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Abstract. The impossible triangle, invented independently by Oscar
Reutersvärd and Roger Penrose in 1934 and 1957, is a famous geometry
configuration that can not be realized in our living space. Many people
admitted that this object could be constructed in the four dimensional
Euclidean space without rigorous proof. In this paper, we proved that
the isometric embedding problem can be decided by finite points on the
configuration, then applying Menger and Blumenthal’s classi classical
method of Euclidean embedding of finite metric space we determined
the lowest Euclidean dimension, and finally using the symbolic algebraic
computation we obtained the coordinates of the isometric embedding.
Our investigation shows that the impossible triangle is impossible to be
isometrically embedded in the four dimension Euclidean space, but there
is an isometric embedding of the impossible triangle to the five dimension
space.

Keywords: isometric embedding · impossible triangle · Euclidean space
· simplex.

1 Introduction

Impossible triangle was firstly painted in 1934 by the Swedish painter Oscar
Reutersvärd who was born in 1915 in Stockholm and was trained in arts by
Russian immigrant professor of Academy of Arts in St.Petersburg at that time.
Oscar Reutersvärd drew his version of traingle as a set of cubes in parallel

⋆ Financial support in part from the Chinese National Science Foundation Project No.
11471209 and 61772203.
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projection, as shown in Figure 1(left). Actually, he started this figure by placing
a perfect six-pointed star shape in the middle, and around the star, he added
nine cubes, filling the empty spaces between the stars points for creating the 3D
illusion. He soon realized that what he’d drawn was paradoxical: something that
couldn’t be built in the real world. (See [1]).

Reutersvärd was diagnosed with dyslexia at a young age, which prevented
him from accurately estimating the size and distance of objects, but he was
determined to follow in the footsteps of his artistic family. He continued to design
thousands of impossible figures throughout his life. Reutersvärd’s achievements
were honoured in 1982 by a series of three Swedish postage stamps.

A different version of this impossible triangle was independently created
by the English physicist and mathematician Rogers Penrose in 1954. Unlike
Reutersvärd’s figure, he painted triangle as three bars connected with right an-
gles (later known as the Penrose tribar or Penrose triangle), as shown in Fiure
1(right).

Fig. 1. (Left): The impossible figure drawn by Oscar Reutersvärd. (Right). The im-
possible structure in L. S. Penrose and R. Penrose’s article published in 1958 in the
British Journal of Psychology [2].

Penroses sent a copy of the article to M.C. Escher. Note, neither Penrose
nor Escher had not knew about artworks by Reutersvärd at that time (cf. [3]).
Escher created his famous lithographs ”Ascending and Descending” in 1960 and
”Waterfall” in 1961. M.C. Escher provided many popular examples of impossi-
ble figures in his drawings and woodcuts. Perhaps the most weird structure to
mathematicians is the impossible cube in ”Belvedere” (1958) as shown in Figure
2(left). In order to understand impossible figures, we need first to understand
two-dimensional representations of the three-dimensional objects. A simple line
drawing, such as the Necker cube illustrated in Figure 2(right), could be inter-
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preted in two ambiguous ways. The Belvedere’ toy cube can be regarded as a
version of the Necker cube where the edges cross in inconsistent ways.

Fig. 2. (Left): The toy cube held in hands of the boy in M.C. Escher’s lithograph
”Belvedere” (1958). (Right): The Necker Cube is first published as a rhomboid in 1832
by Swiss crystallographer Louis Albert Necker. It is a wire-frame drawing of a cube in
isometric perspective. When two lines cross, the picture does not show which is in front
and which is behind. It makes the picture it can be interpreted two different ways.

Impossible figures are helpful to psychology research on human visual per-
ception (see [7]). The Gestalt psychologists used impossible triangle and cube to
explain the Law of Pragnanz, that human mind loves to simplify, and quickly
make sense of objects, and therefore, human sees the whole image, before the
sum of its parts. This theory emphasizes that human perceives objects as wholes
rather than as parts. On the reverse, they say that the Gestalt approach to psy-
chology reveals some interesting insights about impossible figures and why they
are so captivating.

