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PREFACE

The subject of this book is complex analysis in several variables and its connections to
partial differential equations and to functional analysis. We concentrate on the Cauchy-
Riemann equation (0-equation) and investigate the properties of the canonical solution
operator to 0, the solution with minimal L?*norm. The first chapters contain a dis-
cussion of Bergman spaces and of the solution operator to 0 restricted to holomorphic
L2-functions in one complex variable, pointing out that the Bergman kernel of the asso-
ciated Hilbert space of holomorphic functions plays an important role. We investigate
operator properties like compactness and Schatten-class membership, also for the solu-
tion operator on weighted spaces of entire functions (Fock-spaces). In the third chapter
we generalize the results to several complex variables and explain some new phenomena
which do not appear in one variable.

In the following we consider the general 9-complex and derive properties of the complex
Laplacian on L?-spaces of bounded pseudoconvex domains and on weighted L2-spaces.
The key result is the Kohn-Morrey formula, which is presented in different versions.
Using this formula the basic properties of the 9-Neumann operator - the bounded inverse
of the complex Laplacian - are proved. In the last years it turned out to be useful to
investigate an even more general situation, namely the twisted d-complex, where 0 is
composed with a positive twist factor. In this way one obtains a rather general basic
estimate, from which one gets Hormander’s L?-estimates for the solution of the Cauchy-
Riemann equation together with results on related weighted spaces of entire functions,
such as that these spaces are infinite-dimensional if the eigenvalues of the Levi-matrix
of the weight function show a certain behavior at infinity. In addition, it is pointed out
that some L?-estimates for 0 can be interpreted in the sense of a general Brascamp-Lieb
inequality.

The next chapter contains a detailed account of the application of the O-methods to
Schrodinger operators, Pauli and Dirac operators and to Witten-Laplacians. Returning
to the 0-Neumann problem we characterize compactness of the 9- Neumann operator
using a description of precompact subsets in L?-spaces. Compactness of the 9-Neumann
operator is also related to properties of commutators of the Bergman projection and
multiplication operators.

In the last part we use the O-methods and some spectral theory to settle the question
whether certain Schrodinger operators with magnetic field have compact resolvent. It is
also shown that a large class of Dirac operators fail to have compact resolvent. Finally
we exhibit some situations where the d-Neumann operator is not compact.

In the appendices we collect results from spectral theory of unbounded, self-adjoint op-
erators, a description of precompact subsets in L?-spaces and prove Garding’s inequality,
results which are used to handle compactness of the O-Neumann operator. Additionally,
we prove Ruelle’s lemma and indicate that a certain form of the Kohn-Morrey formula
can be explained by the concept of curvature on certain Kahler manifolds.
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The prerequisites for reading the book are a knowledge of some spectral theory of un-
bounded, self-adjoint operators on Hilbert spaces and elements of complex analysis and
partial differential equations.

Most of the material of the book stems from various lectures of the author given at the
Erwin Schrédinger Institute of Mathematical Physics (ESI) in Vienna and at CIRM,

Luminy , during programs on the 9-Neumann operator in the last years. The author is
indebted to both institutions, ESI and CIRM, for their help and hospitality.
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1. BERGMAN SPACES

Let 2 C C™ be a domain and the Bergman space
A%(Q) = {f : Q@ — C holomorphic :WﬂP:i/]f@MQsz)<ch
Q

where A is the Lebesgue measure of C". The inner product is given by

(f.9) = / F(2) 92 dA(2),
for f,g € A%(Q).

For sake of simplicity we first restrict to domains {2 C C. We consider special continuous
linear functionals on A%(Q) : the point evaluations . Fix z € Q. By Cauchy’s integral
theorem we have

1= [ S ),
where f € A%(Q) and D(z,r) = {w : |w — ;\T< r} C . Then, by Cauchy-Schwarz,
F) <25 Joe )|d>\( )
< ( 2 @) " (fo @ axw)
< o () 3w
< o I

If K is a compact subset of Q, there is an r(K) > 0 such that for any z € K we have
D(z,r(K)) C © and we get

su z
s1p /()] < 75,5 1
If K ¢ Q2 ¢ C" we can find a polycylinder
Plz,r(K)) ={weC" : |w; — 2| <r(K), j=1,...,n}

such that for any z € K we have P(z,r(K)) C Q. Hence by iterating the above Cauchy
integrals we get

Proposition 1.1. Let K C Q be a compact set. Then there exists a constant C(K),
only depending on K such that
(1.1) sup | f(2)| < C(K) [If],

zeK

for any f € A%(Q).

Proposition 1.2. A%(Q) is a Hilbert space.

Proof. It (fi)r is a Cauchy sequence in A%(€2), by (1.1), it is also a Cauchy sequence
with respect to uniform convergence on compact subsets of 2. Hence The sequence ( fx)
has a holomorphic limit f with respect to uniform convergence on compact subsets of €.
On the other hand, the original L?-Cauchy sequence has a subsequence, which converges
pointwise almost everywhere to the L2-limit of the original L?-Cauchy sequence (see for
instance [42]), and so the L2-limit coincides with the holomorphic function f. Therefore
A%(Q) is a closed subspace of L?*(€2) and itself a Hilbert space. O
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(1.1) also implies that the mapping f — f(2) is a continuous linear functional on A%(),
hence, by the Riesz representation theorem, there is a uniquely determined function

k. € A%(Q) such that
(1.2) f(2) = (k) = / £ (w) F(w) dA(uw).

We set K(z,w) = k.(w). Then w — K(z,w) = k.(w) is an element of A?(Q), hence the
function w — K(z,w) is antiholomorphic on € and we have

_ /sz,w)f(w) d\(w) , f € A%(Q).

The function of two complex variables (z,w) — K(z,w) is called Bergman kernel of
and the above identity represents the reproducing property of the Bergman kernel.
Now we use the reproducing property for the holomorphic function z — k,(z), where
u € § is fixed:

= [ Kz k) a\w) = [ ) Kl diw)

- ([ Kw b arw) =k

hence we have k,(z) = k.(u), or K(z,u) = K(u, 2).
It follows that the Bergman kernel is holomorphic in the first variable and anti-holomorphic
in the second variable.

Proposition 1.3. The Bergman kerrnel is uniquely determined by the properties that it
is an element of A*(?) in z and that it is conjugate symmetric and reproduces A%(S).

Proof. To see this let K'(z,w) be another kernel with these properties: Then we have

K(z,w) = /QK'(Z,U)K(u,w)d)\(u)

— (/ﬂ K(w,u)K'(u, z) dA(W) 7

= K'(w,z)
= K'(z,w).
0

Now let ¢ € L*(Q). Since A?() is a closed subspace of L*(Q) there exists a uniquely
determined orthogonal projection P : L*(Q2) — A2?(Q). For the function P¢ € A?(Q)
we use the reproducing property and obtain

(13)  Po(z) = / K (2, 0)P(w) dA(w) = (P, k.) = (6, Pk.) = (6, k)

where we still have used that P is a self-adjoint operator and that Pk, = k.. Hence

(1.4) /K z,w)p(w) dA(w).

P is called the Bergman projection.



Proposition 1.4. Let K C Q be a compact subset and {¢;} be a complete orthonormal
basis of A%(Q). Then the series

> 05(2) 6;(w)

j=1

sums uniformly on K x K to the Bergman kernel K(z,w).

Proof. For the proof of this statement we use the Riesz representation theorem to get

SUII;(Z 6;,(2))? = sup{] Y a;0;(2)| : > lagl* =1,z € K}
ZER j=1 j=1
(1.5) = sup{|f(z)| : [l =1,z € K}
< Ck,

where we have used (1.1) in the last inequality. Now

Z‘W@(w” < (Z|¢j( )2 Z‘(b] 2)1/2

with uniform convergence in z,w € K. In addition it follows that (¢;(z)); € (* and the

function .
wis S 65(2) 65w
j=1

belongs to A2(Q2). Let the sum of the series be denoted by K’'(z,w). Notice that K'(z, w)
is conjugate symmetric and that for f € A%(Q) we get

| K i =Y [ gt o) = 16

with convergence in the Hilbertspace A?(€2). But (1.1) implies uniform convergence on
compact subsets of €2, hence

/K’zw w) d\(w),

for all f € A%(Q), so K'(z,w) is a reproducing kernel. By the uniqueness of the Bergman

kernel we obtain K'(z,w) = K(z,w). O
We notice that (1.5) implies
(1.6) K(z,2) = sup{|f(2)]" : f € A*(Q),[Ifll = 1}.

system in A2(D), D={z€C : |z] <1}.
This follows from

21
, 2
/z ZmdN(z / / neind pme Zmerdrd&z—wén
D n+m+ 2

For each f € A*(D) with Taylor series expansion f(z) = > a,2" we get

27
/f )27 dA(z / fre rte” " dr 6

4

The functions ¢,(2) = (/™ 2" |/ n = 0,1,2,... constitute a complete orthonormal



2 1 a
) n
1 T8 rew d9r*™ N dr =2na, | " dr=n ,
7“”+ eil ”+ 0 n—+1

where we used the fact that

11,

n -
r

for 4,.(0) = re?. Hence, by the uniqueness of the Taylor series expansion, we obtain that
(f,¢n) =0, for each n = 0,1,2,... implies f = 0. This means that (¢,)5>, constitutes
a complete orthonormal system for A?(D) and we get

LAIZ = I(f dn)l.
n=0

which is equivalent to

117 = Z’“"’ F) =3
n=0

Hence each f € A*(D) can be written in the form f = > °° ¢, ¢,, where the sum
converges in A?(D), but also uniformly on compact subsets of I. For the coefficients ¢,
we have : ¢, = (f, ¢n).

Now we compute the Bergman kernel K (z,w) of D. The function z +— K(z,w), with
w € D fixed, belongs to A?(D). Hence we get from the above formula that

= Z Cn (bn(z)

where ¢, = (K(.,w), ¢,,), in other words

= (fn, K (s w / bu(2) K (w, 2) dA(2) = (),

by the reproducing property of the Bergman kernel. This implies that the Bergman
kernel is of the form

(1.7) K(z,w) =Y ¢u(2) ¢n(w)

where the sum converges uniformly in z on all compact subsets of . (This is true for
any complete orthonormal system, as is shown above.) A simple computation now gives

(18 K(aw)= Y0 d) = 2 D+ D) = -

Hence for each f € A?(D) we have

fz) =2 / (;_Qﬂw) dA(w),

T 1 — zw)

fix 2 € D and set f(w) =1/(1 — wz)?, then you get

1
2 L e =



Proposition 1.5. Let Q); C C", j = 1,2 be two bounded domains with Bergman kernels
Kq, and Kq,. Then the Bergman kernel Kq of the product domain €2 = €y x Qs is given

by

1

(1.9) Kq((21, 22), (w1, ws)) = Kq, (21, w1) Kq, (22, ws)

for (21, z2), (w1, ws) € Q1 X Q.

Proof. In order to show this, let F' denote the function on the right hand side of (1.9). It
is clear that (21, 22) = F((21, 22), (w1, w2)) belongs to A?(Q2) for each fixed (wy,ws) € Q
and that F' is anti-holomorphic in the second variable. The reproducing property

f(z1,22) :/Q . F((z1, 22), (w1, w2)) f (w1, we) dA(wy,ws)

is a consequence of Fubini’s theorem and the corresponding reproducing properties of
Kq, and Kg,. Hence, by the uniqueness property of the Bergman kernel, Proposition 1.3
we obtain F = K. O

From this we get that the Bergman kernel of the polycylinder D™ is given by

n

1
1.10 Kpn ( = —
(1.10) r(zw) =2 g—m

]:1 1— zjw]

For the computation of the Bergman kernel Kg-» of the unit ball in C" we use the Beta
and Gamma function

L(k+ 1)I'(m+1)
Fk+m+2)

1
/ (1 —2)"de =Bk +1,m+1)=
0

where k,m € N and that for 0 < a < 1,

1—a? 2 m+1
/ p2ktl (1 - ) dr =

1
(1 o CL2)Ic—|—1/ yk(l . y)m+1 dy
0

(1—a®""'B(k+1,m+2)

. 2>k+1 I(k+1)I(m+2)
¢ Tk+m+3)

—~
—_

N~ N~ N~



Now we can normalize the orthogonal basis {2% = 2{" ... 2%} in A*(B") and obtain

lz*)* = j 212 . |z 2 dA(2)

n
T

— T / |z1|2a1 .. |Zn_1|2an71(1 . |Zl|2 L |Zn_1|2)°‘”+1 )\
n ]B;n—l
T

= - — /B 1 ‘21‘2041 . ]znﬁ’?an—z(l — 121’2 e ‘Zn72|2)an+1
n n—

E ‘2%_1 1— |20 |? A\
" L=z = = |zpf?

7 (-1 + DI (e, +2)
an+1 Tl +an—1+3)

I A e R B e e
[Bn72
B 7w (a1 + DI, +2)  7l(eqg + D0, + - 4+ g +n)
a,+1 T(op+an1+3) ~ T(w+-+a+n+1)
o). . ap!

(o + -+ +n)l

Hence the Bergman kernel of the unit ball is given by

(an+--4+ar+n)
Kpn(z,w) = Z ol ol 2w

= ini Z +le+n) Zt

= an (k+n)k+n—1)...(k+ 1) (20, + - + 2,0,)"
k=0

n! 1
(1= (W + - -+ 2,W,))"

In the sequel we will also consider the Fock space A%(C™, e‘|z|2) consisting of all entire
functions f such that

/n F(2)2 e dA(2) < oo

It is clear, that the Fock space is a Hilbert space with the inner product

(fo= | 1) g(z) e dA(2).



Similar as in beginning of this chapter, setting n = 1, we obtain for f € A?(C, eI
that

Oy W)ew?/z 7wl e aw)
< (/|f e A >) ’
< .

where C is a constant only depending on z. This implies that the Fock space A?(C", e‘|z|2)
has the reproducing property. The monomials {z“} constitute an orthogonal basis and
the norms of the monomials are

E= / e a) [ e e i)

= )/ pRoatle=r? gy / pRontle=r® g
0 0

= 1! ..l

Hence the Bergman kernel of AZ((C” e~ *”) is of the form

1 _ _
(1.11) K(z,w) Z ||Za||2 = Z Z 3 = exp(z1W1 + -+ + 2,Wy,).

k=0 |a|=Fk

Finally we describe the behavior of the Bergman kernel under biholomorphic maps.
Proposition 1.6. Let F': Q1 — Q5 be a biholomorphic map between bounded domains
in C". Let fi,..., fn be the components of F' and F'(z) = (%(:))?,k:l‘

Then

(1.12) Ko, (z,w) = detF'(2) Kq,(F(2), F(w)) detF’(w),

for all z,w € ().

Proof. The substitution formula for integrals implies that for g € L*(€) we have
(1.13) 9(QFANC) = [ 1g(F(2)]* |detF'(2)[* dA(2).
QQ Q1

Hence the map Tr : g — (go F) detF” establishes an isometric isomorphism from L?()
to L?(Qy), with inverse map Tx-1, which restricts to an isomorphism between A?(2;) and
A%(€Qy). Now let f € A%(Q;) and apply the reproducing property of Kgq, to the function
Tef = (fo F Y det(F~1Y, setting F(z) = u we get

(1.14) Ko, (u,0)Tp1 f(v) dA\(v) = Tp f(u) = f(z)(detF'(z)) "

Qo

Since TF is an isometry,

(1.15) /QTFlf(U)[Kﬂz(U>U)]_d)‘(U>: f(w)[TpKa, (., u)(w)]™ dA(w).

1951
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From (1.14) and (1.15) we obtain
f(z) = /Q detF'(z) Kq,(F(2), F(w)) det F'(w) f(w) d\(w),

which means that the right hand side of (1.12) has the required reproducing property,
belongs to A%(€;) in the variable z and is anti-holomorphic in the variable w, and hence
must agree with Kg, (2, w). O

We derive a useful formula for the coresponding orthogonal projections
Py LX) — A%(Qy) , j=1,2.

Proposition 1.7. For all g € L*(Qy) one has

(1.16) Pi(detF' go F) = detF' (Py(g) o F).

Proof. The left hand side of (1.16) can be written in the form P;(Tr(g)), hence, by (1.4),
we obtain for

Pi(Tr(9))(2) = . Ko, (z,w)Tr(g)(w) dA(w) , z € (.

Now (1.12), together with (1.15), implies that Kq, (w, 2) = [Tp(Kq,(., F(2)))(w)] det F(2),
S0, since Tk is an isometric isomorphism, we get

P(Tr(9))(2) = detF’(Z)/Q Tr(g)(w) [Tr(Ko, (-, F(2)))(w)]~ dA(w)

— detF'(2) / 9(0) [Kay (v, F(2)))] dA(v)

= detF(2) (Pa(9)(F(2)),
which proves (1.16). O



2. THE CANONICAL SOLUTION OPERATOR TO 0 RESTRICTED TO SPACES OF
HOLOMORPHIC FUNCTIONS

We want to solve the inhomogeneous Cauchy-Riemann equation

%:g or du=g,
where
0 1 /0 0
(2.1) PE 2(8x+28y)’z T+ iy

and g € A*(D).

Before we proceed we want to recall some basic facts from operator theory.

Let H; and H, be separable Hilbert spaces and A : H; — H, a bounded linear operator.
The operator A is compact, if the image A(U) of the unit ball U in H; is a relatively
compact subset of Hs.

Proposition 2.1. Let A: Hi — Hy be a bounded linear operator.
The following properties are equivalent:

(i) A is compact;

(i1) the adjoint operator A* : Hy — H; is compact;

(i11) A*A . Hi — H; is compact.

For a proof see for instance [41].

Let A: H — H be a compact, self-adjoint operator on a separable Hilbert space H. The
Spectral Theorem says that there exists a real zero-sequence (), and an orthonormal
system (ey,), in H such that for v € H

Az = Z tn (2, €5) €,
n=0

where the sum converges in the operator norm, i.e.

N
sup ||Az — Zun(x, en)en| — 0,
ll=lI<1 n—=0

as N — oo.

Proposition 2.2. Let A : Hi — Hy be a compact operator There exists a decreasing
zero-sequence (s,)n in RT and orthonormal systems (ep)n>0 in Hy and (f,)n>0 in Ha,
such that

o0
Ax = E Sp(x,en)fn , v € Hy,
n=0
where the sum converges again in the operator norm.

Proof. In order to show this one applies the spectral theorem for the positive, compact
operator A*A : Hy — H; and gets

o0

(2.2) A*Az = Z s2(x,en)en,

n=0

10



2

where s2 are the eigenvalues of A*A. If s, > 0, we set f,, = s, ' Ae, and get

1 52

nyJm) = A n7f4 m) — A*A nyEm) = - ny Em ::5nnr
(s fn) = (e, Aem) = —— (A Aens ) = 2 (ensm) =,
For y € Hy with y L e, for each n € Ny we have by (13.1) that

| Ay||* = (Ay, Ay) = (A*Ay,y) = 0.

Hence we have

Arx = A <$ — Z(m, en)en) + A <Z(x, en)en>

i (x,e,)Ae, = isn(x,en)f
n=0 n=0
O

The numbers s,, are uniquely determined by the operator A, they are the eigenvalues of
A*A, and they are called the s-numbers of A.

Let 0 < p < oo. the operator A belongs to the Schatten-class S,, if its sequence (s,,),, of
s-numbers belongs to [P. The elements of the Schatten class S, are called Hilbert-Schmidt
operators. A is a Hilbert-Schmidt operator if and only if > °7 ||Ae,||* < oo for each
complete orthonormal system (e,), in H.

On L?-spaces Hilbert-Schmidt operators can be described in the following way:

Let S C R™ and T'C R™ be open sets and A : L*(T) — L?(S) a linear mapping. A is
a Hilbert-Schmidt operator if and only if there exists K € L?(S x T'), such that

/Kst dt . feIXT).

For the proof see for instance [41].
The following characterization of compactness is useful for the special operators in the
text, see for instance [13]):

n= O’

Proposition 2.3. Let H; and Hy be Hilbert spaces, and assume that S: Hy — Hy is a
bounded linear operator. The following three statements are equivalent:

e S is compact.
e For every e > 0 there is a C'= C, > 0 and a compact operator T =T.: Hi — Hy

such that
(2.3) 150][ g, < ClT[l g, + el -
o For everye > 0 there is a C' = C. > 0 and a compact operator T ="1.: H| — H,
such that
(2.4) 1S5, < CNITol, +ellol, -

Proof. First we show that (13.2) and (13.3) are equivalent.
Suppose that (13.3) holds. Write (13.3) with ¢ and C replaced by their squares to obtain

2 2 2
1S, < C*IToll, + & ol < (ClITvlly, +< vlly,)*
which implies (13.2).

11



Now suppose that (13.2) holds. Choose n with € = 2n* and apply (13.2) with € replaced
by 1 to get
2 2 2
1S, < C* 1Ty, + 20C [0ll, 1T 0], +0* 0]l
It is easily seen (small constant - large constant trick) that there is C’ > 0 such that
2 2
20C ollg, 170l , < 7 l0ll, + C" 1T 0],

hence

1Svll7, < (C*+C) I Tollg, +20° [vllz, = C" Tz, + < llvllz,
To prove the lemma it therefore suffices to prove that (13.2) is equivalent to compactness.
When S is known to be compact, we choose T'= S and C' = 1, and (13.2) holds for every
positive €.
For the converse let (v,), be a bounded sequence in H;. We want to extract a Cauchy
subsequence from (Sv,,),. From (13.2) we have

(25) 150 = Stmllg, < CITew = Tomlly, + ¢ o = vl

Given a positive integer N, we may choose ¢ sufficiently small in (13.4) so that the second
term on the right-hand side is at most 1/(2/N). The first term can be made smaller than
1/(2N) by extracting a subsequence of (v,), (still labeled the same) for which (T'v,),
converges, and then choosing n and m large enough.

Let (véo))n denote the original bounded sequence. The above argument shows that, for
each positive integer N, there is a sequence (vﬁlN))n satisfying : (v$")), is a subsequence
of (v,(fv_l))n7 and for any pair v and w in (vﬁlN))n we have [[Sv — Sw/|,, <1/N.

Let (wg), be the diagonal sequence defined by wy = v,gk). Then (wy)y is a subsequence
of (Uﬁlo))n and the image sequence under S of (wy) is a Cauchy sequence. Since Hj is
complete, the image sequence converges and S' is compact.

O

We return to the inhomogeneous Cauchy-Riemann equation Let

(2.6) S(9)(z) = / K (2, w)g(w)(z — w)~dA(w).

Then we have

S(9)(2) = Zg(z) — P(9)(2),
where P : L*(D) — A?*(D) is the Bergman projection and g(w) = wg(w). We claim
that S(g) is a solution of the inhomogeneous Cauchy-Riemann equation:

2 sta)() = Loy + 222 4 2P0 )

because g and P(§) are holomorphic functions, therefore d5(g) = g. In addition we have
S(g) L A%(D), because for arbitrary f € A*(D) we get

The operator S : A%(D) — L?(D) is called the canonical solution operator to 0.

Now we want to show that S is a compact operator. For this purpose we consider the
adjoint operator S* and prove that S*S is compact, which implies that S is compact (for
further details see [23]).

12



For g € A*(D) and f € L*(D) we have

(Sg, f) = /(/K z,w)g —w)” dA@))WdA(z)

:14(Akwm@@—wvwwuwﬂ_mwmxww=ms#>

hence

(2.7) SWﬁmozﬁyama@—wvwmxa.

Now set
é—/M%w@—
D

and ¢, (z) = 2"/c, ,n € Ny, then the Bergman kernel K (z,w) can be expressed in the
form

Next we compute

PG = [ ST aw =3 5 [T i) = 2

—~ Cn = a_ Cn [
hence we have
_ ann—l
S(pn)(2) =Zdn(z) — = , neN
n—1

Now we apply S* and get

S5 = [ S - (Z -2 o)

— G Cn, Cr1

The last integral is computed in two steps: first the multiplication by z

[T (-2 o

k=0 n—1

Zn+1 S wk2k+1 Cn N 0 wkzk‘
= /D - Z 2 d)\(z)— /z Z > dA\(2)
nr—o k k
— _/| |2n+2 d)\
n+1 - Cn n
( c Ci—1> v

Next the multiplication by w




o o0 wkszrl cnzn—l e wkzk
= w/—z 5 d)\(z)—w/ 5 Z 5— d\(2)
D% iy % D %1 5 %%
—w <ann1 B ann 1>
h Ch

it follows that

5°Son)(w) = (22— S ) outw) =12,

Ch Ch—1

for n = 0 an analogous computation shows

2
c
S*5(¢o)(w) = C—i go(w).
0
Finally we get

Proposition 2.4. Let S : A>(D) — L*(D) be the canonical solution operator for O and
(¢r)r the normalized monomials. Then
2
c

(25) 556 = <¢ do)do + Z ( nii G

Cn—1

) (¢, &) on

for each ¢ € A*(D).

Since
2 2
Cri1 c
— = — 0 asn — oo,
c2 2, (n+2)(n+1)

it follows that S*S is compact and S too.

2 1/2
We have also shown that the s-numbers of S are (Cz—g“ — @i) and since
n—1

n

o0 2 2
C C
n+1 n
S (%A )<
n=0 n n—1

it follows that S is Hilbert-Schmidt.
This can also be shown directly. For this purpose we claim that the function (z,w) —
K(z,w)(z —w)~ belongs to L*(D x D).

We have to prove, that
w|?
//|1—zw|4 (2) dA\(w) < 0.

An easy estimate gives |z — w| < |1 — zw|, for z,w € D. Hence

//,1_;;’,24 )d)\(w)ﬁ/m)/m)ﬁd)\(z)d)\(w).

Introducing polar coordinates z = re? and w = se' we can write the last integral in
the following form

// 1 dA(Z)dA(w)_/l/l/%/?” rsdfdedrds
pJp |1 — 2w? o Jo Jo Jo 1—2rscos(d— @)+ r?s?

14




1 1 21 2 1—7’282 e
- df de dr ds.
/o/o/o /0 1—2rscos(f —¢)+r2s? 1—r2s? ¢dr ds

Integration of the Poisson kernel with respect to 6 yields

2T 1_p2
dd =21 ,0<p<1.
/0 1 —2p cos(0 — ¢) + p? P

Therefore we have

1 1 2w 2 1—7'282 rs
dodeodrd
/ / / / 1—2rscos(@—¢)+1r2s? 1 —r2s? ¢ drds

"og(1 — s?)
2
(2m) // 1_r2$2drds:—(27r)/02—sds<oo.

For further details see [23], [27] and [37].

Now we consider weighted spaces on entire functions

A(C,e MY = {f:C—C : |fIA: /\f (2)2 e " dA(2) < oo},

where m > (. Let
= / 2|2k e ™ X (2).
C

oo —k
-y
C

2
k=0 K

Then

is the reproducing kernel for A%(C,e*I").
In the sequel the expression

G G
i iy
will become important. Using the integral representation of the I'—function one easily
sees that the above expression is equal to

D) p()

m _ m

) T

m

For m = 2 this expression equals to 1 for each £ =1,2,.... We will be interested in the
limit behavior for & — oo. By Stirlings formula the limit behavior is equivalent to the
limit behavior of the expression

ok +2\ ™ /ok\ Y™
m m ’

as k — 0o. Hence we have shown the following

Lemma 2.5. The expression
P(2) 1 ()

FEE) T

15




tends to oo for 0 < m < 2, is equal to 1 for m = 2 and tends to zero for m > 2 as k
tends to oo.

