 times
c d
primates rat rab primates rab rat
7 times

Figure 9-11 Frequency of partitions in bootstrap and jackknife samples. (a), (b),
and (c) are the three subtrees for primates, rabbit (rab), and rodents (rat), and the
frequency of occurrence of these subtrees in the minimal length trees from 132
bootstrap samples. (d) is the unresolved trichotomy. An anomaly is the low frequency
of just one of the three subtrees, (c) compared to (a). This can be explained as an
example of the error with parsimony involving a path of long-short-long edges, as
in the heavy lines in (a). With parsimony these long edges would tend to “attract”’
(Hendy and Penny, 1989) leading to tree (b).

The question is to interpret these frequencies (74, 44, 7). If there was
a short edge linking these three groups (that is, close to a trichotomy, Fig.
9-11d) then all three subtrees (Figs. 9-11a—~c) would be expected to occur
with about equal frequency. If Figure 9-11b was correct, then we would
expect Figures 9-11a and 9-11c with equal frequency. The observed fre-
quencies are significantly different from those expected for either the tri-
chotomy (Fig. 9-11d) or Glires (Fig. 9-11b) models.

Qualitatively we can account for the observed distribution of Figure
9-11a—c if Figure 9-11a ((primate, rabbit), rodent) is the correct relation-
ship. This tree has a long-short-long series of edges (rabbit, internal edge,
rodent) which is shown as dark lines in Figure 9-11a. Parsimony would
lead to the long edges being drawn together to give Figure 9-11b. This
would account for two of the three subtrees being found more frequently
than the third. A prediction from this hypothesis is that bootstrap samples
from data sets which include sequences from a quite different lagomorph
(or rodent) should resolve the issue. Note that convergence from the other
two trees (Fig. 9-11b and 9-11c) could not lead to the observed frequencies
in that neither should lead to the observed frequencies. If Figure 9-11b

*’1
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were correct, then any tendency for incorrect convergence should have
equal affects on both rodents and lagomorphs, leading equalily to Figures
9-11a and 9-11c. We suggest the tree in Figure 9-10b shows the correct
relationship of the three groups (rodents, lagomorphs, and primates).

A similar problem occurs with the position of the two carnivores, relative
to the ungulates and the metatherians (kangaroo). The bipartition with
the two carnivores is almost always found, but their position on the tree
varies. It is on the first division of the eutherians (83 times), after the
separation of ungulates (40 times), or on the first division of the ungulate
lineage (eight times). Again we do not have the pattern expected from a
near-trichotomy (all three equal, or one more common and the next two
equal). The difference is statistically significant in a x> test.

Is this another case of incorrect convergence? Consider what would
happen if the correct tree had the carnivores separating after the ungulate
line has diverged (that is, in the position shown in Fig. 9-10b). We again
have a case of a long lineage (kangaroo), a short internal edge, and a
medium lineage leading to the two carnivores. This may be sufficient to
indicate incorrect convergence. Again, if either of the other two possibil-
ities for kangaroo, ungulates, and carnivores was the correct tree, they
would not have the long-short-long sequence of edges that can give incor-
rect convergence. )

These conclusions need to be made quantitative. A possible correction
for parsimony is available (Penny and Hendy, in preparation). However
it requires a reasonable estimate of rates of change along the edges of a
tree. This depends on the numbers of singletons and constant columns.

We note that the “long edges attract’” problem that leads parsimony to
converge to a wrong tree may be more frequent than anticipated. The
initial work by Felsenstein (1978) with four taxa suggested the problem
may occur with very unequal rates. With five taxa it can occur with equal
rates (Hendy and Penny, 1989) but required a short edge(s) between long
edges. Even this knowledge is inadequate to indicate whether or not in-
correct convergence occurs in a specific case.

Even with these data we were unable to reach a firm conclusion. The
time of separation of these 12 mammals is probably 60 to 80 million years
ago. If seven sequences are insufficient to resolve such a recent divergence,
would we expect a single sequence (even quite a long sequence) to be
sufficient for a divergence that occurred much earlier—say 1 billion, or
even 3 billion years ago? Such a rhetorical question is expected to be
answered in the negative. It is of course possible that we are very fortunate
and a single sequence [e.g., small-subunit ribosemal RNA (rRNA)] is
sufficient. But we have no rational reason to assume it without testing.
Work on the small-subunit TRNA has vastly improved our knowledge of
the phylogeny of organisms but there is no reason to assume it is sufficient.

What concerns us is the scientific myth (and at present, it can only be
considered a myth) that a single sequence is sufficient to reconstruct the
whole history of life. We call this the “Myth of a Universal Tree from One
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Gene” (MUTOG). The myth is strong enough to get evolutionary trees
into textbooks which lack qualifying statements. The main problem is that
the myth inhibits testing of ideas by not taking additional sequences and
testing for convergence. If the tree is “believed” to be correct, there is
little motivation to undertake new work to test the tree. Such a state of
affairs is disturbing to anyone using a Popperian framework for science.
An idea (trees in this case) should be a stimulus to new measurements and
better, more rigorous tests.

DISCUSSION

By discussing our work from a Popperian viewpoint, we do not wish to
imply a concept of a single monolithic framework in which scientists work.
Evolutionists in particular should be well aware of the problem of essen-
tialism. They are aware of the importance of diversity in evolution (Mayr,
1982), and consequently should be skeptical of any attempt to define “‘one
true scientific method.” Medawar, who supported a Popperian view of
science (Medawar, 1974), has commented that

Among scientists are collectors, classifiers and compulsive tidiers-up. Many
are detectives by temperament and many are explorers; some are artists and
others artisans. There are poet-scientists and philosopher-scientists and even
a few mystics (Medawar, 1967:132).

Attempts by philosophers to describe a single mechanism of research that
all successful scientists follow, are doomed to failure. A diversity of ap-
proaches to science is still accommodated on the Popperian model in which
no scientific hypothesis is ever absolutely proven, where no hypothesis
should be “believed.” A similar comment on the diversity of approaches,
using the analogy of diversity within a species appears in Hull (1988). The
important point is the attitude toward hypotheses: they should never be
accepted as beyond questioning. They are tools to aid in the design of
harder and more rigorous tests.

We have recently discussed tree-building methods as requiring at least
five criteria. Methods should be consistent, robust, efficient, fast, and
falsifiable (CREFF) (Penny et al., 1990). These criteria appear incompat-
ible in that efficient methods (which increase in a polynomial manner with
the number of taxa) for real data are not known. Little is known on the
robustness of methods relative to deviations from the assumptions about
the mechanism of change. Improvements are still needed to increase the
power of tree-building methods. Perhaps the most urgent is an analog of
the Hadamard transformations for four-state characters. So far, an initial
approach has been developed (Penny et al., 1990) which still needs further
development. Another area that is important to test is the effect of devia-
tions from the “standard model.” This would allow a test of the robustness
of tree building.

Whatever the approach that is taken, it appears to us that it is important
to find the limits of any tree-building method and to find under what
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conditions it will break down. Such a Popperian approach should help
identify problem areas and assist the search for better methods. Improved
methods will almost certainly depend on a better understanding of their
mathematical basis. This makes the study of evolutionary trees an exciting
part of modern biology.
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