Some artists find mind-bending ways to bring the Penrose Triangle and other
impossible figures into three-dimensional reality. They create clever design on
certain objects so that they look like the proper impossible figure when viewed
from the correct angle. An example is the Impossible Triangle sculpture in Perth,
Australia, shown in the Figure 3, created in the November 1999 by artist Brian
McKay in collaboration with architect Ahmad Abas. Another impossible triangle
is located in Ophoven, Belgium. This one was achieved differently (due to the
great fire-wall and/or intellectual property reason we are not able to provide
further information on this one).

As we have seen, for the Impossible Triangle sculpture, there are only two
appropriate positions from where could see the proper Penrose triangle. It is
curious to ask that if people there are other ways to install certain structure,
in higher dimensional space when it is impossible to do this in the usual three
dimensional space, so that people can see the impossible figure in a larger viewing
angle? The question can be rephrased more precisely as below: if any body can
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Fig. 3. An Impossible Triangle sculpture was designed by artist Brian McKay and
architect Ahmad Abas, which was built in Claisebrook Square in East Perth, Australia.
It is 13.5 metres high, and has remained an East Perth landmark for 20 years.

build a geometric configuration in four or higher dimensional Euclidean space
so that people in the real world could actually view an image of the impossible
triangle in the real world?

Some people argued (cf. [4]) that since each local part of the Penrose triangle
is 3-dimensional, so lies in some 3-dimensional subspace, and because that the
edges are straight lines, every piece lies on the same 3-dimensional subspace, so
if we don’t allow the edges to bend, then the figure is also not possible in higher
dimensions when it is not possible in the 3-dimensions.

An opposing viewpoint is that figures like the Penrose triangle which seems
impossible in our three-dimensional space might be possible in fourth dimension.
For example, Blue Sam [5]) indicated as the surface of the Penrose triangle is
(up to taking a smooth approximation at the edges) a smooth 2-manifold, so by
the Whitney Embedding Theorem, must embed in 5-dimensional space, and it’s
easy to remove the smooth approximation then. Sam also said that if we are not
bothered about keeping the edges straight, the embedding can be done in three
dimensions, and he was confident to the four dimension space when it is allow
with straight edges. Vlad Alexeev [6] claimed that the bars of four-dimensional
impossible triangle can be connected at right angles and it will not be distorted
from any point of view as distinct from three-dimensional impossible triangle.
However, to the best of our knowledge, we have not found a rigorous proof of
the embedding neither to 5 nor to 4 dimensional space.

In this paper, we devote to construct an explicit embedding of the Penrose
triangle in the Euclidean space. We will prove that the minimal n for constructing
an isometric embedding of the Penrose triangle in Rn is n = 5. The paper is
organized as follows: In § 2 we show that the embedding problem can be reduced
to a set of finite points, and the finite points can be isometrically embedded into
the Euclidean space Rn with minimal n = 5, in § 3 we solve an equation system
derived from the reduced embedding problem, so to give an explicit embedding
of the Penrose triangle into Rn, in § 4 we present an intuitive explanation to
the five dimensional configuration of the Penrose triangle, and show an analogue
isometric embedding of the Möbius band to R4.
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2 The Minimal Isometric Embedding

In view of mathematics, making an imagined object in higher dimensional Eu-
clidean space Rn means to construct points set S that is isometric to the con-
figuration in imagination, or topologically looks like the imagined object, and
to see a point set of higher dimensional space from the usual R3 just means to
compute the image of certain function f : Rn → R3 that acts like a camera
we use everyday for taking 2D images of 3D objects. As we often take several
photos of a three-dimensional object from several different view angles to obtain
more information of the 3D shape, it is also necessary to take several 3D images
of one higher dimensional object to percept its whole structure.

The idea for lifting the impossible figures in higher dimensional space is very
natural. As we all know, any 2D animal living in a plane world R2 is not able to
build a Möbius trip from a paper band, since any movement of the paper in the
plane world just can not twist the paper band, and lift it as depicted in the Figure
4. Though the task to twist and lift up a paper band is an impossible mission for
any 2D animals, human in R3 can do this job very easily, and mathematicians
even can write down the coordinates of points on the Möbius band as in [8].

twist

liftlift

paper band Möbius band

Fig. 4. When making a Möbius band from a paper band, the twist and lift operations
must be done in the three dimensional space.