Let 0 < p < 1, define f,(2) := f(pz) and f,(2) = Zf,(2), for f € A*(C,e ™). Then it
is easily seen that f, € L*(C,e ™), but there are functions g € A%(C, e *™) such that
Zg & L*(C, e *I™).

Let P, : L*(C,e *I") — A%(C, e *I") denote the orthogonal projection. Then P,, can
be written in the form

/K z,w) f(w)e ™™ d\(w) , f e L*C,e ™).

Proposition 2.6. Let m > 2. Then there is a constant C,, > 0 depending only on m
such that

/(C‘fp(z) - Pm(fp)(z)‘ e A" dA(2) < O /(C|f(z)|2€—|z|m dA(2),

for each 0 < p < 1 and for each f € A%(C,e *I™).

Proof. First we observe that for the Taylor expansion of f(z) = > ;2 ax2" we have

Po(f)(z) = /CZZ o (wZa p]wj) e ™ d\(w)

k=0

Now we obtain

02 m
"k pkzkfl e*|z| d)\(Z)
i Ck:—1

2
C
_ /(Z‘ak|2p2k’2|2k+2_QZ‘ak|262_kp2k’Z‘2k
€ k=0 k=1 k-1
> C4 m
b3 T ) e ()
k=1 Cr—1

2 9 = 2 9 9k Ci+1 Ci
= ‘aol & _'_Z’akl Cr P 2 ) .
k=1

k Ch—1

X
R
10
RS |
>,
N
|
M

Now the result follows from the fact that
/c [F(2) e dN(2) =) lail* .,
k=0

c2 c? .
and that the sequence (% — & ) is bounded. O
k k

Ck—1

16



c? c? .
Remark 2.7. Already in the last Proposition the sequence ( ’;ﬁl — 2—’“) plays an im-
k:

Ck—1/
portant role and it will turn out that this sequence is the sequence of eigenvalues of the

operator Sk Sy, (see below).

Proposition 2.8. Let m > 2 and consider an entire function f € A?(C,e™ ™) with
Taylor series expansion f(z) = > p,arz®. Let

2):=2Z E apz” — E ay, Q—k 2kt
c
k=0 k=1 k=1

and define S,,(f) := F. Then S,, : A%(C,e ") — L2(C,e ™) is a continuous linear
operator, representing the canonical solution operator to O restricted to A%(C,e ™), i.e.

0S,(f) = f and Sp,(f) L A%(C, e l5™).
Proof. By the proof of Proposition 2.6, by Abel’s theorem and by Fatou’s theorem (see

for instance [15]) we have

/|F NP F™ aN(z) = /lim
Cp—ﬂ

folz) = Palip)(2)] 74" ax(z)

. . 2
< s [ |76 = Pl ¢ ine)
0<p<1
< /|f J2e" ax(z)
and hence the function
i apz® f: a i ZF1
k =
k=0 k=1
belongs to L?(C,e ™) and satisfies
(2.9) [IFGEe i) < 6 [ 15 R i)
C C
The above computation also shows that lim,_1 || f, = Po(fo)|lm = || F|lm and by a stan-

dard argument for LP-spaces (see for instance [15])
fl)l_rf} 1fo = Bn(fo) = Fllm =0

A similar computation as in the case A%*(D) shows that the function F defined above
satisfies OF = f. Let S,,(f) := F. Then, by the last remarks, S,, : A*(C,e ") —
L*(C, e ™) is a continuous linear solution operator for 9. For arbitrary h € A%(C,e ™)
we have

(hv Sm(f))m = <h> F)m = }Eﬁ(ha fp - Pm(fp))m = [lji_rg(h - Pm(h)a fp)m =

where (., .),, denotes the inner product in L?(C,e 1*"). Hence S,, is the canonical solu-
tion operator for 0 restricted to A%(C,e~1#™). O

Remark 2.9. Let

:; VEFDOVE+T

0
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Then f € A%(C,e "), since

k o
R

But

=27
ot =2r - e §%k+1 ~
hence zf & L*(C, e %),

The expression for the function F in the last theorem corresponds formally to the ex-
pression Zf — Pn(Zf); in general Zf & L*(C,e ™), for f € A%(C,e ™), but f > F
defines a bounded linear operator from A*(C,e ") to L*(C,e 1#™).

Theorem 2.10. The canonical solution operator to O restricted to the space A*(C,e 1#™)
is compact if and only if
2 2
lim (L %) o,
k—ro0 Ci szl

Proof. For a complex polynomial p the canonical solution operator .S,, can be written in
the form

:LKMammw@—mfwme,

therefore we can express the conjugate S} in the form

= [ Koutw 2oz =) ),

if ¢ is a finite linear combination of the terms z* z!. This follows by considering the inner

product (S (D), Q)m = (0, 55(Q))m-
Now we claim that

2., &
S» Sy (up) (w) = ( 22 - 02" > up(w) , n=12,...
n n—1
and
a

S0 0) = % o),
0

where {u,(z) = 2"/c,,n =0,1,...} is the standard orthonormal basis of A?(C,e™*I").
In a similar way as before for the case of A%(ID) we see that

Hence

As before we get

* k=k /= n+1 n 2
/Z — (ZZ - o )e'zm d\(z) = (CTLJr1 - ) w"
2 2 3 2
Cr—o Cx, Cn Cn—1 Cn Cn—1




and

o S — _ — —

whzk [z 2! e cyw™t cw !

w E 5 - — e d\(z) =w 5 - — =0,
c= Cn 2 c c

which implies that

eI -
Sr S (un)(w) = ( e )un(w) n=12...,

2
c2 Cr_

the case n = 0 follows from an analogous computation.

The last statement says that S}, 5,, is a diagonal operator with respect to the orthonormal
basis {u,(2) = 2"/c,} of A%(C,e *I™). Therefore it is easily seen that S S,, is compact
if and only if

2 2
lim (cn—l-l . Cn ) =0
2 2 -
n—oo Cn C?’L—l
[

Theorem 2.11. The canonical solution operator for O restricted to the space A?(C,e™1#™)
is compact, if m > 2. The canonical solution operator for O as operator from L*(C, e*|2|2)
into itself is not compact.

Proof. The first statement follows immediately from Theorem 2.10 and Lemma 2.5 For
the second statement we use (2.9) to show that the canonical solution operator is con-
tinuous as operator from A%(C, e **) to L*(C, e 1*).

By Hormander’s L2-estimate for the solution of the d equation [30] there is for each
g € L*(C,e ") a function f € L*(C,e *) such that df = g and

/ )P e an(z) < 2/ l9(=)* e dA(2).
C C

(see section 7. Theorem 7.5)

Hence the canonical solution operator for d as operator from L?(C, e*|z|2) into itself is
continuous and its restriction to the closed subspace A%(C, e"Z‘Q) fails to be compact by
Propositon 2.6 and Lemma 2.5. By the definition of compactness this implies that the
canonical solution operator is not compact as operator from L?(C, e‘|z|2) into itself. [

Remark 2.12. In the case of the Fock space AQ((C,e"Z'z) the composition S35, equals
to the identity on A*(C, e*|z‘2), which follows from the proof of Theorem 2.10.

Theorem 2.13. Let m > 2. The canonical solution operator for O restricted to A*(C, e~ *I")
fails to be Hilbert Schmadt.
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Proof. By Proposition 2.8 we know that the canonical solution operator is continuous
and we can use the techniques from before to get

2 _ 1/
||Sm(un)||m - 02 B

1 / . 202 |Z|2 c lplm
= = [ |l <\ - = n) e ™ dA(2)
2 Cifl

1 n —|z|™ 2 n _—|z
= & [EER e ae) — o [ e a)

Cn 1
2
+ Z—"/]z\%?ez'm dX\(z)
Cp—1JC
2

2

= . n n n—1

z e P dA(2)

o Cn—i—l . Cn
o 2 2
Cn cnfl
Hence
o
2
E | S (un) || 7, < 0
n=0
if and only if
i1
lim < 0.
n—oo 02

By [41] , 16.8, S,, is a Hilbert Schmidt operator if and only if

D 1S (un) 17, < o0.
n=0

331 _F(2n+4) T (2n—{—2>7
c2 m

which, by Stirling’s formula, implies that the corresponding canonical solution operator
to 0 fails to be Hilbert Schmidst. OJ

In the case of several variables the corresponding operator S*S is more complicated,
nevertheless, using a suitable orthogonal decomposition, we can generalize the above
results, see next section.

(see Appendix A.)
In our case we have
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3. SPECTRAL PROPERTIES OF THE CANONICAL SOLUTION OPERATOR TO 0

In this chapter we concentrate on several complex variables and follow [27] to generalize
the results of chapter 1 and 2.

For this purpose we introduce the notion of complex differential forms. Let €2 C C" be
an open subset and f : @ — C be a C'-function. We write z; = x; + iy; and consider
for P € Q) the differential

"/ of af
dfp = Z (a—xj(P) dxj + 6_yj(P) dyj) :
7=1
We use the complex differentials
de = dg;j -+ z'dyj , dEj = dl’j — z'dyj

and the derivatives

o _ (o ;9N o0 _1(9 0
0z, 2 \0x; 0dy;)  0z; 2 \0r; Oy,

and rewrite the differential df, in the form

— (Of of ~ 5
dfp = ; (8_2](]3) dz; + G_EJ(P> dZ]) =0fp+0fp.
A general differential form is given by

w = Z/(ZJ,KCZZJ/\CZQK,

|J|=p,| K|=q

where the sum is taken only over increasing multiindices J = (j1,...,jp), K = (k1,...,kq)
and

dZJ:del /\"'/\dep s de:dzkl/\"'/\dqu.
The derivative dw of w is defined by

dw = Z "dajg Ndzy NdzZ = Z "(Oayk + 0asx) Adzy A dZ,

|J|=p,|K|=q |J|=p,|K|=q
and we set
ow = Z "Oayx Ndzy A\ dZg and Ow = Z "Oajx Ndzy N dZg.
|7|=p,|K|=q |J|=p,| K|=q

We have d = 9 + 0 and since d? = 0 it follows that
0=(0+0)o(@+d)w=(00d)w+(00d+0dod)w+ (Jod)w,

which implies 92 = 0 , 9 =0and 900 +8o0d = 0, by comparing the types of the
differential forms involved.

Let €2 be a bounded domain in C" and let A?OJ)(Q) denote the space of all (0, 1)-forms

with holomorphic coefficients belonging to L?(£2). With the same proof as in section 2
one shows that the canonical solution operator S': A%, | (Q2) — L*(2) has the form

(3.1) S(g)(z) = /QK(Z,U]) < g(w),z —w > d\(w),
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where K denotes the Bergman kernel of €2 and
<g(w),z —w >= Zgj(w)(zj —wj),
j=1

for z = (z1,...,2,) and w = (wy, ..., wy).

Let v(z) = >_7_, Zjg(2). Then it follows that

v = dzj Zg]dzj =9

Hence the canonical solution operator S can be written in the form Si(g) = v — P(v),
where P : L*(Q2) — A%(Q) is the Bergman projection. If ¢ is another solution to du = g,
then v — 0 € A%(Q) hence v = ¥ + h, where h € A%(Q2). Therefore

v—Pv)=0+h—P(v)— P(h)=0— P(0).
Since g; € A%(Q), j=1,...,n, we have

_ /Q K (2, w)g; (w) d\(w).

Now we get
S(g)(z) = z]g] /K 2, W (Zw]gj ) (w)

— /Q [(Z@%(W) K(z,w) — <Z@jgj(w)> K(z,w)] d\(w)

Jj=1

= /QK(z,w) < g(w),z —w > d\(w).

Remark 3.1. It is pointed out that a (0,1)-form g = >7_, g;dz; with holomorphic
coefficients is not invariant under the pull back by a holomorphic map F = (Fy, ..., F,) :
0y — Q. Then

NN oF
Frg=Y gdF =) (Zgla_gl) dzj,
=1 j=1 J
where we used the fact that

— = == ~=0F
dFy=0F, +0F =Y ——dzj+ Y ——
1 (9zj 1 8Zj
The expressions g?’ are not holomorphic.
Nevertheless it is true that Ou = g implies O(u o F) = F*g, which follows from the fact
that for a general differential form w and a holomorphic map F we have

I(F*w) = F*(0w) and O(F*w) = F*(0w).
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Now let w be a holomorphic (n,n)-form, i.e.
w=wdn N Ndz, NdZy N -+ NdZ,,

where & € A%(€). In this case we can express the canonical solution to du = w in the
following form

Proposition 3.2. Let u be the (n,n — 1)-form
w=Y ujdan A Adeg NdZ A NAZ) A -+ A dZ,,
7=1

where

-z:ﬂ Zi— W, z,w)w(w w
w(2) | & =K wate) drw),

n
Then u; L A%(Q) ,j=1,...,n and Ou = w.

Proof. Tt follows that

from this we obtain
an . (_1)n+j71 62ja) 5. 0w . (_1)n+j71
0z, / 0z, N

where 6, is the Kronecker delta symbol. Hence

62k N n

ou = Zza—gidzk/\dzl/\---/\dzn/\dil/\--J\[dEj]/\---/\dEn
k=1 j=1
= ZZ ((—1)"+j—1/n) 5jl~c w dzk A
k=1 j=1
Adzy A - Ndzg NdZL A -~ N[dZ) A -+ N dZE,

= Qdu A Ndzg NdZy A -+ N dz,.

Remark 3.3. The pull back by a holomorphic map F has in this case the form
2

oF;
det —2| @ dzy A---ANdzy NdZy A -+ N dZ,,.

8zk

For further related results see section 10.

Fw=

Now we will study boundedness, compactness, and Schatten-class membership of the
canonical solution operator to 0, restricted to (0, 1)-forms with holomorphic coefficients,
on L%(dp) where y is a measure with the property that the monomials form an orthogonal
family in L?*(du). The characterizations are formulated in terms of moment properties
of p.

This situation covers a number of basic examples:
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e Lebesgue measure on bounded domains in C™ which are invariant under the torus
action

(01,...,0,)(21,. .., 20) > (P21, e
(i.e. Reinhardt domains).

e Weighted L? spaces with radially symmetric weights (e.g., generalized Fock spaces).
e Weighted L? spaces with decoupled radial weights, that is,

du = eX5 %3175 g\,
where ¢;: R — R is a weight function.
We denote by
A*(dp) = {z*: a € N},

the closure of the monomials in L?(du), and write

me =c, = / |22 dpu.

We will give necessary and sufficient conditions in terms of these multimoments of the
measure g for the canonical solution operator to d, when restricted to (0, 1)-forms with
coefficients in A?(dp) to be bounded, compact, and to belong to the Schatten class S,,.
This is accomplished by presenting a complete diagonalization of the solution operator
by orthonormal bases with corresponding estimates.

As usual, for a given function space F, F(o1) denotes the space of (0,1)-forms with
coefficients in F, that is, expressions of the form

> fidz, fi€F.
j=0
The 0 operator is the densely defined operator
_ " Of
2 = —dz,.

The canonical solution operator S assigns to each w € L?O 1)(du) the solution to the 0

equation which is orthogonal to A%(dpu); this solution need not exist, but if the d equation
for w can be solved, then Sw is defined, and is given by the unique f € L?*(du) which
satisfies

df = w in the sense of distributions and f 1 A*(du).
We will frequently encounter multiindices v which might have one (but not more than
one) entry equal to —1: in that case, we define ¢, = 0. We will denote the set of these

multiindices by I'. We let e; = (0,---,1,---,0) be the multiindex with a 1 in the jth
spot and 0 elsewhere.

Theorem 3.4. S: A%071)<d,u> — L*(du) is bounded if and only if there exists a constant
C' such that

Cyte;, Gy <C

Cyt2e;  Cytey
for all multiindices v € I and for all j =1,... n.

We have a similar criterion for compactness:
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Theorem 3.5. S: A%()’l)(d,u) — L*(du) is compact if and only if

(3.3) lim (C"’L - C—”’) —0

Y \Cy+2e;  Cytej

forallj=1,--- n.

In particular, the only if implication of Theorem 3.5 implies several known noncompact-
ness statements for S, e.g. [34], [44], as well as the noncompactness of S on the polydisc.
The main interest in these noncompactness statements is that if S fails to be compact,
so does the 0-Neumann operator N.

The multimoments also lend themselves to characterizing the finer spectral property of
being in the Schatten class S,. Let us recall that an operator 7" : H; — H, belongs
to the Schatten-class S, if the self-adjoint operator 77T has a sequence of eigenvalues
belonging to /7.

Theorem 3.6. Let p > 0. Then S: A%()’l)(d,u) — L*(du) is in the Schatten-p-class S, if
and only if

(3.4) Z(Z (MC—”DQ«E

er g NGt Ot

The condition above is substantially easier to check if p = 2 (we will show that the sum
is actually a telescoping sum then), i.e. for the case of the Hilbert-Schmidt class; we
state this as a Theorem:

Theorem 3.7. The canonical solution operator S is in the Hilbert-Schmidt class if and
only if

(3.5) lim

k—o0

Cy

< Q.

Cote
YENT |y|=k 1T
1<j<n

Let us apply Theorem 3.4 to the case of decoupled weights, or more generally, of product
measures dp = dpy X --+ X du,, where each duy is a (circle-invariant) measure on C.
Note that for such measures, there is definitely no compactness by Theorem 3.5. If we

denote by
~1
= ([ Fan)
C

n

_ i
Clyrym) = ch :

j=1

we have that

We thus obtain the following corollary.

Corollary 3.8. For a product measure dy = dpy X --- X du, as above, the canonical
solution operator S A%O’l)(d,u) — L*(du) 1s bounded if and only if there exists a constant
C such that

g d
k42 okt <C
J J
for all k € Ny and for all j = 1,--- ,n. FEquivalently, S is bounded if and only if the
canonical solution operator S;: A?(du;) — L*(dp;) is bounded for every j =1,--- n.
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To see that (3.3) is not satisfied for product measures consider multiindices v € I" such
that 7; = —1: then ¢, = 0 (by definition) and ¢, ., # 0, and therefore

(m_i):§_0>5>0

1
Cyt2e;  Cytey

j
for all multiindices v with ~; = —1.

In the case of a rotation-invariant measure u, we write

md:/ |2[*dp;

a computation (see Appendix F and [37, Lemma 2.1]) implies that
-1
(n =1 myy

where |y| =~ + -+, and Y = ! oL
In order to express the conditions of our Theorems, we compute (setting d = |y| + 1)

(3.7) <m _ % ) _ {dtz%fnlmni:l — =y # —1forall j

1 Mmg+1
Cy+2e;  Cyte; T my else.

Note that the Cauchy-Schwarz inequality implies that the first case in (3.7) always dom-
inates the second case for n > 2; for n = 1 we observe that the second case in (3.7)
reduces to z—;, compare with Proposition 2.4.

Using this observation and some trivial inequalities, we get the following Corollaries.

Corollary 3.9. Let u be a rotation invariant measure on C". Then the canonical solution
operator to O is bounded on A%O’l)(dp,) if and only if

(3.8) sup ((2n +d = Dmay _ M ) < 00
deN (n+d)mg Ma—1

Corollary 3.10. Let u be a rotation invariant measure on C". Then the canonical
solution operator to 0 is compact on A?O’l)(du) if and only if

om+d—1
(3.9) i (G4 = Uman  ma ) _
d—00 (n+ d)ymyg Mg_1

Corollary 3.11. Let p be a rotation invariant measure on C". Then the canonical
solution operator to 0 is a Hilbert-Schmidt operator on A%O 1)(d,u) if and only if

(3.10) lim (” - 2> Tl

d—o0 n—1 My

Remark 3.12. It follows that the canonical solution operator to 0 is a Hilbert-Schmidt
operator on A*(D), but fails to be Hilbert-Schmidt on A*(B"), where B™ is the unit ball
in C", forn > 2.

Corollary 3.13. Let p1 be a rotation invariant measure on C", p > 0. Then the canonical
solution operator to O is in the Schatten-class S,, as an operator from A%OJ) (dp) to L*(dp)
if and only if
o0 p
d—2 2n+d—1 2
(3.11) S (T @ntd=man  ma V2 _
— n—1 (n+d)my My_1
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In particular, Corollary 3.13 improves Theorem C of [37] in the sense that it also covers
the case 0 < p < 2. We would like to note that our techniques can be adapted to the
setting of [37] by considering the canonical solution operator on a Hilbert space H of
holomorphic functions endowed with a norm which is comparable to the L?-norm on each
subspace generated by monomials of a fixed degree d, if in addition to the requirements
in [37] we also assume that the monomials belong to H; this introduces the additional
weights found by [37] in the formulas, as the reader can check. In our setting, the
formulas are somewhat “cleaner” by working with A?(du) (in particular, Corollary 3.11
only holds in this setting).

In what follows, we will denote by
Uy = /Ca2”®
the orthonormal basis of monomials for the space A%*(du), and by U, ; = undz; the

corresponding basis of A?M)(d,u). We first note that it is always possible to solve the

0-equation for the elements of this basis; indeed, 52jua = U, j. The canonical solution
operator is also easily determined for forms with monomial coefficients:

Lemma 3.14. The canonical solution Sz*dz; for monomial forms is given by

Ca—e,
(3.12) Szdz; = 2,2 — — 2274  a e NP
COC
Proof. We have (Z;2%, 2°) = (2@, 27%¢); so this expression is nonzero only if 3 = o — ¢;
(in particular, if this implies (3.12) for multiindices o with a; = 0; recall our convention
that ¢, = 0 if one of the entries of v is negative). Thus Sz*dz; = Z;2* 4+ ¢z*~%, and ¢ is
computed by
0= (22" +cz%, 279 =  + ¢,
which gives ¢ = —ca—c;/Ca. O

We are going to introduce an orthogonal decomposition

01) (dp) = @E

yel’

of Aﬁoyl)(du) into at most n-dimensional subspaces E., indexed by multiindices vy € I" (we
will describe the index set below), and a corresponding sequence of mutually orthogonal
finite-dimensional subspaces F., C L?(du) which diagonalizes S (by this we mean that
SE, = F,). To motivate the definition of E., note that

5#05"’6@—6]@,
> 6:a+€€_6k7

Ca

0
(313) (Szadék,5z5d24> = { 1 ( ca _  Ca—ey

Catey Catey—ep

so that (Sz%dz, S2Pdz,) # 0 if and only if there exists a multiindex ~ such that a = y+e;,
and B = v + e;. We thus define

Ey =span{U,4e,;: 1 < j <n} =span{z"*%dz;: 1 <j <n},

and likewise F, = SE,. Recall that I' is defined to be the set of all multiindices whose
entries are greater or equal to —1 and at most one negative entry. Note that E, is 1-
dimensional if exactly one entry in v equals —1, and n-dimensional otherwise. We have
already observed that F, are mutually orthogonal subspaces of L?(du) (see 3.13).
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Whenever we use multiindices v and integers p € {1,---,n} as indices, we use the
convention that the p run over all p such that v+ e, > 0; that is, for a fixed multiindex
v € T, either the indices are either all p € {1,--- ,n} or there is exactly one p such that
vp = —1, in which case the index is exactly this one p.

We next observe that we can find an orthonormal basis of F, and an orthonormal basis
of F, such that in these bases S, = S|g : £, — F, acts diagonally. First note that it
is enough to do this if dim £, = n (since an operator between one-dimensional spaces is
automatically diagonal). Fixing v, the functions U; := U,., ; are an orthonormal basis
of E,. The operator S, is clearly nonsingular on this space, so the functions SU; = ¥,
constitute a basis of F,,. For a basis B of vectors v/ = (v{, e ,vfl), j=1...,nof C"
we consider the new basis

n
— E JrT..
=1

since the basis given by the U; is orthonormal, the basis given by the V}, is also orthonor-
mal provided that the vectors vy = (vi, -+ ,v) constitute an orthonormal basis for C"
with the standard hermitian product. Let us write

O, = SVi = Y _vlSU;.
J

The inner product (@, ®,) is then given by Y. vIv*(SU;, SU.). We therefore have

Jk “pTa
<(b17 q)1> T <q)17 q)'n>
(3.14) : : =
<(bna q)1> Tt <(I)n7 (I)n>
fU% e fU717’ <\I/17 \I}1> e <\:[}17 \I/n> f[}% e @le
vl oeen (U, Wy) o (U, V,) o o

Since the matrix ((¥;, Ux)),;x is hermitian, we can unitarily diagonalize it; that is, we can
choose an orthnormal basis B of C" such that with this choice of B the vectors ¢, =
Vie=>] ; viU,Hem of E, are orthonormal, and their images ®; = SV}, are orthogonal in
F.,. Therefore, ®;/||®|| is an orthonormal basis of F, such that S, : E, — F, is diagonal
when expressed in terms of the bases {V4,---,V,} C E, and {®y,---,®,} C F,, with
entries ||Py|.

Furthermore, the ||®y| are exactly the square roots of the eigenvalues of the matrix
((¥,,¥,)) which by (3.13) is given by

<\1jp7 \Ilq> - <SU7+ep,pa SUv+eq,q>
= /Crrep\/Crreg (S 27T dzp, S 270 dz,)

1 e
(3.15) = \/CrrerCries ( Cytep Gy )

Cytep \Crtepteq Cyteq

C’Y+€pc’7+eq _ C’YC’Y+ep+eq
Cytepteqy/ CytepCrteq

Summarizing, we have the following Proposition.

28



Proposition 3.15. With ;v as above, the canonical solution operator S': A%o,l)(d:“) —
L%O 1)(du) admits a diagonalization by orthonormal bases. In fact, we have a decomposi-
tion A 01 = @7 E., into mutually orthogonal finite dimensional subspaces E.,, indexed by
the multiindices v with at most one negative entry (equal to —1), which are of dimension
1 orn, and orthonormal bases ., ; of E., such that S, ; is a set of mutually orthogonal
vectors in L*(dp). For fized 7y, the norms ||S¢. ;|| are the square roots of the eigenvalues
of the matriz Cyy = (C . 4)p.q given by

CytepCyteq — EvCytepteq
(3-16) C%p q = :
Cy+epteq V Cy+epCrteq

In particular, we have that

n c e
(3.17) Z”SSOWH Cypa)p ( Tt O )
1

1 \Crt2ep  Cytep

In order to prove Theorem 3.4, we are using Proposition 3.15. We have seen that we
have an orthonormal basis ¢, ;, v € I', j € {1,--- ,n}, such that the images S¢, ; are
mutually orthogonal. Thus, S is bounded if and only if there exists a constant C' such
that

HSSO%J'HZ <C

for all vy € I' and j € {1,--- ,dim E,}. If dim £, = 1, then 7 has exactly one entry
(say the jth one) equal to —1; in that case, let us write ¢, = U,1.,dz;. We have

— ARz
Sy = \fCrie,; 2277, and so

2 C + .
ISeylI* = —=.
Y+2e;

On the other hand, if dim E, = n, we argue as follows: Writing || S, ;||° = A2, with
Ay,; > 0, from (3.17) we find that

n n
S, =% (_ _ _)
Y,J :
j=1 J=1

C’Y+2€j C’Y+€j
The last 2 equations complete the proof of Theorem 3.4.

In order to prove Theorem 3.5, we use a special characterization of compactness, for the
proof see Appendix A.