For constructing the Penrose triangle, we may start from three equal copies
of an L-shape object L, formed by two perpendicular cylinders in the three
dimensional space, as depicted in the Figure 5. Just like that in the plane world
2D animals can not twist or lift up a paper band, in our living 3D space we can
connect L1, L2 at point A without problem, but we can not connect L1, L3 at
C and L2, L3 at B simultaneously. So the real difficulty for making the Penrose
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triangle is that we are not able to move the three objects out of the 3D space
where we are living.

Now imaging that some of us (say, Jog) happened to know the gate to higher
dimensional world, then he could build the Penrose triangle from the 3D com-
ponents L1, L2, L3 in some higher dimensional space which is invisible to us.
To show that he had done the craft correctly, Jog could also cut his product
again into several pieces 3D figures, possibly new ones, as shown in Figure 6,
and brought them back to the three dimensional world where we are living, as
an evidence of his work in the higher dimensional space.

L1

L2 L3 P ⊂ Rn

Fig. 5. L1, L2, L3 in the left are three equal copies of 3D materials for making the
Penrose triangle. If any body knows the gate to the higher dimension, he could take
L1, L2, L3 out of the three dimensional space and construct a right Penrose triangle in
some higher dimensional space with the 3D components.

In mathematics, the above above actions can be understood as decomposing
the an object that is impossible figure into finite many 3D components, and
constructing the impossible configuration (an isometric embedding) in Rn for
some n > 3 with the components, and then partitioning the point set into some
disjoint parts that can be displayed in the three dimensional space (a piecewise
isometric immersion of the impossible configuration in R3).

For doing the isometric embedding and piecewise immersion, we may decom-
pose the Penrose triangle into the union of three regular cubes and three right
cylinders as depicted in the Figure 7. Where as altogether the cubes and cylin-
ders have 24 vertices, we use the 24 lower case Greek letters to denote them.
The cubes and cylinders are constructed as follows. Notice that the Penrose is
a non-convex polytope, and its convex hull P (i.e., the smallest convex set that
contains the Penrose triangle) has six extremals. Here a point P is called an
extremal point of a convex set K ⊂ Rn, if there exists no P1, P2 ∈ K such that
P1 ̸= P2 ∈ K and P = c · P1 + (1 − c)P2 for some c ∈ (0, 1). Let α, β, λ, o, ϕ, ω
denote the six extremals of P Let C1, C2, C3 be the maximal cylinders contained
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L̂1

L̂2

Fig. 6. If any body had built a proper Penrose triangle in higher dimensional space Rn

from three equal 3D objects L1, L2, L3, he could cut his product into two 3D objects
L̂1, L̂2 and brought back to the real world.

in the Penrose triangle. It is clear that

A1 = C2 ∩ C3, A2 = C3 ∩ C1, A3 = C1 ∩ C2,

are three disjoint regular cubes contained in the Penrose triangle,

Bi = Ci \ (A1 ∪A2 ∪A3), i = 1, 2, 3,

are three right cylinders contained in the Penrose triangle, and the three cubes
and three cylinders form a disjoint partition of the Penrose triangle. We may
write

A1 = αβγδεζηθ,A2 = ικλµνξoπ,A3 = ρσςτυϕχψω, (1)

and
B2 = γηθδ-νικξ,B1 = νιµπ-χυτψ,C3 = ρυτσ-εζηθ. (2)

Without loss of generality, we may assume that the cubes are isometric to [0, 1]×
[0, 1]×[0, 1], and the cylinders are isometric to [0, 1]×[0, 1]×(0, a), for appropriate
a ≥ 3. Note that The last requirement a ≥ 3 is pre-assumed according to the
most of drawings of Reutersvärd or Penrose’s impossible figures. For convenient,
we shall denote the Penrose triangle with αβ = 1, γκ = a by notation ∆(a).

Note also that the Penrose triangle ∆(a) is contained in the polytype shell
formed by removing the convex hull (we shall denote it by Q) of the six points
{η, θ, ι, ν, τ, υ} from P, the convex hull of {α, β, λ, o, ϕ, ω}. That is,

∆(a) ⊂ P \Q (a ≥ 3). (3)

For convenience, we shall call the extremals of P and Q the extremal point of
∆(a). As we have seen from Figure 7, the decomposition

∆(a) = (A1 ∪A2 ∪A3) ∪ (B1 ∪B2 ∪B3), (4)
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Fig. 7. The Penrose triangle∆(a) is decomposed into the disjoint union of three regular
cubes A1, A2, A3 and three right (open) cylinders B1, B2, B3.

where Bi (i = 1, 2, 3) are the closure of Bi, shows that ∆(a) is a polyhedral-
complex (cf. [9]). Therefore, if we can isometrically embed the vertices of the
cubes A1, A2, A3 and cylinders B1, B2, B3, that is, the 24 points α, β, γ, · · · , ω ∈
∆(a), into any Euclidean space Rn, then we can construct a Penrose triangle
configuration in that space, too. Indeed, we can prove that, the extremals of
∆(a) are essential for constructing such isometric embedding. Namely, we have
the following result.

Theorem 1. Assume that ∆(a) is the Penrose triangle as in Figure 7, so that
αβ = 1, γκ = a ≥ 3, and

F : {α, β, η, θ; ι, λ, o, ν; τ, υ, ϕ, ω} → Rn

is any isometric embedding, then F can be extended to an isometric mapping:

F̂ : ∆(a) → Rn.

Proof(outline) Without loss of generality we may assume that

X1 = F (α), X2 = F (β), Y1 = F (θ), Y2 = F (η);
X3 = F (λ), X4 = F (o), Y3 = F (ι), Y4 = F (ν);
X5 = F (ω), X6 = F (ϕ), Y5 = F (τ), Y6 = F (υ).

(5)

Let G,H : R× Rn → Rn be functions defined by

G(V,W ) =
a+ 1

a+ 2
V +

1

a+ 2
W,H(V,W ) =

a

a+ 1
V +

1

a+ 1
W.
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Then we can construct points Yi, Zi, Ui(i = 1, 2, · · · , 6) in the space Rn as
follows:

Z1 = G(X1, X6), Z2 = G(X2, X3), Z3 = G(X3, X2),
Z4 = G(X4, X5), Z5 = G(X5, X4), Z6 = G(X6, X1),

(6)

U2 = H(X2, Y6), U4 = H(X4, Y2), U6 = H(X6, Y4),
U1 = H(X1, Y3), U3 = H(X3, Y5), U5 = H(X5, Y1).

(7)

Figure 8 shows the generated points. We can verify the following facts:

1. the following three polyhedra

X1X2Z2U1Z1U2Y2Y1, Y3Z3X3U3Y4U4X4Z4,
Z6U5Y5Y6X6U6Z5X5

are regular cubes of edge length equals 1, all isometric to the 3D cube [0, 1]×
[0, 1]× [0, 1];

2. the following three polyhedra

U1Z2Y2Y1-Y3Z3U4U4, U3Z4Y4Y3-Y5Z5U6Y6,
U5Z6Y6Y5–Y1Z1U2Y2

are right cylinders, all isometric to [0, 1]× [0, 1]× (0, a);
3. the set of the following 24 points

X1, X2, Y2, U1, Y1, U2, Z2, Z1; Z3, Y3, X3, U3,
Z4, U4, X4, Y4; Y6, U5, Z5, Z6, X6, U6, Y5, X5

is isometric to {α, β, · · · , ω} ⊂ ∆(a), up to appropriate permutation;
4. and finally, the cylinders

X1X2U2Z1-U3X3X4Z4, X3X4U4Z3-U5X5X6Z6,
X5X6U6Z5-U1X1X2Z2

are mutually perpendicular, all isometric to [0, 1] × [0, 1] × [0, a + 2]. There
union F̂ (∆(a)) forms a Penrose triangle (actually, tribar) in Rn.