Lemma 3.16. Let Hy and H, be Hilbert spaces, and assume that S: Hy — Hs is a
bounded linear operator. The following three statements are equivalent:

e S is compact.
o For every e > 0 there is a C'= C. > 0 and a compact operator T’ =T.: Hy — Hy

such that
(3.18) 150][ g, < ClT0[l g, + el -
e For everye > 0 there is a C' = C. > 0 and a compact operator T ="1.: H| — H,
such that
(3.19) 1S3, < CITol, + <ol -

29



Proof of Theorem 3.5. We first show that (3.3) implies compactness. We will use the
notation which was already used in the proof of Theorem 3.4; that is, we write ||S¢, ||2 =
)\37 ;- Let e > 0. There exists a finite set A. of multiindices v € I" such that for all v & A,

i)‘ia‘ :i (m_i) <é&
j=1

j=1 Cy42¢; Cyte;
Hence, if we consider the finite dimensional (and thus, compact) operator 7. defined by
1: Z Ay, iP5 = Z Ay, 5P s
vEAe
for any v = > a, ;. ; € Af, ;) (du) we obtain
2

2 2
IS0l = [|Teol” + || > a4,
TEA:

2 2
= 1Tooll* + > lay P 11Seq4
YEAe

2
= ||Tv]]” + Z ’a%j|2)‘i,j
YEAe

< | Teol* +€ ) lay
YA
2 2
< | Tevl” +eflvll”.

2

Hence, (3.19) holds and we have proved the first implication in Theorem 3.5.
We now turn to the other direction. Assume that (3.3) is not satisfied. Then there exists
a K > 0 and an infinite family A of multiindices v such that for all v € A,

Zn:)\gm = z”: (C“/i — C—V) > nk.
j=1

j=1 C’Y+2€j C'Y+€j

In particular, for each v € A, there exists a j, such that /\gm%/ > K. Thus, we have an
infinite orthonormal family {¢, ; : v € A} of vectors such that their images S¢, ; are

orthogonal and have norm bounded from below by v/ K, which contradicts compactness.
O

We keep the notation introduced in the previous sections. We will also need to introduce
the usual grading on the index set I', that is, we write

(3.20) Te={yel: |y =k}, k>-L

In order to study the membership in the Schatten-class, we need the following elementary
Lemma:

Lemma 3.17. Assume that p(x) and q(x) are continuous, real-valued functions on RY
which are homogeneous of degree 1 (i.e. p(tz) = tp(x) and q(tz) = tq(x) fort € R), and
q(x) =0 as well as p(x) = 0 implies x = 0. Then there exists a constant C such that

(321) Zla(e)| < p(a)] < Cla(a).
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Proof. Note that the set B, = {x: ¢(x) = 1} is compact: it’s closed since ¢ is continuous,
and since |g| is bounded from below on S by some m > 0, it is necessarily contained in
the closed ball of radius 1/m. Now, the function |p| is bounded on the compact set By;
say, by 1/C from below and C' from above. Thus for all x € RY,

1 x
<)<
¢~ ‘p (Q(l’))‘ N
which proves (3.21). O

Proof of Theorem 3.6. Note that S is in the Schatten-class S, if and only if

(3.22) d N <.

Y€l g

We rewrite this sum as

> (Zﬂj) =: M € RU{oo}.

~er J

Lemma 3.17 implies that there exists a constant C' such that for every v € T,

1 p/2
! (z A) Sy, <o (z A)
Vi Vi J

Hence, M < oo if and only if

p/2

p/2
¥(2) <=
¥ J
which after applying (3.17) becomes the condition (3.4) claimed in Theorem 3.6. O]

Proof of Theorem 3.7. S is in the Hilbert-Schmidt class if and only if
(3.23) » A2, <o
vel,j

We will prove that

k
(3.24) Sy - Yy

c
t=—17€Ty,j aEN" |a|=k+1  “TeP
1<p<n

which immediately implies Theorem 3.7. The proof is by induction over k. For k = —1,
the left hand side of (3.24) is

n n n c
2 0
)DE T S SEPI iy
j=1 j=1 j=1

€p
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which is equal to the right hand side. Now assume that the (3.24) holds for k = K — 1;
we will show that this implies it holds for £ = K. We write

Soyane Y Gy (Lo

Cryi2e;  Cotes
l=—1~€ly,j aeN" |a|l=K—1 atep vel'k,j v+2e; Tte
1<p<n
>
&
a€eN" |a|l=K atep

1<p<n

This finishes the proof of Theorem 3.7. 0

32



4. THE O-COMPLEX

Our main task will be to solve the inhomogeneous Cauchy-Riemann equation du = f,
where the right hand side f is given and satisfies the necessary condition df = 0. For
n > 1 this is an overdetermined system of partial differential equations, which will be
reduced to a system with equal numbers of unknowns and equations.

We demonstrate this method first in its finite dimensional analog: let F/, F', G denote finite
dimensional vector spaces over C with inner product. We consider an exact sequence of
linear maps

E-SFP LG
which means that ImS = KerT', hence T'S = 0.
Given f € ImS = KerT, we want to solve Su = f with u L KerS, then u will be called

the canonical solution.
For this purpose we investigate

ESF LG
— —
S* T*
and observe that KerT' = (Im7*)* and KerT* = (ImT')*. We claim that the operator
SS*+T*T: F — F
is bijective. Let (SS* 4+ T*T)g = 0, then SS*g = —T*Tg, which implies
SS*g € ImT* N ImS = ImT* N KerT = ImT* N (ImT*)* = {0},

hence SS*g = T*Tg = 0, but this gives S*g € KerSNImS* = KerSN(KerS)t = {0}, and
g € KerS* = (ImS)+; from T*T'g = 0 we get T'g € KerT* NImT = (ImT)* NImT = {0}
and g € KerT = ImS, therefore we obtain g € ImS N (ImS)*+ = {0}. So SS* + T*T is

injective and as F' is finite dimensional SS* + T™*T" is bijective.
Let N = (SS* +T*T)~'. We claim that

u=S*Nf

is the canonical solution to Su = f. So we have to show that SS*Nf = f and S*Nf L
KerS. The latter easily follows from the fact that S*N f € ImS* = (KerS)*.
We have

f=SS"Nf+T*TNf,
therefore the assumption 7' f = 0 implies
0=Tf=TSS*Nf+TT*TNf=TT*TNf,
since T'S = 0. From here we obtain
0= (TT*TNf,TNf)=(T*"TNf,T*TN f)
and T*T'N f = 0, hence SS*N f = f and we are done.

In the following we will use this method for the d-operator.
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Let Q ={z € C" : r(z) <0}, where

or or
0z " 0z, 5,070

on b = {z : r(z) = 0}. Without loss of generality we can suppose that |V.r| = |Vr| =1
on bQ. For u,v € C>*(Q) and

V.r:=(=—

(4, 0) = / u(2)o(2) dA(2)
we have

(ttny0) = —(t, 00y) + / w(2)0(2) 12, (2) do(2),

b2
where do is the surface measure on b).

This follows from the Green-Gaufl -theorem: for w C R™ we have
[ V@ i@ = [ (F@.vt) dota),
w bw
where v(x) = Vr(z) is the normal to bw at z, and F is a C! vector field on w, and

J

J=1

For k=1 and F = (u7,0,...,0) one gets

(tey,0) = — (1, 00,) + / (o) 7 (2) do2)

similarly one obtains

(4.1) <§—:€,v> =— (u,g—;}k) +/bﬂu(z)ﬂ§k( )do(z).

Definition 4.1. Let Q be a bounded domain in C* with n > 2, and let r be a C? defining
function for Q. The Hermitian form

" O
—1 &zjﬁzk

(4.2) i00r(1,1)(p) = (D)t p €,

defined for all't = (t1,...,t,) € C" with 37, t;(0r/0z;)(p) = 0 is called the Levi form
of the function r at the point p.

The Levi form associated with €2 is independent of the defining function up to a positive
factor.
For p € 002, let

Tpl’o(bQ>={t:(t1,..., )eC" . Zt (0r/0z;)(p) = 0}.
Then Tpl’o(bQ) is the space of type (1,0) vector fields which are tangent to the boundary

at the point p.
Analogously

TONbQ) = {t = (t1,...,t,) € C" Zt (0r/0%;)(p) = 0},
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smooth sections in Tg’l(bQ) are the tangential Cauchy-Riemann operators, for instance

0zZx 0z, 0%Z; 0z
where j # k.

Definition 4.2. Let Q be a bounded domain in C* with n > 2, and let v be a C* defining
function for Q. Q is called (Levi) pseudoconvez at p € bSY, if the Levi form

i00r(t,t)( Z@zjazkpttk>0

for all t € Tplvo(bQ). The domain ) is said to be strictly pseudoconvex at p, if the Leuvi
form is strictly positive for all such t # 0. Q is called a (Levi) pseudoconver domain if §)
is (Levi) pseudoconvez at every boundary point of ).

A C? real valued function o on € is plurisubharmonic, if

tity > 0,
Z 82]82k b

for allt = (t1,...,t,) € C" and all z € Q.

A bounded domain Q in C* with n > 2 with C? boundary is pseudoconvex if and
only if 2 has a smooth strictly plurisubharmonic exhaustion function ¢, i.e. the sets
{z € Q : ¢p(z) < c} are relatively compact in €2, for every ¢ € R.

Definition 4.3. Let 2 C C™ be a domain.

Loy () i={u=> u;dz; : w; € L*(Q) j=1,...,n}

J=1

is the space of (0,1)- forms with coefficients in L?*, for u,v € L%OJ)(Q) we define the
inner product by

n

(u,0) =Y (u,v5).

J=1

In this way L%o;)(Q) becomes a Hilbert space. (0,1) forms with compactly supported
C> coefficients are dense in L7, | (92).

Definition 4.4. Let f € C3°(Q2) and set

oaf
8

7j=1

of :=

dz;,

then
0:C(Q) — Ly 1y(Q).

0 is a densely defined unbounded operator on L?(Q2). It does not have closed graph.
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Definition 4.5. The domain dom(d) of O consists of all functions f € L*(Q) such that
Of, in the sense of distributions, belongs to L%OJ)( ), ie. Of =g = ijl g;dz;, and for
each ¢ € C3°(Q2) we have

(4.3) Aif(g—i>_ dA:—/QggjadA.

It is clear that C§°(Q2) C dom(d), hence dom(d) is dense in L?(£2). Since differentiation
is a continuous operation in distribution theory we have

Lemma 4.6. 0 : dom(d) — L%O () has closed graph and Kerd is a closed subspace
of L*(Q).

Proof. Let (fi)r be a sequence in dom(d) such that f, — f in L?(Q2) and df;, — g in
L%OJ)(Q). We have to show that Of = g. Let h € C0.1)(£2). Then

j=1

_—klim/ka (%) d/\_klim/zafkh d/\—/Zth d,
—00 Qj:l Zj —00

which means that df = g. _
Now we can apply Lemma 13.8 and get that Kerd is a closed subspace of L?((2). O

Kerd coincides with the Bergman space A%(€2) of all holomorphic functions on € belong-
ing to L*(Q). This is due to the fact that %’k = 0 in the sense of distributions, implies

that f is already a holomorphic function (regularity of the Cauchy-Riemann operator,
see for instance [2]).

More general for ¢ > 1: 8 : L (Q) — L, +1)(Q) with domain as before, is again
a densely defined, closed operator. In this case Kerd is a closed subspace of L(Oq (Q),
which does not mean that all coefficients are holomorphic functions. The (0,1) form

f(z1,22) = ZydZ, + %) dZ, satisfies Of = 0, but has non-holomorphic coefficients.

Proposition 4.7. Let © be a smoothly bounded domain in C", with defining function
r such that |[Vr(2)| = 1 on bQ. We set C*(Q) for the restriction of C*(C") to Q and

DV = Cixyy(Q) N dom(8"). A (0, 1) form w = Y."_ u;dz; with coefficients in C*(f)

7j=1
belongs to DO Lif and only if D" uj =0 on bSQ.

j=1 8z
Proof. For ¢ € C*(Q) C dom(d) we have
- du . — Or = . — 87“
——7¢>: (U, _) / Uw da:(u78¢)_ / U?/J
if ¢ has in addition compact support in €, we have
(07w, ) = (u,0).

Since the compactly supported smooth function are dense in L*(Q2), we must have
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for any ¢ € C>(€2). This implies
= or
SORCEY
= 8zj
on bS). OJ
Now we consider the d-complex

E] 9 E] 9
(4.4) LX(Q) — Ly (Q) — ... — L{,,(Q) — 0,
)

where L?Q o (§2) denotes the space of (0, ¢g)-forms on Q with coefficients in L?(Q). The

0-operator on (0, ¢)-forms is given by

(45) 5 <Z ICZJ ﬁ]) ZZ / andZJ /\dZJ,

J

where Z/ means that the sum is only taken over strictly increasing multi-indices J.
The derivatives are taken in the sense of distributions, and the domain of 0 consists
of those (0, ¢)-forms for which the right hand side belongs to L(o o1y (§2). So 0 is a

densely defined closed operator, and therefore has an adjoint operator from L(0 g +1)(Q)
into L(qu)(Q) denoted by 9.

We consider the 0-complex
] E]
(4.6) L?O,qfl)(Q) P L%o,q)(Q) P L%O,qul)(Q)’
5*
for1<g<n-1.

We remark that a (0, ¢+ 1)-form u = ZJ uy dz; belongs to C5
only if

(47) Zuk}(ﬁ =0

Sgs) (@) Ndom(9") if and

on b} for all K with K| = g. To see this let a € CF Q)

(u,0a) = ZUJdZJ,ZZ 8aK A dZg)

[J|=q+1 =1 |K|=q
o 80./[(

321”;‘1 /UJK aZ]
= —Z Z / 8UJK_Kd)\—|—Z Z / U]KOZK—CZO'

J=1 |K|=q Jj=1 |K|=q
! au]K or

= (Z( Z ) dZx ZaKdZK Z / Zuﬂ( aKda

|K|=q J=1 |K|=q |K|=q

= (ﬁu,a)—/bg(e(l‘},dr)u,a) do,
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where

(4.8) du= > ""'(- > o ) dZx

|K|=¢  Jj=1
and
(4.9) Z / Zuﬂ( aKda——/ 0(0,0r)u, ) do

Ki=g 7P 51 b
hence we have
(4.10) (Yu, o) = (u, da) +/ (00, 0r)u, o) do,
bQ)

where 0(1, dr)u denotes the symbol of ¥ in the Or direction. Note that for u € dom(g*)
we have 8 u = Yu.

Similarly we have for u € Cfg (Q) and o € C° © qul)(ﬁ):
(4.11) (Ou, a) = (u, Vo) +/ (Or A u,a)do,
bQ
where
(4.12) / (Or Nu,a)do = Z Z/ uKa_zk Qe do.

|K|=

Proposition 4.8. The complex Laplacian O = 29 +9° 0 defined on

dom(0) = {u € L%Oﬁq)(ﬂ) cu € dom(D) N dom(d), du € dom(d") and ' u € dom(d)}
acts as an unbounded, densely defined, closed and self-adjoint operator on L?07q)(§2), 1<
q < n, which means that O = O* and dom(0) = dom(0O*).

Proof. dom(O) contains all smooth forms with compact support, hence O is densely
defined. To show that O is closed depends on the fact that both 0 and 9" are closed :
note that

(4.13) (Ou,u) = (8 u+ 8 Ju,u) = [[Gull® + 1|8 ul|?,
for v € dom(O). We have to prove that for every sequence u; € dom(d) such that
up — u in L%qu)(Q) and Ouy converges, we have u € dom(0) and Ouy — Ou. It follows
from (4.13) that

(O — ), up = ue) = [ug — ue)|* + 10" (wp — ue)|?,
v_vhich i_IilplieS that duy converges in Li,, +1)(Q)_and 8"y, converges in L%, 1)(€). Since
dand 8§ are closed operators, we get u € dom(d)Ndom(d") and duy, — du in L(o o1 ()
and 0 u, — 0 u in L(Oq 1 ().
To show that du € dom(d') and 8 u € dom(d), we first notice that 98 uy, and 9 duy,
are orthogonal which follows from

(Eé*uk,g* guk) = (52 g*uk,éuk) =0
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Therefore the convergence of Duy, :_55*1% +39 Oy, implies that both 55_*% and giéuk
converge. Now use again that 9 and 9" are closed operators to obtain that 99 uy — 00 u
and 9 ouy, — 9" Ou. This implies that Ou;, — Ou. Hence O is closed.
In order to show that O is self-adjoint we use Lemma 13.11 from the appendix. Define
R=09 +9 d+1
on dom(0). By Lemma 13.11 both (/488 ) "' and (I+8 9)~* are bounded, self-adjoint
operators. Consider
L=(I+89) ' +(I+9d) ' ~1I
Then L is bounded and self-adjoint. We claim that L = R~!. Since
(I+00) ' —I=I—-(I+09)I+0d) " '=-00 T +dd)7",

==k

we have that the range of (1 +80°)"" is contained in dom(9"). Similarly, we have that
the range of (I + 8 0)~" is contained in dom(d ) and we get
L=(I+009)"-00(I+09)".
Since 9 = 0, we have that the range of L is contained in dom@* 0) and
O OL=08 I+ d)".
Similarly, we have that the range of L is contained in dom(gg*) and
90 L=00(1+00)".
This implies that the range of L is contained in dom(0O). In addition we have
RL=0809 (I+09) '+ 09I +d 9 +L=1I
If Ru =0, we get Ou = —u and 0 < (Qu,u) = —(u,u), which implies that v = 0.
Hence R is injective and we have that L = R™!. By Lemma 13.11 we know that L is

self-adjoint. Apply Lemma 13.10 to get that R is self-adjoint. Therefore O = R — I is
self-adjoint. O

In the sequel we will show that for a smoothly bounded pseudoconvex domain §2 we have
(4.14) 10ull? + 1|18 ul* > ¢ |lull?,

for each u € dom(9)Ndom(d"), ¢ > 0 (see Theorem 7.1 ). Since (Ou,u) = ||0ul|>*+]|0 u||?,
it follows that for a convergent sequence (Ouy,), we get

10U, — Ot | ||t — ]| > (B(tn — Um), Un — Um) > cf|tt, — um||2>

which implies that (u,), is convergent and since O is a closed operator we obtain that
O has closed range. If Ou = 0, we get du = 0 and 9 u = 0 and by (4.14) also that
u =0, hence O is injective. By Lemma 13.10 (ii) the image of O is dense, therefore O is
surjective.

We showed that

O:dom(d) — L%qu)(Q)
is bijective and has a bounded inverse N : L%qu)(Q) — dom(O). (Lemma 13.10 (iv) )
For u € L, () and v € dom(9) N dom(8") we get

(4.15) (u,v) = (ONu,v) = (00" 4+ & 0)Nu,v) = (8 Nu,d v) + (ONu, dv).
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Let j : dom(d) Ndom(d") — L%o, o (§2) denote the embedding, where dom(8) Ndom(d")

is endowed with the graph-norm u +— (||dul|> + ||0 u|?)"/2, the graph-norm stems from
the inner product

Qu,v) = (u,v)q = (Du,v) = (Ju, dv) + (8 u,d v).

The basic estimates (4.14) imply that j is a bounded operator with operator norm

Iil < —

JI = N

By (4.14) it follows in addition that dom(d) N dom(d") endowed with the graph-norm
u — (||0u)|? + |0 u||?)"/? is a Hilbert space.

Since (u,v) = (u, jv), we have that (u,v) = (j*u,v)q. Equation (4.15) suggests that as
an operator to dom(d) Ndom(d), N coincides with j* and as an operator to L%(),q)(Q),
N should be equal to j o j* (compare with Proposition 13.12). For this purpose set
N = joj* and note that N* = (j o j*)* = joj* = N, ie. N is self-adjoint (of
course also bounded). We claim that the range of N is contained in dom(0). To show
this we use an approach due to F. Berger (see [3]): since O is self-adjoint it suffices to
show that Nu € dom(0*) for all u € L(o o (£2), which means to show that the functional

— (Ov, Nu) is bounded on dom(0) :
|(Ov, Nu)| = [((08" + 8 d)v, Nu)| = |(dv,dNu) + (0 v,d Nu)|
- = Qv j"w) = |(Gv, w)l = |(v, W) <[] Jjul]
For v € dom(0) N dom(0 ) we have
(ONu,v) = (NU,U)Q = (Ju,v)g = (u, jv) = (u,v),
hence ONwu = u, in a similar way we obtain for v € dom(O)
(NOu,v) = (Ou, Nv) = (u NU)Q = (u, 7)o = (Ju,v) = (u,v),

which implies that NOu = u. Altogether we obtain that N = N.
Now we get

IONu|* + (10" Null® = (57u, j*u)q < 15711 lull?,
for u € L(o o (§2), which implies that the operators
aN . L%O,q) (Q) — L(O q+1) (Q) and a N L(O q) (Q) — L%O,q—l)(Q)

are both bounded. _ _
Let N, denote the J-Neumann operator on L%()’q)(Q) and v € dom(0d). Then Ju =

%*ENqu and
Ngy10u = Nyy100 ONyu = Npyr (08 + 0 0)IN,u = ON,u,
hence on dom(9) we have
(4.16) Ny410 = ON,.
Similarly on dom(d") we have
(4.17) N, 10 =09 N,.

Since we already know that both operators qu and E*Nq are bounded, we can continue
both operators Nq+15 and Nq_lg* to bounded operators on L%qu)(Q).
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We remark that 9" N, is zero on (ker(9)* : let k € (kerd)* and u € dom(d), then
(8" Nk, u) = (N,k,0u) = (k, N,ou) = (k, ON,_ju) = 0,

since ON,_ju € ker(8), which gives & Nk = 0.
For u € L}, () we use (4.14) for Nyu to obtain

| Ngul® < ONqul*+]10" Nyul[* = (8" 8Nqu, Ngu)+(99" Nyu, Ngw) = (u, Nu) < |lul| | Nyul

which implies

1
(4.18) 1Nl < = lul].
Given «a € L%O’q)(Q), with da = 0 we get
(4.19) a =009 Nya+ 38 ON,ao.

If we apply 0 to the last equality we obtain:

0=0a= %*qua,
since ON,a € dom(8") we have

0= (90 N, ON,o) = (8 IN,r, 0 IN,a) = ||0 N2
Finally we set ug = 9 N,a and derive from (4.19) that for dor = 0
a = Ouy,
and we see that ugL ker 9, since for h € ker 0 we get
(uo, h) = (8" Nya, h) = (N, 8h) = 0.
It follows that
10" Nya||* = (00 Nya, Nya) = (00 Ny, Nya)+(9 ON,a, Nya) = (a, Nya) < |la|| [ Nya|
and using (4.18) we obtain
(4.20) 10" Noar]| < ¢V [l
hence the canonical solution operator .S, for 0 coincides with E*Nq as operator on
L%O’q)(Q) N kerd

and is a bounded operator.
Using (4.16) and (4.17) we now show that

(4.21) Ny = 85,8+ 8441511
First note that by 13.3 we have

9 N, =0 N; =(N,0)" and (9'N,)* = N,0
and

ONy =0 N; = (N )" = (0 Ngy1)" and 9 Nyyy = (ON,)* = N, 0,
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hence it follows that for u € L%o, o () we have

Nyu= Ny (09" + 8 9)N,u
= (ng)@*Nq)u + (ng*)@Nq)u
= (E*Nq)*(g*Nq)u + (E*NQ-I—I)(E*NQ-H)*U

Let P, : L%O q)(Q) — kerd denote the orthogonal projection, which is the Bergman
projection for ¢ = 0. We claim that

P,=1-3 N0,
on dom(9). First we show that the range of the right hand side, which we denote by P,
coincides with kerd : for u € dom(0) we have
Ou — 55*Nq+15u = Ju — ON,y,0u + 5*5Nq+15u =0u—Ou=0,
where we used (4.16) to show that ONy410u = Nyy20 Ou = 0, and since u—3 Ny, 410u = u
for u € kerd, we have shown the first claim. Now we obtain
P'=(I-30N;10)*=1-9 N0 =P,
and
P?u = Pu — 5*Nq+1515u

= Pu— 5*Nq+15u + E*Nqﬂgg*Nquu

= Pu— 5*Nq+15u +0 N (O - 5*5)Nq+15u

= Pu.

This means that P coincides with P, on dom(d).
Finally we remark that P can be extended to a unique bounded operator on L%o, q)(Q),

with coincides with P, : for u € dom(d) we have by (4.16) that & N,4,0u = 8 ON,u and
u=0Nyu= 55*Nqu + 5*5Nqu is an orthogonal decomposition, which follows from

(00 Nyu,d ONyu) = (008 Nyu, ONyu) = 0.
Hence
10" Nyl = 113"Nul| < Jull, u € dom(@),

which proves the claim since dom(0) is dense in L%o, o (82).

Remark 4.9. If one supposes that
O : dom(8) — L, 1)(Q)

is bijective and has a bounded inverse N, the basic estimate (4.14) must hold; this follows
from the spectral theorem, see [14]:

N is self-adjoint and bounded and therefore has a bounded self-adjoint root N'/? which
is again injective. By Lemma 18.10 N'/? has a self-adjoint inverse which will be denoted
by N~Y2. Let w € dom(DO). Then there exists w € L%,1)(Q) such that Nw = u. Hence
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we have NY?v = u, where v = NY?w and N=20 = w = N=V2N~12y is well defined.
Now we get

lull* = [|N20* < Cllo||* = C (N~H2u, N7H2u)
= O( 2Ny ) = C(NTV2NTY2Nw, Nw)
C(w, Nw) = C (Ou, u)
C ([|0ul® + 110" ul®),
which is the basic estimate (4 14).

The two boundary conditions v € dom(d") and du € dom(d") which appear in the
definition of dom(O) are called the d-Neumann boundary conditions. They amount
to a Dirichlet boundary condition on the normal component of v and to the normal
component of Ju respectively, see [46] for more details.

Example. Let 2 be a smoothly bounded domain in C" with 0 € bS). Assume that for
some neighborhood U of 0

QNU={z€C" : Sz, =y, <0} NU.

Let u = Z?Zl u; dz; € C(Qoyl)(ﬁ) and suppose that the support of u lies in U N Q. Then
u € dom(O) if and only if

(4.22) u, = 0 ondQ2NU,
(4.23) % — 0 onbQNU, j=1,....n—1.
Zn

(4.22) follows from (4.7), which means that u € dom(d"), and du € dom(d") is equivalent

to
ou;  Ouy,
—_— = b<2 =1,. —1
7. 07 =0 onbQ2NU, j= ,
again by (4.7). Since ‘9“’; =0on bQNU, j= ,n— 1, we get (4.23).

It is the second boundary condition which makes the system non-coercive.

We continue investigating the boundary conditions:

Proposition 4.10. Let Q be a smoothly bounded domain in C", with defining function
r such that |Vr(z)| =1 on bS2. Then, if u € Do’l, we have

8uj
/ Z 8z]<92k u; uy, do.

(4.24) 19ul® +|10"ul* =

Proof. For u € D% we have

a3 aUk 8uj
Ou=">" ((%j azk) dz; A dz,

j<k

O u=— ZZZ

and
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For the norms we get

) due _ 0y’ ou|® <~ [Ouw, Ouy
||(9U‘|2: — - = — 1| — —, ),
j; @zj 8Zk aZj ];1 8Zj 8Zk
and
2 __ ] g
Il = || 282 zazk .
7j=1 j=1 J
Note that the commutator [ai 5] = 0 and integrate by parts
N Z a0 ) T - a3 o= Uy do
aZj azk azk az] b aZk aZ]
= Z J auk -] — ﬁ % U do
a 1 6Zj azk bQ 0z, OE] J
- duy, Ju, or 3uk or auk
jk_l{ (8zk 7 8Zj) " 29} azg aZk 1o = @zk (‘923 U U}

— “ or Ouy _ or Ouy _
_ 2
= —|0 ul|* + é:l/ 0% O ujdo — g / O 0%, u;do.