⊓⊔

In the rest of this section we prove that the 12 extremal points of the Penrose
triangle ∆(a) can be isometrically embedded in Rn for n = 5, and n = 5 is the
least dimension for embedding the Penrose triangle into Euclidean space. For
this, we need consider the metric on the extremals of ∆(a). Let

X12 := {α, β, θ, η;λ, o, ι, ν;ω, ϕ, τ, υ}

be the set of the 12 extremals of ∆(a). As ∆(a) can be isometrically immersed
(projected) in the three dimensional Euclidean space Rn, in a piecewise way, as
depicted in Figure 6 and Figure 7, we can define the distance d(x, y) between
any two extremal points x, y ∈ ∆(a) by

d(x, y) := max
I∈Π

D(I(x), I(y)), (8)
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3
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Z5

Z6

Z1 Y1

Y2
Y3

Y4

Y6 Y5
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U3
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U5U6

Fig. 8. X1, X2, · · · , X6;Y1, Y2, · · · , Y6 are the images of F , an isometric map from the
12 extremals of the Penrose triangle ∆(a) to Rn, and three cubes are generated from
Xi, Yi(1 ≤ i ≤ 6) and functions G,H.

here Π is the set of all piecewise isometric immersion of ∆(a) in R3, and D(X,Y )
is the usual distance between two points X,Y in the three dimensional Euclidean
space. It is clear that (X12, d) is a metric space, i.e.,

d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y,
d(x, y) = d(y, x),
d(x, y) + d(y, z) ≥ d(x, z),

(9)

hold for all x, y, z ∈ X12. Since Π contains all projection from all possible 3D
components of ∆(a) to R3, we have the following inequality:

d(x, y) ≥ max
P∈Π(x,y)

D(P (x), P (y)) (10)

here Π(x, y) is the set of all mapping that projects a 3D polyhedral component
of ∆(a) which contains x, y to R3.

Taking an example for x = α, y = β, it is easy to see that any projection
P : ∆(a) → R3 we have D(P (α), P (β)) ≤ αβ = 1, and there is also a projection
that project the component A1 ⊂ ∆(a) to

P (α) = (0, 0, 0), P (β) = (1, 0, 0),

thus d(α, β) ≥ D(P (α), P (β)) = 1. For points x = α, y = o, we see that α, o ∈
C1 = A1 ∪ B3 ∪ A2, and a point initially at position α ∈ ∆(a) can move to
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position o ∈ ∆(a) as follows: first along u = αβ to the position β ∈ ∆(a),
then turn 90◦ on the place αβγ, continue to move along the line v = βγκλ to
the position λ ∈ ∆(a), then turn 90◦ on the plane κλo, and move to position
o ∈ ∆(a) finally. Apply the following Pythogoras Theorem we can computer the
distance between α and o is

√
a2 + 4a+ 6.

Theorem 2. (Pythagoras of Samos, c.570-495 BCE) Assume that a point X
started to move along the direction u for a straight distance a, then move along
the direction v for a straight distance b, and so on, and move along the direction
w for a distance c, and finally arrived the point Y . Assume that u,v, · · · ,w are
pair-wisely perpendicular to each other, Then the straight length between points
X and Y is

√
a2 + b2 + · · ·+ c2.

The 12× 12 distance matrix for (X12, d) can be expressed as a block matrix
as follows:

Md =

M1 M2 M
T
2

MT
2 M1 M2

M2 M
T
2 M1

 , (11)

where

M1 =


α β θ η

α 0 1
√
2

√
3

β 1 0
√
3

√
2

θ
√
2

√
3 0 1

η
√
3

√
2 1 0

, (12)

is the 4× 4 distance matrix on point set {α, β, θ, η},

M2 =


λ o ι ν

α a2,1 a2,2 a1,0 a1,1
β a2,0 a2,1 a1,1 a2,2
θ a1,2 a1,1 a0,1 a0,0
η a1,1 a1,0 a0,2 a0,1

, (13)

and

ai,j :=
√
(a+ i)2 + j (i, j = 0, 1, 2)

for shorter.

Isometric embeddability in the Euclidean space has been well understood
since the classical works of Menger, von Neumann, Schoenberg, and others (see,
e.g., [10–13]). Given a set of finite points X = {p0, p1, · · · , pN}, and a metric
d : X ×X → R≥0, the problem of isometric embedding (X, d) in the Euclidean
space Rn can be characterized by the Cayley-Menger determinant of X (and its
subset). For (X, d), let di,j = d(pi, pj) for i, j = 0, 1, · · · , N . The Cayley-Menger
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determinant is defined by

D(X) := det



0 1 1 1 · · · 1
1 0 d20,1 d20,2 · · · d20,N
1 d21,0 0 d21,2 · · · d21,N
1 d22,0 d22,1 0 · · · d22,N
...

...
...

...
. . .

...
1 d2N,0 d

2
N,1 d

2
N,2 · · · 0


,

Following result can be found in [11].

Theorem 3. (Blumenthal, [11]) A finite metric space (X, d) is Euclidean with
dimension n if and only if there are p0, p1, · · · , pn ∈ X such that

(i) (−1)j+1D(p0, . . . , pj) > 0 for 1 ≤ j ≤ n, and
(ii) D(p0, · · · , pn, x) = D(p0, · · · , pn, y)

= D(p0, · · · , pn, x, y) = 0for all x, y ∈ X.
(14)

Applying the above theorem, we can search maximal subset p0, p1, · · · , pn of
X12 that satisfies the conditions (i) and (ii) of the Theorem 3. As #X12 = 12 and
X12 has only 212 = 4096 subsets, it is very easy to use any symbolic computation
software to find all subsets of X12 satisfying (i) and (ii). The searching result is
that there are altogether 64 different subsets satisfying the required conditions,
and each of them contains 6 points. From the symbolic computation result we
can prove the isometric embeddability of X12 in the five dimensional Euclidean
space R5.

Theorem 4. The point set X12 with distance matrix Md given by (11) can be
isometrically embedded into Rn for n ≥ 5, and n = 5 is the least dimension for
the isometric embedding.

Proof. For saving place here we prove this theorem by a constructive method.
Consider points α, β, λ, o, ω, ϕ ∈ X12. Then forD(α, β),−D(α, β, λ) andD(α, β, λ, o)
we have:

+det


α β

0 1 1
1 0 1
1 1 0

α
β

= 2 > 0, (15)

−det


α β λ

0 1 1 1
1 0 1 (a+ 2)2 + 1
1 1 0 (a+ 2)2

1 (a+ 2)2 + 1 (a+ 2)2 0

αβ
λ

= 4(a+ 2)2 > 0, (16)
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+ det



0 1 1 1 1

1 0 1 a2 + 1 a2 + 2

1 1 0 a2 a2 + 1

1 a2 + 1 a2 0 1

1 a2 + 2 a2 + 1 1 0


= 8(a+ 2)2 > 0,

(17)

for −D(α, β, λ, o, ω) and D(α, β, λ, o, ω, ϕ), using notation

a2,0 = a+ 2, a2,1 =
√
(a+ 2)2 + 1, a2,2 =

√
(a+ 2)2 + 2.

for better print quality, we have

−det



0 1 1 1 1 1

1 0 1 a22,1 a
2
2,2 a

2
2,1

1 1 0 a22,0 a
2
2,1 a

2
2,2

1 a22,1 a
2
2,0 0 1 a22,1

1 a22,2 a
2
2,1 1 0 a22,0

1 a22,1 a
2
2,2 a

2
2,1 a

2
2,0 0


= 4 (a+ 3) (a+ 1)

(
3 a2 + 12 a+ 13

)
> 0,

(18)

+ det



0 1 1 1 1 1 1

1 0 1 a22,1 a
2
2,2 a

2
2,1 a

2
2,0

1 1 0 a22,0 a
2
2,1 a

2
2,2 a

2
2,1

1 a22,1 a
2
2,0 0 1 a22,1 a

2
2,2

1 a22,2 a
2
2,1 1 0 a22,0 a

2
2,1

1 a22,1 a
2
2,2 a

2
2,1 a

2
2,0 0 1

1 a22,0 a
2
2,1 a

2
2,2 a

2
2,1 1 0


= 24 (a+ 3)

2
(a+ 1)

2
> 0.