Since u € D!, which means that >
is 0.
Also since u € D™, the vector field X := > uy % is tangent to bQ). Thus , if ¢ is any

function vanishing on b€, then X(g) = 0 on bS2. The function go = >7_, g; u; = 0 on
b<). Hence we get

= 0 [~= Or = 9?r = or 0u,
0) = Up 75— = Ui | = Up o= Uj + up —— =— = 0.
; 0z, (jl 0%; j) kzl 0Z;0z, J j;l 0zZ; Oz
Taking complex conjugates we see that
or 8uk _
Z 8zk 82 Z 8zjazk g

and since the right side is real this imphes that

= 3u _
||(9u||2 _ Z Ulg H& ||2 / Z 82’ 8_ u; uy, do.
j

7,k=1

i1 a = u; = 0 on b82, the second term of the last line

OJ

Corollary 4.11. Let Q) be a smoothly bounded pseudoconver domain in C", with defining
function r such that |Vr(z)] =1 on bQ. Then, if u € D", we have

n

(4.25) 19ul® + 110%ul* = Y
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Proof. By Definition 4.2 the Levi form
" 9%

= 02;0Z,

(p) u;(p)ug(p) > 0,

J
for all p € bQ) and for all u € D%!. Hence the result follows immediately from 4.10. [

The following density result is crucial for the whole analysis.

Proposition 4.12. IfbQ is C**, then Cf; ()N dom(8") is dense in dom(8) N dom(D")

in the graph norm u — (||u)|? + ||0u||® + ||& u|?)"/2. The statement also holds with k + 1
and k replaced by c.

Before we begin with the proof of this important approximation result we mention a few
consequences of it.

Remark 4.13. (a) From Proposition 4.12 it follows that D% is dense in dom(d) N
dom(('_fl in the graph norm u > (||lul* + |Oul|? + ||5_*u||2)1/2._]f (4.14) holds, we can take
w— (||0ul|2 + |0 u||)V/2 instead of u — (||ul|® + ||Oul|? + |0 ul[>)'/2.

(b) 1t is also useful to know that dom(8") is preserved under multiplication by a function
in CY(Q) : let u € dom(d'), v € dom(d) and ¥ € C*(Q). Then

(Ov,Yu) = (Y ov,u) = (O(v),u) — (0P Av,u) = (Ev,g*u) —(0¢ Av,u).
The right-hand side is bounded by ||v|), hence Yu € dom(8"), (see [46] for more details).
(¢) Compactly supported forms are not dense in dom(d) N dom(8") in the graph norm:

for compactly supported forms Proposition 4.10 gives

n

|9ul® +110"ul* = )

jk=1

2
8Uj

0%k,

Y

and integration by parts also shows that in this case
8Uj 2 . ' 8uj 2

8zk

0z,

Hence

lull} < 2(19ul® + [18"u]?),
where ||ul|? denotes the standard Sobolev-1 norm of u on Q. Therefore the closure of the
compactly supported forms in dom(d) N dom(8") in the graph norm is contained in the

Sobolev space W3 (2) for forms that are C* on Q, this means that they are zero on the
boundary, which is stronger than the condition

on bS) from Proposition 4.7.

(d) If Q is a smoothly bounded pseudoconvex domain, then dom(9) N dom(d") is a Hilbert
space in the graph norm u — (||Oul|® + |0 u||?)/2. This follows from (4.14).

We follow the reasoning in [9] to prove Proposition 4.12.

45



Lemma 4.14. Let Q be as in Proposition 4.12. Then C§ (Q) is dense in dom(d) N
dom(8") in the graph norm u— (||lul|> + ||0u]|? + || u|[?)/2.

— =%

Proof. By this we mean that if v € dom(d) N dom(0d ), one can construct a sequence
U, € Cf&q)(ﬁ) such that wu,, — u , Ou,, — 0f and Yu,, — Ju in L*(Q).

We use a method closely related to Friedrichs’ Lemma 16.3 and use the notation from
there.

Let (xc)e be an approximation of the identity and (d,), a sequence of small positive
numbers with §,, — 0, and define

Qs, ={2€Q :7r(z) <=4}
Then €5, is a sequence of relatively compact open subsets of €2 with union equal to €.

The forms u, = u * y. belong to C(O‘dq) (Qs,) and v, — u , Ou. — Ou and Yu, — Yu in

L*(Qs,), see Lemma 16.2 and Lemma 16.3.
To see that this can be done up to the boundary, we first assume that the domain €2 is
star-shaped and 0 € 2 is a center. Let Q¢ = {(1+¢€)z : z € Q} and

ue(z):u(lie),

where the dilation is performed for each coefficient of u. Then Q@ CC Q° and u® € L*(2).
Also, by the dominated convergence theorem, u¢ — u , Ju® — Ou and Yu® — Ju in
L?(2). Now we regularize u¢ defining

(4.26) Uge) = U * X,

where . — 0 as € — 0 and ¢, is chosen sufficiently small. Then u) € CE’& 9 (Q) and

U@y = u, Oui — du and Juiy — YJu in L*(Q). Thus, Coo (Q) is dense in the graph

norm when (2 is star-shaped. The general case follows by using a partition of unity since
we assume that our domain has at least C? boundary. 0J

Lemma 4.15. Let € be as in Proposition 4.12. Then compactly supported smooth forms
are dense in dom(D) in the graph norm u — (|Ju|? + (|8 ul|?)"/2.

Proof. We remark that if « € dom(8") and if we extend u to @ on the whole space C”
by setting @ to be zero outside of 2, then ¥u € L*(C") in the distribution sense: in fact
for u € dom(d") we have

91 = Ju
where Ju = Yu in  and Ju = 0 outside of Q. This can be checked from the definition
of &', since for any v € Cioq—1)(C"),

(ﬂ,gv)[g(cn) = (u,gv)Lz(Q) = (19U,U)L2(Q) = (’I%,U)L?(Cn).

We assume again without loss of generality that €2 is star-shaped with 0 as a center. We

first approximate u by
() = —
uw (z) =1 .
1—e¢

Now we have forms ¢ with compact support in € and 9a~¢ — 94 in L?*(C"). Regular-
izing u~¢ as before, we define

(4.27) U o = T % X,
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Then the u(_ are (0,q)-forms with coefficients in Cg°(2) such that u_o — u and
Yu(—e) — Yu in L*(). O

However, compactly supported smooth forms are not dense in dom(0) in the graph norm
u > (||lul|® + [|0ul|?)/2. Nevertheless, we have

Lemma 4.16. Let Q be as in Proposition 4.12. Then C(’“07q) (Q) N dom(") is dense in
dom(9) in the graph norm u — (|jul|* + ||Ou||?)*/2.

Proof. By Lemma 4.14 it suffices to show that for any u € C&iq)(ﬁ) one can find a
sequence u,, € C(’“()’ " (©) N'dom(8") such that w, — u and du,, — du in L*(Q).

Let r be a Ck! defining function such that |dr| = 1 on ). We now introduce some
special vector fields and (1,0)-forms associated with b€2. Near a point p € b2 we choose
fields Ly, Ly, . . ., L1 of type (1,0) that are orthonormal and span T, °(b$2). This can be
done by choosing a basis, and then using the Gram-Schmidt process. To this collection
add L,, the complex normal, normalized to have length 1. So L,, is a smooth multiple of

" or 0
= 82] 82]‘ '
Now denote by wy,ws,...wy the (1,0)—f0rms such that w;(Ly) = 0ji. L, is defined
globally, in contrast to Lq,..., L, 1. The w’ ’s then form an orthonormal basis for the
(1,0)-forms near p. The (1, 0)-form w, is a smooth multiple of > 7, 9 dz;, and is again

] J

globally defined. Taking wedge products of the w?’s yields (local) orthonormal bases for
the (1,0)-forms.
We will regularize near a boundary point p € 02. Let U be a small neighborhood of p. By a
partition of unity, we may assume that Q2NU is star-shaped and wu is supported in U NSQ.
Shrinking U if necessary, we can choose a special boundary chart (¢1,ts,...,t2,-1,7),
where (t1,ta,...,t9,-1,0) are coordinates on b§2 near p. Let wy, ..., w, be an orthonormal
basis for the (0, 1)-forms on U such that Or = w,.

Let L; =>"_, ajsaizs , wi =y o bjsdzs, 1 < j<n.Then

n n 8 n
O = wi(Ly) = bis dzg App — ) = bisps.
ik = wj(La) ;] (; Mazg) ;J K

Consequently, if f is a function,

_ "9 L =
(4.28) of =) a%f Az, = Y o (Lif)bIw; =Y (L f) W,
s=1 s g k,s=1 j=1

where the superscripts denote the entries of the inverses of the corresponding matrices
with subscripts. Since multiplication by functions in C'(€) preserves dom(d ), we may
assume that the form v is supported in a special boundary chart. So u = Z| J|:q’ usWwy,

where W; =w;, A -+ AW;, and each u; is a function in C*(Q). Then, in view of (4.28)

(4.29) ou = 00> ugwy) =Y (Ouy AW+ u,00,)
|J|=q |J|=q
(430) = ZIZ(I]"LLJ)@]' /\@J + ZIUJEEJ.
|J|=q J=1 [J1=q
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Using the special boundary chart we get from (4.7) that
(4.31) u € dom(8") <= uy; = 0 on bQ when n € J.

Indeed, the only boundary terms that arise when proving (4.7) come from integrating

/ fnaK ﬂn}( d\
Q
by parts and they equal

/ (677 ﬂnK(fnr) do.
b2

Since ax can be arbitrary on bQ and L, # 0 on b§2, we conclude that u,x = 0 on bS2 for
all K. To see that the condition is sufficient, note that the computation to prove (4.10)

shows that (u,0a) = (Yu,a) when (4.7) holds and o € Cog(8). In view of Lemma
4.14_ Cyy)(Q) is dense in dom(é)_in the graph norm u g|u\|2 —l—ﬂ5u||2)1/2. Hence,
(u, 0a) = (Yu, @) for all o € dom(d), which implies u € dom(8") and 9 u = Vu.

These arguments also give a formula for ¥ and 9" in special boundary frames:

(4.32) Yu = Y( Z 'ugwy) = — Z ! (zn: Ljujk) Wk + 0-th order(u).

0-th order(u) indicates terms that contain no derivatives of the u;’s.

We note that both 0 and ¥ are first order differential operators with variable coefficients
in C*(Q) when computed in the special frame wy, ..., w,. We write

u=u" +u",

u’ = Z/UJWJ,UV: Z/UJEJ.
|J|=qn¢J |J|=g,ne]
u” is the complex tangential part of u, and u” is the complex normal part of .
Our arguments from above imply that

u € Cé“qu)(ﬁ) Ndom(d) <= u’ =0 on bQ.

For u € C (Q) and a € CE’&QH)(Q) we have by (4.11)

where

(Ou, @) = (u,da) +/ (Or Au,a)do

bQ
and Or A u = Or A u” on b2, which follows from the representation in special boundary
charts:
(4.33) Or ANu” = cw, N Z'UJEJ:O
|J|=g¢,neJ
In order to approximate a form u € Cf (Q) by forms in Cé“o 2 (Q) Ndom(d") we only
change the complex normal part u” and leave the complex tangential part «” unchanged:

foru € CF (Q) it follows that u” € Cé“& 2 (Q)Ndom(d") and we denote by @ the extension

of u” to C™ by setting u” equal to zero outside of 2. We approximate @” as in Lemma
4.15 by

ul(jftf) - (’&/y)_e * X(se‘
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Then U(_g Is smooth and supported in a compact subset of Q2NU. By this, we approximate

u’ by v’y € C(QNU) in the L?-norm. Furthermore, by extending du” to be zero

(=)

outside Q N U and denoting the extension by du?, we have

0" = du”
in L?(C") in the sense of distributions. This follows from (4.11) and (4.33), since u” €
Ck (ﬁ) and for a € Cfj ;) (C") we have

(0,g+1)

(a”,Ya) 2 cny = (Ou”, a)r2Q) — / (Or A", a) do = (Ou”, a)r2(cr)-
b2

Since 0 is a first order differential operator with variable coefficients, we get from
Friedrichs’ Lemma 16.4
(4.34) ouf_,y — du” in L*(C").
We set
U—e) = U +u(_y.

It follows that u(_.) € C; (0,9 (€2 Q) Ndom(d"), since each coefficient of u", u(_y and wj is in
CH(QNU). Therefore we get u(_e) € C (Q) N dom(d") and u—e — u in L*(Q).
To see that Ou(_ — Ou in the LZ(Q) norm, using (4.34), we find that

Ouy E)—au +8u —>8u
in L2(Q2) as € — 0. O

To finish the proof of Proposition 4.12 we consider an arbitrary u € dom(d) N dom(8")
and use a partition of unity and the same notation as before to regularize u in each small
star-shaped neighborhood near the boundary. We regularize the complex tangential and
normal part separately by setting

U((e)) = Uy T U(—q)

this means that we first consider w() as it was defined in (4.26) and take then the
tangential components Ul then we consider u(_ as it is defined in (4.27) and then
take the normal components U_gy- It follows that for sufficiently small € > 0, u_ has
coefficients in C§°(£2) and u,, has coefficients in C=(Q).

Thus we see that u()) € C: © q)(Q) N dom(d"). We get from Lemma 4.14 that Uy — © in
the graph norm u (HuHQ—i- |0u)|2 4 1|0 u||?)/2, hence uf,y — u” in the graph norm u
(||| Oul|> 4]0 u||?)/?. From Lemma 4.15 we obtain u(_. — u in the graph norm u
(||u]|? 4]0 u|[?)*/2, hence u{_y — u” in the graph norm u — (|jul® + 10" u||?)"/2. Finally,
we use Lemma 4.16, in particular formula (4.34), and see that gu’(’_e) — 0¥ in L*(C"),
hence u(()) — u in the graph norm u > (||ul|® + [|ul|® + |0 ul|?)"/2.

This shows that C(’“Q " (©) N'dom(d") is dense in dom(d) N dom(9") in the graph norm
we ([full? + [19ul® + 187u)*) 2.
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5. THE WEIGHTED 0-COMPLEX

Let ¢ : C* — R* be a plurisubharmonic C?-weight function and define the space
L*(C"e?)={f:C"—C : |fIPe?d\ < oo},
(Cn

where A\ denotes the Lebesgue measure, the space L%OJ)((C",e*SD) of (0,1)-forms with
coefficients in L?(C", e~%) and the space L?OQ)((C”, e~%) of (0,2)-forms with coefficients
in L?(C",e7%). Let

(f.9)e= | fge72ax

denote the inner product and

112 = / FPee da

the norm in L*(C",e~%).
We consider the weighted d-complex

n - 5 n — 5 n —
(5.1) L*(C" e%) :>L%071)((C , € ‘p)JjL%og)(C e %),

a%k
%

where 5; is the adjoint operator to 0 with respect to the weighted inner product. For
u=7>"  udz; € dom(gz,) one has

=% - (9 aQD
5.2 o,u=— — — — | u,.
52 ? Z (32’]' azj) ’
7j=1
The complex Laplacian on (0, 1)-forms is defined as

Uy =09, + 0,0,

where the symbol [, is to be understood as the maximal closure of the operator initially
defined on forms with coefficients in C§°, i.e., the space of smooth functions with compact
support.
U, is a selfadjoint and positive operator, which means that

(Oof. f)p =0, for f € dom(T,).
The associated Dirichlet form is denoted by

(5.3) Qu(f,9) = (0f.09)p + (0,f,0,9)p,

for f,g € dom(9) N dom(E:,). The weighted 9-Neumann operator N, is - if it exists - the
bounded inverse of O,. For further details see [22].

There is an interesting connection between 9 and the theory of Schrédinger operators
with magnetic fields, see for example [10], [4], [19] and [11] for recent contributions
exploiting this point of view. B

In the weighted space L%OJ)(C”, e~¥) we can give a simple characterization of dom (8;)

(see [20]):
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Proposition 5.1. Let f =) f;dz; € L%O,l)(C”,e_“’). Then f € dom(0 ) if and only if
(5.4) e’ i 9 (fie %) € L*(C", e ¥)
j:1 azj ] 9 9

where the derivative is to be taken in the sense of distributions.

Proof. Suppose first that e? > 7, az (f;e=?) € L*(C", e~#). We have to show that there

exists a constant C such that |(3g, f),| < C|lgll, for all g € dom(d). To this end let
(Xr)Rren be a family of radially symmetric smooth cutoff funtions, which are identically
one on Bg, the ball with radius R, such that the support of xg is contained in Bg,1,
supp(xr) C Bgry1, and such that furthermore all first order derivatives of all functions
in this family are uniformly bounded by a constant M. Then for all g € C5°(C"):

— 99
(897XRf)¢_j;(a—.7XR /nzga_ XRf e S0) )

by integration by parts, which in particular means

(@9, el = Jim_[(Dg, xrf)e| = Jim Zga_ xrfie ) dA|.

Now we use the triangle inequality, afterwards Cauchy — Schwarz, to get

n

/nz 52 (xnfe™?)

s/ngza_ Foe?) | + /Zf OXE 5 g
<lxr gl e%”Z ()| + Mgl ISl
%)
@ 0 -
“lsll, e 32 (5e72) | + Mgl I
j=1 """

®

Hence by assumption,

+ MllgllolA 1l < Cliglle

©p

ez fje“"

(9. f)el < llgll,

for all g € Cg°(C™), and by density of C5°(C") this is true for all g € dom(d).
Conversely, let f € dom(c‘?;), which means that there exists a uniquely determined
element 5; f € L*(C™, e%) such that for each g € dom(9) we have

(9. f)o = (9,0,1)s-
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Now take g € C3°(C"). Then g € dom(9) and
(gag;f)tp :<5.g7 f)%O

Ny
_;(azjafj)@

n a -
_(9725026 @))L2
"0
=—(g,€” Z oz (fie™))e

Since C5°(C™) is dense in L*(C", e~¥), we conclude that

0. f = —eg"zg (fje’“”) ,
=1 9%

which in particular implies that e? " - (f;e7%?) € L*(C™,e¥). O

7=1 8
The following lemma will be important for our considerations.

Lemma 5.2. Forms with coefficients in C3°(C") are dense in dom(d) N dom@;) in the

_ s i

graph norm f = (|[£112 + 110f115 + 10,£11%)>-

Proof. First we show that compactly supported L?-forms are dense in the graph norm.
So let {xr}ren be a family of smooth radially symmetric cutoffs identically one on Br
and supported in Bg. 1, such that all first order derivatives of the functions in this family
are uniformly bounded in R by a constant M.

Let f € dom(9) N dom(8 ). Then, clearly, xgf € dom(9) N dom@;) and xgf — f in
L?OJ)(C”, e %) as R — oo. As observed in Proposition 5.1, we have

_ "9 B
0pf == —— (™),
— O0Zj
7j=1
hence
—x "0 _
Oy (xrf) =—€") 9z (xrfie™#).
j=1
We need to estimate the difference of these expressions

B, -3, (xnf) = 0of xRaf+ZaXR

which is by the triangle inequality

13,7~ Ten e <IT-F — xaDof o + MZ [ 1nperan
C’IL\BR
Now both terms tend to 0 as R — oo, and one can see similarly that also 5()(3]”) — Of
as R — oo.

So we have density of compactly supported forms in the graph norm, and density of forms
with coefficients in C§°(C") will follow by applying Friedrichs’ lemma, see 16.4. O

52



As in the case of bounded domains, the canonical solution operator to 9, which we denote
by Sy, is given by 8;]\]@. Existence and compactness of N, and S, are closely related.

Remark 5.3. In order to prove a basic estimate for the weighted 0-complex we now
assume that the lowest eigenvalue p, of the Levi matrix

0%
M. —
v (8zj8§k>jk
satisfies

(5.3) py(2) > €, for allz € C",

for some e > 0.
Using methods from real analysis, one can replace (6.5) by the the weaker assumption
that

(5.3) lim inf p,(2) > 0.

|z]—o0

For this purpose we follow the reasoning in [26]. First we notice that

—p/2 2 0,1
e~/ D(pew :AED ).

where Ag)’l) is the Witten-Laplcian. Condition (5.3°) implies that Afpo’l) is injective and
that the bottom of the essential spectrum ae(Apr’l)) is positive (Persson’s Theorem). By
the spectral theorem for unbounded self-adjoint operators, one derives that Ag)’l) has a

bounded inverse, hence O, has a bounded inverse N, and so the square root Nj,/Q 18 also
bounded, which gives the basic estimate for the weighted O-complex .

Proposition 5.4.
For a plurisubharmonic weight function ¢ satisfying (?77), there is a C > 0 such that

2 N2 B2
(5.5) [ull; < CUIOully + 10,ull,)
for each (0,1)-form u €dom (0) N dom@;).
Proof. By Lemma 5.2 and the assumption on ¢ it suffices to show that

- 8290 —p 2
(5.6) 82 A uitiy e ? dX\ < || 0ull? + (|0 ull2,
- j

for each (0, 1)-form u = Zkzl uy, dZy, with coefficients uy € C°(C"), for k=1,...,n
For this purpose we set 8, = 22 — 22 and get since

0z 0z
= 8u]~ Juy, _
i<k
that
0
Dl + (9, ul2 = / Z 81‘; ﬂ —wdAJr/ Zéu] g e dA
7,k=1
- auj o / - 8u]8_uk _
= ] d ) 2k ?d
J;l/ . |07 A+];1 (5 w0k = ez, ) ¢
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u ou _ _
:Z/n 8_22 ‘pd)\—f—Z/ |: —:|ujuk6 <pd)\’
Jk=1 j,k=1

where we used the fact that for f, g € C5°(C") we have

0
(8_21;79)@ - _(fa 5169)90

and hence 5 S
u; Ou
({5]', a—zkj| uj,uk) = — (8—22, a—;) + (5juj,5kuk)¢,.
¢ I/ e
Since
5 0 _ D?*p
7 8§k 8zj82k’
we have
n 2 n
G.7) Ol + Pl = Z/ Ou; wdA+Z/ &% e
v v Sk Ccn 8§k ) naZjaEk J

and since ¢ satisfies (??) we are done (see also [30]). O

At this stage we first generalize formula (5.7) for (0, ¢)-forms u = ZI J|=q Wy dZ; With
coefficients in C§°(C™). We notice that

Ou = Z Z%dzj/\dzj,

|J|=q Jj=1

EZU = — ZI ZékukK de.

|K|=¢—1 k=1

and

We obtain

| =% - 8uJ8uM _
|Oull? +1105ul = D" Y et [ e P dA

0z; 0z
[J|=IM|=q jk=1 Cn Pmg Tk

+ Z Z/ 5u]K5kukKe L‘Dd)\

|K|=q—1j,k=1

where eJJ =0ifj e Jork e Morif kUM # jUJ, and equals the sign of the
permutation (kjj\f ) otherwise. The right-hand side of the last formula can be rewritten as

Oui 0
ORI ol L1 NS o0bS /. (5 e — % gj) —

[J|=¢ Jj=1 Y |K|=q—1 j,k=1

8UJ

see [46] Proposition 2.4. Consider first the (nonzero) terms where j = k (and hence
M = J). These terms result in the portion of the first sum in (5.8) where j ¢ J. On
the other hand, when j # k, then j € M and k € J, and deletion of j from M and k
from J results in the strictly increasing multi-index K of length ¢ — 1. Consequently,
these terms can be collected into the second sum in (5.8) ( the part with the minus sign,
we have interchanged the summation indices j and k). In this sum, the terms where
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j = k compensate for the terms in the first sum where j € J. Now one can use the same
reasoning as in the last proof to get

(5.9) |9ull’ + [Tul2 =S Z

|[J]=q¢ Jj=1

(9uJ

Z Z - 82 aZk u]KukKe PdN.

® |K|=¢—1 j,k=1

Proposition 5.5. For a plurisubharmonic weight function p satisfying (??), there exists
a uniquely determined bounded linear operator

N : L20 1)((cna 6_¢) — L%O 1)<(Cn7 e_cp)7

such that O, o Nyu = u, for any u € L(o (€ ). Ifue L? 0.1)(C", ) satisfies Ou =0,

then G@N@u is the canonical solution of Of = w, which means that E:JN@ULAQ((C”, ©),
where

A2(C" e ?) ={f :C" — Centire : f € L(o1 (C" e )},

Proof. First we mention that [, is a self-adjoint operator, which is proved in a similar
way as in the case without weight in Chapter 4. B B
For a given v € L?O 1H(C", ) consider the linear functional L on dom (9)N dom (8;)

given by L(u) = (u,v),. Notice that dom (9)N dom (5;) is a Hilbert space with the
inner product @),,. Since we have by Proposition 5.4

|L(w)] = |(w,0)] < ully 0], < CQu(u, ) [[v]],.

Hence by the Riesz representation theorem there exists a uniquely determined (0, 1)-form
N,v € dom(9) N dom(@i,) such that

(u,v), = Qu(u, Nyv) = (du, N v), + (5;15,5;]\7@1))@,
and we claim that Nyv € dom(0J,) = dom([J}), for which we have to show that w
(O,w, Nyv), is bounded on dom(O,,) :
(Opw, Nyv)y| = [(Ow, IN,v), + (D,w, 0,Npv),|
= [Qu(w, Nov)| = [(w, v)o| < [lwlllvlle,
now we get
(u,v)y = Qu(u, Nyv) = (u, O, Nyv),,
hence O,N,v = v, for any v € L?O,I)(C", ¢). If we set u = N, v we get again from 5.4
HEN@UHi + HggpN‘PvHi = Qu(Nypv, Nov) = (Nyv,v)y < ||[Npv|ly [Jv]]4

< Ci[|lON0 |13, + 19, N0[12) 2 o]l
hence
(IONoIIZ + [0, Npol2)? < oo,
and finally again by 5.4
INgvllp < Ca([ONol2 + [, Np0lI2)!? < Culfoll,,

where C1,Cy,Cs,Cy > 0 are constants. Hence we get that N, is a continuous linear
operator from L%O (€™ ) into itself (see also [30] or [9]). The rest is clear from the

remarks made for the unweighted 0- Neumann operator. OJ
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In this case one can also show that N, = j, o j7, where
o : dom (9) Ndom (5;) — L?OJ)((C”, e %)

is the embedding and dom (9) N dom (8 ) is endowed with the graph norm

ws (9ull2 + [Dul2) 7.
Remark 5.6. (a) If condition (??) is satisfied, we can replace the graph norm

wr (full? + [19ul2 + [9,u2)?
by
012 1 (1B 12 )1/2
wes ([[9ul]? + 18gull2)' 2.

(b) If O, has a bounded inverse Ny, then the basic estimate (5.5) holds for u € dom (9) N
dom (5;) This follows from the spectral theorem (see for instance [48]): N, is a positive,

self-adjoint operator which has a uniquely determined bounded root N;/Q, this implies:
1/2, 112 2
[Nl < Clloll,

for all v € L2O 1)(((:" e %). Now let v € domO,. It follows that u € dole/2 nd
v =0y Y2 e dom[l , see [14] and we obtain

ING20ll? = llull} < € (OF*u, 0Y%u), = C (Opu,u), = C([10u]l} + 10,ul2),
for all uw € dom O, and by Lemma 5.2 also for u € dom () N dom (5;)

Proposition 5.7. Let 1 < q < n and suppose that the sum s, of any q (equivalently:
the smallest q) eigenvalues of M, satisfies

(5.10) liminf s,(z) > 0.

|z]—o0

Then there exists a uniquely determined bounded linear operator

Noq t Lio g (C",e7%) — Ly ) (C",e7%),

such that O, 0 Ny u = u, for any u € L? )(Ce7#).