(19)

With symbolic computation software it is easy to verify that

D(α, β, λ, o, ω, ϕ, x) = 0, D(α, β, λ, o, ω, ϕ, x, y) = 0, (20)

hold for all x, y ∈ {η, θ, ι, ν, τ, υ}. Indeed, according to symmetry, we need only
to check this for x ∈ {η, θ}, y ∈ {ι, ν}. Combine (15) to (20) and Theorem 3,
we proved that X12 can be isometrically embedded into R5. This implies also
that the Penrose triangle can not be isometrically embedded into R4 as people
generally believed that. ⊓⊔
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Combining Theorem 1 and Theorem 4, we proved that the Penrose triangle
can be embedded into Rn, but not R4.

Actually, we have used Maple software running on a notebook computer with
Intel(R) Core(TM) i7 CPU and 8GB proved that there are 64 different selections
of p0, p1, · · · , p5 satisfying the conditions (i) and (ii) of Theorem 3, and the 64
subsets can be represented as members of the Cartesian product

{α, θ} × {β, η} × {λ, ι} × {o, ν} × {ω, τ} × {ϕ, υ}.

Note that both
extremal(P) = {α, β, λ, o, ω, ϕ}

and
extremal(Q) = {θ, η, ι, ν, τ, υ}

are members of the product set, which implies that P and Q can be viewed
as two simpleces in R5, therefore, and, the Penrose triangle ∆(a) as a three
dimensional topological manifold, is indeed a polyhedral belt contained in the
shell P \Q.

3 Solving embedding equations using symbolic
computation

Theorem 4 confirms the existence of an isometric embedding of (the 12 ex-
tremal points on) the Penrose triangle in the space Rn. One may use the general
method given by Blumenthal [11] or Lu Yang and Jingzhong Zhang [14] to cre-
ate an explicit representation of the embedding, i.e., the concrete coordinates
(xi, yi, zi, ui, vi) ∈ Rn (i = 1, 2, · · · , 12) as the images of

X12 = {α, β, η, θ, ι, λ, ν, o, τ, υ, φ, ω}

in R5 under the isometric embedding. Due to the symmetry of the Penrose
triangle, we can also find a solution of the embedding equations using symbolic
computation. We will show this in this section. Suppose that the Penrose triangle
has been realized in the five dimensional Euclidean space, then the projection of
the configuration in the Rn along any direction (an oriented straight line) into
the three dimensional space would be the three cubes (that is a rigid movement
of [0, 1] × [0, 1] × [0, 1] ⊂ R4) connected by three bars (that is isometric to the
cylinder [0, 1] × [0, 1] × [0, a]. As depicted in the Figure 7, we may assume the
cubes are

∆ := αβγδϵεζη, Π := ικλµνξ oπ, Σ := ρυτσϕχψω.

With an unitary orthogonal transforms, we may change that the vertex δ on the
first cube ∆ is lie on the origin (0, 0, 0, 0, 0), and the coordinates of other vertices
are

α = (0, 1, 0, 0, 0), β = (1, 1, 0, 0, 0), γ = (0, 1, 0, 0, 0),
ε = (0, 1, 1, 0, 0), ζ = (1, 1, 1, 0, 0),
η = (0, 1, 1, 0, 0), θ = (0, 0, 1, 0, 0).

(21)
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As shown in Figure 9, the original design of Reutersvärd, the cube Π can move
along a straight line ℓs (in the appropriate space, here, we assume it is a line in
the R5) to ∆, so that Π coincides ∆ with

ρ→ α, υ → β, τ → γ, σ → δ,
ϕ→ ε, χ→ ζ, ψ → η, ω → θ,

(22)

after movement, and the other cube Π can be moved to ∆ along a line ℓp so
that

ι→ α, κ→ β, λ→ γ, µ→ δ,
ν → ε, ξ → ζ, o→ η, π → θ.

(23)

α

β
γ

ε

ζ
η

ρ

ϕ

ω

ψ

χ

υ

λ

o

κ

ξ

ν
π

?