(0,9)

Proof. Let pyq < pipo < -+ < iy, denote the eigenvalues of M, and suppose that M,
is diagonalized. Then, in a suitable basis,

n
2 Z azJaZk Wikt = )" Y Hesluinl’

|K|=q—1j,k=1 |K|=q—1 j=1
= D et gl
J:(jl’“qu)
2 5q|“|2
The last equality results as follows: for J = (ji,...,J,) fixed, |u;|* occurs precisely g

times in the second sum, once as |uj, k, |?, once as |uj,r,|?, ete. At each occurence, it is
multiplied by i, j,. For the rest of the proof proceed as in the proof of Proposition 5.5.
0
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Remark 5.8. For the 0-Neumann operator N, q on (0, q)-forms one obtains in a similar
way that Ny g = jpq 0 Jo . where

Jeq : dom (3) N dom (9,,) — Ly, (C",e7%).
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6. THE TWISTED O-COMPLEX

We will consider the twisted d-complex
T S
(6.1) LX) — L%O,l)(Q) — L%0,2)<Q)

for operators T = d o /7 and S = /7 0 9, where 7 € C?(Q2) and 7 > 0 on . For further
details see [40] or [46].
First we prove a general result about operators like T" and S.

Proposition 6.1. Let Hy, Hy, H3 be Hilbert spaces andT : Hi — Hy and S : Hy — Hj
densely defined linear operators, such that S(T(f)) = 0, for each f € dom(T), and let
P : Hy — Hy be a positive invertible operator such that

(6.2) [Pully < 1Tull} + | Sulls,
for all w € dom(S) N dom(T*), where
dom(T*) ={u € Hy : |(u,Tf)s| < C|fl1, for all f € dom(T)}.
Suppose (6.2) holds and let o« € Hs, such that Sa = 0. Then there exists o € Hy, such
that (i) T(0) = a and (i) ||o||? < ||P~ a3
Proof. Since P is positive, it follows that P = P*. Now let a € H, be such that Sa = 0.
We consider the linear functional 7*u +— (u, )y for u € dom(7*) : if u € KerS, then
_ _ . 12 | o
(0, )el = [(Pu, P a)s] < [ Pullo | P7als < (IT°ull + 1Sul) Y [P0l
= [[T"ully [P~ a2,
if ulsKerS, then (u, )y = 0. It also holds that T*w = 0 for all w_lsKerS, this follows
from the assumption that Tf € KerS, so 0 = (w,Tf)2 < C|f]|1, which means that
w € dom(7™) and T*w = 0, since (T*w, )1 = (w,Tf)2 = 0 for all f € dom(7T). If
T*u = 0, it follows from the above estimate that (u,a)s = 0.
We apply the Hahn-Banach theorem, where we keep the constant for the estimate of the
functional and the Riesz representation theorem to get o € Hy, such that (T*u,o); =
(u, )2, which implies that (u,To)s = (u,«)s. Hence To = « and, again by the above

estimate o]y < ||[P~all.

O

Let €2 be a smoothly bounded pseudoconvex domain in C", with defining function r such

that |[Vr(z)| = 1 on bQ. Let 7 € C*(Q) and 7 > 0 on Q. For f € C>®(Q) we define
— "0 _
(6.3) Tf=(@ovr)f = ; 5. (VT 3

and for u = Y7 u;dz; with coefficients u; in C>=(Q), we will write u € A%1(Q), we

define
Oour,  Ou;
(6.4) Su=Y» 71 (T — TJ) dz; \ dzy.
; 0z; 0z !
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We call 7 a twist factor. But we also introduce a weight factor ¢ : for f € C*(Q2) and
u € D% (see Proposition 4.7 ),

(Tf.u)p = (OWT]),u)e = OWTF) e Pu) = (VT8 (e 7u)) = (f, VT e2(D (¢77u))),s

which implies that

T*u = \/ngu,
where (see Proposition 5.1 )
Ou=— ” e“”i e “Dw = Z&u@
v 8;:@

(=1

In the sequel we will use the following equations: let f g €C>®(Q)

(A) Gt )=~ 5000+ [ £3 8—% e do
(B) (aif ') = —(f,019) / fga—zke_@da
0
(C) [587 8_ ]f 8zk8z£
(D) 5i(F 9) = [(6g) + 2L
\J g ¢g 92, g
We introduce the notations
— 0y -
(65> Zaag(é’&)(p) T et 8§k32g (p)£k§£
and
(6.6) (0g,€)(p) == a—Zk(p) &k
k=1
for g € C*(£2) and £ € C™.
If u € D%, then we set
0
(6.7) Il = 3 V7 521
7,k=1

Now we prove the a priori basic estimates

Theorem 6.2. Let €2 be a smoothly bounded pseudoconvex domain in C", with defining
function r such that |Vr(z)| = 1 on bQ. Let 7,0, A € C*(Q) and 7,A > 0 on Q and let
u € DY, Then

(6.8)

||\/T+A5;u||i,+||\/?5u||2 > ||\/?u||iyz+/@(u,u)e_¢d)\+/ 71007 (u, u) e~ do,
Q b
where

(o7, )P

(6.9) O(u, u) = Ti00p(u, u) — i00T (u,u) — I
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Proof. Like in the untwisted case we get

N ZIIW<%—%)|I2 an@“’“n? ZM@“‘“I%

j<k Jz; 0z 0z’ Oz
and n
||\/F5;u||i = Z(\/F(Skuk,\/;fsjuj)w
k=1
hence
VPR + VTl = IvFul+ D { S sy, - (52, 2.,

7,k=1

using (A) and (B) and integrating by parts

~ W+ 3 { S )+ e G5 ) | 4T3+

J

7,k=1
where
u or
Tl = Z 8 ((SkU/k) Uj; € ¥ dU,
7,k=1 %
and
“ or 0
Ty =— a 7’@ w; e ?do.
Prplys 0z, 0%

Next we obtain by (C) and (D)
VT dull? + VT O ull?

= [IVrull? +Z T5k 8zk 5z, u)p— Y (7 8—%(51@%)%-8?51@%, uj)p+T1+T5
7,k=1 ]k 1
= [[Vrull?; Z [0 5] s 1) o + Z O7 Our _ 0T 5 o, )o + Ty + Ty
= "0z ) 0z 823 8z] T
— Wl + [ 7o) e dr- S G O )t 3 (2% 0Ty oy v
= ©,Z 0 P u, ' kUk, (9,2] azj ) a L 1 2
(4n S ~ PR k=1 (43)
(A2)
- or
= (A1) + (A2) + §kuk, ~Uj)e + (g, 5j<3_5k uj))e ¢ + 13
J,k=1
where

or
= — —u e ¥do.
/,)Qazj Yoz,

Now we get

Iv/7 Oull?, + V7 9, ull?
- 0t
= (A1) + (A2) + (A3) + T3 — {Z(ékuk, - 115), + Z g, T * om0z, i) }
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= (A1) + (A2) + (A3) + T5 — / 1007 (u,u) e~ ? d\ — 2R Z (Oug, or Uj)p-
Q 9z;

J,k=1
We now estimate the last term :

- or
_2§R Z (5kuk, 8_2] Uj)@

j,k=1

— (07, u)
= —29?/\/28 u< ’ e_‘Pd)\‘
‘ 0 7 VA

< 2|VADull, (K07, u)/VA|l, < (VAT ull} + (07, u) ) VAL,

which means that

- 87‘ —x*
2R Y (Grn 5 wy) = — VATl — 07,/ VAR,

4.k=1 J

now we move the first term in the last expression to the other side and get the desired
result, since

V7T + Aa’;uni — /Q(T + A)|5:;u|2 e ?d\,
and T} = T3 = 0 for u € D%, and

" 0%r -
T, = / T —TUu e“"da:/ T7100r(u,u) e ?do.
2 j;l o 07,0z " b0 )
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7. APPLICATIONS

Here we apply the basic estimates to get the Hormander L?-estimates for the 0-equation
(see [30]) and a result of Shigekawa on the dimension of weighted spaces of entire functions

([45]).
Theorem 7.1. Let Q© C C" be a smoothly bounded pseudoconver domain such that
Q C B(0,R). Then for each u € dom(d) N dom(d") we have

(7.1) 107 ull? + [|9ul® > = Ilul.

= AR?
Proof. Since 2 is pseudoconvex, the boundary integral in Theorem 6.2 is > 0. Take p = 0
and 7(2) = R* — [2]?, then —i 007 (u,u) = |uf* and (07, w)[> = | 30, Zj us|* < |2]? [ul?.
We choose A = 2|z[?, then [(97,u)[*/A < L |u>. Hence we get from Theorem 6.2 :

- _ 1
VB + 122 0 ul* + |V B — 22 0ull® > 5 [lu],

for u € D%!. Now, the result follows from Proposition 4.12.
O

Corollary 7.2. Let Q be as in Theorem 7.1 and let a € L(o () such that Ja = 0.
Then there exists s € L*(Q) such that 9s = a and

(7.2) /|s|2dA§4R2/|a|2d/\.
Q Q

Proof. Apply Proposition 6.1 for T = 9o \/R2 + |22 and S = \/R? — |2|2 0 0, and set
P =1/v/21d. Then we have T* = \/R2 + 2|20 8 and Theorem 7.1 gives
[Pl < [IT"ul* + || Sull?,

by Proposition 6.1 we obtain ¢ € L?(Q) such that To = 9(\/R?>+|z|?0) = a and
lo||? < 2||a)|?>. Now set s = y/R? + |z|> 0, then ds = o and

5F [
dX <2 dA
/R2 +1z2 7 Q|a| 7
" /y |2d)\<2/]a|2d)\

Theorem 7.3. Let ¢ : C" — R be a real valued function in C*(C") such that

Z’ ]’2<28z8 >w]wk, zeC", weC

j=1 J,k=1

so we get

where ¢ is a positive continuous function in C". If g € L%Ovl)(C”,e_“’) and 0g = 0, it
follows that one can find f € L*(C" e~%) with Of = g and

e—%(2)
(7.3) If( )P e #H dA(z) < . l9(2)]”

c(2)
provided that the mght hand side is finite.

IA(2),
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Proof. From Proposition 5.4 we have

n 2
/ 4 afjép gt e~ A < |[Bull? + |3u,

for each (0, 1)-form u = Ek:l uy, dzy, with coefficients uy, € C°(C"), for k=1,...,n
Let P: L% )(C", e™) — L, ,,(C", e~%) be the multiplication operator by the function
v/c. Then it follows from the assumption that
1Pullf, < [|0ull?, + 10, ull.
By Proposition 6.1 we get a function f € L?(C", e=%) with df = g and || f||, < [|P " gl|-
0

Theorem 7.4. Let ¢ : C" — R be a plurisubharmonic function z'n_C2((C”). If g €
L?O’l)((C”, e %) and 0g = 0, it follows that one can find a solution u of Ou = g such that

(7.4) 2 [ fu()P e (14 2)2dA(2) < [ Jg(2)] e P dA2).
(Cn (Cn
Proof. We apply Theorem 7.3 with ¢ replaced by ¢ + 2log(1 + |2|?) and use that
0? _ _
Z Wik 5 o log(1+[2%) = (1 +|2) 2 (JwP (L + |2*) = |(w, 2)*) = (1 +[2[*) 2 Jwl?,
7,k=1

so we can take c(z) = 2(1 + |2]?) 2 to obtain the desired result. O

Theorem 7.5. Let Q) be a smoothly bounded pseudoconver domain in C* and let ¢ :
QO — R be a real valued function in C*(Y) such that

Z] w;]? < Z@zﬁju}jwk’ z2€Q, weC",

7=1

where ¢ is a positive continuous function on ). If g € L(o,1)(Q> e™%) and dg = 0, it follows
that one can find f € L*(Q,e™%) with Of = g and

e—¥(2)
(75) Luere e <2 [ R S a).

provided that the right hand side is finite.

Proof. We use Theorem 6.2 for 7 = A = 1 and get

/ QA 10u])? + 218 ul %,
~ 92,07, "

for u € D1,
Let P : L(o N Qe %) — L%o;)(Qa e~ ) be the multiplication operator by the function

v/e. Then it follows from the assumption that
2 132 112
[Pully < [[0ully + 2[|0,ull;.

By Proposition 6.1 we get a function f € L(Q,e™%) with 0f = gand || f||, < V2P g]|,.
0J
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For a positive ¢ = 377, 1 dz; Adz, € AVY(Q) and a = 377 a;dz; € A% (Q) we set

n

(7.6) aff ==Y ¢ asa,

k=1
where 9% = (1, m) . Then we get a more general result

Theorem 7.6. Let 2 be a smoothly bounded pseudoconver domain in C" and let ¢
Q — R a strictly plurisubharmonic function belonging to C*(Q). If a € L (Q e )

satisfies Do = 0, then one can find u € L*(S2, @) such that Ou = a and

(7.7) [ @R e <2 [ o, e a),
provided that the right hand side is finite.
We return again to L%O’l)(C”,e_‘P) and remark that the Kohn-Morrey formula from
Proposition 5.4 can be written in the form
(Mpu, u)y < (Hpu,u)y

for a (0, 1)-form u € dom (9) Ndom (5:;) So, under the assumptions of Theorem 7.3, we
obtain using Ruelle’s lemma (see Appendix E) that

(Nsau7u><p < (M;1U=U)¢7
setting Ov = u we get
]2 = (v,v), = (%5;]\7@”)% = (0v, Npu), = (u, Nou), < (M, 18” ,0v),,

for each v € dom (0) orthogonal to ker (9).
This gives a different proof of Hérmander’s L?-estimates similar to the Brascamp-Lieb
inequality (see [26] and [32]):

(75) P e dre) < [ Bul) g, aA)
(Cn

Cn
for each v € dom (9) orthogonal to ker (9).
Let 1 < g <n.Ifuis a (0,q)-form in dom (9) N dom (8 ), we get by (5.9)
Z Z / 8238% ik Upk € ¥ dX < (Opu, u),.
|K|=¢—1 j,k=1

The left hand side can be written in the form (M@u, u),. We suppose that Mw is invertible
and get as above

(7.9) Jo]lZ < (M;lév,gv)w

for each (0,¢q — 1)-form v € dom (0) orthogonal to ker (9). For a differential geometric
interpretation of M, see Appendix B.
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Theorem 7.7. Let Q2 be a smoothly bounded pseudoconver domain in C" and let ¢
Q — R be a plurisubharmonic function in C*(Q2). For every g € L (82, e7%) with

0g = 0 there is a solution u € L($, loc) of the equation Ou = g such that
(7.10) /|u J2e#) (14 |22) 2 dA(z /|g 2 ¢=4(2) g (2).

Proof. We apply Theorem7.5 with ¢ replaced by ¢ + 2log(1 + |2|?) and use that

2

0 _ _
Z Rl log(1+[2[*) = (1 +[2[*) *(Jwl* (X + [2*) = [(w, 2)[*) = (L +[2[*) " Jw]*,
7,k=1

so we can take ¢(z) = 2(1 + |2]*) 2 to obtain the desired result.
0

Theorem 7.8. Let 2 C C" be a smoothly bounded pseudoconver domain in C" and let
¢ Q — R be a plurisubharmonic function in C*(Q). If 29 € Q and e™% is integrable in
a neighborhood of zy one can find a holomorphic function u in Q such that u(zy) = 1 and

(7.11) /Q\u(z)y?w@ (14 [2[2)75 dA(2) < oo

Proof. We may assume that zy = 0. Choose a polydisc
D={z: |z|<rj=1...,n}CQ
where e~% is integrable, and define
Qp ={2z€Q: |z| <rforj>k},
for k=0,1,...,n

We shall prove inductively that for every k there is a holomorphic function u; in 2, with
uk(z9) = 1 and

/ g (2)]? e ¥(2) (1+ |z|2)_3k d\(z) < o0
Qp

When k& = 0 we can take ug(z) = 1, and u,, will have the desired properties.
Assume that 0 < k < n and that u;_; has already been constructed. Choose ¢ € C5°(C)
so that ¥(z;) = 0 when |z| > r/2 and ¥(2) = 1 when |z| < r/3, and set

ui(2) = (zr)ue—1(2) — zpv(2),

notice that ¢(zx)ug—1(2) = 0 in Q \ Qk 1. To make uy holomorphic we must choose v
as a solution of the equation dv = 2 g 10¢ = f. By the inductive hypothesis we have

S )17 e (14 [o*) PV dA(2) <

Hence it follows from Theorem 7.7 that v can be found so that

[w(2)? e 3 (14 |2)'2F dA(2) < 0.

Q
Together with the inductive hypothesis on u;_; this implies that
lug(2)|? e (14 |2))3F dA(2) < oc.

Qp

Since dv = 0 in a neighborhood of 0, v is a C*°-function there and we have u(0) =
uk—1(0) = 1 so uy, has the required properties.
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Lemma 7.9. Let ( € C" and K > 0 and define g(z) = log(1+ K|z —¢|?). Then for each
w € C" we have

K 9 om K 9
(7.12) 1T Kz = lw|* <i00g(w,w)(z) < TR lw|®.
Proof. An easy computation shows
529 o) — _KQ(zj - Z])(Zk - Ck) K(Sjk
02,0z~ (1+ K|z — (]?)? 1+ K|z —|?
K _
= (1 + K|Z _ qg)g [(1 + K‘Z - CP) (Sjk - K(Ej - Cj)('zk - Ck)]
This implies
_ K
i 0, 0)(2) = g (1 Kl = CF) o = Kl(w. 2= O
and hence ¥
< i00g(w,w)(z) €~ ful?

P —
T 1+ K|z—¢J?

We are now able to show the following

Theorem 7.10. Let W : C* — R be a C*™ function and let p(z) denote the lowest
eigenvalue of the Levi matriz

- PW(2)\"
100W (2) = ( 5207 >j,k:1 .

Suppose that
(7.13) lim |z]2u(z) = oo.

|z]—o0

Then the Hilbertspace A%2(C", e=2V) of all entire functions f such that
()] exp(=2W (2)) dA(2) < oo,

is of infinite dimension. ’

Proof. Assumption (7.13) implies that there exists a constant K > 0 such that
i00W (w,w)(2) > —K|w|?,

for all z,w € C", and that i90W (2) is strictly positive for large |z|.
From Lemma 7.9 we have

i09g(w, w)(2) > SR

(1+8K[z = ()

2 |’LU|2,

where g(z) = log(1 + 8Kz — ¢|?).
Hence, for |z — (| < 1/V8K, we have

i00g(w, w)(z) > 2K |w|*.
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Since i00W (w, w)(z) is negative on a compact set in C" there exist finitely many points

(1, .-, Cu € C™such that this compact set is covered by the balls {z : |z—(| < 1/V8K}.

Hence
B(z) =2W(2)+ > _al2)
=1

is strictly plurisubharmonic, where g;(z) = log(1 + 8K|z — G2, 1=1,...,M.
Let fi(z) be the least eigenvalue of i00@. Then, by assumption (7.13), we have

lim |z[*fi(z) = oo.
|z| =00

For each N € N there exists R > 0 such that
N+M+1
i(z) > % , for |2 > R.
z

Let fip := inf{fi(2) : |z| < R}. Then fiy > 0. Set

_
2(N + M)

K =

and
p(z) :=2W(2) + Y _ai(z) — (N + M) log(1 + k|2[*).

It follows that e™¥ is locally integrable.
Next we claim that ¢ is strictly plurisubharmonic. Notice that

000w, w)(2) > wf (mz) - M)

1+ k|z]?
For |z] < R we have

N+ M) (i
(N + )No_@>0

(N+ M)k _ . _
MY TR S 2 (N 4+ Mk = fg — T Ho
fio — (N + M)k = [ig 2(N + M) 5

M) = e 2

and for |z| > R we have

) (N+M)x _ N+M+1 N+M 1
pulz) — 2 - = T
1+ klz[? |2? 22 [z

which implies that ¢ is strictly plurisubharmonic.
Therefore we can apply Theorem 7.8 and get an entire function f with f(0) =1 and

1F()P(1+ [2]2) 7% e @ dA(2) < oc.
(cn

Now we set N = N — 3n and we get
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[F(2)P(L+ 213N eV da(2)
Cn

T+ 8Kz — ¢ st
= | Ay F@FA R ) dA(2)

(14 [N T, (L + 8Kz — ) e o
{ (1+ r[z) VM } TP+ dA()

< sup
zeCn

< 0.
Hence fp € A%(C", e~2V) for any polynomial p of degree < N, and since N = N + 3n

was arbitrary, we are done.

OJ

The following example in C? shows that 7.10 is not sharp.
Let ¢(z,w) = |z]*lw|* + |w|*. In this case we have that A%(C? e™¥) contains all the
functions fi(z,w) = w* for k € N, since

o0
/ / r3te ~UTEEE) oy dry dry = / (/ Tnge_T%T% dh) Tgk_le_T% dry
0
1 1 1 [~ 4
:/ (—/ e’ ds> r2l ez dry = —/ r2=l ez dry < oo.
o \2Jo 2 Jo

The Levi matrix of ¢ has the form

om |wf Zw
“9890—( W |22 + Alw]?

hence ¢ is plurisubharmonic and the lowest eigenvalue has the form

1
oz, w) = 5 (Sl + |2 = /Ol + 0[PP + [+[F)
16]wl|*
2 (5lwl? + |22 + /Ol + 10]:Plwl + [2)

hence

|l|1m 2%, (2,0) = 0,

which implies that condition (7.13) of Theorem 7.10 is not satisfied.
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8. SCHRODINGER OPERATORS

Let ¢ be a subharmonic C2-function. We want to solve du = f for f € L*(C,e~%). The
canonical solution operator to d gives a solution with minimal L?(C,e™%)-norm. We
substitute v = we ¥/? and g = f e ¥/? and the equation becomes

Dv=g,

where

— 0
8.1 D =e ¥ —efl?
(8.1) el

u is the minimal solution to the d-equation in L?(C, e~¥) if and only if v is the solution
to Dv = g which is minimal in L?(C).

The formal adjoint of D is D™ = —e#/2.2e¢/2. We define dom(D) = {f € L*(C) : Df €
L?(C)} and likewise for D*. Then D and D" are closed unbounded linear operators from
L?(C) to itself. Further we define dom(DD") = {u € dom(D") : D u € dom(D)} and
we define D D" as DoD" on this domain. Any function of the form e#/? g, with g € C2(C)
belongs to dom(D D) and hence dom(D D) is dense in L?(C). Since D = 2 + 122 and
D= —% + 12—“;’ we see that

2
#1000 lop 0 1|ogf' 1%

9207 2920, 20,07 4|9:| T20:0%

For further details see [10] and [24], [26]. It is easily seen that S is a Schrodinger operator
with magnetic field :

(8.2) S=DD =-—

1
(8.3) S = 1 (—A4 + B),
where the 1-form A = A; dx + Ay dy is related to the weight ¢ by
Ar = —=0yp/2, Ay = 0,0/2,

o ..\ (o .\
(8.4) Ay = (% — zAl) + (a_y — @A2> ;
and the magnetic field Bdx A dy satisfies
1
(8.5) B(z,y) = 5Ap(z,y) -

Both operators D D" and D" D are non-negative, self-adjoint operators, see Lemma 13.10
and Lemma 13.11.

Since 4DD" = —Ay + %Agp, it follows that ((—Aa + 3Ap)f, f) > 0, for f € C3(C).
Similarly one shows that AD'D = —A, — %A(p, and this implies, using the standard
comparison between self-adjoint operators ( 7' > S, if (T'f, f) > (Sf, f)):

1
(86) —QAA Z —AA + EAQO Z —AA .
It follows that
(8.7) D'D=e¥? 5;5 e?!?,
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and that

(8.8) DD = e’¢/255; e?/?,
where 5; = —% + %‘f. For n = 1 we have

(8.9) 0, =00,
which means that

(8.10) DD =e %0, e

Now we can apply 5.5 to get

Theorem 8.1. Let ¢ be a subharmonic C*-function on C such that
liminf Ap(z) > 0.

|z]—o0

Then the Schréodinger operator

1 1
(8.11) §=DD = {(~Aa+354¢)

has a bounded inverse on L*(C)

(8.12) (

_ -1
where N, = ozt

S

E*)*l = ¢ ¥/? N, /2,

For several complex variables the situation is more complicated.
Let ¢ : C" — R be a C%weight function. We consider the d-complex

(8.13) (€ e?) L 12 (Ch e?) <25 L2 (T e ).
For v € L*(C"), let
_ " ov 1 0y

8.14 Dw=) (s—+55v]dz
( ) v ; (8Ek + 2 0z U> “k
and for g = Z?zl g;dz; € L%OJ)((C"), let

. "L [1 0p dg;
8.15 Dig=> (55-9— 7>
( ) 19 ; (2 8zj 9i aZj) 7

where the derivatives are taken in the sense of distributions.

It is easy to see that Ju = f for u € L*(C" e ?) and f € Lf),,(C" e %) if and only if
Dyv = g, where v = u e??andg=f 6_90/_2. It is also clear that the necessary condition
df = 0 for solvability holds if and only if Dyg = 0 holds. Here

— " [(0g; 1 Oy
8.16 Dsyg = L4 T g ) dzp A dZ;.
( ) 24 ij:l <8Ek + 2 0%, 99) Zk Zj
and
8.17 D,h = - T hp — —2 | dz;.
( ) ; J’,kZ:1 <2 Oz & Oz ) “

for a suitable (0,2)-form h =3, ;" ,h;dz;.
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We consider the corresponding D-complex :

(5.18) 12(C) 2y 12, ()

Tk
Dy

Lip2(C") -

S lb‘

The so-called Witten Laplacians(see [28]) AS’ ) and Afpo D) are defined by

0,0 Y
(8.19) APY = DDy

A computation shows that

=~ (10p Ov 1 0p Oy 1dp Ov 1 % 0%
DiDw =) (2 02,02, 40z 07, 20z, 05 20507, 05,07

j=1

and that
e " 1 0o Ogr, 1 Op Op
2 DD, +D.,Dy)g = e 2ok 2 7Y T
(8:20) (DiDy+ DyDa)g [_(2(9%& 102, 0z,
k=1 Lj=1
1 0p 0g, 1 0%p gy, 0% _
8.21 - — - = - | dzg.
( ) 2 (95]- 823» 2 angzj gk (92]-87]- + azjafk g] k

— 0 4 10 -
.. T 2 5. and we consider (0, q)

forms h = Z‘ Jl= q' hydzy, Where Z’ means that we sum up only increasing multiindices
J = (j1,-..,Jq) and where dz; = dz;, A --- A dz;,. We define

More general, we set 7, = y + 5 1 —3”— and 7} =

(8.22) Dyprth =YY " Zi(hy) dzi A dzy
k=11J|=q

and

(8.23) Dyh=Y > " Zi(hy) dz) dz,,
k=11J|=q

where dzy |dZ; denotes the contraction, or interior multiplication by dzj, i.e. we have
<Oé, dsz d§J> = <d§k N a, dEJ>

for each (0,q — 1)-form a.
The complex Witten-Laplacian on (0, ¢)-forms is then given by

(8.24) AC) =D, D'+ D,

forg=1,...,n—1
The general D-complex has the form

n D, n Dq 1 n
(8.25) Oq 1H(C") :> (0 o(C") — . (0q+1 ) (C).
Dy D3+1
It follows that
(8.26) D1 AL = ALHDD 1 and D, AL = ALITD
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We remark that
(8.27) Doh=Y "> 'Zi(hy)dzp]dz, = > Y Zi(hk) dik.
k=1 |J|=q |K|=q—1 k=1

In particular we get for a function v € L?*(C")

(8.28) A0y =D Dy =Y Z;Z;v),
j=1
and for a (0,1)-form g =Y, , g, dz, € L%OJ)(C”) we obtain

APVg = (DD + D, Dy)g

= Y AZ(Zia) dz; A (dz)dz) + Z3(Z5(a0)) dzi ) (dZ5 A dZe)}
jkzzﬂ

= Z 12:(Z(g0)) (dz A (dZy]dze) + dzi | (dZ; A dZ0))

+ [Z' Z*](gé)d—‘/\(d_kjdzé)}

= Z Z;i(ge) dz OpedZ ;
Z (ge) dZe + Z 82J8zk e 0eQZ;
Ji=1 j,kl=
= (ADY @ 1)g+ Mg
where we used that for (0, 1)-forms «, a, b we have

al(and) = (aja) Nb—a A (a]b),

which implies that
dz; N\ (dzi]dzy) + dzi](dZ; A dZ)
dz; N (dZg|dze) + (dZ |dZ;) N dZg — dZ; A (dZg | dZ)
= (dzx]dz;) N dz; = dge dZy,

and where we set

and
(AP @ D) g =555, AP gedz.
For more details see [24], [26] and [20]. By 5.5 we obtain now

Theorem 8.2. Let ¢ : C* — R be a C?-plurisubharmonic function and suppose that
the lowest eigenvalue py, of the Levi - matriz M, of ¢ satisfies

lim inf p,(2) > 0.

|z]—o0
Then the operator Afoo’l) has a bounded inverse on L%m)((cn)
(8.29) (DD + D;D) "t = (APY) L = e #12 N, 92,
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_ -1
where N, = ozt

There is an interesting connection to Dirac and Pauli operators: recall (8.4) and (8.5)
and define the Dirac operator D by

.0 .0
(830) D= (—Z% — Al) g1 -+ (—Za—y — AQ) 09 = A10'1 + AQO’Q,

0 1 0 —i
"1:(1 O>’02:(i 0>'

B 0 A —id
D_(Alﬂ'AQ 0 )

We remark that i(A4; — A1.A3) = B and hence it turns out that the square of D is
diagonal with the Pauli operators P, on the diagonal:
(8.31)

D2 — A% — (A4 — A1 Ay) + A% 0 ([ P- 0
B 0 A2 4i(As A — A A+ A2 ) L0 P )

where

where

Hence we can write

0 ? 0 ?
8.32 Po=(—-i——-A —i——Ay| £+B=—-A,+B.
(8.32) + < e 1) + ( v ay 2) A
By Lemma 13.10 and Lemma 13.11 the Pauli operators P, are non-negative self-adjoint
operators.
It follows that
(8.33) 4§ = P,
is the Schrodinger operator with magnetic field and that
(8.34) ANDO = p

In addition we obtain that D? is self-adjoint and likewise D by the spectral theorem.

Finally we consider decoupled weights ¢(z1,...,2,) = >_7_; ¢;(2;). In this case the

operator AEDO D acts diagonally on (0, 1)—f0rms each component Fj of the diagonal being

(8.35) By, = —P 4= ZPU
J#k
where
(0) 0 ’ 9 ’ ()
8.36 P =(—-i—— A — = A + B
(8:36) ( o ) " ( Zaw )
with z, = xp + iyy, Aﬁ“ = —% g—ﬁ, Ag) = %g—;‘;ﬁ, and BY) = %Aw, ¢=1,...,n. This

follows from (8.20) for a decoupled weight and from (8.32).
For further details see [12] and [29].
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9. COMPACTNESS

We define an appropriate Sobolev space and prove compactness of the corresponding
embedding.

Definition 9.1. Let

W = {u € L}, (C"e™*) + [[0ull’ + |0 ull? < oo}
with norm
(9.1) lullg, = ([Oull? + 10ul|2)"/.

Remark: W% coincides with the form domain dom (E)ﬂdom@;) of @, (see Proposition
5.5).

Proposition 9.2. Suppose that the weight function ¢ s plurisubharmonic and that the
lowest eigenvalue i, of the Levi - matriz M, satisfies

(9.2) lim p,(2) = +00.

|z]—o0
Then the embedding
(9.3) Jo 1 W% = Ly 1) (C"e7¥)
18 compact.
Proof. For u € W% we have by Proposition 5.4
1Bull2 + [T5ul2 = (Myu,u),.
This implies

(9.4) IIEUII?ﬁIIEZUII?D2/(C i (2) [u(2) P 75 dA(2).

We show that the unit ball in W@ is relatively compact in L%OJ)((C",e*V’). For this

purpose we use a characterization of compact subsets in L*-spaces (see Appendix C):
A bounded subset A of L*(Q) is precompact in L*(Q) if and only if the following two
conditions are satisfied:

(i) for every € > 0 and for each w CC € there exists a number § > 0 such that for every
u € A and h € R” with |h| < § the following inequality holds:

(9.5) / |i(z + h) — a(z)]* dz < €%

(ii) for every e > 0 there exists w CC 2 such that for every u € A
(9.6) / lu(z)|* dv < €.
0O\w

An analogous result holds in weighted spaces L*(C", ).

First we show that condition (i) is satisfied in our situation. Let u = Y77, u;dz; be a
(0, 1)-form with coefficients in C§°. For each u; and for t € R and h = (hy,...,h,) € C"
let

0y() := (= + th).
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Note that
2

3uj

Ou;

+ z+th
ayk( )

I

(2 + ) — u5(2) = 0;(1) — v;(0) = / o (1) dt

we can now estimate for |h| < R

/B Irnity (2) — 1y () Pe™ 92 dA(z) = / 7O )(2) — Xty (2)[ 2 dA(z)

< |2 /BR [/Olzn: (‘8(g‘§zj)(z+th)r+ ‘%(ch) 2) dt] e~ dA(2)
<Ot [ 3 ('%()M 'Mu]) ¥ dA(2)

k=1 Yk
3R =1 ayk

o3 (8)] < |l [Z (

k=1

where z, = xp + iy, for Kk =1,...,n. By the fact that

for 5 = 1,...,n where yg is a C*® cutoff function which is identically 1 on Byr and
zero outside Bsg. It is clear that the corresponding Dirichlet form of [, satisfies the

assumptions of Theorem 16.6 in Bsg, so by Garding’s inequality for B3g, see Appendix
D

Ixrulll, < Chr (100cRWIE + 10, (xrulIZ + HXRUH?D)
< Cl (19wl + 1 ul2 + lul2)
we can control the last integral by the norm ||u||22¢ Since we started from the unit ball

in W@ we get that condition (15.2) is satisfied.

Condition (15.3) is satisfied for the unit ball of W@ since we have

w2 2e=® d\(2 frp(2) Ju(2)? =) I\ (2
[cn\BR' e X >§/cn\BR RO Y I

So formula (9.4) together with assumption (9.2) shows that

Jull3,
nf{j1,(2) © |2] = B)

(9.7) / lu(2)|?e=?® dA(z) < <€,
Cr\Bg

if R is big enough.
OJ

We are now able to give a short proof of the main result in [26] or [22], see [25] for further
details.

Proposition 9.3. Let ¢ be a plurisubharmonic C?- weight function. If the lowest eigen-
value j1,(z) of the Levi - matriz M, satisfies (9.2), then N, is compact.
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Proof. By Proposition 9.2, the embedding W% L%O’l)(((:”,e*@) is compact. The
inverse N, of [, is continuous as an operator from L%OJ)((C”, e~%) into W@, this fol-
lows from Proposition 5.5. Therefore we have that N, is compact as an operator from
L?OJ)(C", e~ %) into itself.

OJ

Proposition 9.4. Let ¢ be a plurisubharmonic C*- weight function. Let 1 < ¢ < n and
suppose that the sum s, of any q (equivalently: the smallest q) eigenvalues of M, satisfies

(9.8) lim s,(z) = +o00.

|z] =00

Then Nyq: L, ,(C* e ?) — LG, (C" e7%) is compact.

(0,9)

Proof. For (0, q) forms one has by (5.9) and Proposition 5.7 that

(9.9) [Bull? + T2 > /@ syl () e A (2),
Now one can continue as in the proof of Proposition 9.2. 0

Example: We consider the plurisubharmonic weight function ¢(z,w) = |z|?|w|* + |w|*
on C?. The Levi matrix of ¢ has the form

lw|? Zw
wz  |z* + 4|w|?

and the eigenvalues are

(51wl + 212 = /9wl + 0] Plwp + [

N | =

fp,1 (2, w) =

and

1
poa(zw) = 5 (5wl + |22 + /0wl + 10zP[wP + [])
It follows that (9.2) fails, but
1
sa(zw) = & Ap(zw) = [#f + Sl
hence (9.8) is satisfied.

Notice that
N, : L%OJ)((C”, e’ — L%O,l)((C", e ?)
can be written in the form
Ne=JpoJ,
where
Jo: L1y (Ch e %) — W@
is the adjoint operator to j, (see [46] and Proposition 13.12).

This means that NN, is compact if and only if j, is compact and summarizing the above
results we get the following
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Theorem 9.5. Let ¢ : C* — RT be a plurisubharmonic C%-weight function . The
0-Neumann operator

N L?o,l)((cna e ¥) — L%OJ)((C”, e )
is compact if and only if for each € > 0 there exists R > 0 such that

(9.10) / [u(2)* ™= dA(2) < e([|Ou]l} + [|0,ul3)
C\Bg
for each u € dom (9) N dom (5;).
For a further study of compactness we define weighted Sobolev spaces and prove, under

suitable conditions, a Rellich - Lemma for these weighted Sobolev spaces. We will also
have to consider their dual spaces, which already appeared in [6] and [33].

Definition 9.6.

For k € N let
WH(C" e7?) := {f € L*(C",e?) : D*f € L*(C",e™%) for |a| < k},
where D = % for (21, 20) = (01,41, - - -, Ty Yn) with norm
IflIEe = > IDFII%.
la|<k

We will also need weighted Sobolev spaces with negative exponent. But it turns out that
for our purposes it is more reasonable to consider the dual spaces of the following spaces.

Definition 9.7.
Let

forj=1,...,n and define
WHC" e ?, Vo) ={f € L*(C",e %) : X;f, Y;f € L*(C",e %),j=1,...,n},
with norm

IF115we = IL£11G + Z(HXijZ +1Yiflle).

In the next step we will analyze the dual space of W(C" e=%, V).

By the mapping f — (f, X, f,Y;[), the space W' (C",e~?, Vi) can be identified with a
closed product of L?(C", e~¥), hence each continuous linear functional L on W1(C", e=%, V)
is represented (in a non-unique way) by

L = [ Emle e +Z / 2+ Y31 ()hy(2))e ) dA(2),

for some g;, h; € L*(C", e~ %).
For f € C5°(C™) it follows that

1 = [ om0 ne -3 [ e (B T2 ) et i)

y;

Since C§°(C™) is dense in W(C", e™%, Vgp) we have shown
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Lemma 9.8.
Each element u € (W (C", e=%,Vp)) = WHC" e ?, Vo) can be represented in a non-

unique way by
_ —~ (9g;  Ohy
u-go+; (8% + dy,; )

where g;, h; € L*(C", e~ %).
The dual norm ||u|| 1,4 v, = sup{|u(f)| : [[flleve < 1} can be expressed in the form

el o0, = mE{lg0” + > (g I* + [1A517)},
j=1

where the infimum is taken over all families (g;,h;) in L*(C",e~%) representing the
functional u.

(see for instance [47])
In particular each function in L?(C", e~%) can be indentified with an element of W=1(C" e=% V).

Proposition 9.9.
Suppose that the weight function satisfies

lim (0¢() + Bp()) = +o0,
Vel = (

2>
k=1

Then the embedding of W(C™, e%, V) into L*(C",e~%) is compact.
Proof. We adapt methods from [6] or [32], Proposition 6.2., or [33]. For the vector fields

for some 6 € (0,1), where

o |oe

Oy

9¢
8xk

Xj from 9.7 and their formal adjoints X7 = —% we have
. Oy ; 0%p
(X;+X7)f = _8_xjf and [X;, X7|f = _8_95? f

for f € Cg°(C"), and
(X5, X1, o = 11X 1% = IXG A1,
1+ X115 < X+ 1/lIXGFIIE + 1+ OllXG G
for each € > 0. Similar relations hold for the vector fields Y;. Now we set
U(2) = [Vo(2)* + (1 + ) Dp(2).
It follows that

n

(Uf, e < 2+ e+1/) Y (XIS + IYGFI5)-
j=1
Since C§°(C™) is dense in W1(C™ e™%, V) by definition, this inequality holds for all
f e WHC" e7#, Vo).
If (f&)x is a sequence in W1(C", e=%, V) converging weakly to 0, then (fx)x is a bounded
sequence in W1(C" e%, V) and our assumption implies that

U(z) = [Vo(2)* + (1 + €) Ap(z)
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is positive in a neighborhood of co. So we obtain

. - VRGP e
/'f’“ PG < [ IR )+ [ LB e
=<k |212R B
. Gl
OB) T inf{W(z) : |2| > R}’
Hence the assumption and the fact that the injection W!'(B(0, R)) — L?(B(0, R)) is

compact (see for instance [47]) show that a subsequence of ( f;);. tends to 0 in L*(C", e~%).
0

Remark 9.10. [t follows that the adjoint to the above embedding, the embedding of
L*(C", e=%) into (WH(C", e ?, Vo)) = W HC", e %, V) (in the sense of 9.8) is also

compact.

< Cor || fell7zcs

Remark 9.11. Note that one does not need plurisubharmonicity of the weight function
in Proposition 9.9. If the weight function is plurisubharmonic, one can drop 6 in the
assumptions of Proposition 9.9.

The following Proposition reformulates the compactness condition for the case of a
bounded pseudoconvex domain in C", see [5], [46]. The difference to the compactness
estimate for a bounded pseudoconvex domain is that here we have to assume a condition
on the weight function implying a corresponding Rellich - Lemma.

Proposition 9.12.
Suppose that the weight function ¢ satisfies (7?7) and

Jim (0]Vip(= )I* + Ap(2)) = +oo,

for some 6 € (0,1), then the following statements are equivalent.
(1) The O-Neumann operator Ny, is a compact operator from L%Ojl)((C”,e_‘P) into
itself.
(2) The embedding of the space dom (9)N dom(@ ), provided with the graph norm
w ([|ull2 + [[0ul]? + ||5;u|| )12 into L3, 1)(C",e7?) is compact.
(3) For every positive € there exists a constant C’ such that
lullfy < e(lloulls + 10,ulZ) + Cellull?y 4 vy
for all w € dom (0) N dom (5;).
(4) For every positive € there exists R > 0 such that
/ [u(z)* ™= dA(2) < e([|Ou]l? + (|9, ull3)
CmM\Br

for all u € dom (9) N dom (5;).
(5) The operators

. o1 L(o H(C"e™?)N ker(0) — L*(C",e”%) and
) SNy L(o 9(C",e7?)N ker(9) — L%Oﬁl)((C”, e %)

are both compact.
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Proof. (1) and (4) are equivalent by Theorem 9.5. Next we show that (1) and (5) are
equivalent: suppose that IV; , is compact. For f € L%O,l)((:”, e~ %) it follows that

10N fI1E < (s Niof)o < ell FII2 + ClIN Lo f 11
Hence, by Lemma 13.1, (Tf;NW is compact. Applying the formula

NL@ - (EZNL%D)*(ELNL@) = (5;]\72,@)(5;]\72,@)*,

(see for instance [9]), we get that also 5:;]\72#, is compact. The converse follows easily
from the same formula.

Now we show (5) = (3) = (2) = (1). We follow the lines of [46], where the
case of a bounded pseudoconvex domain is handled.

Assume (5): if (3) does not hold, then there exists ¢ > 0 and a sequence (uy,), in
dom (9) Ndom (5;) with [|u,||, = 1 and

—_ =%k
lunllf > eo(l0unlly + 10,unl3) + nllunl®y 4 v,

for each n > 1, which implies that w,, — 0 in W(B’ll)((C”,e_“",Vgo). Since u,, can be
written in the form

Un = (0,N1,,)" O tn + (0, Na,,) Oun,
(5) implies there exists a subsequence of (u,),, converging in L%OJ)(C”, e~ %) and the limit
must be 0, which contradicts ||uy,||, = 1.
To show that (3) implies (2) we consider a bounded sequence in dom (9) N dom (5:,).
By Proposition 5.4 this sequence is also bounded in L%O’l)((C", e~?). Now Proposition 9.9

implies that it has a subsequence converging in W(g’ll)((C", e ¥, V). Finally use (3) to
show that this subsequence is a Cauchy sequence in L%DJ)(C", e~ %), therefore (2) holds.
Assume (2) : by Proposition 5.4 and the basic facts about Ny, it follows that
Ny : L?O’l)((C", e ¥) — dom () N dom (5;)
is continuous in the graph topology, hence
Nig: L%OJ)(C", e™¥) — dom (9) N dom (5@) — L?OJ)((C”, e )

is compact.

Remark 9.13. If
lim pu,(2) = +o0,

|z]—o00
then the condition of the Rellich - Lemma 9.9 is satisfied.
This follows from the fact that we have for the trace tr(M,) of the Levi - matriz

1
tT(MQO) = ZASO,
and since for any invertible (n x n)-matriz T
tr(M,) = tr(TM,T™"),

it follows that tr(M,) equals the sum of all eigenvalues of M,. Hence our assumption on
the lowest eigenvalue ., of the Levi - matriz implies that the assumption of Proposition
9.9 1s satisfied.
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Remark 9.14. We mention that for the weight o(z) = |z|*> the 0-Neumann operator
fails to be compact (see Chapter 12), but the condition

lim (0|Vp(2)]> + Ap(z)) = +o00

|z[—00
of the Rellich - Lemma is satisfied.

Remark 9.15. Let A?Oﬂl)((C”,e_“”) denote the space of (0,1)-forms with holomorphic
coefficients belonging to L*(C", e™%).

We point out that assuming (9.3) implies directly — without use of Sobolev spaces — that
the embedding of the space

Al (T, e7?) N dom (5;)

provided with the graph norm u — (|lul|?, + HE;UH )12 into AG, 1) (C",e™%) is compact.
Compare 9.12 (2).

For this purpose let u € A?OJ)(C ,€~%) N dom (8 ). Then we obtain from the proof of
5.4 that

\8 ull2, = /Z R kujuke AN
j

cn Sk=
Let us for u = » 77, u; dz; indentify u(z) with the vector (u1(2),...,un(2)) € C". Then,
if we denote by (.,.) the standard inner product in C", we have
- 2 Pp(2)
(ul2),u(z)) = Y ui()* and (Mu(2),u(2)) = Z 9207, 2 )us(2):
j

Jj=1 J:k

Note that the lowest eigenvalue p, of the Levi - matrix M, can be expressed as

= in (Mypu(2), u(2))
1e(2) _u(Z)f#O (u(2),u(z))

So we get

/ e 7 < /B e+t ol /(C o Be(2) (e

Cr\Bg

§/ (u,uye”?dA+ [ inf p,(2)]” 1/ (Myu,u)ye”? dA.
Br C"\Bg n

For a given € > 0 choose R so large that

1
[cif\l;f; pe(2)]7 <,

and use the fact that for Bergman spaces of holomorphic functions the embedding of

A%(Bg,) into A%(Bg,) is compact for Ry < R;. So the desired conclusion follows.

Inspired by a result on Schrodinger operators with magnetic field of Iwatsuka [31] we
point out another characterization of compactness, which will be used later, for further
details see [21].
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Proposition 9.16. Let ¢ : C" — R™ be a plurisubharmonic C%-weight function . The
0-Neumann operator
N L%O,l)(cna e’) — L%O,l)((cna e ?)

is compact if and only if there is a smooth function A : C" — R such that A(z) — oo
as |z| = oo and

n

(9.11) (Dwu,u)¢2/ Alul? e? dA

for each u € W%,

Proof. Suppose (9.11) holds. Then for each € > 0 there exists a number R > 0 such that
A >1/e on C*\ Bg. This implies

_ —x _ 1 _

Tl + Tl = Oz [ AulevarzC [ ey
R

n

which means that (9.10) holds.
We indicate that the condition of Theorem 9.5 can be written in the form : for each
€ > 0 there exists R(e) > 0 such that

||u||L?O71)(C"\BR(€),<p) S €||u||Qap

Hence for all u € W9 and for j € N we have

, 1
27 lul?e ¥ d\ < — ”u||2ng
(Cn\IBg 2~7

R(1/27)

and hence

/ lu|? e™? d\ < / 1- |u\26“’d>\+/ 2 |ul* e ?dA
n Br(1/2) Br(1/4)\Br(1/2)

—l—/ 4-|uf*e?d\+---
Br(1/8)\Br(1/4)
< (C+ Dlullf, -

Now it is easy to define a smooth function A tending to co as |z| tends to oo such that
(9.11) holds. n

Finally we investigate compactness of the O-Neumann operator of a bounded pseudocon-
vex domain.

Let 2 CC C" be a smoothly bounded pseudoconvex domain. € satisfies property (P), if
for each M > 0 there exists a a neighborhood U of 9€) and a plurisubharmonic function
o € C3HU) with 0 < ¢p <1 on U such that

82(,0]\4 -
— 2 (p)tit, > M||t]|?
> 5o, st 2 M

for all p € 00 and for all t € C™.

() satisfies property (P) if the following holds: there is a constant C' such that for all
M > 0 there exists a C? function ¢, in a neighborhood U (depending on M) of 92 with

2
. o 82 —
(i) Z?:l 524 ()] < CZZk:l az;g% (2)t;t
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and ;

(i) D7) g5 (=)t > M|,

for all z € U and for all t € C™.

In [8] Catlin showed that property (P) implies compactness of the O-operator N on

L?OJ)(Q) and McNeal ([39]) showed that property (P) also implies compactness of the
O-operator N on L(2071)(Q). It is not difficult to show that property (P) implies property

(P): if (¢ar) is the family of functions from the definition of property (P), then (e#™)
will work for (P), see also [46].

We can now use a similar approach as before to prove Catlin’s result. For this purpose
we use again 8.2.

In order to show that the unit ball in dom(8)Ndom(8") in the graph norm f — (|0 f]|>+
18" F||2)2 satisfies condition (i) of 8.2 we first remark that compactly supported forms
are not dense in dom(d) Ndom(d"), but forms in dom(8") with coefficients in C>(2) are
dense (see [46]). So if w CC Q, we choose w CC w; CC wy CC Q and a cut-off function
¢ with ¢(z) = 1 for z € wy and (z) = 0 for z € Q\ wy. For u € dom(d) N dom(d")
we define & = 1u and remark that the domain of 8" is preserved under multiplication
by a function in C'(€2) (see [46] ), therefore @ has compactly supported coefficients and
belongs to dom(9)Ndom(d"). The graph norm of @ is bounded by a constant C depending
only on w, wy,ws, €2, if u belongs to the unit ball in the graph norm. By construction we

have

| The — ul| 22y = ||Ta@ — | 2(w),
if || is small enough, hence we can use Garding’s inequality for w CC Q to show that
condition (i) holds.

To verify condition (ii) we use property (P) and the following version of the Kohn-Morrey
formula

n

P oumr 3 =
9.12 —— e "M dX < ||Oul|? 0
(9.12) / D Gy T NS D

*

2

u”sﬁM’

YMm

here we used that ) is pseudoconvex, which means that the boundary terms in the
Kohn-Morrey formula can be neglected. Now we point out that the weighted 0-complex

is equivalent to the unweighted one and that the expression 2?21 85’; Myu; which appears
J

. =% . n 82@]\/1 a7 3
in d,,, u, can be controlled by the complex Hessian > jk=1 92,055 Uik which follows from

the fact that property (P) implies property (P). Of course we also use that the weight
wur is bounded on 2 CC C". In this way the same reasoning as in the weighted case
shows that property (P) implies condition (15.3). Therefore condition (P) gives that the

unit ball of dom(d) N dom(d") in the graph norm f (1OF|12 + 18" F||2)= is relatively
compact in L%OJ)(Q) and hence that the 9-Neumann operator is compact.

Now let
j = dom(d) N dom(8") — L%OJ)(Q)
denote the embedding. It follows from [46] that
N =3jo07j"
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Hence N is compact if and only if j is compact, where dom(d) N dom(g*) is endowed
with the graph norm f — (||0f]|2 + |0 f|?)z.

Theorem 9.17. Let Q CC C” be a smoothly bounded pseudoconvexr domain. The O-

Neumann operator N is compact if and only if for each € > 0 there exists w CC €2 such
that

/Q\ [u(2)2 dA(2) < e(l|Oul® + |0"ul®)
for each u € dom (9) N dom (9").

This follows from the above remarks about the embedding j and the fact that the two
conditions (15.2) and (15.3) are also necessary for a bounded set in L? to be relatively
compact.

In a similar way as for Proposition 9.12 one obtains compactness estimates for the 0-
Neumann operator on a smoothly bounded domain. Here we use the standard Sobolev
spaces W1(Q) and the classical Rellich - Lemma without weights.

Proposition 9.18.
Let 2 be a smoothly bounded pseudoconvexr domain. Then the following statements are
equivalent.

(1) The O-Neumann operator Ny is a compact operator from L?o,n(Q) into itself.
(2) The embedding of the space dom (0)N dom (5*), provided with the graph norm

u = (|Jul)® + ||0u]|? 4 |0 u||?)"/2, into L?OJ)(Q) is compact.

(3) For every positive € there exists a constant C, such that
lull* < e(lloull* + [[0"ull*) + Cellull,,
for all w € dom (9) N dom (D).
(4) For every positive € there exists w CC § such that
/Q\ [u(2)[* dA(2) < e(|9ul® + [10"u]?)

for all w € dom (9) N dom (9").
(5) The operators

9Nyt L1y (Q) Nker(d) — L*(Q) and

5*]\72 : L%0,2)(Q) N ker@) — L%oyl)(Q)
are both compact.
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10. THE O-NEUMANN OPERATOR AND COMMUTATORS OF THE BERGMAN
PROJECTION AND MULTIPLICATION OPERATORS.

Let 2 be a bounded pseudoconvex domain in C" and let A%o,n(Q) denote the space of
all (0, 1)-forms with holomorphic coefficients belonging to L*(2). With the same proof
as in section 2 one shows that the canonical solution operator S : A%O,l)(Q) — L*(Q)
has the form

(10.1) S(g)(2) = /QK(Z,w) < g(w), 2 —w > dA(w),

where K denotes the Bergman kernel of €2 and
<g(w),z —w >= Zgj(w)(zj —wj),
j=1

for z = (z1,...,2,) and w = (wy, ..., w,).

In this chapter we investigate the connection between the d-Neumann operator and
commutators of the Bergman projection with multiplication operators. In [7] it is shown
that compactness of the O-Neumann operator N on L%M)(Q) implies compactness of
the commutator [P, M], where P is the Bergman projection and M is pseudodifferential
operator of order 0. Here we show that compactness of the 0-Neumann operator N
restricted to (0, 1)-forms with holomorphic coefficients is equivalent to compactness of
the commutator [P, M] defined on the whole L?(€2). In addition we derive a formula for
the 0-Neumann operator restricted to (0, 1) forms with holomorphic coefficients expressed
by commutators of the Bergman projection and the multiplications operators by z and
zZ.

The restriction of the canonical solution operator to forms with holomorphic coefficients
has many interesting aspects, which in most cases correspond to certain growth properties
of the Bergman kernel. It is also of great interest to clarify to what extent compactness of
the restriction already implies compactness of the original solution operator to 0. This is
the case for convex domains, see [17]. There are many other examples of non-compactness
where the obstruction already occurs for forms with holomorphic coefficients (see [36],
[35]).