ℓs

"
"

"
"

"
ℓp

∆
↗

↙Π

Σ↘

Fig. 9. ℓs, ℓp are two lines in R5 so that the cube Σ can be moved to coincide ∆ in
parallel to ℓs, and the cube can be move to ∆ in parallel to ℓp. Some vertices of the
cubes ∆,Π,Σ are not marked in the picture. When viewing ∆,Π,Σ as necker cubes,
take ζ, ξ, χ to the front-most positions.

Without loss of generality, we may assume the line ℓs and the line ℓp line in
the plane

{(x, y, z, u, v)|x = 0, y = 0, z = 0} ⊂ R5,

and the coordinates of vertices δ ∈ ∆,µ ∈ Σ, σ ∈ Π are

δ = (0, 0, 0, u1, v1), µ = (0, 0, 0, u2, v2), σ = (0, 0, 0, u3, v3), (24)

respectively. We can take u1 = 0, v1 = 0 as in (21), here we use this form just
for symmetry. Therefore, the coordinates of all other 21 vertices of ∆,Π,Σ can
be determined by (21) and (24). In particular, we have

α = (1, 0, 0, u1, v1), β = (1, 1, 0, u1, v1), λ = (0, 1, 0, u2, v2),
o = (0, 1, 1, u2, v2), ω = (0, 0, 1, u3, v3), ϕ = (1, 0, 1, u3, v3).

(25)
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Using the coordinates to compute the distance αβ, αλ, αo, αω, αϕ, we establish
the following equation system:

1 + (u1 − u2)
2
+ (v1 − v2)

2 − (a+ 2)
2
= 0,

1 + (u1 − u3)
2
+ (v1 − v3)

2 − (a+ 2)
2
= 0,

1 + (u2 − u3)
2
+ (v2 − v3)

2 − (a+ 2)
2
= 0,

u1 = 0, v1 = 0.

(26)

Solving this equation system we obtained

u2 = u3 =

√
3

2

√
a2 + 4a+ 3, v2 = −v3 =

1

2

√
a2 + 4a+ 3,

and hence, the coordinates of the 24 vertices of the cube ∆,Π,Σ. For saving
space, here we omit the detail data.

4 Epilogue

As we have proved, the Penrose triangle has an isometric embedding in lowest
dimension Euclidean space R5, as a subset of P \ Q, the difference set of two
simplexes, where P is formed by α, β, λ, o, ω, ϕ, and Q formed by θ, η, ι, ν, τ, υ.
Figure 10 gives an intuitive explanation to this fact.

It is clear that dim(P \ Q) = 5, otherwise ∆(a) could be isometrically em-
bedded into lower dimensional space. Therefore, viewing it from the R5, the
Penrose triangle is a bounded set of co-dimension 2, locally flat, with 0 genus,
like a non-planar closed space curve in R3.

To conclude the paper, we indicate that the way we have used to imbed the
Penrose triangle into the space Rn can be applied to construct a flat isometric
embedding of the Möbius band into R4. Namely, let

A = (0, 0, a, a), B = (1, 0, a, a), C = (0, a, 0, a),
D = (1, a, 0, a), E = (0, a, a, 0), F = (1, a, a, 0),

(27)

then, the rectangles ABCD,CDEF,EFAB in the 4-dim space form a Möbius
band in R4 so that every interior point of the rectangles has a flat neighborhood,
as shown in Figure 11. See [15] for more works on isometric embeddings and
immersions of Möbius bands. We wonder if the similar method can be applied
to construct an isometric embedding of the impossible cuble (Figure 2(left) into
Rn so that the embedded cube produces a weird view from three-dimensional
space.
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(a) P (b) Q

(c) P \Q (d) a Penrose triangle

Fig. 10. (a): P: the convex hull of the Penrose triangle, also a simplex formed by
α, β, λ, o, ω, ϕ in the space R5; (b): Q, the simplex formed by points θ, η, ι, ν, τ, υ in R5;
(c): ∆(a) ⊂ P \ Q; (d): the piecewise isometric immersion of the Penrose triangle in
the three dimensional space as we see.
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Fig. 11. (left): the Möbius band in the space R3; (right): an isometric embedding of
the Möbius band in R4.