We define the following operator

T: Lj ) (Q) — L(Q),
by

(10.2) Tf(z) = / K (2, w){f(w), 2 — w) dA(w),

where f = ZZ:1 frdz), and <f(w)7 2 w> = ZZ:1 fk(w)(zk - wk)

The operator T' can be written as a sum of commutators
(10.3) Tf=> [My, Plfe, f=)_ frdzy
k=1 k=1

where Myv(z) = Zpv(2), v € L3(Q), k=1,...,n.
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Let P : L%O,l)(Q) — A%O,l)(Q) be the orthogonal projection on the space of (0, 1)-forms
with holomorphic coefficients. We claim that

Tf=TPf, fe L)
It suffices to show that T'g = 0, for gJ_A?OJ)(Q) :

Tg(z) = — Zngk(z) =— Z/QK(z,w)@kgk(w) dA(w)

_ Z/ ge(w) [K (w, )]~ d\(w) = 0,
k=1 Y&
because w — K (w, z)wy, is holomorphic and g, LA%(Q), for k=1,...,n.

Now, let S denote the canonical solution operator to O restricted to A%o,n(Q)- From
(10.1) we have for f € L%OJ)(Q)

(10.4) S(Pfy=T(Pf)=TF.

Hence we have proved the following

Theorem 10.1. If f € L%o,1)(Q)a then T(Pf) = Tf. The operator S is compact as an

operator from A%OJ)(Q) to L*(Q), if and only if the operator T is compact as an operator
from L%OJ)(Q) to L2(92).

Remark 10.2. The adjoint operator T* : L*(Q2) — L{, () is given by

(10.5) T*(g) = [P. Ml gdzy, g € L*(Q),

where Mv(z) = zv(2).
Here we have
(I - P)(9) =T(9),
since
[P, My| Pg = PMyPg — MyPg = 0.

In a similar way the following results can be proved

Lemma 10.3. (1) PM;P = M;P,
(2) PATP — PO,
Let

Biyy(Q) ={f € L, () : f € kerd}.

Now suppose that € is bounded pseudoconvex domain in C*. The d-Neumann operator
N can be viewed as an operator from Bf) ,(Q) to Bf ,(€2). The operator

9N : B () — A*(Q)*

is the canonical solution operator to 0 (see [9] ).
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Theorem 10.4. If f =3} _, frdz; € B(zo’l)(Q)7 then

(10.6) PNPf =) (Z(PMijPfj — MkPMjfj)> dz.

k=1 \j=1

If f =270 frdzx € A%OJ)(Q), then

(10.7) PNf = [P, M,] (Zﬁjf]) dzp.
k=1 j=1

Proof. First we observe that for f € B(QOJ)(Q) we have

NI Nf=N(I—-98N)f =N,

where we used the fact that

N B(20,1)(Q) — B(20,1)(Q)'
If f € A% (), then by Theorem 10.1 it follows that

INf=TF.
Let f € Af,,)(Q) and g € Bf, () with orthogonal decompostion g = h + h, where
h € Ay (Q) and h = (I —P)g, then
(9, NOO' Nf) = (0 N(h+h), Tf) = (0 Nh,Tf)+ (8 Nh,Tf)
= (Th,Tf)+ (0 Nh,Tf) = (Tg,Tf)+ (0 Nh,Tf)
= (9,T*Tf) + (0 Nh,Tf).

Since

(0'Nh,Tf) = (Nh,OT[) = (Nh. f) = (h,Nf),
we obtain o )

(9 Nf) = (9, NOO Nf) = (9. 7T f) + (h, N f)

— (¢, T*Tf) + (I = P)g, Nf) = (9. T"Tf) + (g, (I - P)N f).
Now, since g € B(20,1)(Q> was arbitrary, we get
Nf=T"Tf+Nf—-PNf,
and therefore
PNf=T"Tf.

If we take into account, that for f € B(20,1)(Q> we have T'f = TP f, we can now apply
the last formula for P f and get

PNPf = T*TF.
It remains to compute T*T. If f € B(QOJ)(Q), then

T*Tf =) [P, M] (Z[Mj, P]fj> Az,

j=1

= ( (PM,M ;P — M,PM ;P — PM,,PM; + M,PM) fj> dzs,
1

k=1 \j=
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k=1
where we used Lemma 10.3.
If fe A%OJ)(Q), then

= Z (Z(PMijPf] - Mk—PMjf])> dzk:

j=1

Pfi=f;

and we obtain the second formula in Theorem 10.4. 0
Using the last results we get the criterion for compactness of the commutators [P, My] :
Theorem 10.5. Let Q be a bounded pseudoconver domain in C". Then the following
conditions are equivalent:

(1) N |A2 (@) 1s compact;

(2) 9N |A2 is compact;

(3) [P, Mk] 23 compact on L*(Q) fork=1,....,n

(4) (I — P)MkP is compact on L*(Q) fork=1,....n B

(5) [M,, P] is compact on L*(Q) for each continuous function ¢ on Q.
Proof. Let S; = @ Ny (0 1)(Q) — A%(Q)* be the canonical solution operator to 0

and similarly S, = 9 N, : B, 2)(9) — B(QO’I)(Q)L, then

Ny = S8, + S5

(see for instance [9] or [18]). Since S |A2 2@~ 0, we have

Nilaz (@)= S151 a2 ()

(o, 1) (0,1)

and (1) is equivalent to (2).

Now suppose that (2) holds. Then, since the restriction of & N to A%O,l)(Q) is of the
form

k=1
where f =3, frdz, € A(o 1y (8), thﬂby Theorem 10.1 it follows that the operators
[M, P] are compact on LQ(Q). Since [My, P]* = [P, M|, we obtain property (3).
It is also clear by Theorem 10.1 that (3) implies (2).
Now suppose that (3) holds. It follows that [Mj, P]P is also compact, and since
[My,, P|P = M,P — PM,P = (I — P)M_P,
the Hankel operators (I — P)M;P are compact. So we have shown that (3) implies (4).

Suppose that (4) holds. The Hankel operators H. = with symbol z;Z; can be written in
the form

H. 5 = (I = P)M;(P + (I — P))MyP = (I — P)M;(I — P)MyP,

hence it follows that H, = is compact. Similarly one can show that for any polynomial

(2,2) = Z A 22,

lo|<N
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where a@ = (g, a2) in a multiindex in N**, the corresponding Hankel operator H, =

(I — P)M,P is compact. Now let ¢ € C(€2). Then, by the Stone- Weierstrafl Theorem,
there exists a polynomial p of the above form such that

[ =Pl <e.
hence
1Hy — Hy|| = [|(I = P)My—pP|| < [[p = plloc-
Since the compact operators form a closed twosided ideal in the operator norm and since
for g = g1 + g» where g; € A%(Q) and g, € A%2(2)* we have
(Mg, Plg = —Hzgs + Hygn,
it follows that [M,,, P] is compact. O

Remark 10.6. If Q is a bounded convexr domain, then compactness of & N |A(20 (@)
implies already compactness of N on all of L%OJ)(Q) (see [17]), hence , in this case
property (1) of Theorem 10.5 can be replaced by N being compact on L%OJ)(Q) and prop-

erty (2) of Theorem 10.5 can be replaced by ' N being compact on L%o,n(Q)'
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11. DIFFERENTIAL OPERATORS IN R?

Next we characterize compactness of the O-Neumann operator N, which was originally
done in [26] using methods from Schrédinger operators, and later in [38] using estimates
of the Bergman kernel in A?(C, e~%). Here we give a direct proof using methods of chapter
9.

First we give a sufficient condition for compactness of the d-Neumann operator N,

on L?(C,e™¥). Then we describe a characterization of compactness of the 9-Neumann
operator N, on L*(C,e %) as it is done in [26] using methods from real analysis.

Theorem 11.1. Let ¢ be a subharmonic C?-function such that
(11.1) Ap(z) = +o0
as |z| = oo. Then the O-Neumann operator N, is compact on L*(C,e™¥%).
Proof. Suppose that Ap(z) — 0o as 2| — co. We already showed that [, = e#/2 D D" ¢=#/2
and that DD" = —%1 AVES % Ayp. We also proved that —A 4 > % Ay, which implies that
—1 A4+ 3 A > 1 Ap and hence for f € C5°(C) we obtain
(@Oaf e = (72DD e ?f, f),

= (e ¥?DD e ¥%f, f)

= (55* e ¥12f P2 f)
and setting ¢ = e=%/2f we get

(Opf. f)y=([DD g,9) > E(Awg,g) = i (Do f,f)e

and we can apply Proposition 9.16. to see that NNV, is compact. 0

Remark 11.2. In the following we describe a charcterization of compactness in the
complez one-dimensional case, see [26].

The reverse Holder class By(R?) consists of L? positive and almost non zero everywhere
functions V' for which there exists a constant C' > 0 such that

(11.2) (ﬁ/@v%u); g(J(@l'/QVdA)

for any ball Q in R?.
Note that any positive (non zero) polynomial is in Bs.
Using different methods of real analysis one can now show the following characterization

(see [26], for the details):

Let ¢ be a subharmonic C?- function on R? such that
(11.3) Ny € By(R?) .
Then the O-Neumann operator N, is compact on L*(C,e~%) if and only if
(11.4) lim Ap(w) dA\(w) = 400 ,
‘Z'—)OO D(Z,l)

where D(z,1) ={w e C:|w —z| < 1}.
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That (11.4) is necessary for compactness follows from a result of Iwatsuka [31]. The
sufficiency of (11.4) is derived form the diamagnetic inequality and a special form of
Fefferman-Phong inequality.

Under the same assumptions on o as in Remark 11.2, we can express the last result in
the following way: The Schrodinger operator with magnetic field

(11.5) 5_£<—AA+B),

where

has compact resolvent if and only if (11.4) holds.

We return to the Dirac and Pauli operators related with the weight function ¢ :

.0 0
D = (—Z% — A1> 01 —+ (_Zﬁ_y — Ag) g9,
where A; = —%%5 , Ay = %%‘f and

0 1 0 —i
=\10) %27\ i 0 )

The square of D is diagonal with the Pauli operators P, on the diagonal:
P 0
2 _
2= 5

a 2 2
p, = (—z’——Al) +(—¢——A2) +B =-A,+B,

where

where B = %Agp.

Theorem 11.3. Suppose that |z|?Ap(z) — +00 as |z| = oco. Then the corresponding
Dirac operator D has non-compact resolvent.

Proof. By 13.12 D? has compact resolvent, if and only if D has compact resolvent.
Suppose that D has compact resolvent. Since

s (P 0
b= ( 0o P )’
this would imply that both P. have compact resolvent.
We know from (8.7) that

P.=4D"D =4e#?9,0 */”

and that P_ is non-negative self-adjoint operator. It follows from Theorem 7.10 that the
space of entire functions A?(C,e™¥) is of infinite dimension. This means that 0 belongs
to the essential spectrum of P_. Hence, by Proposition 13.13, P_ fails to have compact
resolvent and we arrive at a contradiction. OJ
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For further results see [20] and [21].
A similar conclusion can be drawn in several variables for the Witten Laplacian
ACO — DD, = 27,3 ¢

if limy, o0 | 2% (2) = 400, then ALY fails to have compact resolvent. (py is the lowest
eigenvalue of the Levi matrix M,,.)
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12. OBSTRUCTIONS TO COMPACTNESS

In this chapter we give some examples of domains or weights, for which the corresponding
0-Neumann operator or the canonical solution operator to 0 fails to be compact.

First we consider the the canonical solution operator to 0 for the bidisc D x D (see [35]
for the details):
We know from section 1 that the monomials

1
gon(z):\/n—i_ 2", n=0,1,2,...
T

constitute a complete orthonormal system in A?(ID). Consider the following (0, 1)-forms
a;, in L%OJ)(]D x D) with holomorphic coefficients:

an(21, 22) = ©n(21) dZzs.

They are d-closed and their norms in L%OJ)(]D) x D) are

”anH :ﬁ7 n:O71727'-'
The canonical solution to du = o, is given by
Un (21, 22) = @n(21) Zo,

this means that u, € A?(D x D)+, which follows by the fact that for each h € A%(D x D)
we have

/]D)><ID> Un (21, 22) h(z1, 22) dN(21, 22) :/

D

©n(21) </D 2oh(z1, 22) d)\(;:g)) d\(z1) =0,

where the inner integral vanishes by Cauchy’s theorem applied to the holomorphic func-
tion 2z — 29h(z1, 22). Finally,

|lunl| = \/g and u,lu,, if n#m,

which follows from

(t, ) = / 202 A (22) / on(z1) () dA(21)

and (§0n7 @m) = 5n,m'
Thus {u,} has no convergent subsequence in L*(D x D). This shows that the canonical

solution operator N to 0 fails to be compact.
Further obstructions to compactness can be found in [17], [18] and [46].

We continue to calculate the integrals in (9.10) for the weight ¢(z) = |2|* in C. We set
B = a/2 and uy(z) = 2* for k € N. The left hand side of (9.10) is

o0

/ |uk(2)|2 6_|Z‘(¥ d)\(z) — 271-\/ r2k+1 6_,,,(1 dr7
C\Br

R

> 1 ko1
pPHl e dr = —T (— + —) :
/0 26 \p B
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The right hand side of (9.10) reads
/|a up(2)|? e " dA(z /| k2Ft 4 B2PR1E812 o g (2)

_2ﬂ,/ (k22E-L _ of g p2B+2k=1 4 g2 d4B+2k-1y o= 2 g
0
) 2e ()
:7T5F<%—|—1).

If « = 2, it follows that condition (9.10) is not satisfied. For this purpose we consider
the integral
& 2
/ 7,2k+1 e " dr
R
and substitue r? = s obtaining

o0 5 [e.e]
/ r2tl e dr = / she " ds.
R R?

Now we apply k-times partial integration and get

00 ) 00 RQJ
k,—s —R* p2k k—1_—s
/ se fds =e + /R2 s" e ds = e~ E

l
R2 ]0‘]

Observe that for § = 1 we have

k k 1
F<B+1) F(ﬁ B>_M

and as there is ¢y > 0 such that for each R > 0 there exists k£ € N such that

condition (9.10) is not satisfied for o = 2. This means that J-Neumann N,, operator
on L*(C,e1*) fails to be compact, and as N, = S*S, where S is the canonical solu-
tion operator to 0, the canonical solution operator S also fails to be compact (compare
Theorem 2.11).

Another proof for this fact uses spectral theory: from (8.9) we know that

0%u Ju

0207 e 0z +

hence it follows immediately that the whole space A2(C,e’|z‘2) is a subspace of the
eigenspace to the eigenvalue 1 of the operator O,, which means that the essential spec-
trum of O, is nonempty and N,, fails to be compact by 13.13.

— 00 =

In the next examples we consider decoupled C? weights

p(21,22, -, 20) = @(21) + @(22) + -+ + o(2n)
and follow an idea of G. Schneider ([44]).

94



Theorem 12.1. Suppose that n > 2 and that there exists { such that A*(C,e %) is
infinite dimensional. Suppose also that 1 € L*(C,e%7) for all j. Suppose finally that
for some k # €, Z,, € L*(C,e%*). Then the canonical solution operator to O fails to be
compact even on the space A?o,1)(Cn> e %).

Proof. Let P, denote the Bergman projection from L?*(C,e %*) onto A%(C,e %*). It is
clear that the function (Zy — PyZx) is not zero. Let (f,), be an infinite orthonormal
system in A%(C, e #¢) and define

hl,(z) = f,/(Zg)(zk — szk)-
Then (h,), is an orthogonal family in A%(C", e~®)+. To see this let g € A%(C",e~¥) and

consider

(9,hy), = / . / 9(2) 2 €77 AN () . fo(20)e P CD dN(2) .. e ) dA(2,)
C o

- / . / 9(2)z e ) dN(z) .. fo(z0)e 0 dN(zp) .. e ) dN(z,) = 0,
C o

where we used that (v, PiZk) e, = (v,Zk)y, for v € A%(C, e %),
In addition we have Oh, = f,(z)dzy.
Hence (ahl,)y constitutes a bounded sequence in A%O’l)((C”, e~ %), and for the canonical

solution operator S we have S(f,(z¢)dzx) = h, and since (h,), is an orthogonal family,
it has no convergent subsequence, which implies the result. O

Remark 12.2. If the conditions of Theorem 12.1 are satisfied, then the corresponding
0-Neumann operator N, also fails to be compact, which follows from Proposition 9.12.

In the following example we consider the O-Neumann operator N1 for a decoupled
weight ¢ :

Example. Let (z1,25) = |21]|? + |22/* and consider the corresponding d-Neumann
operator N, ;. We will investigate the following sequence of (0, 1)-forms

ug (21, 22) = Yr(21) dza,

where 9y (z1) = %, for k € N. It follows that duj, = 0 for each k € N and

5:,uk(zl, 29) = Zotk(21).
This implies
Op1ur = up and Ny u, = ug,
for each k € N. The set {uy, : k € N} is a bounded set of mutually orthogonal (0, 1)-forms
in L%OJ)((C”, e ¥). As N1 u, = uy, it follows that N, ; fails to be compact.
The following computation shows that condition (9.10) is not satisfied for the (0, 1)-forms
uy, where we consider fCQ\QR instead of fC?\BR’ where
Qr ={(z1,22) : |21] < R, |22] < R}.
We have

A (B o0
/ |ur (21, 22)‘26_|Z1\2—|z2\2 d\(z1, 22) = F/ (/ T%k-ﬁ-le—r% drl) r o3 dry
CA\Qr ' Jo R

47T & e 2 2
+ o (/ T%k“e_rl drl) o€ 2 dry.
‘' JR 0
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After the substitution r{ = s the first integral is equal to

2 R )
k_7'r (/ skes d3> 9 e "2 drs.
. 0 R2

As in the example from above we get

o k R
/ sfe™%ds = e~ Z —',
R2 —0 .

and finally substituting 72 = ¢

2 R [e%) R2j R2
k—T </ ske Sds) roe -3 drg—ﬂe’mz / e tdt

R2

On the right hand side of (9.10) we only have the term

[e.9] o0
_ 2 2 47T 2 _ 2
'/ |21 |2 |22 2e P 122 AN (2, 25) = - / r2# e dry / rae "2 dry = .
k k! 0

This implies

/ |ug (21, Zz)|2€_‘zl|2_‘z2|2 dX(z1, 22) > re F Z —
CA\Qr

=i

As there is ¢y > 0 such that for each R > 0 there exists k € N such that
J
e B Z S (1= ) > e,

condition (9.10) is not satisfied.

Finally we discuss compactness of N,; and N, in C? for a more general setting: let

6 ©1 8 P2
o0, and g2

©(z1, 22) = v1(21) + @2(22). The eigenvalues of the Levi matrix are
If the (0, 1)-form u = wydz; + u2dz, belongs to dom(O, ), then

0%uy 0%uy Op1 Ouy  Ops Ouq D¢y
O,u=|— — dz
1 ( 821651 822832 * 82’1 821 * 822 832 + 821831 U1> o
0%uy 9%uqy 0p1 Oug  Jpo Ougy 0?9
_ — dz
* ( 821851 822872 + 821 821 + 822 852 + 822852 uQ) =2
and for V = v dz; A dzy € dom (O, 5) we have

0% 0%v O Ov 84,02 ov 0%, 02y
| _ _ _ dz, N\ dzs.
? 2V ( 62’1821 82’28?2 821 621 82’2 822 8z1821 v 822622 U) ANz

Now suppose that A%(C, e #') is infinite dimensional, that 1 € L*(C,e %) for j = 1,2,

that z, € L*(C, e #?) and finally that
0*p1(21) n ps(22)
82’1831 82’202’2

Then N, is compact, but N, ; fails to be compact.

— 00 as |z|? + |z]* = .
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Our assumptions imply that N, o is compact by 9.4. In addition we have that
N%Q - S;SQ,

where S, is the canonical solution operator for d for (0,2)-forms. Hence S is also
compact. Now suppose that N, ; is compact. Since

N1 = 5751 + 5255

this would imply that S; is compact, contradicting 12.1. We get the same conclusion if
we apply Proposition 9.12.
The above assumptions are all satisfied for instance for the weightfunctions

(21, 22) = 2| + |2, k=2,3,....
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13. APPENDIX A: SPECTRAL THEORY

Here we describe some properties of compact operators on separble Hilbert spaces which
are used in the text, see [41] for the details. In addition we include elements of unbounded
self-adjoint operators and discuss some properties of non-negative self-adjoint operators
with compact resolvent, see [14].

Let A: H — H be a compact, self-adjoint operator on a separable Hilbert space H. The
Spectral Theorem says that there exists a real zero-sequence (i), and an orthonormal
system (e,), in H such that for x € H

Axr = i (2, €) €,

n=0

where the sum converges in the operator norm, i.e.

N
sup [|Ax — Zun(x, en)en| — 0,
=<1 n—0

as N — oo.

Now let H; and H, be separable Hilbert spaces and A : H; — H, a compact operator.
First we indicate that A is compact if and only if A*A is compact.

There exists a decreasing zero-sequence (s,), in R* and orthonormal systems (e, ),>0 in
H1 and (fn)nZO in H27 such that

Ax = an(x, en)fn, © € Hy,

n=0
where the sum converges again in the operator norm. In order to show this one applies
the spectral theorem for the positive, compact operator A*A : H; — H; and gets

(13.1) A*Ax = Zsi(m,en)en,

n=0

where s2 are the eigenvalues of A*A. If s, > 0, we set f,, = s, ! Ae, and get
2
nyJm) = A naA m) —
(s fim) nm(e €m) P —

(A*Aena 6m) = o (ena em) = 5n,m-
For y € Hy with y L e, for each n € Ny we have by (13.1) that
1Ay* = (Ay, Ay) = (A"Ay,y) = 0.

Ar=A (x - Z(m, en)en) + A <Z(x, en)en>

- i(l‘, en)Aen = isn(x7€n)fn'
n=0

n=0

Hence we have

The numbers s,, are uniquely determined by the operator A, they are the eigenvalues of
A*A, and they are called the s-numbers of A.

Let 0 < p < oo. the operator A belongs to the Schatten-class S,, if its sequence (s,,),, of
s-numbers belongs to [”. The elements of the Schatten class S, are called Hilbert-Schmidt
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operators. A is a Hilbert-Schmidt operator if and only if > 7 || Ae,||* < oo for each
complete orthonormal system (e,), in H.

On L%-spaces Hilbert-Schmidt operators can be described in the following way:

Let S CR" and T C R™ be open sets and A : L*(T) — L*(S) a linear mapping. A is
a Hilbert-Schmidt operator if and only if there exists K € L?(S x T'), such that

Af(s):/TK(s,t)f(t)dt ferXm).

The following characterization of compactness is useful for the special operators in the
text, see for instance [13]):

Lemma 13.1. Let Hy and H, be Hilbert spaces, and assume that S: Hy, — Hy is a
bounded linear operator. The following three statements are equivalent:

e S is compact.
e For every e > 0 there is a C'= C, > 0 and a compact operator T =T.: Hi — Hy

such that
(13.2) 1Sv]l g, < C Tl g, +ellvlly, -
e For everye > 0 there is a C' = C. > 0 and a compact operator T ="T.: H| — H,
such that
(13.3) 1S3, < CNITol, +ellol, -

Proof. First we show that (13.2) and (13.3) are equivalent.
Suppose that (13.3) holds. Write (13.3) with € and C replaced by their squares to obtain

2 2 2
1Svl, < C*IToll, + & ol < (ClITvlly, +< lvlly,)*,
which implies (13.2).
Now suppose that (13.2) holds. Choose n with ¢ = 2n? and apply (13.2) with ¢ replaced
by n to get
2 2 2
1SVl < C* T, + 20C [0l g, 1TVl g, +0* 01, -
It is easily seen (small constant - large constant trick) that there is C’ > 0 such that

2 2
20C [[vll g, 1Tl gy, < 0* 0lly, + C" 1T,

hence
2 2 2 2 2
1S0]l3, < (C?+ C)ITolly, + 207 vlly, = C" 1Ty, + e llvlly, -

To prove the lemma it therefore suffices to prove that (13.2) is equivalent to compactness.
When S is known to be compact, we choose T'= S and C' = 1, and (13.2) holds for every
positive €.

For the converse let (v,), be a bounded sequence in H;. We want to extract a Cauchy
subsequence from (Sv,,),. From (13.2) we have

(13.4) 100~ Sty < CNT0n = Tl g, + llon = vl

Given a positive integer N, we may choose ¢ sufficiently small in (13.4) so that the second
term on the right-hand side is at most 1/(2/V). The first term can be made smaller than
1/(2N) by extracting a subsequence of (v,), (still labeled the same) for which (T'v,),
converges, and then choosing n and m large enough.
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Let (vr(LO))n denote the original bounded sequence. The above argument shows that, for

each positive integer N, there is a sequence (UT(LN))n satisfying : (v,(lN))n is a subsequence

of (v,(LN_l))n, and for any pair v and w in (vﬁLN))n we have [Sv — Sw||, <1/N.
Let (wg), be the diagonal sequence defined by wy = v,(f). Then (wy)y is a subsequence

of (vﬁlo))n and the image sequence under S of (wy) is a Cauchy sequence. Since Hj is
complete, the image sequence converges and S is compact.

0J

In the sequel we develop elements of unbounded self-adjoint operators which are used
for the 0- complex.

Definition 13.2. Let Hy, Hy be Hilbert spaces and T : dom(T) — Hs be a densely
defined linear operator. Let dom(T™) be the space of all y € Hy such that x — (Tx,y)s
defines a continuous linear functional on dom(T"). Since dom(T') is dense in H, there
exists a uniquely determined element T*y € Hy such that (Tx,y)s = (z,T*y); (Riesz
representation theorem!). The map y — T*y is linear and T* : dom(T*) — Hy is the
adjoint operator to T.

T is a closed operator, if the graph G(T) = {(f,Tf) € Hi x Hy : f € dom(T)} is a closed
subspace of Hy X Hy. The inner product in Hy X Hy is ((z,y), (u,v)) = (z,u); + (y,v)s.

Remark 13.3. If dom(T) is a closed subspace of Hy, then, by the closed graph theorem;
T is bounded if and only if T is closed.

Let Ty : dom(Ty) — Hs be a densely defined operator and Ty : Hy — Hj be a bounded
operator. Then (TyT1)* = T Ty.

Let T be a densely defined operator on H and let S be a bounded operator on H. Then
(T+S) =T*+5*.

Lemma 13.4. Let T : dom(T) — Hj be a densely defined linear operator and define
V :Hy x Hy — Hy x Hy by V((z,y)) = (y,—x). Then

G(T*) = V(G = V(G(T)");
in particular T* is always closed.

Proof. (y,z) € G(T*) < (Tx,y)s = (x,2); for each x € dom(T') < ((z,Tx),(—z,y)) =
0 for each x € dom(T) & V~((y,2)) = (—z,y) € G(T)*. Hence G(T*) = V(G(T)*)
and since V' is unitary we have V* =V~ and [V(G(T))]* = V(G(T)*).

OJ

Lemma 13.5. Let T : dom(T) — Hy be a densely defined, closed linear operator. Then
Hy x H =V (G(T)) ® G(T™).
Proof. G(T) is closed, therefore, by Lemma 13.4: G(T*)* = V(G(T)). O

Lemma 13.6. Let T : dom(T) — Hy be a densely defined, closed linear operator. Then
dom(T*) is dense in Hy and T** =T.

Proof. Let z Ldom(T™). Hence (2,y)s = 0 for each y € dom(7™). We have
V™' Hy x H — Hy x H,
where V=((y,z)) = (—x,y), and V="'V = Id. Now, by Lemma 13.5, we have
Hy x Hy 2 V™'(Hy x Hy) =V H(V(G(T)) & G(T*)) = G(T) & V-1 (G(T)).
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Hence (z,y)2 = 0 < ((0,2), (=T*y,y)) = 0 for each y € dom(7™) implies (0, z) € G(T)
and therefore z = 7'(0) = 0, which means that dom(7™) is dense in Hs.
Since T and T™ are densely defined and closed we have by Lemma 13.4

G(T) =G(T)* = [VIG(T")]* = G(T™),
where —V =1 corresponds to V' in considering operators from H, to H;. |

Lemma 13.7. Let T : dom(T) — Hs be a densely defined linear operator. Then
KerT* = (ImT)*, which means that KerT* is closed.

Proof. Let v € KerT* and y € ImT, which means that there exists v € dom(7") such
that Tu = y. Hence

(v,9)2 = (v, Tu)y = (T"v,u); =0,
and KerT* C (ImT)*.
And if y € (ImT)*, then (y,Tu)s = 0 for each v € dom(T'), which implies that y €
dom(7™) and (y,Tu)y = (T*y,u); for each u € dom(7'). Since each dom(7’) is dense in
H,; we obtain T*y = 0 and (Im7T)*+ C KerT™. O

Lemma 13.8. Let T : dom(T) — Hy be a densely defined, closed linear operator. Then
KerT is a closed linear subspace of Hi.

Proof. We use Lemma 13.7 for T* and get KerT** = (Im7™)*. Since, by Lemma 13.6,
T** =T we obtain KerT = (Im7*)* and that KerT is a closed linear subspace of Hj.
O

Definition 13.9. Let T : dom(T) — H be a densely defined linear operator. T is
symmetric if (Tx,y) = (x,Ty) for all z,y € dom(T). We say that T is self-adjoint if T
is symmetric and dom(T) = dom(T*). This is equivalent to requiring that T = T* and
implies that T is closed.

Lemma 13.10. Let T be a densely defined, symmetric operator.

(i) If dom(T) = H, then T is self-adjoint and T is bounded.

(i1) If T is self-adjoint and injective, then Im(T) is dense in H, and T~ is self-adjoint.
(153) If Im(T) is dense in H, then T is injective.

(w) If Im(T) = H, then T is self-adjoint, and T~ is bounded.

Proof. (i) By assumption dom(7") C dom(7™). If dom(T") = H, it follows that T is self-
adjoint, therefore also closed (Lemma 13.4) and continuous by the closed graph theorem.
(ii) Suppose yLIm(T). Then = +— (Tz,y) = 0 is continuous on dom(7), hence y €
dom(7™) = dom(7), and (z,Ty) = (Tx,y) = 0 for all x € dom(7"). Thus Ty = 0 and
since T is assumed to be injective, it follows that y = 0. This proves that Im(7") in dense
in H.

T is therefore densely defined, with dom(7~!) = Im(T), and (T~!)* exists. Now let
U:HxH— Hx H be defined by U((z,y)) = (—y, ). It easily follows that U? = —I
and U?(M) = M for any subspace M of H x H, and we get G(T~') = U(G(-T)) and
U(G(T™Y)) = G(-T)). Being self-adjoint, T' is closed; hence —T is closed and T~! is
closed. By Lemma 13.5 applied to 7! and to —T we get the orthogonal decompositions

HxH=UGT"Y)ag(T™"))
and

HxH=UG-T)®G(-T)) =G6(T"HaUGT™)).
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Consequently

which shows that (T71)* =T~
(iii) Suppose Tz = 0. Then (z,Ty) = (Tz,y) = 0 for each y € dom(7T"). Thus x LIm(7"),
and therefore x = 0.
(iv) Since Im(T) = H, (iii) implies that T is injective, dom(T!) = H. If x,y € H, then
r =Tz and y = Tw, for some z € dom(7") and w € dom(7"), so that

(T0,) = (. Tw) = (T2,w) = (2,Ty).
Hence T! is symmetric. (i) implies that 7! is self-adjoint (and bounded), and now it
follows from (ii) that 7= (T!)~! is also self-adjoint. OJ

Lemma 13.11. Let T be a densely defined closed operator, dom(T) C H; and T :
dom(T) — Hy. Then B= (I +T*T)™' and C =T(I +T*T)~" are everywhere defined
and bounded, ||B|| <1, ||C|| < 1; in addition B is self-adjoint and positive.

Proof. Let h € H; be an arbitrary element and consider (h,0) € H; x H,. Form the
proof of Lemma 13.6 we get

(13.5) H, x Hy=G(T) oV 1G(T)),
which implies that (h,0) can be written in a unique way as

for f € dom(T) and g € dom(T™), which gives h = f 4+ T*g and 0 = T'f — g. We set
Bh := f and Ch := g¢. In this way we get two linear operators B and C' everywhere
defined on H;. The two equations from above can now be written as

I=B+T°C, 0=TB-C,
which gives
(13.6) C=TB and I =B+T'TB=(1+T'T)B.
The decomposition in (13.5) is orthogonal, therefore we obtain
112 = 112, )1 = I(F THOIZ + (T g, =) II* = I I* + TSI + 1Tl + 9],

and hence
| BR[|+ |ChI* = | £II> + llgll* < A%,

which implies [|B|| <1 and [|C] < 1.
For each u € dom(7T™*T') we get

(I +T"T)u,u) = (u,u) + (Tu, Tu) > (u,u)

hence, if (I +T*T)u = 0 we get u = 0. Therefore (I +T*T)"! exists and (13.6) implies
that (I+7T*T)~! is defined everywhere and B = (I +T*T)~!. Finally let u,v € H;. Then

(Bu,v) = (Bu, (I + T*T)Bv) = (Bu, Bv) + (Bu, T*T Bv)
= (Bu, Bv) + (T"TBu, Bv) = ((I + T"T)Bu, Bv) = (u, Bv)

and
(Bu,u) = (Bu, (I + T*T)Bu) = (Bu, Bu) + (I'Bu, T Bu) > 0,

which proves the lemma. (]
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Next we mention some facts from spectral theory of unbounded operators on Hilbert
spaces, see for instance [14].

If A is a linear operator on a Hilbert space H with domain dom(A), then its spectrum
Spec(A) is defined as follows. We say a complex number z does not lie in Spec(A) if the
operator (z — A) maps dom(A) one-one onto H, and the inverse (or resolvent) operator,
which we shall denote by R(z, A) or (2 — A)~!, is bounded.

For z,w ¢ Spec(A) we have

(13.7) R(z,A) — R(w,A) = —(z —w)R(z, A)R(w, A).

Using the spectral theorem for non-negative self-adjoint operators A (i.e. (Af, f) >0,
for each f € dom(A)) one gets that the spectrum of A is contained in [0, c0). There exists
a self-adjoint square root AY? of A and domA'? = domA. In addition domA endowed
with the norm

Ifllo == (NAY2FI2 + LF11%)2

becomes a Hilbert space, see [14], Chapter 4. The norm |.||p stems from the inner
product (f,g)p = (A2, AY%g) + (£, g).

Proposition 13.12. Let A be a non-negative self-adjoint operator on H. Let domA
be endowed with the norm ||.||p. A has compact resolvent if and only if the canonical
imbedding

j:domA — H

1s a compact linear operator.
Furthermore, A has compact resolvent if and only if AY? has compact resolvent.

Proof. Since —1 ¢ Spec(A), we know that (A + 1)~! is a bounded operator on H. From
(13.7) we get that R(—1, A) = (A+1)! is compact if and only if R(z, A) is compact for
any z ¢ Spec(A).
Let uw € H and v € domA. Then

(uv)p = (ujv) = (u,0) = (A+ DA +1) u,v) = (A+ 1) u, (A+ 1))
(A4 1) u, Av) + (A+ 1) 1w, 0)
= (AV2A+ 1), AY20) + (A + 1), v)
(A+1)""u,v)p,
This implies that j* = (A+1)~! as operator on domA and joj* = (A+1)"! as operator
on H. So we get the first statement by the fact that j is compact if and only if j o 5* is

compact.
The second statement follows from (AY2 4 i)* = AY? — i and

(A4 1) = (A2 +4)(AV2 —).

O

The point spectrum of A is by definition the set of all of its eigenvalues. The discrete
spectrum is defined as the set of all eigenvalues i of finite multiplicity which are isolated
in the sense that (u — €, u) and (p, u + €) are disjoint from the spectrum for some € > 0.
The non-discrete part of the spectrum of A is called the essential spectrum. The next
proposition follows from the spectral theorem of unbounded, self-adjoint operators (see
[14]).
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Proposition 13.13. Let A be a non-negative self-adjoint operator on H. Then the fol-
lowing conditions are equivalent:

(i) The resolvent operator (A + 1)~' is compact.
(ii) The operator A has empty essential spectrum.
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14. APPENDIX B: SOME DIFFERENTIAL GEOMETRIC ASPECTS

Let (M, w) be a Kéhler manifold with fundamental form w and (£, M, 7) a holomorphic
vector bundle over M.
Let

V :T(TY(M)) x T(E) — T'(E)
be the uniquely determined connection on E that is both holomorphic and compatible
with the metric. The operator

0 :=V?

is called the curvature of the connection V.
We consider the weighted 0 complex on C* with fundamental form

w:iZdzk/\dik.

k=1
The weight factor e™# can be interpreted as a metric on the trivial line bundle over C”
and

O = 90y = Z az] 8zk dz; A dzy,

see [49] for the details. Let A denote the interior multiplication with the fundamental
form w :
(Ao, w) = (o, w A w),
for suitable differential forms o and w.
Let u = Z‘/ﬂ:q uydz; be a (0, ¢)-form with coeflicients in C5°(C™), we want to interprete

the term
Z / 82 8_ UjKﬂkK e Y dA.
n UZj

|K|=¢—1 j,k=1
of (5.9) by the curvature © and the operator A. For this purpose we consider (n, ¢)-forms

g == Zlfde/\dE],
1=q
instead of (0, ¢)-forms, where dz = dz; A - -+ A dz,. We use the notation
Az =dz A Adzg A+ A dz,
which means that dz; is excluded. It follows that
Ae=iY " > gdz Ndz
Jj=1|J|=¢-1

and since O = 0 we obtain for the commutator [@ A] that

(i[0,A¢, &), = > Z 5 82 ag &js€rs e dX.

|J|=¢—1 j,k=1

The commutator [, A] appears in the Nakano vanishing theorem, see [49].
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15. APPENDIX C: COMPACT SUBSETS IN L2-SPACES

A set A is precompact (i.e. A is compact) in a Banach space X if and only if for every
positive number € there is a finite subset N, of points of X such that A C {J,cy, Be(y)-
A set N, with this property is called a finite e-net for A.

We recall the Arzela-Ascoli theorem: Let (2 be a bounded domain in R". A subset K of
C(Q) is precompact in C(€2) if the following two conditions hold:

(i) There exists a constant M such that |¢(x)] < M holds for every ¢ € K and z € (.
(Boundedness)

(ii) For every € > 0 there exists 6 > 0 such that if ¢ € K, x,y € 2, and |z —y| < I, then

lp(z) — é(y)| < e. (Equicontinuity)

Let J be a nonnegative, real-valued function belonging to C5°(R™) and having the prop-
erties J(x) = 0 if |z] > 1, and [;, J(x)de = 1 and let J(x) = e "J(x/e) for e > 0.
Consider the convolution

J. o u(r) = / (e~ y)uly) dy,

defined for functions u for which the right side makes sense.
Jo x u is called a mollification of u. We have J. x u € C*(R"), if u € L] _(R").
If Q is a domain in R™ and v € L*(Q), then J. x u € L*(Q) and

Voxulls < flulls . Y [l xu—ulls =0
e—0+

(see [1] for further details).

Let Q2 C R™ be a domain and u a complex-valued function on €). Let

o Julz) reQ
u(x)_{o z R\ Q

Theorem 15.1. A bounded subset A of L*()) is precompact in L*(Q) if and only if for
every € > 0 there exists a number 6 > 0 and a subset w CC §2 such that for every u € A
and h € R™ with |h| < § both of the following inequalities hold:

(15.1) /Q (e + ) — a(x)Pde < & /Q\ lu(z) 2 dz < €.

Proof. Let mpu(xz) = u(x + h) denote the translate of u by h. First assume that A is
precompact. Since A has a finite €/6- net, and since Cy(f2) is dense in L?((Q), there
exists a finite set S C Co(2), such that for each u € A there exists ¢ € S satisfying
lu — ¢|l2 < €/3. Let w be the union of the supports of the finitely many functions in
S. Then w CC () and the second inequality follows immediately. To prove the first
inequality choose a closed ball B, of radius r centered at the origin and containing w.
Note that (7,0 — ¢)(x) = ¢(x + h) — ¢(z) is uniformly continuous and vanishes outside
B,41 provided |h| < 1. Hence

lim [ |me(z) — ¢(x)|* dzw = 0,
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the convergence being uniform for ¢ € S. For |h| sufficiently small, we have ||7,¢ — ¢||2 <
¢/3. If ¢ € S satisfies ||u — ¢||2 < €/3, then also ||7,a — 7,¢||2 < €/3. Hence we have for
|h| sufficiently small (independent of u € A ),

Imnte = ttlly < |0t — T@ll2 + |70 — @ll2 + |0 —ull2 <€
and the first inequality follows.
It is sufficient to prove the converse for the special case (2 = R", as it follows for general
Q) from its application in this special case to the set A = {a : ue A}
Let € > 0 be given and choose w CC R such that for all u € A

/ u(z)2de < <.
R\@ 3

For any n > 0 the function J, * v € C>*°(R") and in particular it belongs to C(w). If
¢ € Co(R™), then by Holder’s inequality

2

[Ty ¢(x) — (@) =

/;%@xaw—w—¢@»@
< [ 3Ir-ole) - ooy

By
Hence
|y % & — ¢l < sup ||[7h¢ — 9|2
heB,

If u e L*(R™), let (¢;); be a sequence in Cy(R™) converging to u in L? norm. Then
(J, % ¢;); is a sequence converging to J, * u in L*(R™). Since also 7,¢; — mu in L*(R"),
we have
| Jy % u— ull2 < sup ||mu — ul|s.
heB,

From the first inequality in our assumption we derive that limy o |7y — ulls = 0
uniformly for v € A. Hence lim,_, ||/, * © — u|]2 = 0 uniformly for u € A. Fix n > 0 so
that

/ | Ty * u(z) — u(x)]? do < 6

w

for all u € A.
We show that {J, * u : u € A} satisfies the conditions of the Arzela-Ascoli theorem on
@ and hence is precompact in C(w). We have

1/2
M*WMS<wwmw) Tl
yeR”?

which is bounded uniformly for x € R" and u € A since A is bounded in L?(R") and 7
is fixed. Similarly

1/2
I%*Mx+m—£ﬂuwﬂé(wpﬁ@0 —

yeR”
and so limyo J, * w(z + h) = J, * u(z) uniformly for 2 € R” and v € A. Thus
{J, *u : u e A} is precompact in C(w) and there exists a finite set {¢y,..., ¢y} of
functions in C(@) such that if u € A, then for some j, 1< j <m, and all x € @w we have
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[Y;(x) — Jy xu(x)] < %

This together with the inequality (Ja| + [b])?* < 2(|a|* + |b]?) implies that

uw) = )P do= [ Ju@)Pdo+ [ Ju(e) - vy(a) da

R R™\@

<52 [(u@) = Iy u@) + 1y x () = (@) ) do

w

- €+2 e+ € @
- - w| | =e€.
3 6 6.0

Hence A has a finite e-net in L?(R™) and is therefore precompact in L?(R").

OJ

Remark 15.2. (a) With the same proof one gets:

A bounded subset A of L*(Q) is precompact in L*(Q) if and only if the following two
conditions are satisfied:

(i) for every e > 0 and for each w CC ) there exists a number § > 0 such that for every
u € A and h € R™ with |h| < ¢ the following inequality holds:

(15.2) / iz + B) — ()2 dz < &
(ii) for every e > 0 there exists w CC § such that for every u € A
(15.3) / lu(z)|? dz < €.

0w

(b) An analogous result holds in weighted spaces L*(C", p).
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16. APPENDIX D: FRIEDRICHS' LEMMA AND GARDING’S INEQUALITY
SOBOLEV SPACES AND RELLICH’S LEMMA

First we approximate solutions of a first order differential operator by regularization
using convolutions. To begin with we define for a function f on R"™ and x € R" the
function f, to be f.(y) = f(z +y).

Lemma 16.1. If1 <p < oo and f € LP(R™), then lim, o || f. — f|l, = 0.

Proof. 1f g is continuous with compact support, then ¢ is uniformly continuous, so g, — ¢
uniformly as x — 0. Since g, and g are supported in a common compact set for |z| < 1,
it follows that ||g, — ¢g||, = 0. Given f € LP(R") and € > 0, choose a continuous function
g with compact support such that || f — g||, < €/3. Then also || f, — g.||, < €/3, so

1fo = fllp < 1fe = Gollp + 192 = gllp + 1lg = fllp < 9o — gllp + 2¢/3.

For |z| sufficiently small, ||g. — g||, < €/3, hence || f» — f|l, < €.

Let x € C°(R™) be a function with support in the unit ball such that x > 0 and

/nx(x)dx =1.

We define y.(z) = e "x(x/¢) for ¢ > 0. Let f be an L? function on R™ and define for
xR

fel@) = (Fex) (@) = | f@)xe(w—a")da’ = [ fle—a")x(2')da’ = | flz—ex)x(a") da'.
In the first integral we ﬂzan differentiate under tﬁe integral sign to show tﬁat fe € C2(R™).
The family of functions (). is called an approximation to the identity.
Lemma 16.2. ||f. — f||, = 0 as e = 0.
Proof.

@)= @) = [ (=) = ) xta) d'

We use Minkowski’s inequality

(16.1) [/ (/|F(x',:c)|da:')p d:c} " / (/|F(x’,x)|pdx) Ry

to get

6=l < [ o= fll (@] e

But ||f—err — fllp is bounded by 2| f]|, and tends to 0 as e — 0 by Lemma 16.1. The
desired result follows from the dominated convergence theorem.
O

If u € C°(R™) we have
D]'(u * Xe) = (D]u) *Xe
where D; = 9/0x;. This also true, if u € L*(R") and Dju is defined in the sense of

distributions.
We are now ready to prove
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Lemma 16.3 (Friedrichs’ lemma). If v € L*(R"™) with compact support and a is a C*-
function in a neighborhood of the support of v, it follows that

laD;(v * xc) — (aD;v) * Xe|]l2 = 0 as e — 0,
where D; = 0/0x; and aD;v is defined in the sense of distributions.
Proof. If v € C§°(R™), we have

Dj(v*x.) = (Djv) * xc = Djv , (aDjv)* x. — aD;v,
with uniform convergence. We claim that
(162) aD; (v % x.) — (@Ds0) * xella < Clloll,

where v € L*(R") and C is some positive constant independent of € and v. Since C§°(R")
is dense in L*(R™), the lemma will follow from 16.2 and the dominated convergence
theorem.

To show (16.2) we may assume that a € C}(R"), since v has compact support. We have
for v € C5°(R™),

a(z)Dj(v * xc)(z) — ((aDjv) * xc)(z)
= D/ v(z —y)x(y) dy — /( )%(x—y)xe(y)dy

_ /<a< )~ ale ) o (o~ y)xely) dy

~ - [(a@) - ata - y) o

(. —y)x(y) dy
= /(a(:v) —a(z —y))v(z —y) %xe(y) dy — / (;a(:v - y)) v(r —y)xe(y) dy.

y;
Yj

Let M be the Lipschitz constant for a such that |a(x)—a(x—y)| < M|y|, for all z,y € R™.
Then

0
|a(x)D;j(v * x)(x) — ((aDjv) * xe) ()] < M/ lv(@ —y)|(xe(y) + |ya—yxe(y)|) dy.
j
By Minkowski’s inequality (16.1) we obtain

0
laDj(v+ xe) = (aDjv) * xella < M||v||2/(xs(y)+ [y, X W dy
J

= M1 +my)lvl,

/Iya—xe ) y—/lya—x ) dy.

This shows (16.2) when v € C§°(R"). Snce C3°(R™) is dense in L*(R™), we have proved
(16.2) and the lemma. O

Lemma 16.4. Let

where

L = Z aij -+ Qo
j=1
be a first order differential operator with variable coefficients where a; € C*(R™) and ag €
C(R™). If v € L3(R™) with compact support and Lv = f € L*(R™) where Lv is defined in
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the distribution sense, the convolution ve = v * x. is in C§°(R"™) and v — v, Lv. — f in
L*(R™) as € — 0.

Proof. Since agv € L*(R™), we have

11_13% ao(v * xe) = 11_{%(@01) * Xe) = QU
in L?(R"). Using Friedrichs’ lemma 16.3, we have

Lv.— Lv*x.=Lv.— f*x.—0

in L?(R") as € — 0. The lemma follows easily since f * y. — f in L*(R").
]

In the following we will prove a simple version of Garding’s inequality (coercive esti-
mate), which will be used to investigate compactness of the 0-Neumann operator, for a
comprehensive treatment of Garding’s inequality see for instance [16] or [9].

Definition 16.5. If Q) is a bounded open set in R™, we define the Sobolev space H*(£2)

for k a nonnegative integer to be the completion of C*°()) with respect to the norm

1/2
(163 1flea= | X [1oorPar| .
laj<k 7
where a = (v, ..., ) s a multiinder , |af = Y7 a; and
olal
0°f = /

~Oxft. Dy

If Q is a domain with a C' boundary, then Hy () coincides with
WHQ) = {f € I3(Q) : 6°f € (), |a| < K},

where the derivatives are taken in the sense of distributions. (See [16].)

Theorem 16.6. Let D be a Dirichlet form of order 1 given by

n

(16.4) D(u,v) = Z (O5u, bjrOkv) + i(@ku, brv) + i(u, bi,0kv) + (u, bv),

4 k=1 k=1 k=1

where 0; = % and bji, by, by, b are C> coefficients and the bj, are real-valued. Suppose
that there exists a constant Cy > 0 such that

(16.5) R k()6 > Colé? E€R™, zeQ,
Gik=1

we say that D is strongly elliptic on 2.
Then there exist constants C' > 0 and M > 0 such that

(16.6) RD(u,u) > Cllulli o — Mllullgo  u € Hi(Q),

we say that D is coercive over Hy(Q2) (Garding’s inequality).
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Proof. We first set aj, = %(bjk + by;). Since the bj; ’s are real, strong ellipticity means
that for some constant Cy > 0,

n

Z @ik = Z bir&i&k > CO|£|2

J,k=1 J,k=1

for all £ € R™. Thus (aj;) is positive definite (ajx = ay;), so if £ is any complex n-vector,

n

R0l = Y apwéi€y > Col¢*.

jk=1 jk=1
Setting £ = Vu, where u € H;(2), we obtain

R bi(05u)(051) > Co Y |Okul,

4, k=1 k=1

so an integration over §2 yields

R D (95u,bjdv) > Co = Co([[ulli o = llulls.0).

k=1 k=1
Also, for some C; > 0 (independent of u) we have
|(Orw, bru)| < [ull1ellbrulloe < Ct
|(u, b 0ku)| < [JullogllbOrullon < Ci
|(u, bu)| < Chllullga < Cillulliallullog.
If we set Cy = (2n + 1)C4, we have
RD(u,u) > Co((lullfq — llulls.e) — Collullallulloo-

But since cd < 1(c¢? + d?) for all ¢,d > 0,
CO C3

Col lullf o + 57 20 ullg 0

SO
Co 202 + C2
(16.7) RD(u,u) > 2 [l — 20 ful,
0

which proves Garding’s inequality. O
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17. APPENDIX E: RUELLE’S LEMMA

Let H be a separable Hilbert space with inner product (.,.). We consider nonnegative
self-adjoint operators T" and S and we write T" < S, if and only if domS C domT and
(Tf, f) < (Sf, f) for each f € domS. By the spectral theorem for unbounded self-adjoint
operators (see for instance [48]), the square roots of T" and S exist and are themselves
nonnegative, self-adjoint operators.

For each f € domS'? = domS we have (TY2f TV2f) < (SY2f SY2f) if and only
if (Tf,f) < (Sf,f). So we get that T < S if and only if domS"/? C domT"/? and
T2 £ < ||SY2f]| for each f € domS'/2,

Lemma 17.1 (Ruelle’s lemma). Let T and S be nonnegative, self-adjoint operators.
Suppose that 0 € p(T) which means that T~ exists and is a bounded operator. Then
T < S if and only if S~ < T

Proof. First we show that 7' < S if and only if ||7"/25~"/?|| < 1. For this purpose we
notice that for each ¢ € H we have S~%/2g € domS'/? C domT"/2.

Hence T < S < || TV2f|| < ||SY2f|| for each f € domS'/? < ||T/2S~'2g| < ||g| for
each g € H & ||[TV/2S~'2|| < 1.

In the next step we show that ||T'/25~'/2|| < 1 & ||S~V2TV2f| < ||f| for each f €
domT"/2. First suppose that ||[7/25~"/2|| < 1 and let f € domT"/2. Then

||S—1/2T1/2f||2 _ (S_I/QTI/Zf, S—l/2T1/2f> _ (T1/2S_1/2S_1/2T1/2f, f)

<|TVEST STV L £ < IISTATVA E) £
this implies ||S~Y2TV2 f|| < || f|| for each f € domT"/2. If we suppose that [|[S~Y2TV2f|| <
| f|| for each f € domT"/? we get
ITV2S5712g|12 = (TV281/2g, TV25-12g) — (§V2T12T1/25-1/2¢ )
< ||[STVETYVETY2S 2| |lgl| < ITY2S 2] lgll,

for each g € H, which implies that ||7/25~"/2| < 1.

Finally we show : | S™Y2TY2f|| < ||f|| for each f € domT'/? & S~' < T-' If
|S=Y2TY2f| < ||f]| for each f € domTY? we set g = TY/?f and obtain ||S~1/2¢g|| <
|T—/2g|| for each g € H, which implies that (S~/2g, S™1/2g) < (T~/2g,T~/2g) and
(S7lg,9) < (T'g,g) for each g € H. In the last reasoning all steps can be reversed,

which finishes the proof.
O
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18. APPENDIX F: SOME SPECIAL INTEGRALS

Let p be a rotation-invariant measure on C”, let U be the unitary group consisting of all
n X n unitary matrices and let dU denote the Haar probability measure on U. Let o be
the rotation-invariant probability measure on the unit sphere S in C". For a multi-index
a=(ag,...,a,) wedefine z* =z ... z% and a! = q!... ! and |o| = a1 + -+ + .
Due to the invariance of yu it follows by Fubini’s theorem that

/n 2 du(2) //n (U2)* (Uz)" du(z) dU
_ / n /u (U2)* (U2)° dU du(=)

(18.1) = [ el [ 08 do( du),
cn s
where we used the fact that for a continuous function f € C(S) we have

/S 1) do() = /M F(Un) v,

for any n € S (see [43], Proposition 1.4.7.).
It is clear that for o £ [ we have

/S ¢ do(¢) =

Next we claim that for any multi-index ~

v|2 (Tl _ 1) ’7'
(18.2) /’C |*do (¢ ( 11 )

To prove (18.2) we use the integral
1:/ 12712 exp(—|22) dhon(z H/W” exp(—|w]2) dg(w),

where )y, is the Lebesgue measure on R?". It follows easily that I = 7™ ~!. Now we apply
integration in polar coordinates to I and get

7"yl =2nec, / p22n=t =% gy /\C”\z do(Q)
0 s

where ¢,, is the volume of the unit ball in C”.

Hence -
12 g _ " !
JioRartc) = e

taking v = 0 we get ¢, = 7" /n!, which proves (18.2).

md:/ 12> dp , and c;lz/ 127 |% du
n (C'n/

and obtain from (18.1) and (18.2)

For d € N we set

(n—1+ 9!

(183) o= = Dtmy
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